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Abstract: The pattern of metabolites produced by the gut microbiome comprises a 

phenotype indicative of the means by which that microbiome affects the gut. We 

characterized that phenotype in mice by conducting metabolomic analyses of the  

colonic-cecal contents, comparing that to the metabolite patterns of feces in order to 

determine the suitability of fecal specimens as proxies for assessing the metabolic impact of 

the gut microbiome. We detected a total of 270 low molecular weight metabolites in  

colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry 

(GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight 

mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types 

of specimen, representing almost all known biochemical pathways related to the amino acid, 

carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, 

and cancer-related metabolism. A total of 115 metabolites differed significantly in relative 

abundance between both colonic-cecal contents and feces. These data comprise the first 

characterization of relationships among metabolites present in the colonic-cecal contents and 

feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the 

pattern of metabolites to which the colonic mucosum is exposed. 

OPEN ACCESS



Metabolites 2015, 5 490 

 

 

Keywords: metabolite; mass spectrometry; colon; cecal contents; feces 

 

1. Introduction 

The gastrointestinal tract, which is the site of the host’s first encounter with nutrients, microorganisms 

and other bioactive factors in foods, hosts a complex community of microorganisms. The role of that 

community in affecting health is becoming increasingly evident. Research has shown that differences in 

the nature of the gut microbiome are associated with risk to obesity [1], colon cancer [2], and type 2 diabetes 

mellitus [3]. Such effects would appear to involve the production by the gut microbiome of metabolites used 

as substrates and/or signaling molecules by mucosal epithelial cells. 

Metabolites represent molecular read-outs of cells. The pattern of metabolites produced by the gut 

microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. 

Such metabolic phenotypes can be characterized using metabolomic approaches, which employ the 

capacities of tandem liquid/gas chromatography-mass spectrometry to profile metabolites. 

Two major platforms are available for metabolomic analyses: gas chromatography, time-of-flight 

mass spectrometry (GC-TOF) and liquid chromatography quadrapole, time-of-flight mass spectrometry 

(LC-Q-TOF). The former is useful for the analysis of thermally stable volatile compounds, typically 

>600 daltons, and yields high separation efficiency and reproducible retention times and mass spectra. 

The latter does not require derivatization, and is amenable for the analysis of polar and high molecular 

weight metabolites [4,5]. Combining data produced by both platforms offers comprehensive insight into 

actual metabolomic phenotypes.  

Interrogating high-dimensional metabolomic data calls for several analytical tools: multiple 

hypothesis testing with false discovery rate (FDR) adjustment, hierarchical clustering, principal 

components analysis (PCA), partial least squares (PLS), biochemical pathway enrichment and network 

analysis [6,7]. With these tools, difficult and complex analyses of large amounts of data can be more 

easily accomplished and interpreted. 

Little is presently known about the metabolic phenotypes of the gut microbiome nor whether those 

can be estimated by analyzing feces, a more readily accessible specimen, particularly in clinical contexts. 

Therefore, we compared the metabolic profiles of the colonic-cecal luminal contents and recently 

collected feces of C57BL/6 mice fed a standard chow-type diet. These baseline data can inform studies of 

the host-gut environment and the whether fecal analyses may be informative in such studies. 

2. Results and Discussion 

2.1. Metabolomic Comparisons of Sample Types 

A total of 270 metabolites were identified in the colonic-cecal contents and feces. Of these 251 (93%) 

metabolites were found in both types of specimen. Only 19 showed metabolites unique patterns (eight 

found only in colonic-cecal contents; 11 found only in feces) (Figure 1); however, 115 metabolites 

showed significantly different relative abundances in colonic-cecal contents vs. feces  

(padj < 0.05) (Figure 1, Table S1). Metabolic pathway enrichment analysis revealed that these 115 
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metabolites fell into 21 biochemical pathways (as defined by Kyoto Encyclopedia of Genes and 

Genomes, KEGG [8]), which were mainly related to amino acid, lipid metabolism, rare amino acids, 

cofactors, vitamins, signaling molecules, nitrogen, energy, and human disease/cancer. 

 

Figure 1. Overview of significant differences in metabolite profiles between colonic 

mucosal, colonic-cecal content and feces sample type comparisons. 

In this study, the chow diet contained 15.5% fiber (including crude and detergent fiber, e.g., cellulos, 

hemi-cellulose and lignin according to product data analysis (LabDiet cat#5015, St. Louis, MO). Certain 

dietary fibers are fermentable, and can alter gut microbiota composition. It is known that the gut 

microbiota is exposed to substrates that have escaped digestion in the upper gastrointestinal tract, or have 

been released into the lumen in the form of mucous and sloughed cells [9,10], and that their fermentation 

produced short chain fatty acids (SCFAs) [10]. Accordingly, the metabolite patterns we found 

demonstrate the presence of metabolic pathways involved the metabolism of lipids and amino acids. 

2.2. Metabolites Unique To Colonic-Cecal Contents or Feces 

Certain metabolites were found only in colonic-cecal contents or feces. Eight found only in  

colonic-cecal contents were related mostly to the metabolism of lipids, amino acids and nucleotides as 

well as to digestion and carcinogenesis (Table 1). Eleven metabolites found only in feces were related 

to the metabolism of lipids, amino acids and some vitamins, as well as glycan biosynthesis, digestion 

system and carcinogenesis (Table 1). The relative abundances of these unique metabolites were included 

in (Table S1). 
  

8 251 11

cecal contents feces
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Table 1. Unique metabolites and their respective biochemical pathways in colonic-cecal 

contents and feces. 

Colon-cecal contents  Feces 

Unique metabolites 

1-Hexadecanoyl-2-octadecadienoyl-sn-glycero-
3-phosphocholine 

1H-Indole-3-carboxylic acid 

L-Alanyl-L-norleucine 1-Myristoyl-sn-glycero-3-phosphocholine 

Leu-Val 1-Octadecanoyl-sn-glycero-3-phosphocholine 

N-Palmitoylsphingosine Betaine 

Palmityl-L-carnitine L-Carnitine 

Pregnan-20-one, 17-(acetyloxy)-3-hydroxy-6-
methyl-, (3b,5b,6a)-(A) 

Nicotinamide adenine dinucleotide (NAD) 

3a,12b-Dihydroxy-5b-cholanoic acid-(A) Oxyquinoline 

Deoxythymidine monophosphate (dTMP) 
 

Pregnan-20-one, 17-(acetyloxy)-3-hydroxy-6-methyl-, 
(3b,5b,6a)-(B) 

 13-hydroxy-9Z,11E-octadecadienoic acid 

 3a,12b-Dihydroxy-5b-cholanoic acid-(B) 

 UDP-N-acetyl-D-galactosamine 

Respective biochemical pathways 

Ether lipid metabolism Primary bile acid biosynthesis 

Glycerophospholipid metabolism Tryptophan metabolism 

Metabolic pathways Biosynthesis of secondary metabolites 

Choline metabolism in cancer Ether lipid metabolism 

Valine, leucine and isoleucine degradation / 
biosynthesis 

Glycerophospholipid metabolism 

Sphingolipid metabolism Metabolic pathways 

Bile secretion Choline metabolism in cancer 

Fatty acid degradation Glycine, serine and threonine metabolism 

Steroid hormone biosynthesis ABC transporters 

Secondary bile acid biosynthesis Bile secretion 

Pyrimidine metabolism Fatty acid degradation 

 Folate biosynthesis 

 Nicotinate and nicotinamide metabolism 

 Quinolines 

 Phenylalanine, tyrosine and tryptophan biosynthesis 

 Steroid hormone biosynthesis 

 Biosynthesis of unsaturated fatty acids 

 Linoleic acid metabolism 

 Secondary bile acid biosynthesis 

 Mucin type O-Glycan biosynthesis 

 Amino sugar and nucleotide sugar metabolism 

 Mucin type O-Glycan biosynthesis 
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Their largely similar metabolite profiles indicate the presence of the same functional pathways in both 

colonic-cecal contents and feces. Only 7% of metabolites were unique to colonic-cecal contents or feces. 

These may have utility as signature molecules for these specimens. The presence only in colonic-cecal 

contents of peptides (Leu-Val, L-Alanyl-L-norleucine) and metabolites of bile acids, steroids, lipids and 

nucleotides (1-Hexadecanoyl-2-octadecadienoyl-sn-glycero-3-phosphocholine; Palmityl-L-carnitine; 

pregnan-20-one,17-(acetyloxy)-3-hydroxy-6-methyl-(3b,5b,6a)-(A); 3a, 12b-dihydroxy-5b-cholanoic  

acid-(A); N-palmitoylsphingosine, deoxythymidine monophosphate) is consistent with the fact that the 

complete peptide-breakdown only occurs in colonic segment [11–14], and cecum also plays a critical 

role in bile secretion and steroid and lipid metabolism [15]; whereas, the presence only in feces of 

metabolites of amino acids, bile acids and lipids (1H-Indole-3-carboxylic acid; betaine; oxyquinoline, 

1-Myristoyl-sn-glycero-3-phosphocholine, 1-Octadecanoyl-sn-glycero-3-phosphocholine, L-Carnitine, 

3a,12b-Dihydroxy-5b-cholanoic acid-(B)), some fats, glycans and heterocylic compounds (NAD;  

13-hydroxy-9Z, 11E-octadecadienoic acid; UDP-N-acetyl-D-galactosamine; oxyquinoline) is consistent 

with bacterial fermentation in the distal colon [9,16]. However, we cannot be sure the extent to which 

the latter metabolites may have been produced under aerobic conditions after defecation. 

2.3. Metabolite Patterns and Networks 

Comparisons of the relative abundances of the 270 metabolites found in these specimens are shown 

as a heat map [17] (Figure 2). As the smaller bracket (at the top of Figure 2) represents the higher 

similarity in abundance between individual samples, the data show that samples within a given sample 

type (e.g., cecal contents or feces) shared very similar patterns (Figure 2). The cecal contents and feces 

also shared an overall similar metabolite profiles with only a few distinct patterns because feces were  

downstream-products of colonic-cecal contents via colonic fermentation (Figure 2, Table S1). 

Orthogonal signal correction partial least squares discriminant analysis (O-PLS-DA) [18] was used to 

develop a multivariate classification model for these two sample types. The two latent variable (X and 

Y axis) for an O-PLS-DA model (Figure 3), can be used to evaluate within- and between-group 

similarities between samples, and the smaller values of latent the more similar [6,18]. As latent variables 

of metabolites in cecal contents were smaller than that of feces (Figure 3), it suggests that inter individual 

variance data within cecal content group are less different than that of feces samples (Figure 3) [19]. 

This suggests that future metabolite profiling studies would require fewer samples of colonic-cecal 

contents than that of feces within a treatment group. 

Biochemical network analysis (defined by KEGG) revealed that the abundance of most carbohydrate 

metabolites (e.g., galactose-6-phosphase, erythrose), and amino acid metabolites (e.g., glutamic acid, 

aspartic acid, leucine, valine) were greater in colonic cecal contents than that in feces (Figure 4, Table 

S1). This is in agreement with the fact that complex carbohydrates and poorly digested proteins may 

reach the hind gut to be available for colonic bacterial fermentation [11–14,20]. In contrast, the contents 

of most fatty acid-related metabolites (e.g., linoleic acid, jasmonic acid, and phospholipid) were greater 

in feces than in colonic-cecal contents (Figure 4, Table S1). The higher content of phospholipid in feces 

may reflect bacterial breakdown [12,21].  
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Collectively, the metabolite detection, unique metabolites, relative abundance comparison and 

network analyses are the key methods to study the gut metabolome in our future nutritional  

intervention experiments. 

feces  cecal contents 

 

Figure 2. The heatmap displays relative increase/decrease of metabolite contents and their 

similarities between individual samples. In these visualization columns represent samples 

and rows variables, and hierarchical cluster analysis (HCA) was used to group samples and 

metabolites based on similarities in auto-scaled values and correlations, respectively. Cluster 

identities represent differing experimental biological or analytical variability; colors (red, 

relative increase; blue, relative decrease). 

  



Metabolites 2015, 5 495 

 

 

 

Figure 3. Orthogonal signal correction partial least squares discriminant analysis  

(O-PLS-DA) was used to generate a multivariate classification model showing the 

relationship of the variance (in metabolites) and sample types (colonic-cecal content and 

feces). X and Y axis are O-PLS-DA sample scores for the first two latent variables. Color 

codes: pink, colonic-cecal contents; blue, feces. 
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Figure 4. Biochemical and chemical similarity network highlighting important differences 

in metabolites abundance between colonic-cecal content and feces. Vertex size encodes the 

fold change in metabolite abundance between groups (when the metabolite abundance in 

colonic-cecal content was higher than that in feces, we defined it as “increase”; in contrast, 

if the metabolite abundance in colonic-cecal content was lower than that in feces, we defined 

it as “decrease”). Vertex shape (triangle, increase; “V”, decrease; ellipse, no change) and 

color (blue, decrease; red, increase; gray, insignificant change or p > 0.05 after-adjustment 

for FDR) are used to encode the significance and relative direction of changes in metabolites 

between colonic-cecal content and feces comparison. 
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3. Experimental Section 

3.1. Animals, Diets, and Treatment 

This study was approved by the Animal Care and Use Committee of the Grand Forks Human 

Nutrition Research Center, and animals were maintained in accordance with NIH guidelines for the care 

and use of laboratory animals. Male C57BL/6 mice, 5 months old and body weight (30 g), were 

individually housed in Plexiglas ventilated cages within a pathogen-free facility that maintained a  

12-h light/dark cycle. Mice (n = 5) were given free access to deionized water, and a common  

practical-type, chow diet (LabDiet cat#5015, St. Louis, MO). This chow diet is a complete life cycle diet, 

in which 19.8% calories from protein, 26.1% calories from fat (ether extract) and 54.1% calories from 

carbohydrates. These mice had been in this diet for 5 months (their entire life time). At the termination 

of the experiment, mice were euthanized with a mixture of ketamine and xylazine by intraperitoneal 

injection. Feces were collected over a 24-h period prior to euthanasia. After euthanasia, the gut was 

prepared by dissection, the colonic and cecal contents were combined, and all samples were placed in 

sealed containers and held at −80 °C prior to analysis. 

3.2. Sample Extraction 

Aliquots (10 mg) of colonic-cecal contents and feces were each thawed and extracted by agitation 

with 1mL of degassed acetonitrile: isopropanol: water (3:3:2) at –20 °C after which the soluble portion 

was recovered by centrifugation. Aliquots (450 µL) of that supernate were used for each GC-TOF and 

LC-Q-TOF analyses. 

3.3. GC-TOF Analysis 

Extracts were derivatized as previously published [22], and then analyzed using an Agilent 7890A 

gas chromatograph (Santa Clara, CA) coupled to a Leco Pegasus IV time-of-flight mass spectrometer. 

A Gerstel MPS2 automatic liner exchange system (ALEX) was used to eliminate sample  

cross-contamination during the GC-TOF analysis. The column was 30 m, 0.25 mm i.d. Rtx5Sil-MS with 

0.25 µm 5% diphenyl film with a 10 m integrated guard column (Restek, Bellefonte PA) [23–25]. The 

sample (0.5 µL) was injected at 50 °C ramped to 250 °C in splitless mode with a 25 s splitless time. The 

chromatographic gradient consisted of a constant flow of 1 ml/min, ramping the oven temperature from 

50 °C for to 330 °C over 22 min. Mass spectrometry parameters were: 280 °C transfer line temperature, 

electron ionization at −70 V, and a 250 °C ion source temperature. Mass spectra were acquired at 1525 

V detector voltage at m/z 85–500 with 17 spectra/sec. Acquired spectra were further processed using the 

BinBase database [25–27]. Data quality and instrument performance were monitored throughout the data 

acquisition using quality control and reference plasma samples (NIST), as previously described [22]. 

3.4. LC-Q-TOF Data Collection and Analysis 

Extracts were evaporated to dryness under reduced pressure, and reconstituted in 50 µL of 

water:acetonitrile (98:2 v:v), sonicated (5 min) and, then, centrifuged. Supernates (40 µL) were 
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transferred to amber glass vials (National Scientific-C4000-2W) fitted with micro-inserts (Supelco 

27400-U). 

Polar extracts were analyzed using an Agilent 1290 A Infinity Ultra High Performance Liquid 

Chromatography system coupled to an Agilent Accurate Mass-6530-QTOF in both positive and negative 

modes. The column (40 °C) was a Waters Acquity BEH Shield RP18 Column (150 mm length x 2.1 mm 

internal diameter; 1.7 µM particles). Mobile Phase A consisted of 100% LCMS grade water containing 

0.1% formic acid; mobile phase B consisted of 100% acetonitrile containing 0.1% formic acid. The 

gradient started from 0 min 2% (B), 0–0.5 min 2% (B), 0.5–12 min 95% (B), 12–12.5 min 95% (B), 

12.5–12.6 min 2% (B), and 12.6 min–17 min 2% (B). The flow rate was 0.6 mL/min; an injection volume 

was 5 µL for both ESI (+/−) mode acquisitions with an ESI capillary voltage was  

+ 3.5 kV and −3.5 kV for positive and negative mode, respectively. For MSMS, collision energies were 

10, 20 and 40 eV for both positive and negative acquisition modes. Data were collected over a mass 

range of m/z 60–1200 Da with a spectral acquisition speed of 2 spectra per sec. 

Data were processed using MZmine 2.10. All peak intensities are representative of peak heights. 

Annotations were completed by matching experimental accurate mass MS/MS spectra to MS/MS 

libraries, including Metlin-MSMS, NIST12, and LipidBlast. Spectral matching was accomplished using 

MSPepSearch manually curated using The NIST Mass Spectral Search Program Version 2.0g. 

Metabolite libraries were created, in positive and negative ionization modes, containing all confirmed 

identified compounds. MZmine’s Custom Database Search tool was used to assign annotations based on 

accurate mass and retention time matching. 

3.5. Data Analysis 

Data collected by GC-TOF and LC-Q-TOF were merged for both types of sample. GC-TOF values 

are reported for metabolic features measured on both platforms with analysis limited to annotated 

features. Missing values for the LC-Q-TOF were imputed as zeros. Statistical analyses were conducted 

on natural logarithm-transformed metabolic parameters, and data summaries are presented for raw 

values. Multivariate analyses (clustering, PCA, O-PLS-DA) were implemented on natural logarithm-

transformed and auto-scaled values (mean centered and scaled by the standard deviation, z-scaled). 

Statistical analyses were implemented in R v3.01. Independent sample t-Tests were used to test for 

differences in metabolite profiles between colonic-cecal contents and feces. The probability or significance 

level for the test statistics (i.e., p-values) were adjusted for the multiple hypotheses tested [28], and the 

false discovery rate (FDR)-adjusted p-values are reported as “padj”. The FDR was also directly estimated 

as the q-value, for all comparisons [29]. Hierarchical cluster analysis (HCA) was used to group samples 

and metabolites based on similarities in auto-scaled values and correlations, respectively [6]. Principal 

components analysis [6] was used to evaluate the sample class structure including similarities and 

differences. Orthogonal signal correction partial least squares discriminant analysis (O-PLS-DA) [18] 

was used to develop a multivariate classification model for the two types of samples. In order to visualize 

the biological interrelationship of the 270 known metabolites in colonic cecal contents and feces, 

biochemical and chemical similarity network analysis was used to generate networks vertices based on 

biochemical relationships (KEGG RPAIR Database). 
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4. Conclusions 

In summary, we have conducted the first comprehensive comparison of the metabolite profiles of 

colonic-cecal contents and feces in the mouse. Our results show that these specimens have very similar 

metabolite profiles, indicating the suitability of feces, which can be sampled non-invasively, as proxies 

for estimating the metabolite patterns of hindgut microbiome. These findings should inform future 

research on the role of diet and the gut microbiome in supporting health. 
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