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Preble: Efficient Distributed Prompt Scheduling for LLM Serving

Vikranth Srivatsa®, Zijian He*, Reyna Abhyankar, Dongming Li, Yiying Zhang

University of California, San Diego

Abstract

Prompts to large language models (LLMs) have evolved be-
yond simple user questions. For LLMs to solve complex
problems, today’s practices are to include domain-specific
instructions, illustration of tool usages, and long context such
as textbook chapters in prompts. As such, many parts of
prompts are repetitive across requests, and their attention
computation results can be reused. However, today’s LLM
serving systems treat every request in isolation, missing the
opportunity of computation reuse.

This paper proposes Preble, the first distributed LLM serv-
ing platform that targets and optimizes for prompt sharing.
We perform a study on five popular LLM workloads. Based
on our study results, we designed a distributed scheduling
system that co-optimizes computation reuse and load bal-
ancing. Our evaluation of Preble on two to 8 GPUs with real
workloads and request arrival patterns on two open-source
LLM models shows that Preble outperforms the state of the
art average latency by 1.5x to 14.5x and p99 by 2x to 10x.

1 Introduction

Transformer-based Large Language Models (LLMs) [48]
have evolved into a vital solution in many problem spaces,
including question-and-answer, chatbots, document under-
standing, etc [35, 41, 63]. Recently, new capabilities and
use cases of LLMs create two common features not seen in
traditional LLM usages. First, prompts to LLMs are signifi-
cantly longer than generated sequences. For example, ques-
tions about a long document [22] or a video clip [56] are
answered by LLMs with short answers. As another exam-
ple, detailed instructions and illustrations for LLMs are vital
in accomplishing complex tasks like solving advanced math
problems [58]. Long prompts with short generations imply
that the model forwarding computation of prompts (called
the prefill phase) significantly outweighs the computation of
new token generation (called the decoding phase). Thus, im-
proving the prefill phase performance is crucial to the overall
performance of LLM serving systems.

Second, prompts are partially shared across requests. For
example, a long document or video is often queried many
times with different questions [22]; different requests us-
ing the same tools share tool instructions in tool-augmented
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LLMs [13]; chain- or tree-structured prompting calls an
LLM in steps, with each subsequent step reusing context
from previous steps [57, 58, 62]. When sharing happens at
the beginning of prompts or can be reordered to happen at
the beginning (i.e., prefixes), the intermediate results during
the attention computation (called keys and values, or KVs)
can be reused across different prompts [64].

Despite the increasing popularity, no existing works have
addressed the problem of distributed LLM serving in the
context of long and shared prompts. Today’s distributed
serving systems treat each request as an independent com-
puting unit when performing data- or model-parallel model
inference. They compute each request’s prompt in full, even
if some or all of it has been computed before for another re-
quest. As such, they schedule requests as a stateless process.

To reuse the computation of shared prompt prefixes, we
should treat distributed serving in a stateful way. However,
traditional stateful distributed systems such as distributed
caching [8, 39] and stateful serverless computing [12, 20, 46]
do not work well for LLM serving, as LLM serving intro-
duces three new challenges. First, traditional distributed sys-
tems usually keep computation and state in separate pools,
allowing computation and data to be placed independently.
LLM inference requires attention computation to directly ac-
cess state (e.g., KVs) on the same GPUs. This implies that
LLM serving is constrained on computation and state place-
ment and must consider them together when scheduling.

Second, any parts of a storage object (e.g., a file or a
database table) can be cached in traditional caching systems,
and different cached parts can spread across servers. In LLM
serving, only matched prefixes can be shared and thus worth
caching, because token positions in prompts are encoded
together with the tokens [48]. Meanwhile, the entire pre-
fix must be on the same GPU for attention computation to
run efficient matrix multiplication. This prefix property con-
strains how request states can be placed.

Third, although different LLM prompts can be statically
put together to form a sharing-based prefix tree, balancing
the load in an online system is far more complex than static
partitioning in traditional tree- or graph-based systems. This
is because both the prefix tree structure and per-tree-node
load in an online LLM cluster change quickly with request
arrival and exit. Moreover, an LLM serving system’s per-



formance is not purely dependent on request load but also
factors like prefill-decoding imbalance [2, 3, 65].

Solving the above challenges perfectly is equivalent to a
multi-constrained graph partitioning problem, which is NP
hard [9]. Moreover, because of the quickly changing na-
ture of LLM prefix trees, such a partitioning problem must
be solved repeatedly, causing performance overhead beyond
what LLM serving systems can accept.

To find a more practical solution, we first perform a com-
prehensive study of five real LLM workloads and a data-
center LLM request trace to understand prompt and request
load features. Overall, we find that prompts are 37X to
2494 % longer than generated sequences, and 85% to 97%
tokens in a prompt are shared with other prompts. Addi-
tionally, most requests have a major portion of their prompts
with different sharing features from its predecessors and is
longer than its predecessors’ total length; we call this por-
tion key portion. Real-world LLM requests also have longer
prompts than outputs, and requests arrive at varying speeds
over time and across LLM usages. Finally, by understand-
ing transformer’s computing nature and profiling real GPU
performance, we find that prefill time and decoding time are
proportional to their corresponding token lengths.

Based on our findings, we propose a distributed LLM re-
quest scheduling algorithm called E2 (standing for Exploita-
tion + Exploration) that dynamically adapts request and state
(prefix) scheduling based on GPU load and prompt-sharing
features. E2 allows computed prompt prefixes to be exploited
(i.e., reused) by other requests on the same GPU but also
gives chances for a prefix to explore other GPUs. E2 chooses
exploitation when the amount of recomputation saved (pro-
portional to the number of shared prefix tokens) is larger than
that of new computation (proportional to the remaining non-
shared tokens). Otherwise, if the shared prefix is shorter than
the remaining tokens, E2 chooses exploration. For exploita-
tion, we send the request to the GPU that caches the key por-
tion of the prefix (or the lightest GPU if there are multiple
such GPUs) to exploit it. For exploration, E2 considers all
GPUs in the cluster to pick the best for the prompt based on a
load cost calculation. Instead of an NP-hard formulation that
considers all prefix tree nodes, E2’s greedy-based schedul-
ing policies focus on optimizing the key portion, reducing
the complexity and making E2 scalable.

When E2 decides to explore GPUs, it calculates a load
cost for each GPU that captures longer-term GPU load and
request-specific load cost. The first part of the load cost is
a GPU’s anticipated load when running the currently sched-
uled request and shortly following that time. This anticipated
load factors in the longer-term effect of a placed prefix be-
ing exploited by future requests. We use recently scheduled
requests on this GPU as the history for this load estimation
by adding their non-cached prompt prefill time and decoding
time. The second part is the load regarding recomputation
the GPU needs to evict to make memory space to run the

current request. The third part is the cost of running the cur-
rent request on the GPU. We can calculate all three parts of
load cost based on token count, sharing features, and request
count, thanks to transformer’s regular computation patterns.

Centered around the E2 scheduling algorithm, we build
Preble, a distributed LLM serving system that aims to pro-
vide high serving throughput and low request average and
tail latency for long and sharing prompts. Preble consists of
a global, request-level scheduler and a per-GPU, iteration-
level scheduler. Apart from E2, Preble incorporates several
novel designs to tackle practical LLM challenges. First, E2
does not change the location of a prefix after the initial as-
signment. However, load distribution and key portions can
change over time. To mitigate this issue, Preble detects load
changes and redirects requests from a heavily loaded to a
light GPU. Preble also supports autoscaling by replicating a
key portion and its prefix on multiple GPUs.

Second, prefill and decoding in transformer have differ-
ent computation needs, as discovered by a set of recent
works [2, 3, 65? ]. However, none of these works consider
prefix sharing. Our insight is that a prompt that hits a cached
prefix can be treated as decoding-phase computation, while
a missed prompt can be treated as prefill-phase computation
because of the high prompt-to-decoding token length ratio.
Thus, we direct missed requests to GPUs with heavy hit re-
quests to balance prefill and decoding computation needs.

Finally, to increase prefix macthing while avoiding starv-
ing, we borrow ideas from traditional priority-based schedul-
ing in operating systems [19, 49] to assign priorities to wait-
ing requests based on their prefix cache hit ratio and give
each priority their respective quota of requests to serve.

We implement Preble as a standalone layer on top of
slightly modified vLLM [21], the most popular open-source
LLM serving system today, and SGLang [64], a new LLM
serving system that incorporates single-GPU prefix match-
ing. We evaluated Preble using our studied five workloads
and the Azure request arrival pattern [40] with the Mistral
7B LLM [17] and the Llama-3 70B LLM [28] on a four-
Nvidia-A6000 GPU cluster and an eight-Nvidia-H100 GPU
Cluster. Our results show that Preble outperforms SOTAS-
GLang by 1.5x-14.5x and 2x-10x on average and p99
average request latency. It also outperforms a prefix-tree-
partioning-based baseline by 1.15x-7.5x and 1.6x-4.5x cor-
respondingly. Overall, this paper makes the following key
contributions.

* The first study of LLM workloads with long and shared
prompts, resulting in four key insights.

* Identifying three key new challenges of distributed LLM
serving under long and shared prompts.

* E2, anew LLM request scheduling algorithm with the idea
of exploitation and exploration integration.

* Preble, the first distributed LLM serving system that tar-
gets long and shared prompts.



N
o

Execution time (s)
Iy k h
o
| L
Execution time (ms)

—— Linear Layers /
Self-Attention

401 —— Total

/Q//,/"
s 201

(1) é 1'0 0 10 20 30
Prompt Length (x1000 #token) Context length (x1000 #tokens)

4 —— Linear Layers
Self-Attention
1 —— Total

-
3]

©
wn

o
o
.
o

Figure 1: Prefill Time De- Figure 2: Decoding Time
composition

* A comprehensive evaluation of Preble and SOTA LLM
serving systems on two popular open-source LLMs, five
real workloads, and two GPU clusters.

We will open source Preble upon accpetance.

2 Background and Related Works

This section presents a brief background of LLM serving and
discusses related works.

2.1 Background on LLM Inference

Today’s LLMs [1, 61] are powered by the stacking layers of
transformer blocks, which is composed of a memory-bound
self-attention operation followed by a compute-bound lin-
ear operation [48]. The input to the model is a sequence of
tokens that are converted to high-dimensional embeddings.
These embeddings encode both token and positional infor-
mation. Thus, if two prompts have the same subsequences
but at different positions, their embeddings are not the same.

LLM inference includes two stages: prefill and decoding.
The prefill stage processes the user’s prompt by performing
attention computation to all prompt tokens; the computed in-
termediate results are called keys and values, or KVs. The
decoding stage generates the output token one at a time in an
autoregressive manner. Each output generation is called one
iteration, and later iterations use previous iterations’ com-
puted KV intermediate state.

The prefill and decoding stages exhibit different compu-
tation behaviors, with the former being computation-bound
and the latter being memory-bandwidth bounded. To under-
stand their behaviors and to acquire prefill/decoding compu-
tation time functions to be used by E2, we profile the pre-
fill and decoding stage performance with Mistral 7B on the
A6000 GPU. Figure 1 plots the prefill time and its break-
ing downs when prompt length increases. As seen, longer
prompts increase prefill time, suggesting that the more sav-
ings we can get from prefix sharing, the lower prefill time
will be. Moreover, since the linear layer dominates the model
forwarding at the prefill stage, the prefill time is overall linear
to the prompt length. Figure 2 shows the performance of a
single request’s decoding performance with varying context
lengths (the length of the prompt sequence plus the sequence
generated thus far). We observe a similar linear relationship
to context token length. Overall, these profiling results sug-
gest that attention computation is regular. Thus, we could

use the token length with a profile regression function to es-
timate computation time.

2.2 Decoding-Centric LLM Serving

Previous generations of LLM serving systems [16, 21, 25,
29, 47, 59] (fall 2023 or before) focused mainly on the de-
coding phase, with the goals of improving scheduling, mem-
ory usage, and GPU utilization, largely because the initial us-
ages of LLMs have longer outputs than prompts. Orca [59]
introduces iterative scheduling by forming a new batch at
each model forwarding pass instead of at when requests fin-
ish, which allows for more efficient GPU utilization and re-
quests to return earlier. VLLM [21] proposed the paged at-
tention technique to reduce GPU fragmentation, thereby im-
proving memory utilization.

To utilize multiple parallel GPUs, LLM serving systems
above commonly adopt data parallelism and model paral-
lelism, with the former spreading data requests across GPUs
and the latter spreading model weights[4].

Additionally, AlpaServe [25] utilizes model parallelism
for multi-model serving by colocating shards of different
models on the same device and a placement algorithm that
determines how many replicas of a model are needed.

Since these serving systems do not optimize the prefill
stage or leverage prompt sharing, they are unfit for running
our targeted workloads that have long and shared prompts.

2.3 Prompt-Aware LLM Serving

With LLMs’ usages shifting to be more prompt-heavy, re-
cent and concurrent works have identified the different com-
puting needs of the prefill and the decoding phases [2, 3, 65?
]. The prefill phase processes all tokens in a prompt in one
iteration, while the decoding phase generates one token in
one iteration. Thus, prefill has a higher compute-to-memory
ratio than decoding, especially when prompts are long. Be-
cause of this imbalance, when requests at the decoding phase
and those at the prefill phase are batched together in an it-
eration, the former needs to wait for the latter, causing de-
layed output generation and inefficient GPU usage. Two ap-
proaches have been proposed to solve this problem. The first
approach, called chunked prefill, chunks a prompt and runs
each chunk with other decoding requests in a batch in one
iteration to reduce or avoid waiting [2, 3]. The second ap-
proach is to separate prefill and decoding to different GPUs
to avoid prefill-decoding interference [65? ]. These solutions
target long prompts but do not consider prompt sharing. Pre-
ble consider prompt length and sharing, and we use a novel
sharing-based approach on top of chunked prefill to solve the
prefill-decoding imbalance problem.

A recent work, SGLang [64], proposes to share prefixes
across requests using a prefix tree. Unlike Preble, SGLang
is a single-GPU solution. To run it on a distributed GPU
cluster, one would need to add a standard data or model par-
allelism layer and then run SGLang on each GPU. As no



User: .. Could you
provide me basic
daily data...?

System: You are AutoGPT, Tool 1. *
you can use many tools... financial_statement..
You have access of the {‘parameters’:
following tools: * {‘type’: ‘object’, ...

number of steps depends on LLM generation
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Your task is to: ...

o call
feedback

onthe gl
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pick up
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“You are a computer science programmer ... Programming
Here is an example: Problem 1
problem, --Input--, --outpu—, example code
Here is another example: ... * User Problem
2

“What happened to the baby...? call LLM
0. walk away, 1. run after it, ...”

“Why did the woman bend down..? call LLM answer: 1.
0. to jump.., 1. excercis excercise

Question: How many
people...? 1. seven, 2. siX, ..
Please answer the
question based on Question: In which year
the long texts below. ) did...?

Figure 3: Workload Demonstration.  Green boxes repre-
sent shared prefixes. Grey boxes are non-shared prompts. White
boxes are output generation. Yellow star represents key portions
that always happen at fixed parts; pink stars at non-fixed parts.
Blue clouds represent the parts that would be used for distributing
prefixes if knowing the oracle.

parallelism or distributed serving systems today are prompt-
aware, simply distributing requests or models and then per-
forming prefix-sharing or sub-sequence within a GPU ig-
nores the cluster-level prefix-sharing opportunity. Apart
from distributed support for long and shared prompts (§4.2),
Preble also improves memory efficiency and fairness over
SGLang with a better eviction mechanism and waiting re-
quest ordering policy (§4.3). Another recent work, Prompt
Cache [10], proposes sharing arbitrary user-defined sub-
sequences in a prompt by allowing mismatched positional
encodings and incomplete attention computation. As such,
non-prefix sharing is a lossy process that could result in low-
quality generation. Moreover, like SGLang, Prompt Cache is
also a single-GPU solution and shares SGLang’s limitations
discussed above. Hpydragen [18] is another recent work that
proposes an efficient implementation of the attention oper-
ation for shared prefixes, which is orthogonal to Preble, as
Preble can support any underlying attention kernels.

2.4 Traditional Distributed Stateful Systems

Data centers have been hosting distributed stateful sys-
tems for decades, including distributed file and storage sys-
tems [0, 38, 39, 53], distributed databases [30, 37], dis-
tributed caching layers [5, 27, 43], and stateful serverless

computing [20, 46]. These traditional distributed stateful
systems share the same goals of balancing load and improv-
ing application performance as Preble. However, several key
differences make traditional solutions unfit for LLMs.

First, traditional systems usually separate the state layer
and the computation layer (e.g., an application cluster and
a RAM-based storage cluster [39], serverless functions and
a separate intermediate computation state layer [20]). On
the contrary, LLM inference requires state (cached KVs) and
computation to be on the same GPU for transformer compu-
tation to execute efficiently. Thus, a distributed LLM serving
system must manage computation load and state together, as
what Preble does.

Second, states in traditional systems can be modified af-
ter creation and require various consistency and coherence
mechanisms to support parallelism. In LLM inference,
once KVs are computed for a sequence, their values do not
change. However, the sharing status can change as a future
request with a prefix that matches a part of a computed se-
quence means that the matched part is shared and the rest is
non-shared.

Third, unlike traditional systems where any part of data
can be cached and shared, sharing is only useful if it happens
at the prompt prefixes in LLM serving.

Finally, unlike traditional computing, whose computation
and memory needs are unknown before execution, LLMs’
transformer computation is regular. Its computing and mem-
ory consumption is determined by the model size, the prompt
length, and the output generation length. The model size and
a request’s prompt length are known before execution, and
output is generated one token per iteration. Thus, we can
estimate the computing and memory consumption for every
iteration. Moreover, via profiling, we can estimate the pre-
fill time and decoding time (§2.1). Such regular computation
patterns give us opportunity to pre-determine load but also
brings new challenges such as prefill-decoding balancing.

3 A (Systems) Study on LLLM Prompts

Today’s LLM usage goes beyond simple chatting. As LLM
usage becomes more commercialized, LLM prompts be-
come more structured and complex, outshadowing the text
an LLM generates. This section presents our study results
of five popular new LLM use cases: tool (or API, agent)
use [44], interacting with virtual environments as an em-
bodied agent [13, 15], software program generation [33],
answering questions about videos [56], and answer ques-
tions about long documents [22]. Figure 3 demonstrates
the prompt usages of these workloads. We study each case
with real public datasets and understand their prompt fea-
tures from a systems perspective. For datasets that do not
provide outputs, we use Llama-3 7B model as the LLM to
generate outputs. For each dataset, we construct a prefix tree
for all the requests in the dataset (i.e., assuming an infinite
prefix cache).



Table | and Figure 4 summarize our study results, includ-
ing prompt and decoding (output) length, amount of sharing
in a prompt, key portion size in a prompt, and number of re-
quests sharing a key portion. We define the “key portion” of
a request as the deepest node in a path that has more tokens
than the sum of its predecessors.

To understand real-world LLM user request features, we
study a recently released public cloud LLM trace. This sec-
tion ends with our summary insights.

3.1 Tool Use

Today, LLMs are often augmented by various tools such as
calculators and web searches. To equip a model with the
ability to invoke a tool, it must be given the correct syntax
for querying the tool, along with examples (or “demonstra-
tions”) of tool use. We evaluate the Toolbench [11] dataset,
which consists of more than 210k queries that call over 16k
unique tools. Each query shares the same system prompt
followed by tool-specific instructions. The final part of the
query is the user’s specific question or task. These are all
concatenated together to form the final prompt. We find that
most of the sharing comes from queries that all share the
same tool, and these instructions can be 43x longer than the
output length. The Toolbench workload is also representa-
tive of other tasks that “prep” an LLM in a similar fashion.
For example, instead of tool-calling, LLMs can have roles
layered on top of the system prompt, which is popular in
emerging systems that utilize the same LLM with multiple
roles to create an ensemble [23, 24, 55].

3.2 Embodied Agents

LLMs are increasingly found in agents that can interact with
environments, such as a player in arole-playing game or con-
trolling a robot. In this scenario, the LLM receives feedback
from the environment, forms an action, and then “performs”
the action. This is conducted in a loop until the model has
achieved the goal. The workload we utilize is sourced from
the ALFWorld [45] dataset and has 7.5k requests. Prompts
first describe the environment and the task, followed by a
demonstration of steps to solve the task. The model then
solves its given task by looping over a planning step fol-
lowed by an action step. After each action, the text-based
environment returns an observation that the model incorpo-
rates into its next planning step. Every new invocation to the
LLM in this loop is treated as a new request, resulting in each
step sharing the context of previous steps. Interestingly, the
number of steps is determined by LLM generation, creating
an unpredictable sharing pattern. Because steps are chained
together, prompts are still 157x longer than output tokens.

The embodied agent workload can represent a wide va-
riety of other use cases, such as chain of thought [52, 58],
multi-turn tool usage [42, 50], and chatbots [63]. Any de-
pendency between the model and the outside environment
can be considered an agent receiving feedback.

3.3 Program Generation

One of the popular uses of LLMs is to generate software pro-
grams [33]. We study the APPS competitive programming
dataset [14], a dataset of programming problems. To gen-
erate better-quality programs, an approach taken by a recent
paper [18] is to add a demonstration of several generic code
examples before the user problem to instruct an LLM. This
added demonstration is the same across all problems and be-
comes the system prompt. Following the system prompt is
the programming problem description. Afterward, this ap-
proach invokes the LLM several times in parallel to gen-
erate multiple candidate programs, out of which the best
is chosen to return to the user. As generated code is rel-
atively long (compared to outputs of other workloads we
study), the prompt-to-output ratio (20x) is relatively low.
Prompt sharing comes from two places: the system prompt
of code demonstration is shared across all requests, and the
programming problem is shared across all parallel genera-
tions. Depending on how complex the problem is, its de-
scription could be longer or shorter than the system prompt;
a problem description can also be partially the same as an-
other problem description. Such complexity results in com-
petitive programming having diverse key-portion properties.
Such example demonstration and parallel generation tech-
nique is common in recent prompt engineering, for example,
with ReAct [58], Tree-of-Thoughts [57], and Self Consis-
tency [51].

3.4 Video Question and Answer

The advent of video models like OpenAl Sora [36] has cre-
ated an explosion of interest in multi-modal models. The
use of LLMs, then, goes beyond natural language. A re-
cent usage is to answer questions about videos by tokeniz-
ing a video segment and inputting it to an LLM [7, 60].
To study this, we analyze the NExT-QA benchmark [56],
which consists of 8.5K questions for 1000 video segments.
Prompts to the LLM consist of a tokenized video followed by
a multiple-choice question. Because of the multiple-choice
nature, the outputs of this dataset only have six tokens. Long
tokens for representing videos plus short outputs result in this
dataset having the highest prompt-to-decoding token ratio of
all workloads we explored, with nearly 2500 x more prompt
tokens. Apart from videos, images and audio can also be tok-
enized to have LLMs answer questions, and we expect them
to have similar properties as video QA.

3.5 Long Document Question and Answer

With newer models, the maximum context length has in-
creased substantially [16, 26, 32], with the latest develop-
ment supporting 1M tokens [32]. Longer contexts enable
new LLM applications such as asking questions about a long
document or even a book. We evaluate this usage with the
LooGLE dataset [22], a collection of 776 long documents
and over 6.4k questions. LooGLE has a small system prompt



Workload Num Req | Prompt Length | Output Length | Shared Prefix in Prompt | KeyPort. in Prompt | Req Share KeyPort.
Toolbench 210415 (1835, 742) (43, 16) (85%, 13%) (76%, 16%) (39, 64)
Embodied Agent 7538 (2285, 471) (16, 13) (97%, 14%) (76%, 12%) (48, 8)
Programming 102840 (3871, 1656) (190, 343) (97%, 1.4%) (78%, 13%) (126, 2157)
Video QA 8564 (9865, 5976) 4, 1.5) (88%, 32%) (99%, 0.2%) (8.6,2)
LooGLE 1951 (23474, 6105) (16,9.9) (91%, 24%) (94%, 15%) (18, 8.6)

Table 1: LLM Prompt Properties Each cell except for number of requests shows (mean, standard deviation). Length represented using

number of tokens. “KeyPort.” stands for Key Portion.
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of 13 tokens followed by a long document and then a ques-
tion about the document. As a common practice, a user or
multiple users often ask multiple questions to the same doc-
ument, resulting in large amounts of shared tokens. Mean-
while, the answers are usually short (e.g., a true or false).
These features result in high prompt-to-decode ratio and high
sharing ratio in LooGLE.

3.6 LLM Usages in the Wild

To understand LLM usage in the wild, we analyze the re-
cently released Azure LLM Inference Trace [40]. The trace
includes two types of LLM usages: program generation and
chat conversation. It provides request arrival time, prompt
length, and decode length. As it does not provide actual
request content, it is not feasible for us to evaluate prompt
content or sharing. Figure 5 plot our analysis results in CDF.
We find that the arrival rate is approximately 5 requests per
second for chat conversation and 7 requests per second for
programming. On average, chat requests arrive 118 ms apart
while programming requests arrive 63 ms apart. The mean
prompt-to-decode ratio for chat conversations is 4. Since we
have no details about shared context from follow-up conver-
sations, this number is expected to be much lower. For the
longest 20% of all chat prompts, the mean prompt-to-decode
ratio is 175, which is consistent with our observations on
other workloads.  For programming, the mean prompt-to-
decode ratio is 92 for all prompts. This falls within the range

Insight 1: Contrary to popular belief, prompts are sig-
nificantly longer than output lengths because LLMs support
longer context and new LLM usages keep emerging. We be-
lieve this trend will continue as LLMs are augmented with
more capabilities. Implication 1: Optimizing prefill compu-
tation can largely improve overall application performance,
and imbalanced prefill and decoding computation features
should be considered in LLM serving.

Insight 2: Prompt sharing, or reuse, is common, and the
sharing amount is high. Sharing can come from different
user requests needing the same tools or instructions to solve
a task. It can come from a user asking multiple questions
about the same document or video. Context sharing can
also happen within the same user task that is solved with
a chain or a tree of steps. Implication 2: Reuse computa-
tion across shared prefixes can largely improve real work-
loads’ performance and should be efficiently supported by
distributed LLM serving systems.

Insight 3: Most requests have a portion of the prompt se-
quence that gets a different degree of sharing and is longer
than its prefix, reflected as a key portion in prefix trees. Key
portions account for the majority of prompts and are shared
by a significant amount of requests. Implication 3: Identify-
ing the key portion of prompts and optimizing the placement
of requests according to their key portions is a viable way of
reducing the complexity of scheduling while achieving good
performance.

Insight 4: Real-world LLM usages have varying load in-
tensity, and different usages (programming vs. conversa-
tion) have different loads. Real-world prompts are also much
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Figure 6: Preble Architecture.

longer than decoding length, but different usages have differ-
ent prompt-to-decode ratios. Still, the longest prompts are
significantly longer. Implication 4: An efficient LLM serv-
ing system should consider complex, mixed-usage scenarios
and factor in both load and prompt sharing variations.

4 Preble Design

We now present the E2 algorithm and the design of Preble,
beginning with the overall system architecture of Preble, fol-
lowed by its global scheduler and local scheduler designs.
While Preble is oriented for long and shared prompts with
relatively short output lengths, we note that Preble’s worst-
case performance when there is no prompt sharing and out-
put lengths are long is the same as traditional LLM serving
systems like VLLM [21]. This is because the E2 policy de-
generates to a regular load balancer.

4.1 Overall System Architecture

Preble is a distributed GPU-based LLM serving system. It
supports both data parallelism and model parallelism. While
its model parallelism support is standard (e.g., tensor paral-
lelism), Preble’s scheduling of requests on parallel GPUs is
designed specifically for long and shared prompts.

We propose a two-level scheduling system where a global
scheduler performs request-level scheduling decisions and
orchestrates the overall load balancing across GPUs, while a
per-model-instance local scheduler performs iteration-level
scheduling for requests assigned to the GPU. Depending on
the GPU cluster topology, the global scheduler may be de-
ployed on a separate server for multi-server GPU cluster or
on the same server as a single-server-multi-GPU cluster. The
local scheduler manages one model instance (multiple GPUs
when using model parallelism, single GPU when not) and
runs on the CPU of the same server as the GPUs.

When a new request arrives, it is first tokenized by a paral-
lel tokenizer layer. The global scheduler then selects a GPU
to assign it to based on our E2 algorithm to be discussed
in 4.2. Afterward, the server with the destined GPU inserts
the request into the GPU’s wait queue. For each GPU, the

Algorithm 1 E2 Global Scheduling Algorithm
function SCHEDULEREQUEST(R})
Match R, to global radix tree
cached_len < sum of matched length
missed_len < prompt_len — cached_len

if missed_len < prompt_len then > Exploit Ry
K S < GPUs with longest node in matched path
for each GPU i in K S do
Cost; < LOADCOST(i, Ry)
end for
return ¢ with lowest Cost;
else > Explore Ry,
for each GPU i in all GPUs do
Ratio; < DECODERATIO(%)
end for
> IMBALR: calc based on GPU type and LLM
if highest Rati0o,,q4; > IMBALR then
return max
end if

for each GPU i in all GPUs do
Cost; <+ LOADCOST(4, Ry,)
end for
return 7 with lowest Cost;
end if
end function

local scheduler running at the server performs iteration-level
scheduling by forming a batch of request after each model
forwarding pass, i.e., an iteration. Figure 6 illustrates the
overall architecture of Preble.

This design offers several benefits: 1) by having all re-
quest scheduling go through the global scheduler, we have a
centralized place to maintain global information as well as
request-level per-GPU information, both being essential for
E2; 2) by performing coarse-grained, request-level schedul-
ing, a single global scheduler can scale to more GPUs,
avoiding the complexity of maintaining a distributed global
control plane; 3) by performing fine-grained, iteration-level
scheduling for each GPU, the local scheduler can quickly
adapt to GPU resource and request availability changes and
make more precise decisions; and 4) the overhead of migrat-
ing a request across GPUs in the middle of its execution is
relatively high. Thus, there is no need for the global sched-
uler to schedule or migrate requests at the iteration level.

4.2 E2 Global Scheduler

We now present our global scheduler design, which centers
around the E2 distributed scheduling algorithm.

Global scheduler data structures. To achieve request-level
scheduling, the global scheduler maintains several data
structures. The primary data structure is global prefix trees,




Algorithm 2 GPU Load Cost Calculation
> Load cost calculation for GPU ¢ and request Ry,
function LOADCOST(i, Ry)
L+ 0;M <+ 0;C + 0

> Calculate total load on GPU ¢

for each R; in history H do
missed_len < non-cached prompt length for j
L <+ L + PREFILLTIME(missed_len)
decode_len < average decoding length in H
L <+ L + DECODETIME(decode_len)

end for

> Calculate eviction cost
T <+ tree nodes to evict on GPU 7 to run Ry,
for each ¢t in T" do
for each request [ hitting ¢ do
missed_len < non-cached prompt len for [
M <+ M + PREFILLTIME(missed_len)
end for
end for

> Calculate cost to run Ry,
missed_len_k < non-cached prompt length for Ry,
P < PREFILLTIME(missed_len_k)

return L + M + P
end function

implemented as radix trees. Each tree has a distinct root (i.e.,
the beginning part of prompts). Within a tree, each tree node
is a sequence of tokens in an existing request with the same
sharing property, i.e., tokens in the sequence are either all
uniquely used by one request or all shared by at least two
requests. When inserting a new request to the tree, we match
its tokens from the beginning (i.e., prefix matching) until no
match exists, and we insert the remaining tokens as a new
leaf node. For each tree node, we record three types of in-
formation: the number of tokens in this tree node, the set
of GPUs caching the tree node (more precisely, caching the
KVs for the tokens in this tree node), and the per-GPU num-
ber of requests sharing this tree node in a history window W.
When a tree node has no caching GPU and that there is no
request within the window W in the whole system sharing it,
we remove it from the tree.

Per-request scheduling policy. To schedule a request, the
global scheduler uses our proposed E2 scheduling algorithm,
as illustrated in Algorithm 1. It first matches the request’s
prompt in the global prefix trees. When the amount of re-
computation saved (number of tokens in matched prefix) is
larger than the amount of new computation (number of to-
kens in non-matched remaining prompt), we favor exploita-
tion over exploration. With a greedy approach, E2 exploits

existing cache by assigning the request to the GPU that
caches the key portion (i.e., the tree node with the longest
tokens) in the matched prefix. If multiple such GPUs exist,
E2 chooses the GPU with the lightest request load, using the
same load calculation as we will explain next.

If the matched prefix is shorter, E2 explores the best GPU
to run the request based on load. While exploitation re-
duces latency for the current request, exploration gives E2 a
chance to distribute load to different GPUs, which is the key
to strike longer-term cluster execution efficiency. The explo-
ration phase finds the GPU with the lowest “load costs”. Un-
like traditional computing, whose load per request is hard to
determine, transformer-based LLMs have a regular computa-
tion pattern: the computation amount of prefill and decoding
are proportional to the number of prompt tokens and gener-
ated tokens. With this insight, E2 unifies three types of cost
when calculating per-GPU cost, as shown in Algorithm 2.

The first cost is a GPU’s overall load L; for GPU; when
not considering the current request, k. We do not use
GPU;’s current load for two reasons: its load can be dif-
ferent by the time R runs, and the placement of a prefix
has a longer-term effect than a single load in time because
of other requests’ future exploitation. Thus, we capture a
recent load history on GPU; with a size of H number of
requests routed to the GPU. We currently statically set H,
which works well for our workloads and real traces. Future
work could extend H to be adaptive. For each request r in
the history, we estimate its prefill time PT,. with a regres-
sion function using the number of tokens in r that do not
have matched prefixes on GPU;; we estimate its decoding
time DT, with another regression function using the aver-
age request decoding time observed on G PU; in window H.
These regression functions are captured from offline profil-
ing for each GPU type. Note that the number of generated
tokens is unknown until LLM finishes its generation. How-
ever, our workload study shows that the number of generated
tokens is small and similar across a workload. Thus, a new
request’s decoding time is likely similar to recent requests’.
With this, we have L; = Yy (PT, + DT.).

The second cost is the potential cost to free GPU memory
so that the current request &k can run. Given that GPUs run at
capacity with our and existing serving policies [3], we expect
this cost always to occur. We quantify this memory cost, M;,
as the token load that needs to be evicted and recomputed on
another GPU (thus having the same cost unit as L;). Specif-
ically, we use the eviction algorithm to be discussed in § 4.3
to find the tree nodes on G PU; that would be evicted to free
the number of tokens in the current request’s prompt. For
each such tree node j, its eviction cost is the recomputation
time of the evicted tokens for all requests currently sharing
the tree node. Thus, we have M; = PT; x N; where Nj is
the number of requests sharing tree node j. Note that we do
not include the decoding time here, as a request’s decoding
time is unaffected by prefix cache eviction, and all decoding



costs have already been counted in L;.

The third cost is the actual cost, R;, to run the current
request k¥ on GPU;, which is simply the prefill time of the
missed tokens in request k. We do not count its prefill time,
as it is the same across GPUs, and our goal is to compare
across GPUs.

The total cost of assigning the current request to GPU; is

L; + M; + R;, and we choose the GPU with the lowest total
cost to assign the request to.
Post-assignment load adjustment. With the above algo-
rithm, after the global scheduler assigns a request to a GPU,
its prefix lives there until being evicted. E2’s greedy ap-
proach works well in cases where the load to a prefix is rela-
tively stable, and the key portion of a request does not change
over time. Although these properties are true most of the
time for the workloads we studied, for other cases where load
or key portion changes, we need a way for post-assignment
adjustment.

We propose two ways of managing post-assignment load
changes. The first way shifts load between GPUs and is ap-
plicable when the load surge can be handled by a single GPU.
The global scheduler maintains a per-GPU load in the same
way as Algorithm 2. If the most heavily loaded GPU’s load
is more than T'hy,; times higher than the lightest GPU, it
shifts load from the former to the latter until their difference
is below T'hyq;. Thpg; 1s configurable and can be deducted
from profiling GPU and LLM types. To achieve this, we di-
rect future requests that are supposed to exploit the heavy
GPU to the light GPU instead. We do not migrate running or
waiting requests as doing so involves heavy recomputation
overhead and/or complicates the local scheduler. Although
directing future requests does not immediately shift load, we
can detect load imbalance earlier by setting a more aggres-
sive T hy,; threshold.

The second way is to auto-scale a prefix by replicating it
and splitting its subtree by load when we detect that a cer-
tain prefix’s request load is still too high (average queueing
time doubles over H) even after the above rebalancing. We
calculate the subtree’s load using Algorithm 2.
Prefill-decoding balancing. As discussed in §2.3, LLM
prefill has a larger compute-to-memory ratio than decod-
ing, causing inefficient GPU resource utilization and perfor-
mance degradation. We propose a new way of solving this
prefill-decoding imbalance problem. Our insight is that a re-
quest with its entire prompt shared and cached only performs
the decoding phase. Thus, it can be treated as a decoding-
phase computing unit. Meanwhile, a request with a long
prompt not cached and a short output length can be treated
as a prefill-phase computing unit. A partially cached prompt
can be treated as being between the prefill- and decoding-
phase units. Thus, we can balance prefill-decoding by com-
bining requests with more or less prompt sharing instead of
or in addition to techniques like chunked prefill [3].

Specifically, when a request is about to be explored, the

global scheduler first considers the prefill and decoding bal-
ancing for each GPU. If a GPU is heavily loaded with
decoding-phase computing units, the global scheduler di-
rects the current request to it, as a request to be explored will
incur recomputation for prompt and is considered a prefill-
phase unit. We prioritize this policy over the load-cost com-
parison (Algorithm 2) because a GPU with heavy decoding
has unused computation capacity that we can almost freely
use. The global scheduler performs the load-cost compar-
ison if all GPUs have relatively balanced decoding-prefill
loads. Apart from this prefill-decoding balancing performed
at the global scheduler, our local scheduler also performs tra-
ditional chunked prefill for each GPU (§4.3).

Global scheduler scalability. The global scheduler uses a
few techniques to improve its scalability. Incoming requests
are first tokenized by a parallel tokenization layer. After-
ward, the global scheduler spawns asynchronous request
handlers to process and schedule requests. Access to the
global radix tree during request handling is lock-free, as most
operations are read-only. The only exceptions are updating
a GPU to be assigned to a tree node and the increment of
request count hitting the tree node, both of which can be
expressed as atomic instructions. Additionally, the global
scheduler maintains a current load for each GPU by keep-
ing it updated every time when a new request is assigned to
it or when it evicts a tree node. Thus, unlike the descrip-
tion of calculating L;, our realization of the E2 algorithm
is more performance efficient. Finally, to ensure foreground
request performance, the global scheduler runs non-request-
scheduling tasks such as rebalancing and eviction bookkeep-
ing in the background with separate threads.

4.3 Local Scheduler

Local scheduler mechanism. The local scheduler schedule
requests the global scheduler assigns to its managed GPU(s).
Similar to existing LLM serving systems [4, 21, 29, 47, 59,
64], we run one local scheduler per GPU and schedule re-
quests at the iteration level (§2.2). Each local scheduler
maintains a request wait queue, a prefix radix tree, and the
number of active requests sharing each prefix tree node.
When a new request comes, the local scheduler matches
it to the local prefix tree and updates the tree accordingly. It
also inserts the request into the waiting queue. After each
model iteration, the local scheduler forms the next batch by
selecting wait requests using a priority-based algorithm to
be discussed next. If a selected request has a long and non-
shared prompt, we chunk the prompt similar to Sarathi [3].
If the GPU memory is not enough to run the batch, the local
scheduler picks tree node(s) or part of a tree node (if a part
is enough) to evict based on request accessing time (LRU).
The local scheduler than informs the global scheduler about
this eviction, and the latter processes it in the background.
Waiting queue request ordering. Today’s LLM serving
systems schedule requests in the wait queue according to




FCFS or prefix sharing (serve the request with the highest
sharing amount the first). The former ignores prompt sharing
and results in more recomputation; the latter ignores fairness
and could result in starvation [54]. We propose a priority-
based wait queue scheduling policy that considers both pre-
fix sharing and fairness.

Specifically, we create P (a configurable parameter) pri-
ority groups and assign a request to the priority group cor-
responding to its cached token percentage. For example, if
63 out of 100 tokens in a request’s prompt are cached on
the GPU and P is 10, it will be assigned priority six. When
picking requests to form the next batch, the scheduler pro-
portionally picks requests from each priority group, with the
higher priority getting more requests picked than lower pri-
ority ones. For example, if 100 requests are to be selected to
form a batch, the scheduler picks ten from priority group 10,
nine from priority 9, etc.

S Implementation and Evaluation Results

5.1 Implementation

We implemented Preble as a standalone layer to perform
distributed LLM serving. As such, Preble can be added to
any existing serving systems with no or minimal changes —
we currently support vLLM [21] and SGLang [64] as two
backends. Our changes to SGLang include only 50 SLOC
for adding priority-based waiting queue management, which
is an optional component in Preble added for better fair-
ness. The standalone Preble consists of 911 SLOC, mainly
for radix tree management, load cost calculation, and re-
assignment.

5.2 Workloads and Environments

Workload setup. We use the five workloads presented in §3
to evaluate Preble. For each workload, we sample enough
requests to fulfill the request-per-second (RPS) needs and
GPU setup (e.g., a larger GPU or more GPUs can handle
more). For experiments other than the ones using the Azure
Inference Trace, we set the inter-arrival time using a Poisson
distribution with a mean that corresponds to the RPS we test
(X-axis in most figures). We then run the experiments until
stable state is reached and lasts for a significant length.
LLMs. We use two open-source Large Language Models,
the Mistral 7B-parameter model [17] and the Llama-3 70B-
parameter model [28]. We choose these models as the repre-
sent a variation in size and represent a variation in architec-
ture. Both of the models are very popular in open source.
Environments We ran all experiments in one of the two en-
vironments: a four NVidia A600 GPU cluster and an eight
NVidia H100 GPU cluster. For our experiments we use In-
tel(R) Xeon(R) Gold 5218 CPU and run the scheduler on the
same node as the gpu. However, the global scheduler can be
deployed anywhere.

Baseline 1: SGLang (vLLM): Our first baseline is serving
systems that support single-GPU prefix sharing, including
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SGLang [64] and VLLM (which recently added beta feature
for prefix sharing [31]). To run SGLang and vLLM in a dis-
tributed fashion, we set up a load balancer that sends requests
in a Round-Robin fashion to individual SGLang/vLLM in-
stances ( i.e., data parallelism). As Round Robin essen-
tially distributes requests evenly, this baseline captures a
distributed serving system that balances request load and
then perform prefix sharing within each parallel instance.
Baseline 2: Oracle partition: Different from partition-
ing requests, another way of distributing load is to partition
state (i.e., prefix trees in our case). As prefix trees are dy-
namic, and perfect partitioning requires solving an NP-hard
problem, we use an oracle approach to construct this base-
line. Specifically, at offline time, we ensemble all requests
in a workload in §3 into a single prefix tree, manually exam-
ine the key-portion tree layer of it, and partition the tree into
K (number of data-parallel instances) sub-trees by evenly
splitting this layer (e.g., with the hash values of tokens). For
certain workloads, no single layer is clearly or always the
key portion; we then partition the tree according to the top
layer that can be a key portion. Blue clouds in Figure 4 mark
the tree-node layers we choose manually as the partitioning
layer for this oracle baseline. Note that such oracle informa-
tion cannot be acquired in a real serving system. After a tree
has been partitioned, we let the online serving system consis-
tently send requests hitting a partition to the corresponding
GPU.
Metrics. We use three key metrics: request per second,
which measures serving capacity; average request latency,
which measures the average end-to-end request latency (in-
cluding scheduling time, queueing time, prefill, and decod-
ing time); and p99 request latency. Note that our metrics dif-
fer slightly from some existing LLM serving works [21, 59],
as we do not use TPOT (time per output token) or TTFT
(time to first token) as key metrics. This is because our
target LLM use has few output length, rendering TPOT
not as meaningful, and TTFT is close to request latency.
We consider p99 latency since as all other user-facing ser-
vices [6, 34], it is important to prevent high tail latency.

5.3 End-to-End Workload Performance

Single workload results. We now present our end-to-end
evaluation results of Preble on the five workloads, two
LLMs, and two GPU clusters, as shown in Figure 7. Overall,
Preble significantly outperforms the data-parallel SGLang
baseline for all the workloads, both models, and all GPU en-
vironments, as can be seen from Preble’s lower average and
P99 latency, especially under higher RPS (or the other way
around, for the same latency target, Preble can serve higher
RPS). Our improvements over SGLang range from 1.5 to
14.5x in terms of average latency and 2x to 10x in p99
latency.

Counterintuitively, Preble is better or on par with the
oracle-partition baseline for all the setups. This is because
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Figure 7: End-to-end Workload Performance The rop and middle two rows run on two and four A6000 GPUs with the Mistral 7B
model. The bottom two rows run on eight HI00 GPUs set up as 4-GPU tensor parallelism plus data parallelism with the Liama-3 70B model.
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key portions cannot always be easily identified and parti-
tioned statically and because even when a tree can be evenly
partitioned by size, requests hitting each partition can be dif-
ferent and can change over time.

Comparing across workloads, we see bigger improve-
ments of Preble over SGLang on the Embodied Agent, Tool,
Video QA, and LooGLE workloads than the Programming
workload. The Programming workload’s improvement is
relatively small for two reasons: 1) its decoding length is the
longest among all the workloads, and 2) there is a common
long systems prompt shared across all requests in the dataset.
As decoding time starts to dominate total request latency, and
we do not improve decoding performance, the room for im-
provement for Preble is smaller. Moreover, Round-Robin
request distribution on the programming workload evenly
distributes the system prompt. So, all GPUs cache the sys-
tem prompt, resulting in SGLang being able to achieve high
prefix caching within each GPU. Nonetheless, Preble still
achieves 1.56x to 1.8x in average latency and 3x to 4x
in latency improvement over SGLang in the programming
workload. The other four workloads have larger context
lengths, smaller output lengths, and smaller shared system
prompts, which enable Preble to exploit more benefits from
prefix sharing.

Preble has more improvements over the Oracle baseline
on the VideoQA and Programming workloads than the other
three workloads. The VideoQA workload has more ques-
tions for longer videos, causing non-even distribution of re-
quest load across videos. Even though the Oracle can evenly
split videos, the load is not evenly split. The Programming
workload’s Oracle split is at the layer of user problem, which
is not a good, stable indicator of key portion or request load.
Thus, for these two workloads, Oracle performs much worse
than Preble. On the other hand, the embodied agent work-
load’s key portion is the initial instruction, and each request
has a different instruction. Thus, by splitting the initial in-
struction, Oracle can almost perfectly split load and cache
prefixes. The Tool workload has a relatively uniform request
distribution across different tool uses, allowing Oracle to par-
tition load evenly.

Comparing across the number of GPUs, Preble’s relative
improvement over the baselines stays similar when going
from two to four A6000 GPUs. Considering absolute val-
ues, we see Preble successfully doubles RPS under similar
latency, showing its strong scalability. When changing from
A6000 to eight H100 and switching the Mistral 7B model to
the Llama-3 70B model, we find relative improvement for
different workloads to be different. For example, with the
programming workload, the H100 setup has a much larger
improvement over SGLang. On the other hand, with the Em-
bodied Agent workload’s improvement becomes smaller, es-
pecially on p99.

Azure trace and mixed workloads. Our experiments above
use a Poisson request arrival distribution (which is the same
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as most existing LLM works [21, 25]). To understand Pre-
ble’s performance under real-world request load, we use
the request arrival times from Azure LLM Inference Trace
(§3.6). However, as our GPU environment and model are
different from Azure’s and Azure’s being unknown, we scale
all inter-arrival time by 0.7 (42% more intensive request
load) to saturate our GPU cluster. The Azure trace contains
two types of uses: Code which users submit a piece of code
and asks a question about it, and conversation, where users
chat with the LLM. As these real user data (prompt and out-
put) are not released by Azure, we can only try matching our
workloads to them. We use our Tool workload as Azure’s
Code usage, as its prompt-to-output ratio is similar to Azure
Code’s, and users also ask questions in the Tool workload.
We use our VideoQA workload for the conversation work-
load for similar reasons. Specifically, we replace the Azure
trace (with an increased arrival speed). When the trace is
a Code request, we randomly sample one request from our
Tool workload and similarly for Conversation (VideoQA).
Figure 8 shows the evaluation results of Preble and
SGLang on four metrics: average request latency, p99 re-
quest latency, TPOT (time per output token), and TTFT (time
to first token). TPOT measures the output generation speed,
and TTFT measures the prefill time and the queueing delay.
As seen, Preble outperforms SGLang on all metrics, showing
the effectiveness of Preble in a potential real-world, mixed-
workload scenario.
vLLM backend results. To demonstrate Preble’s versatility
with multiple LLM backends, we evaluate Preble on vLLM
with the vanilla VLLM and the oracle partitioning as the
baselines. We use a slightly different version of the Mistral
7B model (v0.2) for this experiment, as VLLM only supports
this version. Note that vLLM recently added beta support
for prefix caching, which we include in the baseline. Fig-
ure 9 plots the results of running the VideoQA workload
on 2 GPUs and the Mistral 7B v0.2 model for both Preble
and vLLM. Compared to SGLang as a backend, vVLLM as a
backend gives Preble less relative improvement for several
reasons: 1) local-GPU prefix sharing is in beta version and
not as performant as SGLang; 2) vLLM does not use the
flash_infer kernel which makes prefix sharing more efficient;




and 3) vLLM does not support chunked prefill together with
prefix caching.

5.4 Deep Dive

We now provide a detailed analysis of Preble, including an
ablation study and the global scheduler scalability test. Be-
cause of HI00 GPU’s high cost and low availability, we run
all experiments in this section with A6000 GPUs.

Ablation study. To understand where the benefits of Preble
come from, we evaluate Preble byincrementally additng fea-
tures presented in §4. We use the Tool workload with a Zipf-
1.1 distribution to represent real-life skewed tool popularity.
Other workloads and distributions benefit from a different set
of techniques.

We start with using the Oracle partition. We first add the

per-request E2 policy (§4.2), which results in an improve-
ment on both average and p99 request latency because E2’s
dynamic load partitioning (which benefits more for a skewed
workload like this). We then add the post-assignement global
rebalancing and autoscaling, which successfully balances
out load even more, resulting in further improvement, es-
pecially with p99. Further adding the Prefill/Decode-aware
handling results in more improvement on both average and
P99, since this considers the current batch composition and is
able to better utilize the GPU resources. Finally, we add the
local-scheduler priority-based wait-queue scheduling (§4.3),
which, as expected, improves p99 but not average, as its goal
is fairness.
Global scheduler performance and scalability. We mea-
sured the maximum throughput of our system for the Tool-
bench dataset by running 50000 requests of tool sizes 200
and 1500(the entire dataset) and found the performance to
be 634 and 245 requests per second, respectively. On the
VideoQA dataset, a simpler tree structure, we can at 1500
and find the performance to be 2931 requests per second.
This implies that our global scheduler can manage at least
hundreds to thousands of GPUs under peak RPS for work-
loads similar to ours.

6 Conclusion

This paper identified the problem of distributed serving for
long and sharing prompts. To solve this problem, we per-
formed a study on five LLM workloads and one real LLM
trace. We presented E2, a distributed LLM request schedul-
ing algorithm targeting LLM usages with long and shared
prompts. We built Preble, a distributed LLM serving system
using the E2 algorithm. Our results show that Preble sig-
nificantly improves LLM serving performance over SOTA
serving systems.
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