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1 INTRODUCTION 
It has been stated that component technology, while successful in industry, has not received the attention it 
deserves from the research community [12]. Industrial component models are still rudimentary, and the 
approaches of different vendors vary strongly. Research is necessary in order to define a common 
foundation of component technology, and to identify areas in which current standards and tools have to be 
extended. 
Software environments are one area that can benefit especially well from further research. Software 
development environments (SD Es) were originally designed to integrate collections of tools and to manage 
locally created development artifacts. Later, process centered software engineering environments (PSEEs) 
were developed to facilitate the use of well-defined processes to guide development. In order to provide 
tool integration and process-based guidance for the special needs of component-based development, we 
envision a new generation of environments, component-based development environments, or CBDEs. 
Reusable components developed by and licensed from other organizations cannot be treated in the same 
way as artifacts that were developed in-house, since it is usually not possible to change their 
implementations. Therefore, new approaches are needed to support identification, retrieval and integration 
of such components within an environment in an Internet-scalable way. 

Szyperski defines a component as follows [21]: 

• A unit of independent deployment. This means that a key goal of component technology is to facilitate 
code reuse [l O]. A component is a piece of code that has been prepared for reuse. This is opposed to 
code scavenging, where code that was not explicitly intended to be reusable is being reused. Though 
initially more expensive, we view design-for-reuse as being the superior approach to enabling reuse. 

• A unit of third-party composition. Reuse will pay off only when reusing a component that was 
developed by another organization is significantly easier than redeveloping it. In the ideal case, an , 
application would be composable from components by domain experts without actual programming. 

• Without persistent state. A component is a piece of code, or a set of abstract data types. In an object-
oriented system, a component is a set of classes. A component is not an object or a set of objects. 

A CBDE must provide its users with information about components. The users have not designed the 
components themselves, so they depend on the environment to learn about them. With the use of 
components, the focus of tools shifts from implementation to design, since the goal of component reuse is 
to minimize implementation effort. The user has to decide which components fit best into the envisaged 
architecture, so the environment should be able to visualize the dependencies among the components. 
Because components are developed by third parties, the environment should provide the means to access 
components located at remote sources. 

In this paper, we present requirements for CBDEs, and we describe a prototypical environment, WREN, 
which we are building based on these requirements. Our prototype is based on the Java language and the 
Java Beans component model. Components packaged as described in this paper are backwards compatible 
with Java Beans, although they have been extended in various ways. 

In Section 2, we describe seven requirements we believe to be fundamental for the design of CBDEs, and 
we discuss the rationale for these requirements. In Section 3, we present WREN, a prototypical 
implementation of such an environment. Sections 4 and 5 discuss related work and our conclusions, 
respectively. 

2 REQUIREMENTS OF COMPONENT-BASED DEVELOPMENT 
ENVIRONMENTS 
While a number of specialized technologies have been produced in both research and industry to facilitate 
particular aspects of component programming and reuse, we are unaware of any attempts to provide 
comprehensive, integrated environment support for the full range of lifecycle activities that must be 
undertaken in component-based development. In this section we identify seven requirements for CBDEs 
that address the needs of component-based development. Some of these requirements are addressed by 
industrial component models, while some of them are not yet widely adopted and are perhaps even 
controversial. Briefly, 
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Figure 1: Structure of a Component. Public parts are 
light grey and private parts are dark grey. 

• Accepted rules of modular design should be followed. The environment should support a separation 
between the private and public parts of a component. 

• The environment should support and exploit component self-description, meta-information that is 
stored directly inside of the component. It is used in a limited way in industrial component models like 
Java Beans and COM. 

• Components should be defined and accessed within a global namespace of interfaces, which provides 
a method to name interfaces in a globally (worldwide) unique way. This reduces the problem of 
semantics matching to namespace agreement. 

• The environment should support a bipartite development process comprising two parts: component 
development and application composition. The former deals more with technical issues of individual 
component development, while the latter is more application-oriented. 

• Application composition consists of configuration of the components and the design and 
implementation of additional functionality that is not available in components. The environment 
should support two methods of configuration: connection and adaptation. 

• A CBDE should support multiple views, including a development view and a composition view to 
represent the two halves of the component-oriented process, and a type view and an instance view to 
show different aspects of the composition view, using an explicit architectural model to represent the 
overall structure of the application. 

• The maintenance problems associated with component technology should be addressed by the 
environment through reuse by reference. 

We next discuss the rationale for these requirements. 

Modular Design 
Figure I presents a generic model of a component that has been prepared for use in a CBDE. A component 
should be divided into a public part and a private part according to the principle of information hiding or 
encapsulation [17]. The private part is not accessible from the outside; it contains implementations (in the 
form of classes) and resources (for example, graphics or help files). The public part contains the self­
description of the component, an instantiation mechanism, and optionally public interface definitions. The 
instantiation mechanism is necessary so that clients can retrieve instances of the data types implemented by 
the component. To do so, a client specifies only the interface of the data type of which it wants to retrieve a 
new instance. The decision of which actual class is used to provide this instance is hidden and made by the 
component itself. Public interface definitions are interfaces that are contained in the component and made 
accessible to other components, which might want to implement them. The purpose of the self-description 
and the provides and requires ports is described below. 

The basic unit of syntactical description is the interface. An interface is a named set of operations that 
describes an abstract data type. Explicit interfaces make it possible to provide alternative implementations 
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(in the form of classes) to a given type (specified through an interface). Thus, if we ensure that components 
use only interfaces for their specification, the actual implementations will be encapsulated and 
exchangeable. Interfaces can be specified independently from the components that implement them so that 
competing manufacturers can offer components that are interchangeable. 
Self-Description 
Self-description is a central idea of component technology. Components should be able to provide 
information about themselves in a systematic way to a CBDE, and to other components a runtime. 
Description that is contained in the component itself has many advantages over externally stored 
description. External description, such as documentation stored in text files, can get lost, often has to be 
updated manually, and cannot easily be queried by development environments. On the other hand, many 
forms of self-description can be automatically generated and embedded within the component 
implementation. 
The self-description of a component should contain all the information that is needed to reuse it. This is, 
first, information about the services that the component provides, and second, information about the 
services the component requires to work. The information in both of these categories can be categorized 
into five levels [I]: 1 

1. Syntactic Level: This level describes the signatures of the abstract data types that are provided or 
required. Self-description at the syntactic level is a common feature of many component technologies. 

2. Behavioral Level: This is a level for informal, semi-formal or formal semantic description of data 
types. 

3. Synchronization Level: This level is used to enable cooperating components to agree about 
concurrency issues. 

4. Quality-of-Service Level: At this level is self-description regarding all non-functional requirements of 
the component, such as response latency, precision ofresults, and memory requirements. 

5. Non-Technical Level: This is a level for business-oriented information, such as price, contact address 
for support, quality certifications, and so on. 

To different degrees, all of these levels can participate in negotiations regarding the level of service a 
component delivers to an application. The services offered or requested need not be static; they can be 
dynamically adapted to conditions of the environment. 
Providing all this information in the component itself instead of in the form of documentation that is stored 
elsewhere makes the information available to composition tools. A composition tool can check if two 
components can be connected without having access to their source code, by querying the self-description. 
In a similar way, component repositories can leverage component self-description for searching and 
retrieving components. They can check a user's requirements against the self-description. A component 
self-description standard could reduce the need for a repository standard, because component repositories 
could then be very simple when all the information about components is stored where it belongs-in the 
components. 
In a similar way, configuration management can be simplified by the use of self-describing components. 
Typically, configuration management tools store external information about the dependencies between 
components. This is necessary when arbitrary files are managed. The task becomes easier, however, when 
the application is built out of self-describing components. Self-description moves dependency information 
into the components, where it is encapsulated so that it can easily evolve with the evolution of the 
component implementation. 
Global Nam es pace of Interfaces 
A global namespace of interfaces partly solves the problem of how a CBDE will ensure consistency 
between the semantics of a provided component to the semantics required of the component; Zaremski and 
Wing have studied this problem in the context of signature matching [26]. While there may be different 
interfaces providing the same functionality, in a global namespace of interfaces, two interfaces with the 
same name are intended to be functionally equivalent. On a fundamental level, this greatly simplifies the 
problem of matching provided components to requirec;l semantics, since the problem is reduced to name 
equality. Only when components do not match at the interface level is human intervention required: Either 
they are truly incompatible (i.e., incompatible on a semantic level), or the incompatibility is only syntactic, 

1 The fifth level described in this list is a level we have added to the classification of Beugnard et al. 
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so that they can be matched by simple manual adaptation (for example by wrapping one of them). Of 
course, mechanisms are still needed to ensure that a component correctly implements the semantics 
promised by its interfaces, but this problem already existed alongside the component matching problem. 
Component Development and Application Composition Processes 
A component-oriented development process looks different from a traditional one. The process is bipartite: 
The development of components, and the composition of an application from the components are 
separated. Typically, the two process parts will be executed by different organizations, the component 
manufacturer and the organization that wants to license and reuse the manufactured components. We refer 
to these organizations abstractly as the component developer and the application composer. 
Component development is a traditional development process since all the usual lifecycle phases are 
traversed. The main difference is that the end product is not a complete application. This means that the 
product is comparatively small, which may make development processes suited to small projects 
preferable. Often, the component might not have a user interface of its own, but will be required to interact 
with a GUI through a standardized interface instead. Components are to be used in unknown contexts; this 
makes quality management essential. An isolated component cannot be beta tested, so correctness has to be 
assured by other means, such as internal testing and code inspection. In this way, component development 
has a certain similarity with the development of embedded systems. The "shape" of a component will 
determine the architecture of systems reusing this component. Therefore, the component developer should 
make sure that a component works well together with related components and can be fit easily into an 
architecture. 
A CBDE can support traditional component development, but it must excel at supporting application 
composition, which should focus on the business aspects of an application. In the ideal extreme, all 
components can be bought or otherwise obtained. The application composer must select the right 
components, connect and adapt them, and identify components that might be missing. The goal of 
component reuse is to minimize the implementation phase of an application. Instead of spending effort on 
programming, reusable components are bought. In the near future, it will not be possible to completely 
eliminate the implementation phase except for trivial projects, but it can be minimized and simplified using 
appropriate components and environment capabilities. 
The application composition process already differs from a regular process in the requirements phase. In 
requirements, and even more so in design, the component market must be taken into consideration. Finding 
components that match arbitrary requirements will be difficult or impossible. The cost savings gained by 
component reuse will often make it feasible to adapt requirements and design to the components that are 
available. Thus, the availability of components must be accounted for during the whole process. 
Connection and Adaptation 
Once the decision to reuse a certain component is made, it will have to be configured within a CBDE. 
Component configuration consists of connection and adaptation. Components have to be connected with 
each other so that they can cooperate. In the simplest case, the connector is just a link between a given 
required service and a given provided service. In other words, a connector establishes how a requirement is 
fulfilled. But connectors can be more complex; it is useful to have them encapsulate functionality that 
logically belongs within a shared infrastructure (for example, communication protocols in a distributed 
system) rather than to either of the two components that are being connected [20] [5]. 
Adaptation increases the value of components [2]. The more flexible and adaptable a component is, the 
more often it will be reused. Ideally, a component will provide ways for application composers to adapt it; 
popular adaptation methods include wizards and property sheets, which support internal adaptation. 
However, a component manufacturer will not be able to foresee all adaptations that might be necessary. For 
this reason, there should be means to adapt a component without having to interact with it, through external 
adaptation. One way to do so is to implement a wrapper component that maps the interface of a component 
to a different interface. Another solution is an adaptation connector, which is specifically written to make 
interoperation between two components possible. Unfortunately, external adaptation has a limited scope, 
because the internals of the component that is adapted are hidden. Usually, external adaptation is used to 
convert between interfaces that approximately have the same semantics, but use a different syntax. In this 
case, a wrapper can be implemented very easily by a human, though it cannot be generated automatically. 
Multiple Views: Development View and Composition View 
CBDEs should aide both the viewpoint of the component developer and the viewpoint of the application 
composer. Although a component developer will not necessarily compose any application, the application 
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composer will have to develop some components that are specific to the application being built. So, the 
application composer may have to switch between both roles. 
The component development view of a CBDE will look very much like a traditional, non-component­
oriented environment, including code editor, compiler, debugger, and so on. But it should provide a way to 
distinguish the public features of a component from its internal, private features. In many languages this is 
done through corresponding keywords. A specific graphic design notation that shows the outside (the 
specification) versus the inside (the implementation) is helpful. Further, the code for instantiation and 
syntactic self-description can easily be generated by the tool from a graphical representation, such as a 
UML class diagram. 
The application composition view will be less traditional. Most importantly, it abstracts from the hidden 
internals of the components. Even if a component was written by the composer, and so its internals are 
accessible, that part should be hidden. Since the purpose of component technology is to minimize the 
implementation effort, the composition view will look very much like a design view . 

• Jll.. .... , .... JllllJ'Jll'"" Views: Type 
The composition view should be divided into two subviews. The type view will show the components that 
are used and their dependencies. The instance view will show selected instances of some of the data types 
provided by the components, and how they are configured. 
Instance views are known from commercial development environments (for example, Web Gain Visual 
Cafe, or IBM Visual Age). They allow the composer to visually adapt and connect certain objects 
(instances of classes), such as GUI elements in dialogs, menus and so on. A typical example of a 
connection type supported by instance views is an attribute-to-attribute connection: Each time one attribute 
changes, the other one is automatically updated, so that they are always equal. Graphical instance views 
save implementation effort by providing a way to specify trivial code in a visual manner. Unfortunately, 
their applicability is limited. There is no way to specify dynamic behavior in them, such as instantiation. 
Objects that cannot be created at program initialization, but only later, cannot be represented. For this 
reason, instance diagrams are best suited to show objects that are singletons, such as unique GUI dialogs, or 
a database. They are less suited for objects that represent business logic or container data structures. 
Type views are on the same logical level as UML class diagrams, but instead of classes, components are 
shown, and instead of associations or inheritance relations, connectors are shown. The purpose of the type 
view is to show how the various components depend on each other, which components are used in the 
application, which might be exchanged, and what might be missing. The composer has to be able to see 
what each component provides and requires, for example in order to identify requirements that are not yet 
met. 
The type view shows the architecture of the application that is being composed, and serves as a basis for 
design decisions. For example, once a need is identified, the composer will have to search in a component 
market for components that fulfill this need. Typically, more than one such component will be available. 
The composer can use the type view to check which of them best fits into the architecture, and then this can 
be used a selection criterion together with aspects like quality of service or price. 
Multiple Views: Explicit Architectural Diagrams 
UML component diagrams cannot be used to show unmet requirements since they provide no syntactic 
notation for entities that are required to exist but do not. For this reason, we propose provides and requires 
ports as a diagrammatic notation. The concept of ports is known from, among others, the architecture 
description language Darwin [I I], and they are also used in UML for Real-Time UML [I9]. A port is a part 
of a component that is expected to be linked to another port with a connector, but is not necessarily 
connected at all times. Each port is either a requires port or a provides port, and connectors are directed 
from requires to provides, so that they can be interpreted as use-relations. A port that is not connected thus 
shows that something is missing; the component is not yet ready to be used. In this way, an application 
composer can keep track of the completeness of the application that is being built by watching the status of 
the ports. 
The need for explicit ports shows that reused components developed by other organizations (off-the-shelf 
components) have to be treated differently from components that were developed within the project at 
hand. While newly developed components can be modified whenever necessary, and new dependencies can 
be added, reused components are typically bought without source code, and so they cannot be modified 
beyond what is possible through adaptation. With reused components, the ports will be fixed and 
unchangeable. Even if reused components were developed in-house (and their source is available) the 
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Figure 2: Architecture of WREN. 

learning cost may make changing their private implementation prohibitive. As a consequence, the 
structures of reused components have to be considered as fixed requirements in the software process. 

Reuse by Reference 
Component reuse exacerbates the problem of maintenance. An application that consists of a large number 
of independently bought components will be much harder to update than a traditional, monolithic 
application, since each component will have individual updates from its manufacturer. Reuse by reference 
is a possible solution to this problem. 

Reuse by reference means that a single, worldwide master copy of a component is referenced over the 
Internet. Copying is performed by the CBDE only in the form of caching for performance purposes. A 
permanent connection is established by the CBDE between the client application that uses the component 
and the repository on which the master copy resides. In this way, the component can be updated 
automatically. 

3 THE WREN PROJECT 
WREN2 is a prototypical implementation of an integrated CBDE that we are building to realize and evaluate 
the requirements discussed in Section 2. Figure 2 depicts the architecture of WREN. As the figure shows, 
the CBDE is integrated with Argo/UML [18], a UML design tool, and Web Gain Visual Cafe, a software 
development environment. The CBDE is a client of one or more component repository servers; we have 
built such a server, which 
communicates with the CBDE through a simple protocol that runs on top of TCP/IP. 
In the following, we describe the features of WREN, its use for application composition and how it interacts 
with the other applications. Then we discuss some issues of the design of the environment. Support for 
component development is planned, but not yet implemented except as supported in Visual Cafe. 

Programming Language 
We chose Java as the programming language for WREN because it supports component technology and 
addresses our requirements for CBDEs in multiple ways: 
• It supports encapsulation through its access modifiers. Java provides encapsulation on two levels, class 

and package. Since components can contain more than one class, we use the package-level access 
modifiers to implement components. 

• In Java, signature descriptions can be obtained at runtime through the reflection mechanism of the 
language. This makes it possible to automatically generate component self-descriptions and simplifies 
component configuration. 

• Java supports interfaces as explicit entities similar to classes. This has the advantage that interfaces and 
classes can be treated uniformly. A component can provide both classes (i.e. implementations of 
interfaces) and interfaces. 

• Java interfaces reside in a global, worldwide namespace, which is created through the naming 
convention for package names used in Java: A name should start with the reversed Internet domain 

2 Sir Christopher Wren (1632-1723) is remembered for his designs of 51 churches rebuilt in London after 
the Great Fire of 1666. Each design was unique but was a recognizable variant of an elegant new 
architectural style. 
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Figure 3: Application Composition Process. 

name of the manufacturing organization. For example, an interface for abstract' data type foo 

developed at the University of California, Irvine, could be named EDU. uci. foo. 

• Java supports dynamic linking and late binding. This makes it possible for a CBDE to configure a 
component application without need for additional external tools or interprocess communication. 

Application Composition Process 
Figure 3 summarizes the application composition process that is facilitated by WREN. While the process is 
currently not enforced in any way, the environment is designed to support each part of this process. After 
the requirements are identified, relevant components have to be found. Repositories should be searched in a 
top-down manner; once the most important components are identified, it will be easier to formulate search 
criteria for the rest. A typical search will produce far more candidates than needed, many of which will be 
mismatches. So, in the next step, the composer has to select among the found components. All levels of 
component self-description will be used in this activity. Components that have been selected need to be 
configured (connected and adapted). Now, missing components, which are required by the selected 
components, have to be found and integrated, so the process loops back to the search step. Unlike the 
beginning of the process, where components can be searched for only by vague, natural language criteria, 
the interfaces specified by the requires ports can now be used to automatically search for compatible 
components. There will still be multiple matches, so that the composer will have to select again according 
to soft criteria such as quality of service. After several iterations, all components that can be reused will 
have been found and configured. Missing functionality for which no components can be found will have to 
be designed and implemented in a traditional manner. 
In summary, application composition is an iterative process involving searching, selecting, and configuring 
components. Searching can be automated in part, but selection and configuration are creative tasks that 
require design experience. As a result of these three steps, there are three sets of components that exist 
during the process. First, there are available components, which are all components that match the search 
criteria. Out of these, the composer has to select those that are to be used, the selected components. Given 
the set of selected components, the environment can identify missing components. These are all the 
implementations that are required by one of the selected components but not fulfilled by another one. 
Missing components can only be described in the form of incomplete requirements, since they are not 
found yet. 
Searching for Components 
Typically, the application composer will start with a broad search for natural-language keywords. The 
composer enters the search terms into the CBDE, which in tum sends a search command to all the 
repository servers it knows about. 3 

3 Space considerations prevent us from using screenshots to illustrate the environment's search and select 
features. 
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Search commands are implemented as pieces of mobile code. The repository server executes the mobile 
code and allows it to search through all its stored components. The mobile code then queries the self­
description of the components in order to check them against some associated search criteria. The default 
search command just checks the search terms against a list of keywords provided by the semantic self­
description of a component. The repository architecture leaves the decision of how to search to the client 
CBDEs, however. A CBDE could easily replace this basic search strategy with a more complex one, for 
example one that makes use of natural language processing features. The use of mobile code for searching 
the repository makes the repository itself an almost trivial piece of software. All the management of meta­
information, dependencies, and so on that is typically done by a reuse repository is delegated to the 
components themselves, or rather their self-description. 
When a component is found that matches the search criteria, a stub is transferred to the client. The stub 
contains the self-description information and can handle calls to the implementation part of the component. 
The CBDE adds the component to its set of available components, and uses the component stub to present 
information about the component to the composer. 
Component Selection 
Often, the set of available components will be very large, since it is hard to specify search criteria in a 
sufficiently precise way. The application composer then uses the environment to browse through the 
available components, to look at their properties, and to select the ones that are needed. 
WREN has a window that displays a selection of relevant properties of the available components for easy 
comparison. Among them are name, manufacturer, size, price, and number of provides and requires ports. 
The numbers of ports allow an easy estimation of the architectural complexity of the component. For 
example, a component that has zero requires ports will be at the bottom of the architecture because it does 
not depend on any other components. An alternate view of the available components is sorted by the 
interfaces that the components implement, making it easy to compare all components that are possible 
suppliers for a given data type. However, since a component usually implements more than one interface, 
this view is less compact. 
From the requirements of the selected components, the environment generates the set of missing 
components. The environment checks through the requires ports and adds an entry to the set of missing 
components for each required data type that is not provided by any of the selected components. It may be 
possible that several of the missing data types are implemented by one component, so the size of this set 
does not permit conclusions about the number of actual components that have to be found. 
Now, the "find missing components" feature of the environment can be used to automatically search the 
repositories for all matching components. It is possible that more than one component matches a 
requirement for a "missing component", so that the composer will have to select among them. The process 
of searching and selecting components has to be repeated until the set of missing components is empty or 
the composer decides to reimplement the missing components. To do so, a missing component can be 
marked as "self-implemented"; this will exclude it from further searches. 
Type-Oriented Component Configuration 
As shown in figure 4, the CBDE has a diagram editor that allows the composer to connect components. The 
CBDE uses Argo/UML, an open-source design environment, to display UML component diagrams that are 
augmented by ports as discussed in Section 2. The selected components are represented in these diagrams 
by icons provided in the component's self-description. When the diagram is opened, all selected 
components are displayed with their respective requires and provides ports. Requires ports are depicted as 
hollow circles, provides ports as filled circles. Each port is labeled with the name of the interface for which 
an implementation is required or provided. The composer can drag the components and can create directed 
connections in the form of UML dependencies from requires ports to matching provides ports. Each 
provides port can be used by any number of requires ports, but a requires port cannot be connected to more 
than one provides port. It is not possible to change the number or names of the ports of a component, since 
this would require access to its source code. 
A component diagram in this style gives an overview of the architecture that is being built and makes it 
easy to see which requirements are not yet fulfilled. Each unfulfilled requirement corresponds to a requires 
port that is not connected to any provides port. Figure 4.provides an example of this with DisplayBean's 

requires port Printer. In a similar way, one can see which components may be affected when one 
component is exchanged for a compatible one. 
Component adaptation as described in Section 2 is not yet implemented in the prototype. 
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Figure 4: Type-Oriented Component Configuration. 

Instance-Oriented Configuration and Component Deployment 
The CBDE uses Web Gain Visual Cafe for instance-oriented configuration. Visual Cafe is a commercial 
Java development environment that supports visual connection and adaptation of Java Beans on an instance 
basis. When the type-oriented configuration described above is completed, the composer can export the 
components to Visual Cafe. The environment uses Remote Method Invocation (RMI) to communicate with 
a Visual Cafe plug-in, which automatically loads the components into the component library of Visual 
Cafe, from where they can be dragged into Visual Cafe's visual editor. 
To make it possible to run component applications, the Java runtime environment is extended by a small 
library which can interpret component connections and adaptations. To export the configuration 
information, the environment generates an additional component, the project component. It consists of a 
single class, which encapsulates the mapping of requires ports to provides ports. When it is executed, it 
restores the type configuration. When one of the other components is executed and needs one if its required 
implementations, the extended Java runtime environment will obtain a new instance of the relevant data 
type from the connected component. 
Component Evolution 
When a component is marked as selected, the stub can choose between two strategies to provide access to 
the implementation of the component. In the usual case, it downloads a copy of the implementation and 
caches it locally, so that method calls can be executed without significant delay. Then, it subscribes with 
the repository for update notifications. When an updated version of the component is published at the 
repository, the stub is notified and can update the cached copy. 
The other possible strategy is service reuse [7]. Analogous to a client-server application architecture, the 
stub forwards method calls to the master copy of the component that is located at the repository. Since the 
component is encapsulated, the difference between the two strategies is transparent to the user of the 
component. This means that the component can decide at runtime which strategy to use. For example, when 
the network transfer rate is high enough, the most current data can be retrieved from the remote server. At 
times when the network is overloaded, the stub can decide to use the locally cached copy of the 
implementation. 
Both these strategies realize reuse by reference. In both cases, a logical connection between the application 
using a component and the original copy of the component is created in order to prevent the maintenance 
problems associated with reuse. 
4 RELATED 
While CBDEs have yet to become a focus of widespread research, there are several previous research 
efforts that contribute technologies, principles and insights for CBDE design. 
An overview of the history and possible future of software engineering environments is given by Harrison 
et al. (8]. They consider multi-view software environments to be one of the most promising recent trends. 
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Every complex system has many concerns that have to be considered separately. This can only be done by 
providing different, independent views of the various aspects of a system. Type and instance view in WREN 
are examples of two views that show different aspects of the same system. 
The ArchStudio project [13], which evolved out of the Arcadia project [9] and work on the C2 architectural 
style [22], defines an event-based architecture for a family of software engineering environments. The 
architectural style used lends itself to distribution, but it is still a subject of current research to determine 
whether this is possible on an Internet scale. However, integration of WREN with ArchStudio is planned. 
While tool integration in WREN is currently implemented on an ad-hoc basis, the principled approach of 
ArchStudio is clearly preferable. 
Koala [24] is a component model for embedded software in consumer electronics. It uses an explicit, visual 
description of architectures based on the architecture description language Darwin [11]. Like Darwin, it has 
provides and requires interfaces and treats interfaces as first-class entities. While Darwin was originally 
geared towards distributed systems, Koala demonstrates the usefulness of these features in a reuse-oriented 
component model. 
The Application Web [15] is a strategy for sharing information between cooperating organizations that tries 
to minimize the problems caused by copying over organizational borders. Instead, connections are created 
to reuse data. Connections make it possible to automate caching, and to access all (not just part of) the 
context in which the data were originally created. Connections are comparable to the component references 
discussed in this paper. 
The Basic Interoperability Data Model (BIDM) [3], developed by the Reuse Library Interoperability Group 
(RIG), is a standard for repositories of reusable artifacts that interoperate. The aim is to provide access to 
all artifacts offered by a network of repositories through any one repository, thus building a decentralized 
repository There are two preconditions for this: There has to be a standard for meta-information about the 
artifacts, and a way to uniquely identify artifacts. The proposed data model covers some of the aspects we 
are suggesting for component self-description; however, the information is not stored in the component 
itself. Uniform Resource Names (URN) are the proposed solution for the identification problem; since a 
standard for URNs has not been adopted yet, URLs are used. In this way, the naming scheme is effectively 
equivalent to the naming conventions for Java packages that we rely on. 
Whitehead et al. [25] point out that a well-designed architecture is an essential prerequisite for any 
component marketplace. They identify criteria for such an architecture, the most important of which are 
realized in WREN as follows: 

Multiple component granularities are given in WREN through the possibility to encapsulate any 
number of classes into a component. 

• Substitutability of components is realized through the exclusive use of Java interfaces to specify 
component dependencies. Every interface can be implemented by any number of components, so that 
every component is substitutable. 

• Easy distribution of components from seller to buyer is realized by the integration of development 
environment and component repository. 

Brownsword et al. [4] share our view that new processes for developing component-based systems must be 
defined. Similar to Morisio et al. [14], they stress that the use of licensed components whose source code 
cannot be modified influences both requirements and design. Since there is a trade-off between the choice 
of components to license and the requirements and design of the system, these three issues have to be 
considered simultaneously. 
Alpha Services [7] make applications available through the Internet. Instead of downloading and installing 
a program, it is accessed through the network when needed. This is a kind of reuse by reference; instead of 
components, services are reused. Candidates for Alpha Services are functionalities that are hard to develop, 
infrequently used, and can be modeled as transactions, for example natural language translation or large­
scale optimization. 
The Software Dock [6] is a system supporting the software deployment lifecycle. It integrates producer­
side activities such as releasing and retiring a product with consumer-side activities such as installing, 
updating and uninstalling. Similar to WREN, a permanent connectiqn is established between consumer and 
producer side. The Software Dock uses SRM [23] to administer the dependencies among application parts, 
which are administered by the components themselves in our system. Similar to a CBDE, SRM is geared 
towards applications made up from independently produced parts. 
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5 CONCLUSIONS 
In this paper we have motivated the need for a new generation of software environments to support the 
special needs of component-based development. We identified seven important requirements for CBDEs, 
and we described a prototype environment called WREN that we are building to implement these 
requirements and to provide a basis for further evaluation and study of the role of environment technology 
in component-based development. 
There are several issues that remain to be resolved. Type-based adaptation does not exist yet in our 
prototype. Current tools provide mechanisms to adapt component instances, but not components 
themselves. We expect that the same methods of internal and external adaptation can be used in varied 
forms. Integration with development environments is another issue. It remains to be seen if tight integration 
of the CBDE with a commercial development environment is the optimal solution, or if a more specific 
solution is needed .. 
Updating of components still requires manual effort. While the environment can automatically retrieve 
updates, it cannot update components that are being used in an application. Doing so will probably require 
support for dynamic architecture modification [16]. Another important issue is contract negotiation. A 
component may be able to dynamically decide about trade-offs between quality of service and price, for 
example, so that it can negotiate with another component or a human who wants to use this component. 
Negotiating will require explicit environment support, so that a user can define minimum requirements, 
policies, and so on. 
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