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Brain clocks, which quantify discrepancies between brain age and
chronological age, hold promise for understanding brain health and disease.
However, theimpact of diversity (including geographical, socioeconomic,

sociodemographic, sexand neurodegeneration) on the brain-age gap is
unknown. We analyzed datasets from 5,306 participants across 15 countries

(7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries).
Based on higher-order interactions, we developed abrain-age gap deep
learning architecture for functional magnetic resonance imaging (2,953) and
electroencephalography (2,353). The datasets comprised healthy controls and
individuals with mild cognitive impairment, Alzheimer disease and behavioral
variant frontotemporal dementia. LAC models evidenced older brain ages
(functional magnetic resonance imaging: mean directional error =5.60,

root mean square error (r.m.s.e.) =11.91; electroencephalography: mean
directional error =5.34, r.m.s.e. = 9.82) associated with frontoposterior
networks compared with non-LAC models. Structural socioeconomic
inequality, pollution and health disparities were influential predictors of
increased brain-age gaps, especially in LAC (R =0.37, F2=0.59,r.m.s.e. = 6.9).
An ascending brain-age gap from healthy controls to mild cognitive
impairment to Alzheimer disease was found. In LAC, we observed larger
brain-age gaps in femalesin control and Alzheimer disease groups compared
with the respective males. The results were not explained by variationsin
signal quality, demographics or acquisition methods. These findings provide
aquantitative framework capturing the diversity of accelerated brain aging.

The brain undergoes dynamic functional changes with age'>. Accu-
rately mapping the trajectory of these changes and how they relate
to chronological age is critical for understanding the aging process,
multilevel disparities** and brain disorders’ such as the Alzheimer’s
disease continuum, which includes mild cognitive impairment (MCI)
andrelated disorders like behavioral variant frontotemporal dementia
(bvFTD)®. Brain clocks or brain-age models have emerged as dimen-
sional, transdiagnostic metrics that measure brain health influenced
by a range of factors’”®, suggesting that they may be able to capture

multimodal diversity™. Populations from LAC exhibit higher genetic
diversity and distinct physical, social and internal exposomes™ that
impact brain phenotypes*>"*, Income and socioeconomic inequal-
ity"*'® high levels of air pollution”, limited access to timely and effective
healthcare'®, rising prevalence of communicable and noncommunica-
ble diseases'”°, and low education attainment*-** are determinants
of brain health in LAC'®, Thus, although measuring the brain-age gap
could enhance our understanding of disease risk and its impact on
accelerated aging®, there is a lack of research on brain-age models
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Dataset characterization (N = 5,306)
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Fig.1|Dataset characterization and analysis pipeline. Datasets included

LAC and non-LAC healthy controls (HC, total n = 3,509) and participants with
Alzheimer disease (AD, total n = 828), bvFTD (total n=463) and MCI (total
n=>517). The fMRI dataset included 2,953 participants from LAC (Argentina, Chile,
Colombia, Mexico and Peru) as well as non-LAC (the USA, Chinaand Japan). The
EEG dataset involved 2,353 participants from Argentina, Brazil, Chile, Colombia
and Cuba (LAC) as well as Greece, Ireland, Italy, Turkey and the UK (non-LAC). The
raw fMRIand EEG signals were preprocessed by filtering and artifact removal and
the EEG signals were normalized to project theminto source space. A parcellation
using the automated anatomical labeling (AAL) atlas for both the fMRI and
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EEG signals was performed to build the nodes from which we calculated the
high-order interactions using the Q-information metric. A connectivity matrix
was obtained for both modalities, which was later represented by graphs. Data
augmentation was performed only in the testing dataset. The graphs were used
asinput for agraph convolutional deep learning network (architecture shownin
the last row), with separate models for EEG and fMRI. Finally, age prediction was
obtained, and the performance was measured by comparing the predicted versus
the chronological ages. This figure was partially created with BioRender.com
(fMRIand EEG devices).

inunderrepresented populations where they experience large socio-
economic and health disparities'®**%,

Sex and gender differences emerge as critical factorsinfluencing
brain changes. Studies on atrophy in the Alzheimer disease continuum
reveal a faster rate of brain atrophy in females than in males®. More-
over, country-level gender inequality is associated with sex differences
in cortical thickness”. Structural gender inequality further impacts
brain health, with adverse environments affecting dendriticbranching
and synapse formation®®. However, no studies to date have explored
the spectrum of brain-age abnormalities, including the effects of

demographic heterogeneity across geographical regions, between
sexes, and the continuum from brain health to disease. Further,
most studies have been conducted with participants from the
Global North, resultingin alack of generalization to underrepresented
populations from the Global South including LAC***%,

Multimodal machine learning studies show promise in brain
aging®; however, most rely on structural magnetic resonance imaging
(MRI), overlooking brain network dynamics. Complex spatiotemporal
dimensions can be tracked with spatial accuracy through functional
magnetic resonance imaging (fMRI) and with millisecond precision
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using an electroencephalogram (EEG)*. Given the complementary
strengths of fMRIand EEG, it is crucial to cross-validate existing brain
clock models using these techniques. However, no studies have simul-
taneously applied EEG and fMRIto replicate brain-age effects. Inaddi-
tion, standard machinelearning approaches are less generalizable than
deep learning methods*. Brain-age indices have beenrestricted by the
predominant use of MRI or positron emission tomography, which are
less accessible and affordablein LAC, leading to selection biases**. EEG
offersasolution because of its cost-effectiveness, portability and ease
of implementation in aging and dementia®?°. However, few studies
have combined accessible techniques with deep learning to develop
scalable brain-age markers. The application of EEG is hindered by
heterogeneity in recordings, electrode layouts, acquisition systems,
processing pipelines and small sample sizes”. These standardization
challenges haveimpeded the integration of fMRIand EEG in extensive,
multicenter brain-age research.

We adopted aframework to tackle diversity by including datasets
from LAC and non-LAC regions, utilizing graph convolutional networks
(GCN) to functional connectivity of fMRI and EEG signals. We hypoth-
esized that, across fMRI and EEG imaging, models would accurately
predict brain-age gaps and be sensitive to the impacts of multimodal
diversity, including geographical and sociodemographic effects, sex
differences, health disparities and exposome influences. By testing
this hypothesis, we aimed to assess the effectiveness of high-order
interactions and deep learning in predicting brain-age differences
across diverse and heterogeneous populations of healthy aging and
neurocognitive disorders.

Results

We used resting-state fMRI and EEG signals separately to evaluate
whether a deep learning computational pipeline (Fig. 1) captures dif-
ferencesinbrainaging across heterogeneous populations fromatotal
of 5,306 datasets. We included fMRI data from 2,953 participants from
Argentina, Chile, Colombia, Mexico and Peru (LAC) and the USA, China
andJapan (non-LAC). The EEG dataset involved 2,353 participants from
Argentina, Brazil, Chile, Colombia and Cuba (LAC), and Greece, Ireland,
Italy, Turkey and the UK (non-LAC). Healthy controls, MCI, Alzheimer
disease and bvFTD groups wereincluded. We focused on the Alzheimer
disease and bvFTD because these conditions represent the most com-
mon late-onset and early-onset causes of dementia®***’, Weincluded the
Alzheimer’s disease continuum, which encompasses MCI, to capture
the prodromal stages of the disease®”. Raw fMRI and EEG signals were
preprocessed to remove artifacts and then normalized. Based on mul-
tivariate information theory, we calculated high-order interactions’.
Weighted graphs were used as inputs for a graph convolutional deep

learning network trained to predict brain age, using one model for
fMRIand another for EEG.

Brain-age gap across LAC and non-LAC datasets

We used the fMRI and EEG signals from the control’s datasets (LAC
and non-LAC) to train and test brain-aging models. We used 80%
cross-validation with a20% hold-out testing split. As shown in Figs. 2a
and3a, our models predicting brain age obtained adequate goodness of
fit (MRI:R*=0.52,P<0.001,2=1.07; EEG: R*=0.45,P < 0.001,2 = 0.83).
Weimplemented ther.m.s.e. to evaluate models’ fit, obtaining accept-
able brain-age predictions (fMRI-r.m.s.e. = 7.24, EEG-r.m.s.e. = 6.45).
For both, fMRI and EEG, the main predictive brain-regional features
included hubsin frontoposterior networks (nodes in precentral gyrus,
the middle occipital gyrus, and the superior and middle frontal gyri;
Figs.2aand 3a). Additional nodes for the fMRImodelincluded the infe-
rior frontal gyri, and the anterior and median cingulate and paracingu-
late gyri (Fig. 2a.). For EEG, key nodes also comprised the superior and
inferior parietal gyriand theinferior occipital gyrus (Fig. 3a). Thus, for
both fMRIand EEG the models showed an adequate fit and predictive
performance, with key predictive features involving frontoposterior
networksin the brain.

Brain-age gap innon-LAC datasets

Using the same data split ratio, we trained and tested the models in
non-LAC datasets. As shown in Figs. 2b and 3b, our models predict-
ing brain age yielded considerable goodness of fit (fMRI: R>= 0.40,
P<0.001,2=0.67; EEG: R*=0.43, P<0.001, 2= 0.76). The r.m.s.e.
values were also adequate (fMRI-r.m.s.e. = 8.66; EEG-r.m.s.e. = 6.54).
Mean directional errors (MDE) for fMRI and EEG were 0.69 and 1.07,
respectively. For both fMRIand EEG, the main predictive features were
hubsin frontoposterior networks including the superior frontal gyrus
(dorsolateral), the precentral gyrus and the middle occipital gyrus
(Figs.2b and 3b). Additional critical nodes for the fMRImodelincluded
theinferiorand middle frontal gyri, and the anterior and median cingu-
late and paracingulate gyri (Fig. 2b). For EEG, key nodes also comprised
the superior andinferior occipital gyri, and the superior parietal gyrus
(Fig.3b).Inbrief, models trained on non-LAC datasets exhibited strong
fit values and predictive features as in the overall dataset analysis.

Brain-age gap in LAC datasets

Whentrained and tested in the LAC datasets (Figs. 2cand 3c), models
demonstrated moderate goodness of fit indexes but were less precise,
as indicated by higher r.m.s.e. values (fMRI =11.91; EEG = 9.82). We
observed increased positive biases in the MDE measures compared
with the non-LAC models (fMRI = 3.18; EEG = 5.34). Again, the main

Fig. 2| fMRI training and testing the deep learning model in different
datasets. a, Ordinary least squares (OLS) regression comparing chronological
age versus predicted age with the feature importance list for training (n =1,155)
and testing (n =289) in the whole sample (P <1x107). b, Regression comparing
chronological age versus predicted age with the feature importance list for
training (n=773) and testing (n =194) in the non-LAC dataset (P<1x1075).

¢, Regression comparing chronological age versus predicted age with the feature
importance list for training (n = 381) and testing (n = 91) in the LAC dataset
(P=4.91x107).Fora,band c, the bars show the brain region feature importance
listin descending order, with ring plots and glass brain representations of the
most important network-edge connections. Feature importance (top 10) data
are presented as mean values and 99% CI. The values for the features (mean, left
limit, right limit) are: feature 1= (0.975, 0.952,0.999), feature 2 = (0.735, 0.715,
0.756), feature 3 =(0.627,0.597,0.656), feature 4 = (0.470, 0.449, 0.490), feature
5=(0.375,0.353,0.397), feature 6 = (0.314, 0.285, 0.342), feature 7 = (0.239,
0.217,0.262), feature 8 = (0.198, 0.169, 0.228), feature 9 = (0.161, 0.128, 0.193),
feature 10 = (0.119, 0.093, 0.145) (a); feature 1= (0.968, 0.937,0.999), feature
2=(0.736,0.707,0.764), feature 3 = (0.541, 0.518, 0.565), feature 4 = (0.434,
0.403,0.464), feature 5=(0.315,0.290, 0.339), feature 6 = (0.253, 0.220, 0.286),
feature 7=(0.177,0.156, 0.197), feature 8 = (0.140, 0.114, 0.166), feature 9 = (0.111,

0.078,0.144), feature 10 = (0.079, 0.053, 0.106) (b); and feature 1= (0.971,0.944,
0.999), feature 2 = (0.847,0.816, 0.878), feature 3 = (0.698, 0.667, 0.730), feature
4=(0.533,0.512,0.555), feature 5 = (0.458, 0.430, 0.487), feature 6 = (0.371, 0.344,
0.399), feature 7= (0.298, 0.272, 0.325), feature 8 = (0.242, 0.216, 0.269), feature
9=(0.198,0.169, 0.227), feature 10 = (0.163, 0.130, 0.196) (c). d, Histogram of the
prediction error when training in non-LAC dataset (n = 967) and testing in LAC
dataset (n =477). e, Violin plot of the distribution and statistical comparison

of training and testing with different regions using a two-sided permutation

test without multiple comparisons (5,000 algorithm iterations) with a result of
P<1x107", Mean, first quartile (q1), third quartile (q3), whisker low, whisker high,
minima and maxima values for violin plots are: LAC/non-LAC (-2.52,-7.74,3.31,
-22.52,17.33,-22.52,17.33); non-LAC/LAC (5.60, 0.85,12.14, -12.82, 27.75,-12.82,
27.75).f, Violin plot of the distribution and statistical comparison of testing the
models on females (n = 261) and males (n =216) in LAC using a permutation test
(5,000 iterations) with aresult of P= 0.042. Mean, q1, q3, whisker low, whisker
high, minima and maxima values for violin plots are: male (3.66, -1.83,9.45,
-12.49,16.32,-12.49,16.32); and female (6.93,2.21,12.78,-12.82, 27.75,-12.82,
27.75).ROI, region of interest. This figure was partially created with BioRender.com
(fMRI device).
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featuresinvolved frontoposterior networks. Common nodes for fMRI
and EEGincluded the superior and middle occipital gyri, the superior
and inferior parietal gyri, and the superior and middle frontal gyri
(Figs.2c and 3c¢). For EEG, the model also highlighted the precentral
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Cross-regional effects in model generalization

We investigated the effects of cross-region training and testing
with data from non-LAC and LAC. Training with non-LAC data and
testing on LAC dataled to biases in predicting older brain ages than
the respective chronological ages as shown by positive MDE values
(Figs. 2d and 3d; fMRI: MDE = 5.60, r.m.s.e. = 9.44; EEG: MDE = 5.24,
r.m.s.e.=7.23). By contrast, training on LAC and testing on non-LAC
resulted in negative age biases predicting younger brain age shown
by the MDE (Figs. 2d and 3d; LAC/non-LAC fMRI: MDE = -2.52,
r.m.s.e. = 8.41; LAC/non-LAC EEG: MDE = -2.34, r.m.s.e. = 5.69). Sex
differences were observed in the brain-age gaps when training in
the non-LAC and testing in LAC (Fig. 4a,b). Specifically, female par-
ticipants in LAC exhibited a greater bias towards older brain age
than males (fMRI: P=0.04; EEG: P=0.03). In conclusion, train-
ing with non-LAC data and testing on LAC data resulted in a bias
towards predicting older brain ages, especially for female partici-
pantsin LAC.

Accelerated aging in MCI, Alzheimer disease and bvFTD

We investigated the effects of testing the controls-trained model
(80%) on different subsamples across the different neurocognitive
health and disease spectrum (controls non-LAC, controls LAC, MCI,
Alzheimer disease and bvFTD) (Table 1), matched by age, sex and
education. Permutation subsample analyses with 5,000 iterations
revealed statistically significant brain-age gaps between the non-LAC
and LAC control groups (Figs. 4a,b; fMRI: P< 0.01; EEG: P<1x107).
This difference was also observed for Alzheimer disease in the fMRI
dataset (P<1x107).In addition, for fMRI, we found significant dif-
ferences between controls fromnon-LAC and all clinical groups from
thesameregion (MCI(P<1x107%), Alzheimer disease (P<1x107°) and
bvFTD (P <1x107)). Similarly, for both fMRI and EEG, we observed
significant differences between controls from LAC and all the clini-
cal groups (fFMRI: MCI (P <1x107°), Alzheimer disease (P <1x107%)
and bvFTD (P<1x107°); EEG: MCI (P <1x107°), Alzheimer disease
(P<1x107%) and bvFTD (P < 0.01)). Across fMRI and EEG datasetsf,
both LAC and non-LAC, we observed a gradient of increasing brain
age from controls to MCIto Alzheimer disease. The MCI groups from
LAC and non-LAC significantly differed from Alzheimer disease (fMRI
and EEG: P<1x107°%) and bvFTD (fMRI: P<1x 1075 EEG: P< 0.01) in
the respective regions, with older brain ages for Alzheimer disease
and bvFTD. For the fMRI and EEG non-LAC datasets, the Alzheimer
disease group also showed an older brain age than the bvFTD group
(P<0.01). Thus, larger brain-age gaps were observed in LAC compared
withnon-LAC groups and across clinical groups, with ascending brain
age from controls to MCI to dementia.

Sex differences in neurocognitive disorders

For fMRI, we analyzed the differences between male and female partici-
pants with the same diagnosis for thenon-LAC and LAC datasets. There
were no significant differences among groups fromnon-LAC datasets
(Fig. 4a,b). However, females with Alzheimer disease from LAC exhib-
ited significantly greater brain-age gaps compared with the respective
males (FMRI: P<1x1073; EEG: P< 0.001). No other effects were observed.
We conducted a supplementary analysis incorporating country-level
gender inequality indexes (GlII), sex, region (LAC versus non-LAC) and
individual neurocognitive status (healthy controls versus MCI, Alz-
heimer disease or bvFTD) as predictors of brain-age gaps. The model
demonstrated good performance (R2=0.40,F2=0.66,r.m.s.e. = 6.85,
P<1x107%) and all predictors were influential. We found that female
participants with a neurocognitive disorder living in countries with
high gender inequality—particularly from LAC—were associated with
higher brain-age gaps (Extended DataFig.1and Supplementary Table1).
Overall, females with Alzheimer disease from LAC exhibited signifi-
cantly greater brain-age gaps compared with males, influenced by high
gender inequality in their countries.

Factors associated with brain-age gap

We used gradient-boosting regression models to explore theinfluence
of physicaland social factors, as well as factors of disease disparities on
thebrain-age gap. Predictorsincluded aggregate country-level meas-
ures of air pollution (PM2.5), socioeconomic inequality (Gini index)
and burdens of communicable, maternal, prenatal and nutritional
conditions, and noncommunicable diseases. We also leveraged the
individual neurocognitive status (healthy controls versus Alzheimer
disease, MCl or bvFTD). We assessed predictors’ importance using a
multi-method approach comprising permutation importance, mean
decrease inimpurity (MDI) and SHapley Additive exPlanations (SHAP)
values (Fig. 4c). Across both LAC and non-LAC datasets, the models
(R2=0.41, F2=0.71,r.m.s.e.= 6.76, F=304.25, P<1x 107") identified
neurocognitive disorders (MCI, Alzheimer disease or bvFTD) and
higher socioeconomic inequality (Gini index) as the most influential
and consistent predictors of increased brain-age gaps (Fig. 4¢). High
levels of pollution and burden of noncommunicable and communicable
diseases were also predictive of increased brain-age gaps, albeit less
substantial. Stratified models for LAC (R2=0.37,F>=0.59,r.m.s.e.= 6.9,
F=138.78,P<1x10")and non-LAC (R?=0.41, F2=0.71,r.m.s.e. = 6.57,
F=135.91,P<1x107%)also showed good performance, with neurocog-
nitive disorders being the most influential predictor in both. In LAC,
higher socioeconomicinequality was the second most consistent and
influential predictor of larger brain-age gaps across the three models.
Air pollution and burden of communicable and noncommunicable

Fig.3 | EEG training and testing the deep learning model in different
samples. a, OLS regression comparing chronological age versus predicted age
with the feature importance list for training (n =1,644) and testing (n = 411) in
the whole sample (P <1x1075). b, Regression comparing chronological age
versus predicted age with the feature importance list for training (n = 471) and
testing (n =118) in the non-LAC dataset (P <1x 107). ¢, Regression comparing
chronological age versus predicted age with the feature importance list for
training (n=1,188) and testing (n = 298) in the LAC dataset (P=3.51x107). For
a,bandc, the bars show the brain region feature importance listin descending
order, with ring plots and glass brain representations of the most important
network-edge connections. Feature importance (top 10) data are presented
asmean values and 99% CI. The values for the features (mean, left limit, right
limit) are: feature1=(0.968, 0.946, 0.991), feature 2 = (0.759, 0.739, 0.779),
feature3 =(0.644,0.617,0.670), feature 4 = (0.531, 0.500, 0.561), feature
5=(0.410,0.384, 0.436), feature 6 = (0.336, 0.309, 0.363), feature 7 = (0.259,
0.239,0.279), feature 8 = (0.218, 0.191, 0.245), feature 9 = (0.184, 0.150, 0.217),
feature10 = (0.146, 0.114, 0.177) (a); feature 1= (0.967, 0.935, 0.999), feature
2=(0.764,0.741,0.786), feature 3 = (0.569, 0.549, 0.590), feature 4 = (0.460,
0.435,0.485), feature 5=(0.354,0.330, 0.377), feature 6 = (0.283, 0.256, 0.311),

feature 7 =(0.216, 0.192, 0.241), feature 8 = (0.169, 0.145, 0.193), feature 9 = (0.129,
0.107,0.150), feature 10 = (0.101, 0.077, 0.124) (b); feature 1= (0.972,0.949,
0.995), feature 2 = (0.833, 0.805, 0.860), feature 3 = (0.705, 0.677,0.733), feature
4=(0.564,0.543,0.584), feature 5= (0.488, 0.463, 0.514), feature 6 = (0.408,
0.385,0.431), feature 7 = (0.363, 0.334, 0.393), feature 8 = (0.292, 0.269,

0.314), feature 9 = (0.243,0.222,0.264), feature 10 = (0.221, 0.188, 0.254) (c).

d, Histogram of the prediction error when training in non-LAC dataset (n = 569)
and testing in LAC dataset (n =1,486). e, Violin plot of the distribution and
statistical comparison of training and testing with different regions using a
two-sided permutation test without multiple comparisons (5,000 algorithm
iterations) with a result of P<1x 107, Mean, q1, g3, whisker low, whisker high,
minima and maxima values for violin plots are: LAC/non-LAC (-2.34,-6.07,1.26,
-13.25,11.52,-20.08,17.52); non-LAC/LAC (5.24,1.95,8.61, -5.24,16.18,-12.73,
16.18).f, Violin plot of the distribution and statistical comparison of testing the
models on females and males using a permutation test (5,000 iterations) with a
result of P=0.012. Mean, q1, q3, whisker low and whisker high values for violin
plots are: male (3.66,1.87,7.83,-5.24,16.18,-12.73,16.18); female (6.19, 2.67,9.39,
-3.08,15.52,-3.08,15.52). This figure was partially created with BioRender.com
(EEG device).
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diseases were also influential. None of these variables were influen-
tial predictors in the non-LAC models. Predictors’ estimation coeffi-
cientsare presented in Supplementary Table 2. In sum, neurocognitive

EEG

disorders, followed by macrosocial factors linked to socioeconomic
inequality, air pollution and health disparities were influential predic-
tors of increased brain-age gaps, especially in LAC.
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Fig. 4| Groups, sex and macrosocial influences in brain-age gaps. a,b, Violin
plots for the distribution of prediction gaps for different groups and sex effects
using (a) fMRIand (b) EEG datasets. Statistical comparisons were calculated
using two-sided subsample permutation testing without multiple comparisons
and with 5,000 algorithm terations. ¢, Associations between macrosocial and
disease disparity factors with brain-age gaps were assessed with a multi-method
approach comprising SHAP values, feature importance (MDI) and permutation
importance. Plots show the mean importance values for each method, along with
their 99% Cl, as well as the average R*and Cohen’s f2. *Features whose lower CI
boundary does not cross zero. Shaded bars indicate significance across the three
methods. We conducted a two-sided F-test to evaluate the overall significance of
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the regression models. The three models were significant: healthy controls LAC
(R?=0.37(99% C1+0.17), F2=0.59 (99% C1 £0.21), r.m.s.e. = 6.9 (99% C1 +0.92),
F=138.78 (P<1x107%)); healthy controls non-LAC (R? = 0.41(99% C1 +0.17),
F2=0.71(99% C1£0.21), r.m.s.e. = 6.57 (99% Cl £1.31), F=135.91 (P<1x107)) and
total dataset (R2=0.41(99% Cl1 +0.12), F2=0.71(99% Cl +0.14), r.m.s.e. = 6.76
(99% C1+0.89), F=253.39 (P<1x107%)). The relevance of the features and their
respective Clvalues are available in Supplementary Table 2. F, females; HC

LAC, healthy controls from LAC; HC non-LAC, healthy controls from non-LAC;
M, males. This figure was partially created with BioRender.com (fMRIand EEG
devices).

Sensitivity analyses

We performed multiple tests to assess the validity of the results.
First, we investigated whether variations in fMRI or EEG data quality
explained the differences in brain age between the non-LAC and LAC.
Subsample permutation tests with 5,000 iterations showed no differ-
ences between any of the groups for fMRI (Fig. 5a) or EEG (Fig. 5b) data
quality metrics. Inaddition, alinear regression examining scanner-type
effects showed that the fMRI data quality metric did not predict the
brain-age gaps (R*=0.001, P=0.18, Cohen’s 2= 0.001, Fig. 5¢). To fur-
ther test for scanner effects, we implemented aharmonization strategy
by normalizing the brain-age gap variable withineach scanner type. We
used the min-max scaler to ensure consistent minimum and maximum
values across scanners. Results using this harmonization (Fig. 5d) and
ourinitialapproach were very similar. Additional analyses controlling
for datasets collected with eyes open versus eyes closed protocols
revealed no significant differences in brain-age gaps across any groups
(Extended DataFig. 2).

We also controlled for the effects of age and years of education on
the brain-age gap from fMRI and EEG by including them as covariates
in the group comparisons. All reported group differences remained
significant after covariate adjustment (Supplementary Table 3). Years
of education did not change the results for any analyses. In eight of
the nine analyses, age did not have a significant effect. Considering
the chronological age differences between the Alzheimer disease and
MCl groups, we performed a sensitivity analysis using a subset of par-
ticipants with MCI (fMRI: n = 254, mean age =73.287 + 7.517 years; EEG:
n=>52, mean age = 63.231 + 6.549 years) age matched to participants
with Alzheimer disease (fMRI: n = 254, mean age =72.295 + 7.530 years,
P=0.13; EEG: n = 52, mean age = 62.769 + 6.302 years, P= 0.71). These
results (Extended Data Fig. 3) confirmed those reported for the overall

MCland Alzheimer disease datasets (Fig.4a,b). ForbothfMRIand EEG
datasets, we found significantly larger brain-age gaps in Alzheimer
disease compared with MCI (fMRI: P<1x107%; EEG: P < 0.01). For fMRI,
these differences were observed inboth LAC (P<1x107°) and non-LAC
(P<1x107) datasets. We also found differences between participants
with MCI from LAC versus non-LAC (P <1 x107) and participants with
Alzheimer disease from LAC versus non-LAC (P <1x107). Thus, control-
ling for data quality, scanner effects, age and education confirmed that
thereported effects in brain-age gaps remained the same.

Discussion

Our study used brain clocks to capture the diversity and disparities
across LAC and non-LAC datasets using fMRI and source space EEG
techniques. Despite heterogeneity in signal acquisition and methods,
we captured patterns of brain-age modulations in healthy aging from
diverse datasets and participants with MCI, Alzheimer disease and
bvFTD. Modelstrained and tested on non-LAC datasets showed greater
convergence with chronological age. Conversely, models applied to
LAC datasetsindicated larger brain-age gaps, suggesting accelerated
aging. We observed ascending brain-age gaps from controls to MCl to
Alzheimer disease. Sex differences revealed an increased brain-age
gap in females in the control and Alzheimer disease groups. Most
brain clock patterns were independently confirmed and replicated
across fMRIand EEG. Aggregate-level macrosocial factors, including
socioeconomic inequality, pollution and burden of communicable/
noncommunicable conditions modulated the brain-age gap, especially
in LAC. Variations in signal quality, demographics or acquisition meth-
ods did not account for the results. The findings offer a framework
that captures the multimodal diversity associated with accelerated
aging in global settings.
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Table 1| Demographics for fMRI and EEG datasets

HC MCI AD bvFTD Statisticsnon-LAC  Post hoc comparisons
versus LAC
Full dataset
All participants (N=5,306) n=3,509 n=517 n=828 n=463
fMRI dataset
Variable Non-LAC: n=967; Non-LAC: n=215; Non-LAC:n=214; Non-LAC:
LAC: n=477 LAC: n=169 LAC: n=505 n=190; LAC
n=216
Non-LAC  470:497 14:101 112:102 98:92 X?=219 HC-MCI: P=0.453
P=0.533 HC-AD: P=0.462
HC-bvFTD: =0.472
Sex (female:male)
LAC 261:216 84:85 262:243 105:1M X’=2.76 HC-MCI: P=0.438
P=0.429 HC-AD: P=0.447
HC-bvFTD: P=0.459
Non-LAC  53.55(13.43) 59.62 (8.77) 76.59 (9.35) 7314 (8.56) F=313 HC-MCI: P=0.443
P=0.47 HC-AD: P=0.451
Age (years) np?=0.02 HC-bvFTD: P=0.461
(range: 22-91) LAC 65.34 (11.44) 66.53 (8.18) 77,52 (9.35) 7315 (8.76) F=362 HC-MCI: P=0.39
P=0.45 HC-AD: P=0.41
np?=0.02 HC-bvFTD: P=0.461
Non-LAC ~ 1315(5.41) 1415 (3.41) 1312 (5.34) 1116 (3.56) F=219 HC-MCI: P=0.472
P=0.49 HC-AD: P=0.484
Years of education np?=0.02 HC-bvFTD: P=0.491
(range: 0-25) LAC 1211(3.39) 1152 (6.32) 8.89(4.34) 7.89 (3.36) F=1.31 HC-MCI: P=0.672
P=0.68 HC-AD: P=0.681
np?=0.01 HC-bvFTD: P=0.654
EEG dataset
Non-LAC n=569;  LACn=133 LAC n=108 LAC n=57
LAC n=1,486
Sex (female:male) Non-LAC 470:99 — — — X?=64.62 —
P=1x107"°
LAC 954:532 n:22 85:23 39:18 x°=28.05 HC-MCI: P=0.063
P=0.000003 HC-AD: P=0.071
HC-bvFTD: P=0.075
Non-LAC  58.98 (12.03) — = = t=4.21 —
P=0.07
Age (years) np’=0.02
(range: 21-92) LAC 66.74 (13.94) 62.54(9.98) 78.62 (8.34) 71.05 (9.34) F=7.62 HC-MCI: P=0.052
P=0.0005 HC-AD: P=0.061
np?=0.07 HC-bvFTD: P=0.067
Non-LAC  14.85(4.91) — — — t=3.54 —
P=0.08
2_
Years of education np“=0.01
(range: 0-24) LAC 13.92 (3.39) 812 (4.34) 1075 (6.32) 14.38 (5.49) F=6.31 HC-MCI: P=0.058
P=0.0007 HC-AD: P=0.063
np?=0.06 HC-bvFTD: P=0.069

Results are presented as mean (s.d.). Demographic data comparing non-LAC and LAC groups were assessed using unpaired two-sided t-tests, whereas data for pathological groups were
analyzed using right-sided analyses of variance followed by Tukey post-hoc pairwise comparisons, except for sex, which was analyzed using two-sided Pearson’s chi-squared (x?) test. Effect
sizes were calculated using partial eta squared (np?). AD, Alzheimer disease; F, F-statistic from ANOVA; t, t-statistic from t-test.

Our results suggest that being from LAC is associated with accel-
erated aging. The better fit of the non-LAC compared to the LAC
models supports the notion that universal models of brain pheno-
types do not generalize well to underrepresented populations®***4°,
Diversity-related factors associated with different exposures and
disease outcomes*'****' may influence the brain-age gaps in LAC and
non-LAC. Neurocognitive disorders played a crucial role**>. However,
structural socioeconomic inequality, a distinctive characteristic of
LACY, increased levels air pollution®, and the burden of noncommu-
nicable?° and communicable'®** diseases are also important factors
on the brain-age gap. The fact that these effects were larger in LAC
suggests that underlying inequalities and adverse environmental and
health conditions play a macrosocial, structural driving role" in the

observed regional differences. Immigration may also influence brain
age through social determinants of health* and genetic diversity. In
LAC, tricontinental admixtures lead to substantial ancestral diversity
within and across countries*®, impacting dementia prevalence and
brain phenotypes*. Future studies should consider these potential
effectsinbrain-age gaps.

Selective brain networks were associated with larger brain-age
gapinthe clinical groups. Both fMRIand EEG models of brain-age gaps
yielded large-scale frontoposterior high-order interactions', consistent
with models of brain age involving long-range connections between
frontal, cingular, parietal, and occipital hubs, which may be more vul-
nerable to aging effects*~*, Also consistent with the cumulative nature
of neurobiological changes over time*°, brain-age gaps increased from
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Fig. 5| Sensitivity analysis. a, Violin plots for the distribution of data quality
metrics of fMRI (healthy controls non-LAC, n =967, MClnon-LAC n =215,
Alzheimer disease non-LAC n =214, bvFTD non-LAC n=190, HCLAC n =477,
MCILAC n=169, AD LAC n=505,bvFTD LAC n=216).b, Violin plots for the
distribution of data quality metrics of EEG datasets (HC non-LAC n =569, HC LAC
n=1486, MCILAC n =133, Alzheimer disease LAC n =108, bvFTD LAC n = 57). Both

aand bindicate null results between groups in terms of data quality. ¢, Linear
regression effects of scanner type, evidencing that the fMRI data quality was not
significantly associated with fMRI brain-age gaps differences (P=0.184).d, fMRI
brain-age gap differences across groups controlling for scanner differences. The
statistical comparisons were calculated using two-sided subsample permutation
testing with 5,000 iterations. NS, not significant; ODQ, overall data quality.

controls through MClto Alzheimer disease. A previous deep learning
study using MRI and positron emission tomography in participants
with MCland dementia alsoindicated increased brain-age associated
with disease progression®’. Our results point to the brain age of MCl as
being anintermediate stage between healthy aging and dementia®, and
suggest that both fMRIand EEG markers of brain age may help identify
groups at greater risk of progressing to dementia.

Sex and gender have been linked to poorer brain health out-
comes?”', Larger brain-age gaps in healthy controls and females with
Alzheimer disease from LAC may relate to sex-specific conditions such
as menopause, which involves brain volume reduction and increased
amyloid-beta deposition®***, Females also exhibit a disproportionate
tau brain burden®*, pronounced inflammatory dysregulation® and
lower basal autophagy® compared with males, all of which increase
Alzheimer disease risk. Such sex-specific factors are intertwined with
environmental factors and gender disparities®’. Females in countries
with higher gender inequality exhibit greater cortical atrophy?. Our sex
effects were specific for Alzheimer disease and LAC, consistent with the
impacts of environmental* versus genetic risks” in Alzheimer disease
and bvFTD, respectively. Despite advancesingender equality, women
in LAC still face important obstacles*® including lower education, less
income and healthcare access, and greater caregiving burden, poten-
tially exacerbating brain health issues and Alzheimer disease risk>**°.
Previous models for brain age have been conducted predominantly in
high-income settings, ignoring sex and gender differences triggered
by region-specific influences®**". Thus, the inclusion of diverse sam-
ples can help to better understand the biological and environmental
interaction with sex and gender disparities.

Our study had different strengths. We used diverse datasets across
LAC and non-LAC including15 countries, featuring large sample sizes,
and replicated results across fMRI and EEG. We used an integrative
approach to analyze fMRI and EEG data across a large and geographi-
cally diverse sample. The convergence of two neuroimaging techniques
and population heterogeneity enhanced the generalizability to the

computational models that capture diversity'°. In particular, incorpo-
rating EEG offers affordable and scalable solutions for low-resourced
settings, suchasthosein LAC, compared with traditional neuroimaging
techniques™*. Brain clocks based on high-order interactions capture
many risks to brain health, and thus, offer an approach to personal-
ized medicine, particularly for underrepresented populations. Qur
framework combines multiple dimensions of diversity in brain health,
the Alzheimer disease continuum and related disorders within asingle
measure of brain clocks. Accessible metrics of accelerated aging can
offer personalized assessments of diversity, aging, and neurocogni-
tive disorders.

This study has multiple limitations. Our EEG dataset lacks repre-
sentation from clinical groups in non-LAC, which may limit the gen-
eralizability. This issue is partially mitigated by the consistent results
fromthe fMRI data, whichincluded MCI, Alzheimer disease and bvFTD
groups from LAC and non-LAC regions. Our approach to measure the
brain-age gap is unimodal. Future research should adopt multimodal
approachesto deepen our understanding of brain aging across differ-
ent pathophysiological mechanisms'. We leveraged two independent
training and test datasets with fMRIand EEG, with out-of-sample valida-
tionyielding consistent results across geographical comparisons, sex
effects and clinical conditions. These datasets involve multimodal set-
tings and recording parameters, suggesting that our results are replica-
bleacross highly variable conditions. However, future research should
include more regions to further validate our findings. In addition, we
didnotincludeindividual-level dataon genderidentity, socioeconomic
status and ethnic stratification. Future research incorporating these
variables could further enrich our understanding of brain age across
diverse populations. Lastly, the sex differences observed between con-
trols from LAC and non-LAC exhibited moderate effect sizes. Further
research should assess sex differences in other regions.

In conclusion, brain clock models were sensitive to the impact of
diversity involving geographical, sex, macrosocial and disease-based
factors from diverse populations, despite the heterogeneity in data
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acquisition and processing. Utilizing a deep learning architecture of
thebrain’s high-order interactions' across fMRIand EEG signals, com-
bined with globally accessible and affordable data, our study paves the
way for more-inclusive tools to assess disparities and diversity in brain
aging. These tools can be vital in identifying MCI, Alzheimer disease
and bvFTD risk factors, as well as characterizing and staging disease
processes. In the future, personalized medicine approaches could
leverage models of brain-age gaps to establish worldwide protocols
for aging and neurocognitive disorders.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Thetotal dataset consisted of 5,306 participants, with 2,953 undergoing
fMRIand 2,353 EEG acquisitions. Of these, 3,509 were controls, 517 had
MCI, 828 had Alzheimer disease and 463 had bvFTD.

fMRI dataset

The fMRIdatasetinvolved 2,953 participants from both non-LAC (USA,
China, Japan) and LAC (Argentina, Chile, Colombia, Mexico, Peru),
including 1,444 healthy controls. Two hundred and fifteen participants
met the Petersen criteria for MClwith a 24 Mini-Mental State Examina-
tion (MMSE) cut-off'value, 719 were diagnosed as probable Alzheimer
disease®, and 402 fulfilled the diagnostic criteria for bvFTD®2, LAC par-
ticipants were recruited from the Multi-Partner Consortium to Expand
Dementia Research in Latin America (ReDLat, with participants from
Mexico, Colombia, Peru, Chile and Argentina)®>. Non-LAC participants
were non-Latino individuals from ReDLat, the Alzheimer’s Disease
Neuroimaging Initiative and the Neuroimaging in Frontotemporal
Dementiarepository. The datasets were matched on sex, age and years
ofeducation (Table1). Sex information was determined by self-report.
No information regarding gender was inquired. To ensure data reli-
ability, we excluded subjects who reported a history of alcohol/drug
abuse or psychiatric or other neurological illnesses.

EEG dataset

The total dataset involved 2,353 participants. Controls comprised
1,183 participants, including 737 from non-LAC (Turkey, Greece, Italy,
UK andIreland) and 446 from LAC (Cuba, Colombia, Brazil, Argentina
and Chile). Participants presenting with clinical conditions were
recruited from a multisite study with harmonized assessments>~¢*
in LAC (Argentina, Brazil, Chile and Colombia). This dataset included
133 patients with MCI, 108 with Alzheimer disease, and 57 withbvFTD.
The controls datasets were matched on age, sex and years of education
concerning the clinical groups (MCI, Alzheimer disease and bvFTD)
(Table1).Sexinformation was determined by self-report. No informa-
tion regarding gender was inquired. The diagnostic criteria for MCI,
Alzheimer disease and bvFTD were the same as those used for the fMRI
dataset. No subjectinany of the clinical conditions reported a history
of alcohol/drug abuse, psychiatric, or other neurological illnesses.

Ethics approval

Thelocalinstitutions that contributed EEGs and/or fMRIs to this study
approved the acquisitions and protocols (Supplementary Data 1),
and all participants signed a consent form following the declaration
of Helsinki. The overall study was approved by the consortium under
multipleinstitutional review boards (FWA00028264, FWA00001035,
FWA00028864, FWA00001113, FWA00010121, FWAA00014416,
FWA00008475,FWA00029236, FWA00029089 and FWA00000068).
Data collection and analysis posed no risks concerning stigmatiza-
tion, incrimination, discrimination, animal welfare, environmental,
health, safety, security or personal concerns. No transfer of biological
materials, cultural artifacts or traditional knowledge occurred. The
authorsreviewed pertinent studies fromall countries while preparing
the manuscript.

fMRI preprocessing

The images were obtained from different scanners and in distinct
acquisition settings (Supplementary Table 4). We included closed
and openeyes recordings toincrease the sample size for resting-state
fMRI (rs-fMRI) data. The type of resting-state recording was controlled
by a dummy variable (open or closed eyes) when using the functional
connectivity metric®. The resting state of fMRI preprocessing was
conducted using the fmriprep toolbox (v.22.0.2). Additional preproc-
essing was performed using the CONN22 (ref. 64) toolbox and including
smoothing with a Gaussiankernel of 6 x 6 x 6 mm, the signal denoising
through linear regression to account for confounding effects of white

matter, cerebrospinal fluid, realignment, and scrubbing. A band-pass
filter (0.008-0.09 Hz) was applied. After time series preprocessing,
we used region-of-interest analysis based on the brain regions of the
Automated Anatomical Labeling (AAL90) atlas to reduce the dimen-
sionality of the fMRI data for machine learning algorithms.

EEG preprocessing

EEGs were processed offline using procedures implemented in a cus-
tom, automatic pipeline for computing brain functional connectivity
using a mesh model for multiple electrode arrays and source space
estimation (see Supplementary Table 5 for acquisition parameters).
The pipeline allows for the multicentric assessment of resting-state EEG
(rsEEG) connectivity and has been validated in alarge-scale evaluation
of connectivity in dementia®. Recordings were re-referenced to the
averagereference and band-pass filtered between 0.5 and 40 Hz using a
zero-phase shift Butterworth filter of order 8. Data were downsampled
to 512 Hz, referenced using the reference electrode standardization
technique, and corrected for cardiac, ocular and muscular artifacts
using two methods based on independent component analysis.
ICLabel (a tool for classifying EEG independent components into sig-
nals and different noise categories)®, and EyeCatch (a tool for identi-
fying eye-related independent component analysis scalp maps) were
used®. Data were visually inspected after artifact correction, and
malfunctioning channels were identified and replaced using weighted
sphericalinterpolations.

EEG normalization. Following guidelines for multicentric studies®,
EEG was rescaled to reduce cross-site variability. The normaliza-
tion was carried out separately for each dataset and consisted of the
Z-score transformation of the EEG time series. The Z-score quantifies
the distance of raw data from the mean in standard deviation units.
The Z-score transformed EEG connectivity matrices display more
prominentinterhemisphericasymmetry and reinforced long-distance
connections than unweighted connectivity representations®.

EEG source space estimation. The source analysis of the rsEEG was
conducted using the standardized low-resolution electromagnetic
tomography method (sLORETA). sLORETA allows estimating the
standardized current density at each of the predefined virtual sen-
sors located in the cortical gray matter and the hippocampus of a
reference brain (MNI305, BrainImaging Centre, Montreal Neurologic
Institute) based on the linear, weighted sum of a particular scalp voltage
distribution or the EEG cross-spectrum at the sensor level. SLORETA
isadistributed EEG inverse solution method based on an appropriate
standardized version of the minimum norm current density estima-
tion. sSLORETA overcomes problemsintrinsic to the estimation of deep
sources of EEG and provides exact localization to test seeds, albeit with
ahigh correlation between neighboring generators.

The different electrode layouts were registered onto the scalp
MNI 152 coordinates. A signal-to-noise ratio of 1 was chosen for the
regularization method used to compute the SLORETA transforma-
tion matrix (forward operator for the inverse solution problem). The
standardized current density maps were obtained using ahead model
ofthree concentric spheresinapredefined source space of 6,242 voxels
(voxel size = 5 mm?) of the MNI average brain. A brain segmentation
of 82 anatomic compartments (subcortical and cortical areas) was
implemented using the automated anatomical labeling (AAL90) atlas.
Current densities were estimated for the 153,600 voltage distributions
comprising the 5 min of rsEEG (sampled at 512 Hz). The voxels belong-
ing to the same AAL region were averaged such that a single (mean)
time series was obtained for each cortical region®°%%°,

High-order interactions
After preprocessing 82 time series from the AAL brain parcellation for
fMRIand EEG, we calculated the high-orderinteractions across triplets
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composed of aregion i and region,j and a set comprising all the brain
regions without i and j. We evaluated high-order interactions using
the organizational information () metric, amultivariate extension of
Shannon’s mutualinformation, which assesses the dominant character-
isticof multivariate systems (high-order interactions). To operational-
ize the Shannon entropy, we used the Gaussian copula approximation,
whichestimates the differential Shannon’s entropy fromthe covariance
matrix of the Gaussian copula transformed data’. This is a mixture of a
parametric and anonparametric approach, as the copulais preserved
inanonparametric way butis then used to generate Gaussian margin-
als. The Q quantifies the balance between redundancy and synergy
in high-order interactions among brain regions. By definition, 2 >0
implies that the interdependencies are better described as shared
randomness, indicating redundancy dominance. Conversely, Q <0
suggeststhat theinterdependencies are better explained as collective
constraints, indicating synergy dominance. After normalization, its
magnitude ranges from -1to 1. Q can be expressed as:

QXN =n-2)HX)+Y [H ) - H(Xﬁj)] o)
j=1

where X" is the random vector that describes the system and H is the
Shannon’s entropy. When n is reduced to three variables (x, y and z),
Qcanbeexpressed as

2,y,2) = Hx, y,2) — H(x,y) — H(x,2) — H(,2) + HO) + H(y) + H(2) (2)

To analyze brain activity, zcan be considered a multivariate time
series representing the activity of all brain regions except for xand y.
Therefore, O-info measures how synergistic or redundant is the rela-
tionship between two brain regions concerning the rest of the regions.

Model input preprocessing

Asinputtothe models, the weighted adjacency matrix corresponding
tothe Q metric was converted to agraph. This matrix defines the edges
inthegraph, where the weight of each edge reflects the Q value between
the corresponding regions. The feature vectors at each graph node
are derived from the O-info matrix; specifically, each node’s feature
vector is the corresponding row in the Q matrix. To this end, the con-
nectivity matrices were first converted to tensors using the PyTorch
deep learning library v.2.3.0, enabling their efficient manipulation.
These tensors were reshaped, organizing the connectivity dataintoa
structure where each tensor represented the features of nodes withina
graph. This transformation preserved the relational information from
the original matrices, making it accessible for analysis by graph neural
networks. To ensure the integrity of the data, graphs containing not
anumber (NaN) values, either in their features or target values, were
filtered out. The remaining graphs were then split into training and
validation sets using astratified split to ensure abalanced representa-
tion of age groups inboth sets.

Data augmentation

We used augmentation tailored for connectivity matrices to
make the model more resilient to heterogeneity and generalizability.
Linearinterpolation between matrices corresponding to neighboring
age values was used, in contrast to traditional image augmentation
techniques such as random rotations or crops that are inappropriate
for connectivity data.

Given two matrices, M, and M,, representing fMRI or EEG con-
nectivity at ages q; and a,, respectively, the interpolation to produce
a matrix for a target age where a; < a,< a, was conducted using
the formula:

M, =1 —-a)M, +aM, 3)

Here, a = =% represents the interpolation factor.

aG—a;

This augmentation method enabled the generation of fMRI and
EEG connectivity matrices for age values previously absentin the data
set. The derived matrices, through interpolation, ensure a smooth
transitioninthe fMRIand EEG patterns from one age value to another,
thereby maintaining the inherent physiological significance of the
original data—preliminary validation against ahold-out dataset showed
improvementsin model fit against dataset heterogeneity. Weincluded
500 samples with data augmentation only the training datasets for
both modalities, half for the non-LAC and half for the LAC samples.

The architecture of the models

Two GCNs” were designed, tailored to process graph-structured
data. We used the PyTorch Geometric code library v.2.5.3 based on
the PyTorchlibraryv.2.3.0 todevelop and train the models. Two models
were created, one for fMRIdataand another for EEG data. Unlike tradi-
tional convolutional networks suited for neuroimaging data, functional
connectivity demands a specialized approach because neighboring
data points are not necessarily close in native space (adjacent brain
areas). The GCN uses adjacency matrices of graphs as inputs comprised
of node features. Each node in the graph aggregates features from its
neighbors through aseries of operations, including multiplication by
anormalized adjacency matrix, transformation using aweight matrix,
and applyingan activation function, here the ReLU". The architecture
consisted of two graph convolutional layers. The input features (O-info
matrix) were passed through the first convolutional layer, followed by
aReLUactivation function and adropout layer for regularization. The
features were then passed through the second convolutional layer.
Finally, average pooling was used to aggregate the output features.
To train the two models, we combined mean squared error as the loss
function and the Adam optimizer. Given the variability in the dataand
potential model configurations, we implemented a hyperparameter
tuning process using a grid search over specified learning rates and
epoch numbers. For each model for the controls, the datawas initially
splitinto 80% for training and validation, and 20% for hold-out test-
ing. Within the 80% training and validation set, we applied fivefold
cross-validation to determine the optimal hyperparameters for the
model. After determining the best hyperparameters through this
cross-validation process, the final model’s performance was evaluated
on the remaining 20% hold-out test set to assess its generalization
capability”.

Statistical analyses

Following hyperparameter tuning, each model was retrained using
thebesthyperparameters on the training setand evaluated on the test
set. For a more comprehensive assessment, the predicted age values
were compared with the actual age values using Pearson’s correlation
coefficient, R and Cohen’s f effect size for each model™. We used
the method outlined below to evaluate if the model was predicting
increased or decreased ages concerning the actual chronological age.
Allstatistical analyses were run using Python v.3.9.13.

The MDE is a diagnostic metric used to evaluate the prediction
accuracy of the models, specifically focusing on the direction of pre-
diction gapsrather than their magnitude to detectbias. Itis calculated
as follows:

MDE = 1 3(y,~ ) @
i=1

The function ‘sign’ yields a value of +1if the prediction is above
the actual value, -1if below, and O if they are equal. y;is the real age of
subjectiandy;isthe predicted age. An MDE value close to zero suggests
abalanced number of overestimations and underestimations. Positive
or negative valuesindicate systematic biases in the prediction method,
where a positive MDE means the model generally overpredicts, and a
negative MDE indicates underprediction.
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We examined potential regional biasesin predictive accuracy and
possible sex effects or signalacquisition noise. The statistical approach
involved conducting permutation tests (5,000 subsample iterations
each), anonparametric statistical test that does not assume a specific
distribution of the data. Given the nature of the permutation test,
our analysis constituted two-sided tests, assessing the likelihood of
observing the obtained difference under the null hypothesis of no dif-
ference between the models. Although the permutation test alleviates
the need for normality assumptions, making it resilient to deviations
fromnormal distribution, itaddresses multiple comparison concerns
by evaluating the empirical distribution of the test statistic under the
null hypothesis.

We compared the adequacy of the models usingther.m.s.e. Thisis
ametricto quantify the discrepancies between predicted and observed
valuesin modeling, given by the formula:

rms.e. = 4 %Z(J’i -3 ®)
i=1

Inthis equation, y;is the observed value, yj;is the predicted value
and N is the total number of observations. The r.m.s.e. measures the
average magnitude of errors between predicted and actual obser-
vations. The squaring process results in a higher weight to outliers,
making it a useful measure to evaluate if amodel is robust to outliers.

Toevaluate feature importance, we used bootstrapping to assess
the significance of individual nodes (brain areas) and edges (connec-
tions between brain nodes/regions) within the graph neural network.
With this approach, we executed a two-step process to quantify the
node and its edge’s impact on the model’s predictions. Initially, the
model’s output was calculated with all nodes and its edges present
to establish a baseline performance metric. Subsequently, the analy-
sis was repeated after removing each node and edge at a time, thus
simulating network information absence. The difference inthe model’s
output, withand without each areaand edge was quantified, providing
ameasure of the network nodeimportance. This process was repeated
across multiple bootstrap testing dataset samples (n=5,000) to cal-
culate confidence intervals (CI). Finally, a feature importance list of
nodeswas generated in descending order ofimportance for brain-age
prediction. This methodological framework allowed for an analy-
sis of network-level contributions to each model’s overall predictive
performance.

Gradient-boosting regression models. We used gradient-boosting
regression models” to investigate the impact of factors associated
with the physical and social exposomes, and disease disparities, on
brain-age gaps between LAC and non-LAC populations. As predictors,
we included country-level measures of: (1) air pollution (PM2.5 expo-
sure); (2) socioeconomic inequality (the Gini index)’®; (3) the burden
of communicable, maternal, prenatal and nutritional conditions; and
(4) the burden of noncommunicable diseases. These indicators were
sourced fromthe updated country-specific data provided on the World
Bank’s platform (https://databank.worldbank.org/). Inaddition, indi-
vidual neurocognitive status (being controls versus having Alzheimer
disease, MClor bvFTD) was included as predictor. Brain-age gaps from
fMRIand EEG datasets were the outcomes.

Models were trained using 90% of the dataset and subsequently
testedonanindependent10% subset, using a10-fold cross-validation
framework. The cross-validation was repeated 10 times. Within each
iteration, estimation coefficients for the predictors, as well as the R?,
Cohen’s f2 (ref. 74) and r.m.s.e., were computed. We assessed feature
importance using a multi-method approach incorporating permuta-
tion importance, features importance based on the MDI and SHAP
values””. We provided the mean importance values for each method,
along with their 99% CI, as well as the average R? and Cohen’s f (ref. 74).
Features whose lower confidence interval boundary crosses zero are

considered nonsignificant. To optimize Ridge’s hyperparameters,
Bayesian optimization was used.

Following the same multi-method approach, we conducted
gradient-boosting regressions to explore the effect of gender
inequality and sex on brain-age gaps. As predictors, we included:
(1) the country-level GllI, acomposite metric measuring reproductive
health, empowerment and the labor market; (2) sex; (3) region (LAC
versus non-LAC); and (4) individual neurocognitive status (healthy
controls versus Alzheimer disease, MClor bvFTD). Brain-age gaps from
fMRIand EEG were the outcomes.

Data quality assessment. For thefMRIoverall dataquality (ODQ) metric,
each time series was segmented in 20 repetition time (TR) length to
evaluate the temporal signal-to-noise ratio (tSNR)”®, whichis calculated
as the mean fMRI signal divided by its standard deviation within each
segment. Segments with tSNR above a threshold of 50 were classified as
high quality’®. As additional evaluations, we checked the variability of
the tSNR segments of all the time series in the brainto check for spatial
consistency. Lastly, we checked for remaining outliers as signal spikes
from movementor transient gradient artifacts. Thus, thefMRIODQ was
computed as a percentage of good segments considering its tSNR, low
spatial variability and the number of segments not having spikes from
movement or transient gradient remaining artifacts.

For the EEG data quality assessment’’, signals were divided into
1-s segments, and the quality of each segment was evaluated using
four specific metrics. These metrics included the detection of weak or
constant signals based onstandard deviation, theidentification of arti-
facts through signal amplitude ratios, the presence of high-frequency
noise and low correlation between channels. The EEG ODQ was then
calculated as the percentage of segments exhibiting good quality. A
value of O indicated that all segments were of poor quality, whereas a
value of 100 indicated that all segments were of high quality.

Sensitivity analyses. We examined whether variationsin fMRIor EEG
data quality explained the differences in brain age between the non-LAC
and LAC, comparing different groups’ fMRI’® and EEG”® data quality
metrics, with subsample permutation tests with 5,000 iterations for
each comparison. In addition, we conducted a linear regression to
examine the association between the fMRI data quality metrics and
the brain-age gaps. To further control for scanner effects, we imple-
mented an additional harmonization strategy in the fMRI training
dataset. This method involves normalizing the brain-age gap variable
within each scanner type by scaling the data to afixed range using the
min-maxscaler™. This ensures that the minimum and maximum values
ofthebrain-age gap variable are consistent across different scanners,
thereby reducing variability caused by scanner differences. In addition,
we accounted for the sign of the brain-age gap after normalization
to maintain the interpretability of positive and negative values. This
procedure adjusts for location and scale differences (for example,
mean and variance) across sites, minimizing scanner-related variability.
We used permutation tests (5,000 subsample iterations each)
to compare the brain-age gaps between subsamples of participants
undergoing fMRI with open versus closed eyes. We included 124 con-
trols with closed eyes and 86 with open eyes, 269 Alzheimer disease with
closed eyes and 164 with open eyes, and 88 bvFTD with closed eyes and
69 with open eyes. Notably, all MCl participants underwent fMRIwith
openeyes. Our findings revealed no significant differences in brain-age
gaps when analyzing data from open versus closed eyes conditions
across all group comparisons (permutation test = 5,000 iterations).

Ethics and inclusion statement

This work involved a collaboration between researchers in multiple
countries. Contributors from different sites are included as coauthors
according to their contributions. Researchers residing in low and
middleincome countries (LMIC) were involved in study design, study
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implementation, methodological procedure, writing and reviewing
processes. The current research is locally relevant due to the larger
disparities observed in LAC and other regions. Roles and respon-
sibilities were agreed among collaborators ahead of the research.
Ethics committees approved all research involving participants. To
prevent any stigmatization, all identifying information has been
removed to preserve the privacy of individuals. We endorse the
Nature Portfolio journals’ guidance on LMIC authorship and inclusion.
Authorship was based on the intellectual contribution, commitment,
andinvolvement of each researcher in this study. Weincluded authors
bornin LMICs and other underrepresented countries.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All preprocessed data are openly available at: https://osf.io/8zjf4/.
The fMRI and EEG datasets comprise sources: (1) currently publicly
available for direct download after registration and access applica-
tion, (2) available after contacting the researcher or (3) accessible
after IRB approval of formal data-sharing agreement in a process that
canlastupto12weeks. The fMRIsources that are publicly available for
direct download are the following: Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (USA) (https://ida.loni.usc.edu/collaboration/
access/appLicense.jsp), Chinese Human Connectome Project (CHCP)
(China) (https://scidb.cn/en/detail?dataSetld=f512d085f3d3452a9
b14689e9997ca94#p2), The Frontotemporal Lobar Degeneration
Neuroimaging Initiative (FTLDNI) (USA) (https://ida.loni.usc.edu/
collaboration/access/appLicense.jsp) and the Japanese Strategic
Research Program for the Promotion of Brain Science (SRPBS) (Japan)
(https://bicr-resource.atr.jp/srpbsopen/). The fMRIsources available
after contacting the researcher include ReDLat USA by contacting
Bruce Miller at UCSF through datasharing@ucsf.edu. The fMRIsources
thatrequire IRBapproval and aformal data-sharing agreementinclude:
ReDLat pros (Argentina, Chile, Colombia, Mexico, Peru) by contacting
Agustin Ibafez at agustin.ibanez@gbhi.org, Centro de Gerociencia
Salud Mental y Metabolismo (GERO) (Chile) by contacting Andrea
Slachevsky at andrea.slachevsky@uchile.cl, ReDLat pre (Argentina)
by contacting Agustin Ibafiez at agustin.ibanez@gbhi.org, ReDLat pre
(Peru) by contacting Nilton Custodio at ncustodio@ipn.pe, ReDLat pre
(Colombia) by contacting Diana Matallana at dianamat@javeriana.edu.
co, ReDLat pre (Colombia-II) by contacting Felipe Cardona at felipe.
cardona@correounivalle.edu.co, ReDLat pre (Mexico) by contacting
Ana LuisaSosaat drasosa@hotmail.com, ReDLat pre (Chile) by contact-
ing Marialsabel Behrens at behrensl@uchile.cland ReDLat pre (Chile)
by contacting Andrea Slachevsky at andrea.slachevsky@uchile.cl. The
EEG sources thatare publicly available for direct download are Centro
de Neurociencias de Cuba (CHBMP) (Cuba) (https://www.synapse.
org/Synapse:syn22324937). The EEG sources that are available after
contactingtheresearcherinclude BrainLat (Argentina) by contacting
Agustinalegaz atalegaz@udesa.edu.ar, BrainLat (Chile) by contacting
Agustina Legaz at alegaz@udesa.edu.ar, Izmir University of Econom-
ics (Turkey) by contacting Gorsev Gener at gorsev.yener@ieu.edu.
tr, Trinity College Dublin (Ireland) by contacting Francesca Farina
at francesca.farina@northwestern.edu, Universidad de Antioquia
(Colombia) by contacting Francisco Lopera at floperar@gmail.com,
Universidad de Sao Paulo (Brazil) by contacting Mario Parra at mario.
parra-rodriguez@strath.ac.uk, Universidad de Roma La Sapienza
(Italy) by contacting Susana Lopez at susanna.lopez@uniromal.it,
University of Strathclyde (UK) by contacting Mario Parra at mario.
parra-rodriguez@strath.ac.uk, Istanbul Medipol University (Turkey) by
contacting Tuba Aktiirk at takturk@medipol.edu.tr and Takeda (Chile)
by contacting Daniela Olivares at danielaolivaresvargas@gmail.com.
Indicators of air pollution, socioeconomicinequality (the Giniindex),

theburden of communicable, maternal, prenatal and nutritional con-
ditions, and the burden of noncommunicable diseases were sourced
fromthe updated country-specific data provided on the World Bank’s
platform (https://databank.worldbank.org/). Country-level Gll are
available on the World Health Organization’s website (https:/www.
who.int/data/nutrition/nlis/info/gender-inequality-index-(gii)). For
additional details, see Supplementary Datal.

Code availability

The code used to preprocess and analyze the data of this work is avail-
ableinan OpenScience Foundation repository at the following address:
https://osf.io/8zjf4/.
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Extended Data Fig. 1| Associations of sex and gender inequality with brain-
age gaps. Multi-method approach comprising SHapley Additive exPlanations
(SHAP) values, features and permutation importance. Plot shows the mean
importance values for each method, along with their 99% confidence interval, as
well as the average R-squared and Cohen’s f2. Having a neurocognitive disorder,
being female, and living in countries with larger gender inequality (particularly

from LAC), were associated with higher brain age-gaps. The model was significant
withR?=0.40 (99% Cl £ 0.12), F*=0.66 (99% CI + 0.14), RMSE = 6.85 (99%
CI1+0.82), F=352.54,and p <1e-15. We conducted a two-sided F-test to evaluate
the overall significance of the regression model. The importance of the features
and their respective confidence intervals can be found in Supplementary Table 1.
LAC = Latin American and Caribbean countries.
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Extended Data Fig. 2| Prediction gaps between fMRI datasets with either eyes, and 88 behavioral variant frontotemporal dementia with closed eyes and
eyes open or eyes closed protocols. No significant differences were observed 69 with open eyes. For HC eyes open vs AD eyes open p < 1e-15, for HC eyes closed
between participants with open vs. closed eyes within the same groups (two- vs AD eyes closed p < 1e-15, for AD eyes open vs bvFTD eyes open p = 0.026, for
sided permutation test, without multiple comparisons, and with 5000 algorithm AD eyes closed vs bvFTD eyes closed p = 0.004.* p < 0.05, ** p < 0.01, *** p < 0.001.
iterations). We included 124 healthy controls with closed eyes and 86 with open HC =healthy controls, AD = Alzheimer’s disease, bvFTD = behavioral variant
eyes, 269 Alzheimer’s disease participants with closed eyes and 164 with open frontotemporal dementia, EC =eyes closed, EO = eyes open.
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Extended Data Fig. 3 | Brain-age gaps between subsamples of mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) groups matched by
chronological age. Results were similar to those reported for the total MCI (n
fMRI=256,nEEG = 52) and AD (n fMRI=254, n EEG = 52) datasets in Fig. 4a,b
(two-sided permutation test, without multiple comparisons, and with 5000
algorithmiterations). For fMRILAC p < 1e-5, for fMRInon-LAC p < 1e-5, for
fMRIall p <1e-5, for EEG all p values = 0.0024. fMRILAC violin plots (Mean, q1,
q3, whisker low, whisker high, minima, maxima): MCI = (10.550, 6.216, 14.748,
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1.133,39.751). fMRI non-LAC: MCI = (10.518, 6.216, 14.565, -3.166, 26.203, -7.616,
29.185) and AD = (15.006,11.076,18.222,1.133, 26.726,1.133, 31.797). fMRI LAC:
MCI=(10.702, 6.565,15.222,-0.325,23.516,-0.325,23.516) and AD = (18.057,
13.681,22.218,2.916, 33.756, 2.916, 39.751). EEG all MCI = (11.813, 7.739,15.804,
1.153,24.775,1.153,24.775) and AD = (15.341,12.727,18.343, 6.751,26.207,0.348,
28.932). FMRI = functional magnetic imaging, EEG = electroencephalography,
LAC = Latin American and Caribbean countries, HC = healthy controls, MCI = mild
cognitive impairm)ent, AD = Alzheimer’s disease, bvFTD =behavioral variant
frontotemporal dementia.

Nature Medicine


http://www.nature.com/naturemedicine

nature portfolio

Corresponding author(s):  Agustin Ibanez

Last updated by author(s): Jul 18, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
S~
Q

X

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X X

A description of all covariates tested

X X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

OXX 00 0000 01 ol

X0

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection  No software was used for data collection

Data analysis The code used to preprocess and analyze the data of this work is available in an Open Science Foundation repository at the following address:
https://osf.io/8zjf4/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All preprocessed data are openly available at: https://osf.io/8zjf4/. The fMRI and EEG datasets comprise sources (a) currently publicly available for direct download
after registration and access application, (b) available after contacting the researcher, or (c) accessible after IRB approval of formal data-sharing agreement in a
process that can last up to 12 weeks. The fMRI sources that are publicly available for direct download are the following: Alzheimer's Disease Neuroimaging Initiative
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(ADNI) (USA) (ida.loni.usc.edu/collaboration/access/applicense.jsp), Chinese Human Connectome Project (CHCP) (China) (scidb.cn/en/detail?
dataSetld=f512d085f3d3452a9b14689e9997ca94#p2), The frontotemporal lobar degeneration neuroimaging initiative (FTLDNI) (USA) (ida.loni.usc.edu/
collaboration/access/applicense.jsp), and Japanese Strategic Research Program for the Promotion of Brain Science (SRPBS) (Japan) (bicr-resource.atr.jp/
srpbsopen/). The fMRI sources available after contacting the researcher include ReDLat USA by contacting Bruce Miller at UCSF through datasharing@ucsf.edu. The
fMRI sources that require IRB approval and a formal data sharing agreement include: ReDLat pros (Argentina, Chile, Colombia, Mexico, Peru) by contacting Agustin
|bafiez at agustin.ibanez@gbhi.org, Centro de Gerociencia Salud Mental y Metabolismo (GERO) (Chile) by contacting Andrea Slachevsky at
andrea.slachevsky@uchile.cl, ReDLat pre (Argentina) by contacting Agustin Ibafiez at agustin.ibanez@gbhi.org, ReDLat pre (Peru) by contacting Nilton Custodio at
ncustodio@ipn.pe, ReDLat pre (Colombia) by contacting Diana Matallana at dianamat@javeriana.edu.co, ReDLat pre (Colombia -Il) by contacting Felipe Cardona at
felipe.cardona@correounivalle.edu.co, ReDLat pre (Mexico) by contacting Ana Luisa Sosa at drasosa@hotmail.com, ReDLat pre (Chile) by contacting Maria Isabel
Behrens at behrensl@uchile.cl, and ReDLat pre (Chile) by contacting Andrea Slachevsky at andrea.slachevsky@uchile.cl. The EEG sources that are publicly available
for direct download are Centro de Neurociencias de Cuba (CHBMP) (Cuba) (www.synapse.org/Synapse:syn22324937). The EEG sources that are available after
contacting the researcher include BrainLat (Argentina) by contacting Agustina Legaz at alegaz@udesa.edu.ar, BrainlLat (Chile) by contacting Agustina Legaz at
alegaz@udesa.edu.ar, Izmir University of Economics (Turkey) by contacting Gorsev Gener at gorsev.yener@ieu.edu.tr, Trinity College Dublin (Ireland) by contacting
Francesca Farina at francesca.farina@northwestern.edu, Universidad de Antioquia (Colombia) by contacting Francisco Lopera at floperar@gmail.com, Universidad
de Sao Paulo (Brazil) by contacting Mario Parra at mario.parra-rodriguez@strath.ac.uk, Universidad de Roma La Sapienza (Italy) by contacting Susana Lopez at
susanna.lopez@uniromal.it, University of Strathclyde (UK) by contacting Mario Parra at mario.parra-rodriguez@strath.ac.uk, Istanbul Medipol University (Turkey)
by contacting Tuba Akturk at takturk@medipol.edu.tr, and Takeda (Chile) by contacting Daniela Olivares at danielaolivaresvargas@gmail.com. Indicators of air
pollution, socioeconomic inequality (the Gini index), the burden of communicable, maternal, prenatal, and nutritional conditions, and the burden of non-
communicable diseases were sourced from the updated country-specific data provided on the World Bank’s platform (https://databank.worldbank.org/). Country-
level gender inequality indexes (Gll) are available on the World Health Organization's website (https://www.who.int/data/nutrition/nlis/info/gender-inequality-
index-(gii)). For additional details, see Supplementary Data S1.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
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Reporting on sex and gender Sex information was determined by self-report. No information regarding gender was inquired. We analyzed and reported
sex differences between groups in brain age gaps. The total sample included 2970 female and 2336 male. Table 1 showed
number of female and male in each subsample

Reporting on race, ethnicity, or ' No information regarding race or ethnicity was inquired. We did not considered race or ethnicity as a proxy of socioeconomic

other socially relevant status.
groupings
Population characteristics In this study, age, sex, and years of education covariates were considered for the human research participants. The full

dataset included a total of 5306 participants, with 3509 healthy controls (HCs), 517 individuals with mild cognitive
impairment (MCl), 828 individuals with Alzheimer's disease (AD), and 463 individuals with behavioral variant frontotemporal
dementia (bvFTD).

For the fMRI dataset, the age of participants varied significantly across groups. Non-LAC healthy controls had an average age
of 53.55 years (SD = 13.43), while LAC healthy controls had an average age of 65.34 years (SD = 11.44). Non-LAC individuals
with MCl had an average age of 59.62 years (SD = 8.77), compared to 66.53 years (SD = 8.18) for their LAC counterparts.
Non-LAC individuals with AD had an average age of 76.59 years (SD = 9.35), whereas LAC individuals with AD had an average
age of 77.52 years (SD = 9.35). Non-LAC individuals with bvFTD had an average age of 73.14 years (SD = 8.56), while LAC
individuals with bvFTD had an average age of 73.15 years (SD = 8.76).

Sex distribution also showed variability. Among non-LAC healthy controls, there were 470 females and 497 males, while LAC
healthy controls included 261 females and 216 males. Non-LAC individuals with MCI had 114 females and 101 males,
whereas LAC individuals with MCI had 84 females and 85 males. In the AD group, non-LAC individuals consisted of 112
females and 102 males, while LAC individuals included 262 females and 243 males. For bvFTD, non-LAC participants included
98 females and 92 males, and LAC participants included 105 females and 111 males.

Years of education also varied among participants. Non-LAC healthy controls had an average of 13.15 years of education (SD
=5.41), while LAC healthy controls had an average of 12.11 years (SD = 3.39). Non-LAC individuals with MCI had an average
of 14.15 years (SD = 3.41), compared to 11.52 years (SD = 6.32) for LAC individuals with MCI. Non-LAC individuals with AD
had an average of 13.12 years (SD = 5.34), whereas LAC individuals with AD had an average of 8.89 years (SD = 4.34). Non-
LAC individuals with bvFTD had an average of 11.16 years (SD = 3.56), while LAC individuals with bvFTD had an average of
7.89 years (SD = 3.36).

For the EEG dataset, non-LAC healthy controls had an average age of 58.98 years (SD = 12.03), while LAC healthy controls had
an average age of 66.74 years (SD = 13.94). Sex distribution in the EEG dataset showed that non-LAC healthy controls
consisted of 470 females and 99 males. In the LAC healthy controls, there were 954 females and 532 males, with 111 females
and 22 males among LAC individuals with MCI, 85 females and 23 males among LAC individuals with AD, and 39 females and
18 males among LAC individuals with bvFTD.

Years of education for the EEG dataset also showed differences. Non-LAC healthy controls had an average of 14.85 years (SD
=4.91). LAC healthy controls had an average of 13.92 years (SD = 3.39), individuals with MCl had an average of 8.12 years (SD
=4.34), individuals with AD had an average of 10.75 years (SD = 6.32), and individuals with bvFTD had an average of 14.38
years (SD = 5.49).

Recruitment Participants were selected following a stratified design in each country

Ethics oversight The respective IRB of each institution that contributed EEGs and/or fMRIs to this study approved the acquisitions and
protocols, and all the participants signed a consent form following the declaration of Helsinki.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes for this study were determined using a data-driven approach to ensure the effectiveness of deep learning regressors in
predicting brain age gaps. Preliminary analyses informed by pilot data and previous studies guided the decision to include a total of 5306
participants. This large sample size, encompassing 3509 healthy controls, 517 individuals with mild cognitive impairment, 828 individuals with
Alzheimer's disease, and 463 individuals with behavioral variant frontotemporal dementia, provides a comprehensive dataset. This dataset
captures the necessary variability for reliable model training and validation, enhancing the generalizability and predictive performance of the
deep learning models. By leveraging such a sizable and diverse cohort, the study aims to develop models that can accurately predict brain age
gaps across different populations and conditions, thereby ensuring robust and reliable outcomes.

Data exclusions  No data was excluded
Replication The models were tested in six independent out of sample datasets. All attempts at replication were successful.
Randomization  Subsamples matched by age, sex, and education to the healthy control group.

Blinding The investigators were blinded to group allocation during data collection and analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication ngcirllﬁélé/,g;;y atthentication-procedures foreach seed stock-tised-or-novel-genotype generated.—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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