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Retrofitting O’Raifeartaigh models with dynamical scales
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(Received 28 September 2006; published 30 November 2006)

We provide a method for obtaining simple models of supersymmetry breaking, with all small mass
scales generated dynamically, and illustrate it with explicit examples. We start from models of perturba-
tive supersymmetry breaking, such as O’Raifeartaigh and Fayet models, that would respect an R
symmetry if their small input parameters transformed as the superpotential does. By coupling the system
to a pure supersymmetric Yang-Mills theory (or a more general supersymmetric gauge theory with
dynamically small vacuum expectation values), these parameters are replaced by powers of its dynamical
scale in a way that is naturally enforced by the symmetry. We show that supersymmetry breaking in these
models may be straightforwardly mediated to the supersymmetric standard model, obtain complete
models of direct gauge mediation, and comment on related model building strategies that arise in this
simple framework.

DOI: 10.1103/PhysRevD.74.095012 PACS numbers: 12.60.Jv

I. INTRODUCTION AND GENERAL IDEA

Dynamical supersymmetry (SUSY) breaking [1] and the
mediation of SUSY breaking to the supersymmetric stan-
dard model (SSM) have been studied extensively. A par-
ticularly important objective is to identify simple models
of dynamical SUSY breaking that may be straightfor-
wardly mediated to the SSM, yielding predictive and phe-
nomenologically attractive superpartner spectra [2–4]. In
early examples with gauge-mediated SUSY breaking [5],
the problems of SUSY breaking and its mediation were
addressed by postulating separate SUSY breaking and
messenger sectors. These models motivated many advan-
ces [6–8], culminating in a few genuinely simple and
viable models of direct gauge mediation [9–15], in which
fields of the SUSY breaking sector also play the role of
messengers, transmitting SUSY breaking to the SSM.

In this paper, we develop a straightforward method for
obtaining simple models of SUSY breaking in which all
small scales are generated dynamically. We show further
that SUSY breaking in these models may be rather simply
communicated to the SSM, providing new avenues for
direct gauge mediation and gravity mediation. To illustrate
the method, we work through two complete gauge media-
tion examples that are representative of large classes of
models, and we discuss the method’s application to more
general model building problems.

The basic strategy in its simplest realization can be
summarized as follows:

(1) Start with a model of perturbative SUSY breaking,
such as an O’Raifeartaigh or Fayet model, whose
small input parameters mi break an R symmetry that
would be restored if the mi transformed as the
superpotential does.

(2) Couple the system to a SUSY preserving sector with
a dynamically small operator vacuum expectation

value (VEV). Our prototypical example will be pure
SU�2� Yang-Mills theory, with gauge field strength
superfield W� and dynamical scale �. Replace di-
mensional parameters mi in the superpotential by
W�W� suppressed by appropriate powers of a high
scale M�. At low energies, W�W

� ��3. This ren-
ders the mi dynamically small in a way naturally
enforced by the symmetries and preserves a local
SUSY breaking minimum.

We will refer to this procedure (1)–(2) as retrofitting the
old fashioned perturbative SUSY breaking models.
Elementary ingredients suffice to bring such models up
to modern model building standards of naturalness, while
preserving some of the simplicity of early constructions
[16]. In effect, we consider a supersymmetric hidden sector
to obtain dynamically small scales, which allows the
SUSY breaking sector to be more directly coupled to the
SSM.

If desired, the couplings to W�W� can arise from purely
renormalizable interactions by integrating out massive fla-
vors in the SU�2� SUSY gauge theory [17]. In any case, the
coupling to the SU�2� sector does not destroy the local
SUSY breaking minimum of the perturbative model (1),
though it often introduces SUSY vacua far away in field
space. As discussed, for example, in [8,11,12,18–20], we
need not impose that the SUSY breaking configuration be
the global minimum of the potential.

Indeed, one element of many successful models is meta-
stability. In field theory models of dynamical SUSY break-
ing, the requirement that SUSY be broken in the global
minimum is very restrictive, and allowing for metastable
vacua greatly simplifies the problems of model building,
especially for gauge mediation. This point was emphasized
clearly, for example, in [7,8,11,12]; more recently it has
found application in the problem of moduli stabilization
[18] and dynamics [21–23], in the vacuum structure of
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large N gauge theories arising in generalizations of AdS/
CFT [19], and in supersymmetric QCD [20].

As we will see, simple constructions lead almost trivially
to a large class of dynamical SUSY breaking models and
suggest an array of further model building possibilities. It
is worth remarking that the models need not be chiral and
can have nonvanishing Witten index, like the models of
[19,20]. They can possess interesting (discrete) symme-
tries, which naturally protect the structures required
for model building goals. This simple method allows con-
struction of theories with direct gauge mediation as well
as gravity-mediated models with appropriately large
(nonloop-suppressed) gaugino masses.

As discussed recently in [20], some basic classes of
supersymmetric gauge theories reduce at low energies to
infrared-free O’Raifeartaigh models with metastable
SUSY breaking. In some circumstances, the direct media-
tion models of the type we consider here may be UV
completed by asymptotically free quantum field theory.
In other circumstances, the models may be completed by
string theory, where metastable SUSY breaking [18] has
played a crucial role.

From the perspective of weakly coupled string theory,
one might worry that there are additional approximate
moduli that affect the value of the gauge coupling. It is
worth noting in this connection that the current state of the
art in string moduli stabilization—via a combination of a
tree-level potential, orientifolds, and Ramond-Ramond
fluxes—can fix the dilaton and other moduli at a high
scale. In the context of low energy supersymmetric models,
this allows for a gaugino condensate which does not vary
with extra moduli beyond those evident in the low energy
field theory of interest here, whose couplings are fixed by
discrete symmetries.

In the next section, we consider retrofitting a class of
O’Raifeartaigh models and work through a simple example
in detail. We next simplify the model further to extract
some lessons about the role of chirality and symmetry. We
follow this in Sec. III with another general class of models
including a Fayet-Iliopoulos parameter. In the final section,
we summarize and discuss further model building
applications.

II. RETROFITTING O’RAIFEARTAIGH MODELS

In this section we will implement the procedure outlined
above in concrete examples and comment on model build-
ing lessons that arise in this framework. We begin with a
brief review of O’Raifeartaigh models and their chal-
lenges. Next we consider a simple explicit example which
we retrofit to render its scales dynamical in a way consis-
tent with symmetries. This model is complete in that it
readily incorporates messengers appropriate for gauge me-
diation, generating standard model superpartner masses. In
the final subsection we extract lessons illustrated by even
simpler systems, emphasizing the role of metastability in

avoiding the unnecessary constraints of chirality and van-
ishing Witten index.

Consider O’Raifeartaigh models, with n fields
Z1; . . . ; Zn, n0 fields �1; . . . ; �n0 , n0 < n, and superpoten-
tial

 W �
X
i

Zifi��a�: (2.1)

This class of models breaks SUSY classically for generic
choices of functions f. At tree level, its main shortcomings
are (i) there is automatically a flat direction in its potential,
(ii) it does not automatically provide messengers and R
symmetry breaking as required to mediate SUSY breaking
to the SSM, and (iii) its scales are input by hand, with some
couplings set to zero without a symmetry reason. [With
regard to point (ii), for definiteness we here consider
gauge-mediated SUSY breaking and consider more gen-
eral applications in the later discussion.]

We will address each of these, illustrating the technique
with perhaps the simplest version of (2.1). Let us first
summarize the method. With regard to point (i), the
Coleman-Weinberg potential expanded about an appropri-
ate point in field space generically lifts the flat direction;
one can explicitly check for self-consistent metastable
solutions as in [12,16]. Point (ii) can be addressed by
coupling in messengers and including their contribution
to the Coleman-Weinberg potential self-consistently.
Finally, point (iii) can be addressed by coupling in an
otherwise supersymmetric SU�2� gaugino condensate, or
any other more general SUSY sector with a dynamically
small operator VEV.

A. A complete, simple example

As a very simple illustrative example, consider a model
with messengers � and ~� in, say, the 5 and �5 of SU�5�, and
three fields Z1, Z2, and �. A natural superpotential based
on the O’Raifeartaigh paradigm (2.1) is
 

W � Z1
�3

3M�
� Z2

�
�
�2

2

�
1� �1

Z2

M�

�
� �

�2

2
�
��~�
M�

�

� ���~�� �2
��~��2

M�
; (2.2)

whereM� is a high scale corresponding to new(er) physics,
such as a grand unified or Kaluza-Klein scale. We will
obtain the parameter �2 ��3=M� dynamically from a
coupling

R
d2�W�W

� �Z2

M�
between the SU�2� sector and

the O’Raifeartaigh model.
This theory is invariant under the following two symme-

tries: a discrete Z2N R symmetry, with N > 2, under which
the superpotential transforms with charge 2 and the fields
�, Z1, Z2,W�, and �~� have charges 1,�1, 0, 1, and 1; and
a continuous R symmetry, under which� is neutral and Z1,
Z2, and �~� transform, which governs the renormalizable
terms, but is broken by the M�-suppressed operators. The
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superpotential of (2.2) is the most general one respecting
these symmetries, up to terms higher order in M�1

� .
In the absence of the messengers, the model has a

massless combination of Z1 and Z2, and a � VEV

 �2
0 �

�2

1� 2�1Z2=M�
�

2�4

3M2
�	1� 2�1Z2=M�


4�2 : (2.3)

Plugging in this solution yields FZ1;2
terms of order

 FZ1
�

�3

3M�
; FZ2

� �
�4

3M2
��
; (2.4)

plus corrections down by powers of �=M� and Z2=M�. In
the full model, FZ2

couples to the messengers �, ~�, sup-
pressed by an additional power of �0=M� � �=M�. (This
suppression is forced on the model by the discrete symme-
tries it respects.) AnF term for Z combined with a VEV for
� will produce naturally small superpartner masses as we
will discuss further below.

The Coleman-Weinberg potential obtained by integrat-
ing out �, �, ~� yields a metastable minimum for Z at the
origin in a self-consistent expansion about � � �0, � �
~� � 0. Let us begin by integrating out the fluctuations of
�; we will show that these dominate over messenger loops
in this model.1 Writing � � �0 � ��, the mass terms for
the fluctuations �� � ��1 � i��2 are of the form

 �2��� ����2 � jZ2j
2� � ���2

1 � ��
2
2�
�4

3M2
�

; (2.5)

plus contributions subleading in the regime �=M� � 1.
The fermion loops cancel the ��� �� contribution here, and
so the leading contribution to the potential from the �
multiplet is
 

�V � Tr log
�
��2�2 � jZ2j

2�2 � p2�2 �

�
�4

3M2
�

�
2
�

� Tr log	��2�2 � jZ2j
2�2 � p2�2


�
1

32�2

�
�4

3M2
�

�
2

log	�2��2 � jZ2j
2�=M2

�
; (2.6)

plus subleading contributions. The messenger loops are
subleading relative to the � loops; the �, ~� mass terms
are of the form �j�j2 � j~�j2��2j�� Z2=M�j2 plus a SUSY
breaking term proportional to �~��5=�M3

���, which will be
much smaller than that in (2.5).

Although subleading in the Coleman-Weinberg poten-
tial, the messengers provide the dominant transmission of
SUSY breaking to the SSM. As we just noted, the leading
contribution to the messenger masses is from the super-
symmetric ���~� coupling, giving m�;~� � ��, while the
leading SUSY breaking contribution to their masses is

�m2
�~� ��

5=�M3
���. In application to gauge mediation,

this yields gaugino and squark masses of the order of

 ~m�
g2

16�2

�4

M3
��2 ; (2.7)

where g represents SSM gauge couplings.
For FZi  1020 GeV2, the gravity-mediated contribu-

tion to superpartner masses is suppressed relative to the
gauge-mediated contribution. Imposing this, we find that,
for example,m�;~� � ��� 1011 GeV andM� � 1015 GeV
produces a viable model, with �� 0:1. Of course, if M�
were much lower than the grand unified theory (GUT)
scale, then the messenger scale could be lower as well.
As we will discuss further in the next subsection, another
application of our method is to models where gravity
mediation dominates.

To retrofit the model, as discussed above, we couple in a
pure SUSY Yang-Mills sector with gauge superfield W�,
replacing the superpotential (2.2) with
 

W � Z1
�3

3M�
�

�
�

1

4g2 �
�Z2

M�

�
W2
�

� Z2

�
��2

2
	1� �1Z2=M�
 �

��~�
M�

�

� ���~��
�2��~��2

M�
: (2.8)

Integrating out the gauge interactions yields
 

W � Z1
�3

3M�
� ��3e�12Z2=b0M�

� Z2

�
�
�2

2
	1� �1Z2=M�
 �

��~�
M�

�

� ���~��
�2��~��2

M�
: (2.9)

Expanding in Z2 yields at leading order a model of the
form (2.2), with �2 / �3=M�. It is self-consistent to inte-
grate out the gauge degrees of freedom because they have
M�-suppressed couplings to the rest of the system, too
weak to compete against the forces in the Yang-Mills
sector proper, which appear at the scale �.

Including the Z2 dependence in solving for �0 yields

 FZ2
/

�6

M4
��
e�24Z2=b0M� � . . . ; (2.10)

generalizing (2.4). This Z2 dependence can lead to the
presence of supersymmetric minima far away for appro-
priate ranges of parameters, but it does not destabilize our
local minimum, as we can see easily as follows. Expanding
in Z2, the term jFZ2

j2 in the effective potential produces a
tadpole of order Z2�12=�M9

��2�. The Coleman-Weinberg
potential (2.6) produces a mass term of order

1In the model of Sec. III, the messengers themselves will play
a leading role in stabilizing the scalar fields, providing a par-
ticularly direct mediation mechanism.
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�2jZ2j
2�9=M7

�, sufficient to stabilize Z2 close to its origi-
nal minimum at the origin.

B. Remarks on retrofitting O’Raifeartaigh models

In the previous subsection, we implemented the retrofit-
ting procedure in a complete model, which was natural,
given the specified symmetries, and incorporated messen-
gers generating sparticle masses. The method has wider
applicability, and it is interesting to extract and separate
some of the essential elements of the procedure and con-
sider independently the role of symmetry, chirality (or lack
thereof), and metastability.

A simple example illustrates some of the main points.
Consider a model with singlets Z, A, and B, and super-
potential

 W � MAB� �Z�A2 ��2�: (2.11)

This model breaks supersymmetry. For M>
���
2
p
��, there

is a minimum in the A direction at hAi � 0. At the classical
level, there is a flat direction; the expectation value of Z is
undetermined. However, at one loop, the standard
Coleman-Weinberg calculation gives hZi � 0. The poten-
tial grows quadratically near the origin and logarithmically
for Z� M.

Before rendering the mass parameters dynamical, note
that a small deformation of the model makes the SUSY
breaking minimum merely metastable. If we write

 W � MAB� �Z�A2 ��2� � 	MZ2; (2.12)

for sufficiently small 	, there is still a metastable minimum
near the origin. There is also a global SUSY preserving
minimum at Z � ��2=�2	M�. (One can check that there is
still a massless goldstino in the metastable minimum.)

Now we can retrofit the model and generate the small
parameters dynamically. First, replace the �2 coupling by
a coupling of Z to a strongly interacting gauge theory. This
can be simply a pure supersymmetric gauge theory, leading
to

 W � MAB� �ZA2 �

�
�

1

4g2 �
Z
M�

�
W�W�: (2.13)

We are assuming g is fixed. If there are other moduli-like
fields contributing to the gauge coupling, we assume that
they are fixed at a higher scale, e.g., by fluxes or other
dynamics. Now �2 is related to the dynamical scale of the
hidden sector theory; integrating out the gauge interac-
tions, the superpotential is

 W � MAB� �ZA2 ��3e12Z=b0M� : (2.14)

Expanding the exponential in powers of Z, the linear term
reproduces the original O’Raifeartaigh model. Near the
origin, the Coleman-Weinberg corrections still generate a
positive curvature. This still leads to a local minimum,
provided M� M�. As Z! �1 (with A � B � 0), the
energy tends to zero and SUSY is restored, though other

effects may come in depending on the UV completion of
the system.

This model closely parallels the O’Raifeartaigh models
arising in the low energy limit of certain SUSY QCD
theories [20] in a number of ways. With the small mass
term for Z,M	Z2, ifM	 is sufficiently small, there is still a
local minimum near the origin, but there is a supersym-
metric minimum for Z� ��2=�2M	�. If the gauge group
of the strongly interacting sector is SU�N�, the index can
be computed for nonzero 	, and it is equal to N. The
analogous statements hold for the models of [20] for small
quark mass.

With 	 � 0, this model is the most general consistent
with a discrete Z2N R symmetry, under which the fields Z,
A, and B, have charges 0, 1, and 1, respectively. The low
energy theory has an approximate, continuous R symmetry
under which Z, A, and B have charges 2, 0, and 2.

So far, this model has an additional scale M. But we can
make this scale dynamical as well, without introducing any
new scales beyond M� and �. Simply introduce two other
singlets, 
 and C, with couplings

 W
 � CAB� �
C2 � a


M�

W�W
�: (2.15)

The parameter a is naturally of order one, if 
 is neutral
under the discrete R symmetry. In contrast to our complete
models in Sec. II A and III, this structure is not enforced by
symmetries, but it is meant only to be illustrative. The
addition of small, symmetry-preserving couplings does
not alter its basic features.

All of this illustrates that it is easy to construct meta-
stable models of dynamical SUSY breaking with nonvan-
ishing Witten index, which are not (necessarily) chiral.
(These features also appear in the O’Raifeartaigh models
in the infrared limit of some recent SUSY QCD examples
[20] and earlier models of gauge-mediated SUSY
breaking.)

Unlike in our complete example of Sec. II A, in this case
we did not include messengers for gauge mediation. A
simple coupling Z� ~� would not suffice here since Z�
�3=M2

� is extremely small in the minimum obtained above
(including the small tadpole introduced by the Z depen-
dence of the SU�2� gauge coupling). In Sec. II A, we solved
this problem via a natural superpotential leading to sponta-
neous breaking of a discrete R symmetry. That example
was limited to high or intermediate scale messenger
masses, and it is of interest to explore this vast class of
retrofit O’Raifeartaigh models in search of models with
lower mass messengers. In models of this type, the SUSY
breaking scale would be arbitrary. If the approximate R
symmetries are broken at a scale of order the SUSY break-
ing scale, then the messenger mass scale is arbitrary as
well. This may allow the construction of gauge-mediated
models with scales of SUSY breaking as low as 10 TeV.

On the other hand, it is also a very simple to consider
these theories as hidden sectors for gravity mediation.
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These models are promising from this viewpoint since no
symmetry forbids a coupling of Z to the SSM gauginos. In
this case, the scalar and gaugino masses are of the same
order, rather than being suppressed by a loop factor, as in
anomaly mediation.

III. RETROFITTING FAYET MODELS

Another class of illustrative examples includes Fayet
models, another of the classic models of perturbative
SUSY breaking. We will start by describing a version
with two input parameters, at least one of which needs to
be small for natural SUSY breaking. We then upgrade the
model to obtain the necessary small scale dynamically.
This class of examples has the feature that the fields gen-
erating the leading contributions to the Coleman-Weinberg
potential also can play the role of messengers of gauge-
mediated SUSY breaking.

A. The perturbative SUSY breaking model

Begin with gauge group U�1� and chiral fields X, �, and
~� with charges 0, 1, and �1, respectively. The model has
superpotential

 W � �X ~��M2X�
�
3
X3; (3.1)

and D term

 D � ej�j2 � ej ~�j2 � r: (3.2)

So far the model has two parameters input by hand: r
and M.

Taking �, ~� to be messengers, a SUSY breaking con-
figuration with hXi, hFXi � 0 would transmit SUSY break-
ing to the standard model a la gauge mediation. This model
has such a minimum, as follows. The potential energy of
the model is

 

V��; ~�;X� � jXj2�j�j2 � j ~�j2� � j� ~��M2 � �X2j2

� 1
2�ej�j

2 � ej ~�j2 � r�2 � �V; (3.3)

where �V is the Coleman-Weinberg potential expanded
about the point of interest in field space.

To obtain the structure described above, let us expand
the theory about � � ~� � 0 and X � M=

����
�
p

. We assume
X2 � eD, and also take eD� FX � M2 � �X2; we will
verify that the latter assumption is self-consistent at the
end. With these hierarchies, the �, ~� origin is stable, with
m2
� � jXj

2 � eD and m2
~�
� jXj2 � eD. Setting � � ~� �

0, we find the following potential for X:

 Veff�X� � jM2 � �X2j2 � 1
2D

2 � �V; (3.4)

where, at the present level, D � r is an input constant. In

the dynamical version to follow, we will render D dynami-
cally small in the vacuum.

The Coleman-Weinberg potential �V is straightforward
to calculate here, particularly given eD� FX. It is
 

�V�X� � Tr log��jXj2 � p2�2 � e2D2�

� Tr log�jXj2 � p2�2 �O�F2
X�: (3.5)

Here the first term comes from the �, ~� loops, and the
second comes from the fermion loops which must cancel
the first term up to the subdominant F-breaking effects.
Performing the integration over momentum gives the result

 �V�X� �
e2D2

16�2 log�jXj2=M2
�� �O�F2

X� �O�D4e4=X4�:

(3.6)

This potential (3.4) has extrema at

 X2
� �

M2

2�

�
1�

������������������������
1�

e2D2

8�2M4

s �
; (3.7)

of which X� � X0 is a metastable minimum. In the regime
defined above, this yields

 X2
0 �

M2

�
�

e2D2

32�2�M2 ; FX �
e2D2

32�2M2 : (3.8)

As a self consistency check, for M� eD, we have FX �
eD, as assumed above in the calculation of the Coleman-
Weinberg potential.

It is worth noting that the result (3.8) forFX follows from
a simple scaling argument, which could be useful in more
complicated examples. Before including theD-term break-
ing effect and resulting Coleman-Weinberg potential, the
theory had a supersymmetric vacuum at X � M=

����
�
p

,
with X mass mX � M. The perturbative correction to
the potential produces a tadpole @�V=@X evaluated at
X0 �M, which shifts the field by an amount �X�
�@�V=@X�=m2

X. The resulting F term is then of order

 FX �
@F
@X

�X; (3.9)

which agrees with the solution (3.8) in the present example.
Altogether, we have recovered the standard structure of

gauge mediation in a simple model of perturbative SUSY
breaking. In this example, the messengers participate di-
rectly in the SUSY breaking dynamics, in that their radia-
tive effects generate the Coleman-Weinberg potential.
Hence this constitutes a model of direct mediation. So far
we have two input parameters, eD and M. The former is
the only very small input scale required in the model, and
we will render it dynamically small in the next subsection.
Tying M to a dynamical scale would be somewhat more
complicated.

RETROFITTING O’RAIFEARTAIGH MODELS WITH . . . PHYSICAL REVIEW D 74, 095012 (2006)

095012-5



B. Dynamical D

To render eD dynamically small, we first trade it for a
superpotential term using the original Fayet model. Add
two chiral fields a, ~a of charge �1 under the U�1� sym-
metry, and a superpotential

 Wa0 � ma0a~a: (3.10)

As above we will be interested in large X, where� � ~� �
0. In this regime, for er � m2

a0, the minimization in a, ~a
yields a vacuum

 ejaj2 � r�m2
a0=e; eD � m2

a0: (3.11)

Thus the input Fayet-Iliopoulos parameter r itself can be of
order the large scale M�, and the problem of obtaining a
naturally small eD reduces to that of obtaining ma0

dynamically.
This can be done as follows. First, note that the model

would respect a Z2 R symmetry under which a, ~a are
neutral (and under which X is neutral, with � ~� transform-
ing nontrivially), if ma0, M2, � were replaced with a
dynamical operator which transforms nontrivially under
the symmetry. Introduce a pure SU�2� sector, with kinetic
term

R
d2�W�W

�. Here W�W
� transforms nontrivially

under the Z2 R symmetry so that this kinetic term is
invariant under the symmetry. Imposing this symmetry,
we cannot write down a bare ma0a~a term, but we can write

 Wa� � a~aW�W
�=M2

� / a~a�3=M2
�; (3.12)

which weakly couples the SU�2� degrees of freedom to the
O’Raifeartaigh/Fayet SUSY breaking sector. In the last
step in (3.12), we replaced W�W� with its holomorphic
VEV �3.As in the O’Raifeartaigh case discussed above, it
is consistent to integrate out the Yang-Mills degrees of
freedom, since they couple weakly via M�-suppressed
couplings to the rest of the theory.

By the same token, the above symmetry prevents the
pure superpotential M2X� �X3=3 from appearing, but
this times W�W�=M3

� can appear, along with an MX2

term. (Adding an additional symmetry-respecting term
proportional to � ~� has no effect as it can be absorbed by
a shift in X.) This modification leaves fixed the scaling of
the X VEV found above, X0 �M, and the scaling (3.9) of
the resulting F term. Altogether this produces a theory in
which the small parameter eD has been effectively re-
placed with m2

a ��6=M4
�. This leads to FX ��9=M7

�.
2

This much is sufficient to obtain very high scale gauge
mediation naturally, with weak scale SUSY breaking ob-
tained via the above method for rendering eD dynamically
small, and with M an order of magnitude or two below
M� � MGUT as the only input parameter. If we take M�
10�1MGUT, then we obtain a high scale gauge mediation

model with a naturally small SSM gaugino mass arising
from the dynamically small eD we obtained via the retro-
fitting procedure.

IV. DISCUSSION AND FUTURE DIRECTIONS

In this paper we combined simple ingredients in a
straightforward way to obtain SUSY breaking models
with all hierarchically small scales naturally explained
dynamically. This procedure of retrofitting simple models
can, of course, also be applied to more intricate examples;
for example, one can similarly retrofit the model of [20] to
render the input quark mass scale dynamically small, as
was done recently in a footnote in [24]. In retrospect,
however, perhaps the simplest possibility for model build-
ing is to obtain the small scale as a supersymmetric but
dynamically small VEV, while obtaining the breaking of
SUSY the old fashioned way.

There are several future directions to pursue. Here we
focused on perhaps the very simplest models of perturba-
tive SUSY breaking, but there are more general classes
containing gauge fields for which one can systematically
analyze the vacuum structure and retrofitting. It also will be
interesting to investigate the realization of these models in
string compactifications and to investigate retrofitting
models to yield low scale messenger masses.

Gauge mediation models with messenger masses below
�107 GeV have the desirable feature that they do not
require nonstandard cosmology to avoid overclosing the
Universe with gravitinos, and they predict the spectacular
prompt photon and multilepton collider signals usually
associated with gauge mediation. Most direct gauge me-
diation models discussed previously predict intermediate
or high scale messenger masses, in part because their extra
particle content would otherwise force couplings to
Landau poles well below the GUT scale. The explicit
examples of Sec. II A and III. also yielded intermediate
and high scale messenger masses. However, as noted in
Sec. II B, low scale models may be possible, especially
given the simplicity of the class of models discussed here.

Realistic application of these models requires an assess-
ment of their cosmological stability. The metastable vacua
themselves are very long lived, but whether the Universe
finds its way into them cosmologically is an a priori
separate question. This is very plausible given the symme-
tries governing our system [25]. It is under investigation in
a similar class of models along the lines of [20] in [26] and
may be affected by the process described in [27].
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