UC Irvine
ICS Technical Reports

Title
The design process of behavioral synthesis from VHDL

Permalink
https://escholarship.org/uc/item/1bn897id

Authors

Ramachandran, Loganath
Holmes, Nancy D.
Gajski, Daniel D.

Publication Date
1994-02-14

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/1bn897jd
https://escholarship.org
http://www.cdlib.org/

The Design Process for
Behavioral Synthesis
from VHDL

Loganath Ramachandran
Nancy D. Holmes
Daniel D. Gajski

Technical Report #94-04
February 14, 1994

Dept. of Information and Computer Science

University of California, Irvine
Irvine, CA 92717
(714) 856-8059

Email : ramachan@ics.uci.edu

Email : nholmes@ics.uci.edu

Abstract

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

In this report we describe the design process for behavioral synthesis from VHDL descriptions. The
design process can be divided into two parts, (a) the architectural allocator (AA), which derives the
appropriate type and number of resources (storage, functional units, and buses) that can satisfy the
area and performance constraints imposed by the designer, and (b) the VHDL Synthesis System (VSS),

which synthesizes a RT-level netlist based on the allocation constraints. The human interface for all

the tasks in the design process is also described in this report.

Contents

1 Introduction
1.1 Top-Down Design Methodology
1.2 'Chip=Level Synthesis in AA=VSS' i vws os s ows smiias vmws sana sus §ma owa

2 The Chip-Level Synthesis Model

3 Chip-Level Synthesis: Input and Tasks

F T INPHETDESERDEION ¢ v n smis vy S S RS T SR8 DG G S E i sl SaE Sk s
3.2 Allocation L e e e
BESCHedUINT « 5o s s S @E RI BB IBNE IFE EKE RS T THI G TEA IMA VG b
3.4 Binding e

4 AA-VSS: I/O Specifications

5 AA : Block Diagram, Human Interface, and Design Scenarios
BT A S BIOCK PHATIAIL . & s ¢ v o bis siws st g 5@ h 595 Bogs BW G ¥ e R E S 8 EE
5.2 Shape Function Display L e
5.3 Allocation Display
Bid "Quality Measure Display . . . < o v v cv 6 v s sivis oo n o 0 s &5 5 5 018 e m e e e e e e
5.5 AA : Design Methodology e e e
B0 ACA "PosiBle 1/O:SCetBRION . o« o5 5 5o s awis S Shia SE s Feh e e s e e e e
5.7 AA : Typical Design Scenario, Steps land 2
5.8 AA : Typical Design Scenario, Steps 2and 3 0....
5.9 AA : Typical Design Scenario, Final Allocation

6 VSS : Block Diagram, Human Interface, and Design Scenarios
GAES VRS Block! DISZRam . 2 ms s w50 ms 190 188 383 05 v FHE ERIMEE HEEBA S .53
6.2 Control Pipelining L e
Gedt S AR AYy Wariable CIUSETINE, « o - s vur s soms amu sans §m s w5 @5 6605 5 o e & 6% 59 o
6.4 VSS:UserInterface o i i i i e e e e e
6.5 Quality Measure Display L e e e e
G0 XBISP. NL: Netlist displaytool iz o o6 sms sws s v Tade sivs 55 sm s Sws §b .85 5%
6.7 VSS: Typical Design Scenario ittt
88, V8S: Typical Design Scenario (2) : vz v vs s s mar Befls ss sws s o8 908 s o6 o515 50
6.9 VSS : Typical Design Scenario (3)

7 AA-VSS : Strengths and Weaknesses
TA Stremgths . o coov vmn s smr ams s v e semu ol e B Eww BB ERE B B
7.2 Weaknesses L e e e e e e

8 References

10
12
14

16

18
18
20
22
24
26
28
30
32
34

36
36
38
40
42
44
46
48
50
52

54
o4

54

56

1 Introduction

1.1 Top-Down Design Methodology

AA-VSS is based on a top-down design methodology which is divided into three domains, (a) System-
Level Synthesis Domain, (b) Chip-Level Synthesis Domain, and (c) Logic/Layout-Level Synthesis
Domain. Since AA-VSS performs chip-level synthesis, we concentrate primarily on that aspect of

the methodology.

¢ System-Level Synthesis Domain - System-level synthesis tools (such as SpecSyn) partition
the system description into hardware and software pieces based on the constraints specified by
the designer. Interface synthesis is also performed to ensure that appropriate communication
protocols are incorporated into the hardware and software portions. More details of the system-

level specification and synthesis process are available in [1].

¢ Chip-Level Synthesis Domain - Each of the chips derived from system-level synthesis must
be synthesized into hardware. This is the function of the chip-level synthesis domain. The input

to this domain is the behavioral specification of each chip.

The important tasks in the chip level synthesis domain are (i) Allocation - deriving the appro-
priate type and number of resources (storage, functional units, and buses) that can satisfy the
area and performance constraints imposed by the designer, (ii) Scheduling - partitioning the
various operations in the behavioral description into states such that all operations in a state
are performed during a single clock cycle, and the resources required in each clock cycle do not
exceed the resources allocated during the allocation step, and (iii) Binding - mapping each of
the operations in the behavior to appropriate hardware units - the arithmetic and logic operations
are bound to functional units, the data storage operations are bound to appropriate registers or

memories, and the data transfer operations are bound to buses and muxes in the design.

The output of the chip-level synthesis domain is a RT-level netlist, containing RT components
such as ALUs, registers, register files, memories, and buses. The output netlist is specified using
VHDL, which can again be simulated with commercial simulators to verify the correctness of the

chip-level synthesis process.

¢ Logic/Layout-Level Synthesis Domain - The RT level netlist that is output from chip-level
synthesis can be further synthesized using some of the commercially available logic and layout

synthesis tools.

Abstract
Specification

Structure

Qayout

Top Down Design Methodology

ify =1 then
x := M[PC];

\

states, protocols,
hierarchy, concurrency,
programming statements

partitioning, interface synthesis,

1 SpecSyn bus merging, estimation

chip
spec.

| |

cr»

xCczZ

Layout, Logic synthesis

v

processes,
programming statements

VSS scheduling, allocation, binding

RTL components,
control logic

Copyright () 1993 UC Irvine CADLAB [UC Irvine |

1.2 Chip-Level Synthesis in AA-VSS

AA-VSS can be used to explore the design space to produce efficient chip designs. The input to
the system is a behavioral description of a design written in VHDL. The AA-VSS system works on
this input description and synthesizes a RT-level netlist, expressed using structural VHDL statements.
This enables easy verification of the output since the behavioral input and the structural output can

be simulated with a commercially available VHDL simulator using the same set of test vectors.

In order to facilitate the exploration of a large design space, many knobs are available on the system.
The designer can control the synthesis process by changing the settings on the knobs, which are listed

below.

¢ Partial Resources - There are three kinds of resources in the synthesized netlist: (i) functional
units such as ALUs and multipliers, (ii) storage units such as RAMs, registers and register files,
and (iii) communication units such as muxes and buses. The designer can specify a list of partial

resources to be used during synthesis

¢ Clock Period - The designer can select the clock period for the synthesis. This clock period
indicates the clock frequency at which the chip will driven and is usually determined by the clock

period on the rest of the system.

¢ Performance Constraint - The designer can specify a maximum execution time constraint
for the design. The synthesis process will allocate sufficient resources to meet the specified

performance constraint.

¢ Component Library - The designer can provide a library of components for the synthesis pro-
cess. This library could contain multiple implementations of functional units each with different
area and delay characteristics, as well as memories with various sizes, access delays, and number

of ports.

¢ Control Pipelining - The AA-VSS system allows the designer to select among three different
control pipelining architectures. The control pipelining architecture determines the pipelining

style between the controller and the datapath.

e Memory Hierarchy - The storage part of the synthesized netlist may contain many types
of storage units (ze. registers, register files, and different kinds of memories) arranged in a

hierarchical fashion. The designer may specify the number of levels in the memory hierarchy.

~

Objective

Behavioral Description

Data Types | Bit. Integer
Arrays

Constructs Conc/Seq Asgn
Procedures
Conditionals, Loops

Commercial VHDL Simulator

i

AA

l
Qs

.y
2
Q
=
=]
Q
Q

Copyright (c) 1993 UC Irvine CADLAB | UC Irvine

2 The Chip-Level Synthesis Model

The designs synthesized by the AA-VSS system can be represented using the FSMD model of
hardware. In the FSMD model, the synthesized design consists of two parts (a) the datapath, which
performs the storage of the data and computations on the stored data values, and (b) the controller,

which performs the sequencing of various states, and controls the datapath operations.

Datapath - The datapath model consists of functional units, memory components, and buses arranged
hierarchically. Functional units are always at the lowest level (level 0) of the hierarchy, while the
remaining levels (levels 1 through n) contain the memory components. Memories are arranged in
increasing order of access delay. Storage components with small access delays such as registers and
register files are at low levels of the hierarchy, while slower components such as large, multi-port
memories are at higher levels. We assume that memory components at the same level have the same

access delay.

Direct communication is only possible among components at adjacent levels. For instance, units at
level ¢ can only communicate with units at levels (i — 1), ¢, and (i 4+ 1). So, for example, if data must
be transferred from level 4 to level 2, it has to pass through level 3. Note that the datapath contains

a set of buses between each level to support this communication.

Both the number of components at each level as well as the number of buses between the levels may

vary.

Controller - The controller can be represented by a finite state machine, consisting of a set of states
and transitions between the states. The implementation of the FSM, consists of a state register and

a combinational block as shown in the figure.

The datapath and the controller communicate using (a) the status lines and (b) the control lines. The
control lines are set by the controller and the value on these lines determines the operation that will
be performed by the datapath. The status lines are set by the datapath to indicate the status of a

given computation.

FSMD Model

Control
Lines
Combinational
Logic

State Reg =
Status
Lines

Controller

level 0

level 1

level 2

level 3

lavel n

Datapath

i |

Copyright (c) 1993 UC Irvine CADLAB

| UC Irvine]

3 Chip-Level Synthesis: Input and Tasks

3.1 Input Description

AA-VSS accepts behavioral descriptions in VHDL [2] as input to the system. An example of such a
description is shown in in the figure. In general, VHDL descriptions may contain sequential, process-
level statements such as (a) sequential assignment statements, (b) conditional statements, (c) loop
statements, and (d) wait statements. However, the current implementation of the AA-VSS system

supports only the following subset of statements.

e Assignment statements

If statement

Case statement

while loops

wait until statements

AA-VSS does not support the following language features in VHDL.

¢ enumerated types
e aliases

CONSTANT declarations

null statements

¢ procedures and functions

exit statements

e return statements

loop statements with no iteration schemes

entity CompCentroid is
port (i,] :ininteger);
dout : outinteger);
end CompCentroid;

architecture A of CompCentroid is
begin
PO: process
type Memory is array (integer range <>) of integer;
variable s: Memory;
variable rs , Is : integer;
begin
while (i <) loop

if (rs < Is) then

rsi=rs+s(j);, j=j-1,
else
Is == Is + s(i); i=i+1;
end if;
end loop;
dout <= j;

end process PO;
end architecture A,

Input Description (Behavioral VHDL)

Copynght (c) 1883 UC Irvine CADLAB

|UCIrvino |

3.2 Allocation

The first step in high-level synthesis is architecture allocation. Architecture allocation refers to the
process of selecting the functional units, storage elements, and interconnects used to implement the
datapath. In addition, the architecture allocation defines the way in which data may be transfered
between the datapath functional and storage units. For instance, storage elements may be arranged in
a hierarchy such that data flows from register files to functional units and from memories to register

files but not from memories to functional units.

More specifically, an architecture allocation consists of the following information.

1. Level Allocation: This refers to grouping the storage elements into different levels (thereby
imposing a memory hierarchy) such that data may only be transfered between memories at

adjacent levels and between functional units and the first level of memory.

2. Storage Allocation: This defines the number and types of memories used in the datapath. A
storage allocation specifies (1) the number of memories, (2) the delay per memory, and (3) the

number of ports and size per memory.

3. Functional Unit Allocation: A FU allocation specifies (1) the types of FUs used (where type
is defined by the functions performed and the bitwidth), (2) the number of FUs of each type,
and (3) the delay and data initiation rate of each FU.

4. Interconnect Allocation: An interconnect allocation defines (1) the number of buses in the

design, and (2) the delay per bus.

A sample design description and a corresponding architecture allocation are shown in the figure. It is
assumed that there is only one level of memory hierarchy; so, data may be transferred between any

two storage elements or between any storage element and any FU.

10

Design Description and Allocation

High-Level Design Description

while (i < j) loop
if (rs < Is) then

rs:=rs + s(j);
else

Is :=1Is + s(i);
end if;
end loop;
dout <= j;

I=1-1
li=1+1;

Datapath Unit Allocation

unit | no. | delay | ports size stages | functions
ALU |1 20ns - 16 bit 1 add, sub, cmp
BUS | 3 5ns - 16 bit - -

REG | 7 5ns [1r, 1w 16 bit - read, write
MEM| 1 |15ns | 1rw |1Kw X 16 bit 1 read, write

11

Copyright (c) 1983 UC Irvine CADLAB

|UC Irvine |

3.3 Scheduling

Scheduling partitions all the operations in the CDFG into different subgraphs such that each subgraph
is executed in one control step. However, the scheduling process must ensure that sufficient resources
are available in each clock cycle to execute all the operations assigned to that control step. If more
functional units, memory ports and buses are available, then it is possible to assign more operations to
a given control step, thereby reducing the total number of clock steps required to execute the design.
On the other hand, if fewer resources are allocated, then the scheduling process can only assign fewer
operations in each clock cycle, thereby increasing the total number of steps required to complete the

schedule. The main goal of the scheduling is to maximize the utilization of the allocated resources.

The diagram shows the results of the scheduling process on the input description from Section 3.1.
The allocation constraints provided to the scheduler are shown on the left part of the figure. Since a
single ALU was allocated, it was only possible to schedule one add or subtract operation every clock
cycle. Five states (s1,s2 .. s5) were required to schedule the design with the allocated resources. The
state assignments for each of the operations are shown in the figure. However, two mutually exclusive
operations can be scheduled on the same state, since by definition only one of them would get executed
during any given instance. For example the operations (i := i + 1) and (j := j -1) are scheduled into

the same clock cycle (i.e., s4) because they are mutually exclusive.

VSS uses a list based scheduling algorithm [3] for scheduling the operations in a basic block.

12

Scheduling (with Resource Constraints)

Resource Constraints

unit

ALU
BUS
REG
MEM

s2f 12=rs<is Jlls2] dout=j

\

Copyright (c) 1993 UC Irvine CADLAB [UC irvine |

3.4 Binding

Binding maps the variables and operations in the scheduled CDFG onto specific instances of the
allocated functional units, storage components, and interconnect units while ensuring that the design
behavior operates correctly. Suppose we are given an allocation of two adders and four registers and
the schedule shown in the left-hand side of the figure. Operations o; and o; cannot be mapped to the
same adder since they are scheduled in the same control step. On the other hand, operations o; and
03 can share an adder because they and executed during different control steps. Similarly, variables

whose values are needed concurrently may not share the same register.

Note that there are several different ways of performing binding. For example, we can map o0; and
o3 to ADD1 and o; and o4 to ADD2. Or, we can map o; and o3 to ADD1 and 0, and o4 to ADD2.
The best binding is the one which minimizes design quality metrics such as area, delay, and power

dissipation.

14

Binding

S v 2 l 3 s
a b,e, g ¢t h d
+1, 43 +2, +4
ADD1 ADD2

Copyright (c) 1993 UC Irvine CADLAB

15

I UC Irvine [

4 AA-VSS :I/0 Specifications

The designer, the architecture allocator (AA), and the synthesizer (VSS) interact as shown in the

diagram.

A A selects the optimal mix of library components (not pictured) used during the synthesis process.
The designer interacts with AA primarily by constraining some or all of the following design param-

eters.

Performance - clock period, execution time

Storage Resources - number of levels of memory hierarchy, number of memory modules in
each level, delay of memories at each level, size of each memory module, number of ports in each

memory module

e FU Resources - number of functional units, type of each functional unit, delay of each unit

Interconnect Resources - number of buses, delay per bus, point-to-point architecture

A A then computes the remaining set of resources to ‘match’ the resources already specified by the

designer.

The allocation provided by A A is then fed into the VSS system which uses the resource constraints
to synthesize the design. In addition, the designer interacts with VSS by specifying the following

synthesis parameters.

e Clock Period - VSS allows the clock period to be set to any value. However the resultant

design may look entirely different for two different clock period settings.

¢ Control Pipelining Style - VSS can synthesize designs with three different control pipelining
(CP) styles. The control pipelining style determines how the microactions in each state are
parallelized.

¢ Datapath Pipelining Style - VSS can synthesize designs with pipelined functional units.

AA-VSS: /O Specification

PERFORMANCE
CONSTRAINTS

(1) execution time
(2) clock period

STORAGE
CONSTRAINTS

(a) # level

(b) delay/flevel

(c) # memory/level

(d) # ports, size/memory

FU
CONSTRAINTS
(a) FU types

(b) # FU
(c) delay/FU

INTERCONNECT
CONSTRAINTS

(a) point-to—point
(b) # bus
(c) delay/bus

User

!

ALLOCATION

STORAGE:
#memory
il #ports, size/memory

FU types
#FU
delay/FU
INTERCONNECT:
bus
delay/BUS

CLOCK

PERIOD

STYLE

CONTROL

DATA

\
i
|
|
} PIPELINING
|
|
|
|

PIPELINING
STYLE

‘ |
L SYNTHESIS |
/| mopEL }

17

Copyright (c) 1983 UC Irvine CADLAB

UC Irvine I

5 AA : Block Diagram, Human Interface, and Design Scenarios

5.1 AA : Block Diagram

A A works off of two basic data structures, the control data flow graph and the resource allocation

table.

1. Control Data Flow Graph (CDFG): indicates control and data dependencies among the

operations and also contains information about the design performance constraints.

2. Resource Allocation Table (RAT): contains (1) the allocation constraints imposed by the
designer, (2) the expected FU, storage, interconnect, and level allocations, and (3) the cost
(utilization/dollar) of the expected allocation. In addition, the RAT stores all of the information

needed to estimate quality metrics.
A A consists of five algorithms which are described below.

1. Allocation Estimator: contains two sub-algorithms which are executed sequentially. The
first sub-algorithm determines the level allocation and the second computes FU, memory, and

interconnect allocations. The A A allocation estimator is an extension of the algorithm from [4].

2. Quality Metric Estimator: computes design quality measures such as component utilization,

total area, and power consumption.

3. Performance Constraint Distributor: decomposes the execution time constraint for the

behavior into smaller constraints on basic block execution times.

4. Performance Constraint Parser: captures the clock period and execution time constraints

specified by the designer and generates the performance constraint input display.

5. Allocation I/O Parser: produces the allocation displays viewed by the designer. Note that the

same display is used for both capturing allocation constraints and displaying allocation output.

18

AA: Block Diagram

VHDL
Description

!

VHDL
Compiler

Functional
Unit

Performance
Constraint
Distribution

Allocation
I/0
Parser

Allocation Estimation

Allocation Allocation

Constraints

Performance
Constraint
Parser

Quality
Metric
Estimation

Performance
Constraints

Quality
Measures

19

Copyright (c) 1893 UC Irvine CADLAB

5.2 Shape Function Display

If the designer does not provide an execution time constraint, AA outputs a shape function displaying
execution time (in number of clocks or nanoseconds) versus design cost (in number of gates, number of
transistors, or square microns). The diagram illustrates the performance/cost shape function display.
The designer can select any point on the function and view the corresponding architecture allocation or
component utilization. After evaluating the alternatives, he/she may choose an architecture allocation
directly from the shape function or refine the design manually by placing constraints on the allocation.
In other words, the designer can use the shape function display to determine a final allocation or as

a feedback tool to ‘suggest’ design alternatives.

20

Cost (thousands of gates)

Shape Function Display

A Datapath Unit Allocation
30 unit | no. | delay | ports size stages | functions
ALU | 1 |20ns - 16 bit 1 add, sub, cmp
BUS | 3 5ns - 16 bit - -
REG|7 | 5ns |[1r,1w 16 bit - read, write
MEM| 1 [15n8s | 1rw | 1K w X 16 bit 1 read, write
20 +
Utilization Chart
Unit | Number | Utilization
10 ALU 1 20%
BUS 3 90% ?
— » ok User may select allocation or
utilization view for any shape
MEM 1 19% | function point
La l | ! | | | | -
0 4 | 1 | T W | | =
2.2 2.4 2.6 2.8 3.0 3.2 3.4

Performance (hundreds of nanoseconds)

21

Copynight (c) 1993 UC Irvine CADLAB

5.3 Allocation Display

The allocation display serves two purposes: (1) to capture allocation constraints, and (2) to display
the allocation output of AA . It should be noted that the allocation display is used to depict output
only when an execution time constraint is placed on the design; otherwise, the shape function format

is used.

The allocation display is illustrated in the diagram. The menu on the upper left-hand side shows the
component types currently available in the library, while the display on the upper right-hand side
shows the current allocation constraints or allocation depending on whether the user is looking at an
input or output display. To input a new allocation constraint, the designer must select a component
type from the library and fill out the information display shown on the lower left-hand side of the
diagram. He/she then clicks on the ADD button to add the constraint. It should be noted that the
allocation output (or the allocation constraints) can be dumped to a text file for viewing by the user.

The text file output format is used as the allocation input to VSS .

22

Resource All

ARSI nar
i
#

ocation Tool: User Interface

7]

Copyright (c) 1983 UC Irvine CADLAB

| UC Irvine I

5.4 Quality Measure Display

AA estimates several design quality measures including component utilization, total area, and power
consumption. The quality measure display consists of a pull-down menu from which the designer may
select the metric that he/she wishes to view. The three AA quality metrics are described briefly

below. (The remaining two metrics shown in the figure are for VSS .)

1. Component Utilization: The utilization for a component instance is the amount of time that
the component is used divided by the total execution time. Since AA does neither scheduling
nor binding, the utilization value cannot be derived exactly. Instead, it must be estimated.
Furthermore, AA computes utilization per component type instead of per component instance

due to the fact that an exact binding is not available.

2. Total Area: In AA , total area refers to the sum of the functional unit and memory areas
for the datapath components. Note that interconnect area is not included since a floorplan is
not available to AA , and controller area is not included since AA does not perform control

synthesis.

3. Power Consumption: The power consumption metric is estimated by summing an average
power consumption value (determined empirically) for the library components multiplied by the

expected switching frequency of the component.

24

Design Quality Measures

Component Utilization Chart Power Chart
Unit | Number | Utilization Gualy B ————— L
: 65 100 mW
ALU 1 90%
BUS 3 90% il Total Area Chart
REG 7 35% Total Datapath Area
MEM 1 18%

17,256 gates

34478 X 106 square microns

Clock Cycle Ultilization Chart

State | Delay | Utilization
1 48 ns 68% -

Execution Time Chart

Max/Min Execution Times

48 ns 68%

'

60 ns 99% MIN: 4 states

2
3
4 60 ns 99%
5 10 ns 18% MAX: 5 states

Copyright (c) 1993 UC Irvine CADLAB |Uc Irvine |

25

5.5 AA : Design Methodology

A flow chart of the AA design methodology is shown in the figure. The first step is to select a per-
formance scenario. This determines whether the AA output in subsequent steps is a shape function
or a performance/cost point. Next, the designer obtains the level allocation which can be done man-
ually or using AA . Thirdly, the designer determines the memory, FU, and interconnect allocations.
These tasks are performed simultaneously in AA ; however, designer interaction is supported since
the user may specify partial allocation constraints. Finally, the designer may iteratively improve mem-
ory, FU and interconnect allocations by repeating step 3 until the component utilization is ‘balanced’

(utilization for all components is approximately the same) and sufficiently high.

Note also that, in AA , the designer may change from a shape function to a performance/cost point

output format at any time during the design process by specifying an execution time constraint.

AA Design Methodology

Copyright (c) 1983 UC Irvine CADLAB

27

UC Irvine

5.6 AA : Possible I/O Scenarios

All of the possible input/output scenarios for the architecture allocator are listed in the diagram.
Input scenarios are shown on the left-hand side, and the corresponding output scenarios are listed on
the right-hand side. To use AA | the designer must select performance, memory, functional unit, and

interconnect input scenarios from the alternatives listed in the diagram.

The performance constraint scenario determines whether the output style is a performance/cost shape
function or a performance/cost point. Specifically, if an execution time is given, then the output is a

point; otherwise, it is a shape function.

Allocation scenarios (memory, FU, and interconnect) define a partial allocation, and the remaining
parameters are determined by AA . For instance, in the case of FUs, four input scenarios are possible.
Suppose that the designer selects scenario #3. In this event, the designer must specify both the number
of functional units allocated and their types, while A A determines only the delay and initiation rates
of the units. However, if the designer selects scenario #4, he/she specifies the complete FU allocation,
and A A only determines whether the performance constraints (if any) are satisfiable with the given
FU allocation.

It should be noted that the memory scenarios are decomposed into two cases: (1) one level of memory
hierarchy, and (2) several levels of memory hierarchy. In case 1, the designer may select any FU, mem-
ory, and interconnect scenarios that he/she wishes. However, in case 2, the designer must determine
a complete level allocation before performing any memory allocation. In other words, the designer
must first select one of the level scenarios listed in the diagram. (Note that FU and interconnect
allocations must be completely specified, and if the designer does not provide them, AA will use
default allocations.) Then, after deciding on a level allocation, he/she determines memory, FU, and

interconnect allocations by selecting appropriate scenarios as in case 1.

Finally, AA also estimates several design quality measures which may be viewed by the user at any

time.

28

Performance

no constraints

Estimated Quality Measures

1) utilization/library component
2) total area
3) power

clock period
execution time
clock period, execution time

Memory Hierarchy

Case 1: One Level (different delays/memory)

no constraints

#memory

#memory, delay/memory

#memory, ports & size/memory

#memory, delay/memory, ports & size/memory

bW N -

Case 2: Several Levels (different delays/level)
lavel allocation problem

no constraints

#levels

#levels, delay/level

#levels, ports & size/level

#levels, delay/level, ports & size/level

memory/level allocation problem
gi no constraints
8

UG N -

#memory/level, delay/memory
y/ ry, ports & size/memory

I, delay/

Functional Units

FU tygn
#FU, FU types
#FU, FU types, delay & initiation rate/FU

Interconnect

1! no constraints

1} no constraints
2) #bus, delay/bus

Annotated COFG
(frorm compiler)

29

AA: Possible I/O Scenarios

Output Style
(performance constraint dependent)

performance/cost shape function
3) performance/cost point

;g performance/cost shape function
4) performance/cost point

Memory Hierarchy

Case 1: One Level (different delays/memory)

#memory, delay/memol orts & siza/memol
d.laylm?mory,’.l)ans lr!;n‘:lmomry &4
ports & size/memory

delay/memory

constraints satisfied/unsatisfied

N e B =

Case 2: Several Levels (different delays/level)

al allocgti m \
1) #levels, dollylhvlzt mmeﬁMGq [
2) delay/level, ports & size/level
3) ports & size/level
4) delay/level
5) constraints satisfied/unsatisfied

memory/avsl allocation problem
;E #memory/level, delay/memory, ports & size/memory
8

ports & size/memo

constraints satisfied/unsatisfied

Functional Units

#FU, delay & initiation rate/FU
delay & initiation rate/FU
constraints satisfied/unsatisfied

Interconnect

1) #bus, delaybus
2) constraints satisfied/unsatisfied

§ #FU, FU types, delay & initiation rate/FU

5.7 AA : Typical Design Scenario, Steps 1 and 2

Section 5.7 and Section 5.8 describe a typical design scenario using A A for the behavioral description
listed in Section 3.1. We assume that the following decisions have been made regarding performance

scenarios and level allocation.

1. The designer has selected a performance scenario with both clock period and execution time

constraints. So, AA output will consist of a performance/cost point.

2. The designer has chosen a one-level implementation.

Hence, the remaining design tasks include memory, FU, and interconnect allocation.

The diagram illustrates the first two steps in the design scenario. Initially, the designer places con-
straints on the memory and FU allocations, but after executing AA , he/she finds that the design
is over-constrained and the performance requirements are not satisfiable. Therefore, in step 2, the
designer removes the memory constraints and runs AA again. This time, AA responds with an

allocation consisting of 2 ALUs, 6 buses, 7 registers, and 1 memory.

30

Typical Design Scenario

(1) Designer provides initial -

(2) Designer removes memory
allocation constraints

constraints and estimates
allocation

Performance:

clock: 60ns

execution time: 5 clock cycles
Memory Levels:

one memory level
Memory:

; F -
numbe . gelay
Functional Unit:
number, type: 2 ALU
Interconnect: AA
no constraints
AA
e i

Copyright (c) 1993 UC Ivine CADLAB |[UC Irvine

5.8 AA : Typical Design Scenario, Steps 2 and 3

The figure shows steps 2 and 3 of the design scenario. Recall that, at the end of step 2, AA had
computed memory, FU, and interconnect allocations, but the component utilizations were very low.
In step 3, the designer attempts to improve utilization by reducing the number of ALUs from 2 to 1.
He/she then runs AA and obtains a new allocation with 1 ALU, 3 buses, 7 registers, and 1 memory.
Note that the ALU and bus utilizations have both improved from 46 % to 90 %. As a result, the

designer is satisfied and proceeds with scheduling and binding.

32

Typical Design Scenario

(2) Designer removes memory (3) Designer observes low
constraints and estimates R utilization and reduces

allocation FU allocation

Performance:

clock: 60ns

execution time: 5 clock cycles
Memory Levels:

one memory level
Memory:

no constraints
Functional Unit:

number, type: 2 ALU o number, type
nterconnect:

no constraints

Functional Unit:

AA

Datapath Unit Allocation
and Utilization

Unit | Number | Utilization

REG 7 35%
MEM 1 18%

Copyright (c) 1993 UC Irvine CADLAB |Uc Irvine |

33

5.9 AA : Typical Design Scenario, Final Allocation

The diagram shows the final allocation from the AA design scenario. The details of each component,
such as delay, ALU functions, memory ports and sizes, etc ..., are listed in the diagram. For example,
the allocation contains 1 16-bit, non-pipelined ALU. The ALU has a 20 ns delay and is capable of
performing the functions add, subtract, and compare. When the designer has approved the final
allocation, it is fed into a text file and used as a resource constraint for scheduling and binding in
VSS.

34

Typical Design Scenario

FINAL ALLOCATION
unit | no.|delay | ports size stages | functions
ALU | 1 |20ns - 16 bit 1 add, sub, cmp
BUS | 3 5ns - 16 bit - -
REG | 7 5ns |1r, 1w 16 bit - read, write
MEM|1 |15ns | 1rw |[1Kw X 16 bit 1 read, write

35

Copyright (c) 1983 UC Irvine CADLAB

6 VSS : Block Diagram, Human Interface, and Design Scenarios

6.1 VSS : Block Diagram

The VSS system is composed of a set of modules. The input to VSS is a set of resource constraints,
and the output is a simulatable VHDI, netlist at the RT level and the quality measures for the netlist.
VSS interfaces to the GENUS library to get the necessary components when synthesizing the netlist.

The block diagram indicating all the VSS modules is shown in the figure. These blocks are:

1. VHDL Compiler compiles the VHDL description into an internal co
(CDFG).

ntrol data flow graph

2. Graph Critic applies transformations on the CDFG to remove VHDI, specific portions in the
flowgraph to more hardware oriented attributes. For example the CDFG for the VHDL statement
if (not(clk’stable) and (clock = 1)) is transformed to imply a rising clock edge.

3. Scheduler partitions the CDFG into control steps (Section 3.3).

4. Binder determines a mapping between the operations in the flowgraph to the allocated hardware
components. (Section 3.4).

5. VHDL Netlister generates the output VHDL netlist and creates necessary hooks for simulating
the design with a commercial VHDL simulator.

6. Quality Estimator estimates the quality measures shown in Section 5.4.

7. Address Translation performs the required address translations, when several array variables
share the same memory module.

36

VSS :

VSS

B R R

LTI

Address
Translation

Scheduler

DL OO T

Block Diagram

VHDL
level

rocess

scription

R T T R R L R TR R LEE Y L (UL

GENUS

Measures

O T T L R T T TR TR T

VHDL
Compiler

Quality

VHDL
Netlister

L

nnna

Binder

R

VHDL structure

VHDL
Simulator

L

Copyright (c) 1883 UC Irvine CADLAB

| UC Irvine l

6.2 Control Pipelining

In an FSMD model, the design performs three microactions during a state: (1) set control lines, (2)
perform datapath operations, and (3) compute next state value. It is possible to execute these three
micro-actions in a pipelined fashion. We refer to this pipelining methodology as control pipelining
since we are actually pipelining the micro-actions in a state. VSS supports three different control

pipelining methodologies [5].

1. Non-Pipelined Methodology: In this model, the three microactions in a state are performed
serially. Since all the three microactions in a state are executed sequentially, the clock period is

quite large.

2. Status Pipelined Methodology: We can think of this model as a two stage pipeline, where
the first stage performs the first two microactions (set_control and ezec_dp) and the second
stage performs the third microaction (compute_nezt_state). In order to achieve this pipelined
performance, we now require a register on the status lines. The length of the clock cycle decreases
because of the pipelining; however, the introduction of a status register on all status lines increases

the area of the design substantially.

3. Control and Status Pipelined Methodology: In this model, the number of pipeline stages
is further increased. All the three microactions are executed in a pipelined fashion. We can
think of this model as a three-stage pipeline, where each stage performs one of the microactions,
set_control, execdp and next_state. In order to implement this pipelining style, we have to now
introduce registers on both the status and control lines. The introduction of pipeline registers on
all status and control signals further decreases the clock period of this architecture; however, ad-
ditional no-op states may be required during scheduling to accommodate these pipeline registers.

The area penalty is also quite high.

38

Control Pipelining

STATE REG

81-A S1-A
81-8 $1-8
s1-C
= $1-C | 2.0
82-8 S2-8
:'_c_ : $2-C | s3-A
83-A &] 3 o
— Status Registers 53-8
33-8
e S$3-C
Status Pipelined Architecture
S1-A
S$1-B | s2-A
$1-C | 52-8 | s3-A
82-C | s3-B
S3-C
Status Registers
Control Status Pipelined Architecture
Copyright (c) 1893 UC Irvine CADLAB UC Irvine

39

6.3 Array Variable Clustering

By using array variable clustering techniques it is possible to store more than one array variable in a

given memory module [6].

In the figure, the variables trl, tr2, hiac and loac are array variables. The results of synthesis using a
simple memory allocation scheme is shown in the left-hand side of the figure. Here, each array variable
is stored in a separate memory module. The size of these memory modules correspond directly to the

size of the array variables.

On the other hand, it is possible for both array variables to share the same memory module. This
is shown on the right-hand side of the figure, where the variables hiac and loac are stored in the
same memory module. Now, all accesses to variable loac require an address translation. An adder is
required for this purpose. If an adder has already been allocated for doing datapath operations, the

address translation may also be done using the same adder.

VSS uses a memory merging algorithm called MeSA [6] to determine the best merging of variables in

the design. The user can also impose a particular variable merging scheme.

40

Array Variable Clustering

begin

if (tv1 < hiac(i)) then tri(i) =tv1; else tr1(i) = hiac(i); endif;:
if (tv2 <loac(i)) then tr2(i) = tv2; else tr2(i) = loac(i); endif;

end
i E']
[]
] e, | % 1] =y
hiac =
tr1 tr2 hiac | | loac tr1 tr2 —_—
loac
tvi] jtv2 tvi] |tv2
/ y
/
COMP COMP

Copyright (c) 1993 UC Irvine CADLAB

| UC Irvine

6.4 VSS : User Interface

The VSS User Interface (UI) provides users with a simple and elegant mechanism to control the
synthesis process. The UI displays a top level view of the design to the user. This top level view shows

the individual blocks and processes and their interconnections with global signals.

Using this top level view, designers can select individual blocks or processes to be synthesized. The
various options available during synthesis can be specified interactively. Some of the commands

available on the Ul include:

[a] | Constraints = Clock | to set the clock period

[b] [Constraints = Resource | to check and modify the resources allocated by AA.

[c] IControl Style] to specify the control pipelining style.

[d] |Datapath Style—| to specify the datapath pipelining stages.

e] rArray Groupingl to specify the grouping of variables that is to be stored in each memory

module.

The interface also provides buttons to verify the results of synthesis. The quality measure display
consists of a pull down menu from which the designer may select the metric that he/she wishes to

view. The five quality metrics are described in Section 6.5.

42

VSS : User Interface

& Coniror $tyhe: [~

Copyright (c) 1993 UC Irvine CADLAB

| UC Irvine |

6.5 Quality Measure Display

VSS estimates several design quality measures including component utilization, total area, power
consumption, execution time, and clock cycle utilization. The quality measure display consists of a
pull down menu from which the designer may select the metric that he/she wishes to view. The five

quality metrics are described briefly below.

1. Component Utilization: The utilization for a component instance is the amount of time that
the component is used divided by the total execution time. VSS can compute this exactly since

the exact scheduling and binding information is available after synthesis.

2. Total Area: In VSS , total area refers to the sum of functional unit, memory, interconnect,

and controller area.

3. Power Consumption: The power consumption metric is estimated by summing an average
power consumption value (determined empirically) for the library components multiplied by the

expected switching frequency of the component.

4. Performance: VSS displays the performance of the synthesized design in terms of the clock
period and the minimum possible and maximum possible execution times for the design with the

given set of resources.

5. Clock Cycle Utilization: The utilization for each clock cycle is defined as the critical path
delay for the events scheduled in that cycle divided by the clock period. Clock cycle utilization

is also referred to as clock slack. More information about clock slack is available in [7].

14

DESIGN QUALITY MEASURES

Component Utilization Chart

Unit | Number | Utilization

ALU 1 90%

BUS 3 90% U
REG 7 35%

MEM 1 18%

Clock Cycle Utilization Chart

State | Delay | Utilization
1 48 ns 68%
2 48 ns 68%
3 60 ns 99%
4 60 ns | 99%
5 | 1ons| 18%

¥

Power Chart

Power
100 mW

Total Area Chart

Total Datapath Area

17,256 gates

34.478 X 106 square microns

Execution Time Chart

Max/Min Execution Times

MIN: 4 states

MAX: 5 states

45

Copyright (c) 1983 UC Irvine CADLAB UC Irvine I

6.6 XDISP_NNL: Netlist display tool

One of the important display tools that has been developed along with VSS is the netlist display
tool xdisp_nl. This tool accepts the VHDL files generated by VSS and displays the schematics. All
components are shown as boxes, but each component type appears in a user-definable color, making

it easy to identify important components.
The display tool provides many interactive features that facilitate the examination of the netlist by

the designer. Some of the important capabilities of the display tool include

[a] Zooming in and out, to examine portions of the netlist
[b] Turning off the control lines display to examine the datapath.

[c] Highlighting the sources or the destinations of a component, for netlist traversal purposes.

16

Netlist Display Tool: User Interface

Copyright (c) 1993 UC Irvine CADLAB

47

| UC Irvine |

6.7 VSS : Typical Design Scenario

VSS was invoked using the allocation computed by AA. The clock was set to 100 ns.

VSS performs scheduling and binding with the allocation and the clock constraint. The synthesized

datapath is shown in the figure. The design consists of 8 states.

addition to the allocated components,

Then the designer invokes the clock utilization display on the desi
very poor (30%) clock utilization.

48

The datapath consists of 5 muxes in

gn. He/she finds that the design has

VSS - Scenario 1 o g o

Designer synthesizes for given =
Allocation Constraints

RESOURCE ALLOCATION CONSTRAINTS

unit |no|deiey [ports | sre | siages | tunctions o
ALU |1 |20ns | - 16 bit 1| add, sub, omp g
BUS[3 | sns| - 16 bt 5

REG|7 | S5ns |1r, tw 16 bit - rend, wrile

MEM|1 [15ns | 1w |IKwXiSbR| 1 read, write

CLOCK CONSTRAINT = 100 ns

~M M et : [
SO !
M0 O MM o5
B ML
SO
4t 1t

3
¥S e)
U U
AT 0o
-
V53_DPORT DOUT

= D0 Tt onetoeio
=00 010 Oootonon0eeLonee

Designer observes poor clock utilization

49

6.8 VSS : Typical Design Scenario (2)

Since the clock utilization was very poor, the designer changes the clock period. He/she attempts a

design with a 10 ns clock period.

The number of temporary registers increases because it is not possible to directly store the output of
an ALU into the Register file. It has to be stored into a temporary register before being loaded onto

the Register file. Similarly, values read from the register file require additional temporary registers.

In addition to the increase in the datapath, size the number of states in the controller has gone up by

three times.

The designer tries to now merge some of the scalar variables lsum and rsum into the register file along

with the array variables.

30

(’

\

VSS - Scenario 2

Designer changes clock to 10 ns

RESOURCE ALLOCATION CONSTRAINTS (Same as in Scenario 1)

S 00001 00010 H00000000000000000000000000
- 00010 00011 000100000000000100100000000

00011 - 00100 000100000000000100100000000
000000000000000000000000000
00100 00000 DO00000000TO000C00000000000
000100000000001 001000000000
00110 00111 000100000000001001000000000
00111 - 01001 000000000000000000000000000
00111 OI111 000000000000000000000000000
01001 01010 000001000000000000000010000
01010 01011 100001000001001000001010000
01011 . 01100 100000010000101000001000000
01100 01101 - 010000000000600010010000000
01101 01110 ©10000000100100010010000001
-- 01110 10101 000000000000000000000000000
- 01111 10000 - 0000010000000000000001 00000
- 10000 10001 100001000001 010000001100000
10001 10010 100000100000110000001000000
s 10010 10011 100000000000000100010000000
- 10011 10100 100G00D01000100100010000100
10100 * 10101 = 000000000000000000000000000
. 10101 . 10110 000100000000000100100000000
-= 10110 - 00100 000100000000000100100000000

g
8
3
S

[
g
8
¢

R L

t

00000 00001 - 000000001100000000000001010 .

T 1
F L] I VS BPORT LEFT X P
1 T
! }
1 1 1
P_m_n,} mlﬂ‘ﬂ_ﬁ_l_l R
'] :
39 G L5 P e g Y8 pea) | vas o1) vis_cuc
VB T . !
|
[8 T

Designer attempts to reduce number of registers

6.9 VSS : Typical Design Scenario (3)

VSS performs address translations on the variables accessed from the memory. The number of read
operations in the flowgraph increase. This, in turn, increases the number of states in the design. The
number of registers in the design decrease since the variables Isum and rsum are stored inside the

memory module. The clock utilization is increased because the address translations occupy the ALU.

52

f
VSS - Scenario 3

Designer changes clock back to 100 ns
and constrains Lsum, rsum to be merged

in along with s

[

e
e
m
W
o
)
]

=

T
I

10l

-l
m

o
0
il

oo

- (100
0l

101

e

1000

COMOLLOMORONCHRRORIOl
RO O0)

ORI

OBLOCEOC0000000000000000
L0 LIONONION0
L1001 000 10000100000
O0001000016001001 06000100500
0010000100000

1000001000001 400001 0000000010
010

()
0
]

OLOROONLOROLONOON00
OLIOOMLOMONLLALO0N

1000001000081 00010008001000
00010000 000000000

Copyright (c) 1983 UC Irvine CADLAB

UC Irvine |

7 AA-VSS : Strengths and Weaknesses

Our synthesis approach with the AA-VSS system has several advantages over other comparable

approaches. We list some of the important ones in the figure.

7.1 Strengths

The strengths of AA-VSS are that it:
e accepts VHDL inputs and outputs so it is easy to verify both the input and output with com-
mercial VHDL simulators.
e is geared for industrial designs.
e supports multiple architectural styles with respect to control pipelining.
e supports multiple memory hierarchy levels.
e uses area, delay, and utilization considerations to make synthesis decisions.

e supports interactivity so that the designer can make some of the decisions himself/herself.

7.2 Weaknesses

The weaknesses of AA-VSS are that it:

e does not provide full VHDL capability.

o does not allow users to specify partial structures or partial interconnections - only resource

constraints are allowed.

(

AA-VSS : Strengths and Weaknesses

Strengths

Simulatable VHDL Input/Output

Geared for Industrial Descriptions

Architectural styles (Control and Data Pipelining)
Memory Hierarchy

Physical design cost considerations

User Interactivity

Weaknesses
® VHDL subset

® No partial structures

Copyright (c) 1983 UC Irvine CADLAB

55

8 References

(1] D. Gajski, F. Vahid, and S. Narayan, “A System-Design Methodology: Executable-Specification

Refinement,” in European Conference on Design Automation, 1994.
(2] IEEE Standard VHDL Language Reference Manual, 1988.

(3] B. Pangrle and D. Gajski, “State Synthesis and Connectivity Binding for Microarchitecture Com-
pilation,” in Proc. of the IEEE Conf. on Computer Aided Design., pp. 210-213, IEEE, November
1986.

(4] N. D. Holmes and D. D. Gajski, “An Algorithm for Generation of Behavioral Shape Functions,”

in Furopean Conference on Design Automation, 1994.

[5] L. Ramachandran and D. D. Gajski, “Architectural Tradeoffs in Synthesis of Pipelined Controls,”

in Proc. of the European Design Automation Conference, September 1993.

[6] L. Ramachandran, D. D. Gajski, and V. Chaiyakul, “An algorithm for array variable clustering,”
in Proc. of the EDACY4 Conference, Feb 1994.

(7] S. Narayan and D. Gajski, “System Clock Estimation based on Clock Slack Minimization,” in
Proc. 1st EURO-DAC, Hamburg, 1992.

