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INTRODUCTION 

The field of high energy physics has grown at a tremendous rate in the 
last few years. Not only has the number of experiments been increasing, but 
so/also have the amount and complexity of the data obtained in individual 
experiments. The analysis of such vast quantities of data has been made 
feasible by the increasing availability of high-speed digital computers. This 
article reviews some of the methods currently in use, as well as the prin­
ciples on which they are based. 

In the author's experience many experimentalists working in high energy 
physics have had very little, if any, formal training in the theory of prob­
ability and statistics. They may, however, be quite adept and experienced 
in the manipulation of distributions. (In fact they often rediscover theorems 
well known to the statisticians.) It therefore seems essential to start with 
some discussion, necessarily extremely sketchy, of the underlying ideas. 

In essence, science consists in learning from experience: our observations 
lead us to make statements about nature. The process is known as induction. 
I t is utterly and completely different from deduction, the principal tool of 
mathematics. Observations may lead one to believe--more or less strongly-
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certain laws of nature, but such laws cannot be proved in the sense that a 
mathematical theorem can be proved on the basis of a set of axioms. Induc­
tion is basically the application of common sense. Our belief in a theory is 
generally strengthened if our observations are a probable (or certain) con­
sequence of the theory; it is weakened if the observations are improbable 
on the basis of the theory. Our observations thus allow us to arrange in 
order our relative degrees of belief in various theories. This is, of course, 
generally not done on the basis of the observations of a single experiment; 
a large amount of prior knowledge also comes into play. The formal state­
ment of the principle involved was given by Bayes in the 18th century. The 
fact that the principle was given a mathematical form did not reduce in­
duction to deduction. An attempt to do so would be absurd. Equally absurd 
would be attempts to eliminate induction, since the pursuit of science is 
impossible without it. 

There is, unfortunately, a great deal of controversy among the experts 
in the field of probability and statistics about both the basic principles and 
the methods to be used. One might crudely divide the different schools into 
two groups, the "Bayesians" and the "anti-Bayesians." 

The Bayesian builds induction into the structure of his theory. This may 
be done by introducing the concept of "degree of belief" and giving rules 
governing it [see, e.g., Jeffreys (1)]. Alternatively, one·can formulate theories 
of "inductive behavior," which give rules of action on the basis of all the 
available information; such theories of behavior can be applied to many fields 
such as (for instance) economics or agriculture, but generally not to physics. 
Anti-Bayesians give rules by which a scientist can combine and distill his 
data to the point where the inference is "obvious." They would have the 
scientist lead his readers to the brink of induction, but then let each reader 
take the plunge in his own way. This may seem to be the coward's approach, 
but it does have a great practical advantage: It allows the scientist to limit 
the scope of his discussion to his own experiment and things which he feels 
have an immediate bearing on it; it leaves each reader free to evaluate the 
results in the light of his own knowledge and experience. 

1. REVIEW OF PROPERTIES OF SOME DISTRIBUTIONS 

1.1 General remarks and definitions.-Oui: basic notions of probability 
distributions are tied to the idea of relative frequency. When we say that a 
tossed coin has a SO percent probability of coming up "heads," we imagine 
that in a large series of tosses this coin would come up heads about half the 
time. In the modern form of the calculus of probability, one constructs an 
abstract definition which endows the probability P with the kind of prop­
erties one associates with relative frequency: 

(a) P is a positive set function 0 ~P ~ 1. In the case of the coin toss, 
the set has two "elements," heads and tails. 

(b) P is additive: peA or B)=P(A)+P(B): the probability that in the 

" \ 

throw of a die either the "one" or the "two" will come up is t, if the probabil- ,J 
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ity that the "one" will come up is i and that the "two" will come up is i. 
(c) The probability for the whole set is unity, i.e., P is normalized . 
A variable that takes on a distinct numerical value for each element of 

the set (e.g., the number of dots on each of the six sides of a die) is called a 
random variable. In what follows we shall speak only of such random vari­
ables and their probability distributions. A random variable may range 
over a discrete spectrum or a continuous spectrum, or a spectrum which is 
partly discrete and partly continuous. To treat the distributions of random 
variables with rigor and generality takes a rather formidable mathematical 
apparatus. It seems, however, that very little if anything of practical im­
portance is lost by sticking to the rather crude and simple approach cus­
tomary among physicists. For a single continuous random variable x, we 
say that P(x)dx is the probability that the variable lies in the interval dx at 
x. If the variable ranges over the interval from a to b, the normalization 
condition is clearly JabP(x)dx= 1. We shall call P(x) the probability density. 

Suppose that we have two random variables x and y, with x lying be­
tween a and b and having a probability density P(x), and y between a' and 
b' with probability density Q(y); we shall assume that they obey a joint 
distribution, characterized by a joint probability density, say R(x, y), such 
that R(x, y)dx dy is the probability that the variables lie in the area element 
dxdy at the point (x, y). We then require that R have the properties 

~ b f., R(x, y)dy = P(x), f. R(x, y)dx = Q(y) 

The normalization of R follows from the normalization of P (or Q): 
b b' b 

f f R(x, y)dxdy = f P(x)dx = 1 
a a' a 

We define the conditional probability density of y, given x, S(y/ x), by the 
relation S(y/ x)P(x) =R(x, y). Similarly we define T(x/ y), the conditional 
probability density of x, given y, by T(x/ y)Q(y) = R(x, y). From these 
definitions we immediately obtain the relationship known as Bayes' theorem: 

T(x I y) = S(y I x)P(x) = S(y I x)P(x) 1. 

Q(y) f S(y I x)P(x)dx 

We shall see below how "Bayesians" apply this relationship to the problem 
of induction. 

Two random variables, x and y, are said to be statistically independent 
if their joint probability density R(x, y) can be written as a product, 

R(x, y) = P(x)Q(y) 

This "product rule" clearly cannot be proved, since it serves to define the 
concept of statistical independence. The definition is, however, in accord 
with our primitive concept. Two independent dice would come up snake 
eyes -is of the time if each one has a probability of i of coming up on the 
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"one"; by "independent" we mean here that the two dice do not exert any 
influence on each other. One of the important things in the analysis of any 
experiment is to try to establish which variables can be considered independ~ 
ent in this sense. 

All the definitions made so far for two random variables can be extended 
in an obvious way to any number of random variables; they also apply to 
discrete variables if we replace integrals by sums and "probability density" 
by "probability." One often encounters distributions in which some of the 
variables are discrete and some are continuous; this also does not cause 
any complications. 

A function, y(x), of a random variable x is also a random variable. Two 
such variables are said to be functionally dependent (as opposed to sta­
tistically dependent). It should be noted that the joint probability density 
is not really a well-defined concept for two functionally dependent variables, 
since the density would have to vanish everywhere in the x-y plane except 
on the line y(x). If we are given the probability density P(x) for x, we obtain 
the probability density Q(y) for y by requiring .that Q(y)dy = P(x)dx or 
Q(y) =P(x) i dx/dyi. (This has to be modified slightly if x is not a single­
valued function of y.) We generalize the above in the usual way to the 
transformation of r variables: If YI, Y2, ••• , Yr are functions of Xl, X2, 

x r , then 

Here P and Q are the joint probability densities for the Xi and Yi, respectively, 
and the Jacobian J gives the transformation of the volume element in the r-. 
dimensional space. 

1.2 Mean, moments.-We define the mean or expectation value of a 
random variable X with probability density P(x) as (x) =JxP(x)dx. Simi­
larly, the mean of some function f(x) is defined by (j(x) = ff(x)P(x)dx. 
The quantity (xn) is called the nth moment of the distribution; the nth 
moment about the mean, «x- (x»)n), is called the nth central moment. 
The variance of x, V", is the second central moment: 

V., = «x - (X»)2) = (X2) - (X)2 

The standard deviation u" is defined as u" = (V,,)1/2. In a distribution in r 
variables Xl, X2, • • • X" we define the mean of Xk by 

(Xk) = f f ... f dx;dx2 ••• dXrx"F(Xl, X2, ••• ,xr) 

The generalization of the variance is the moment matrix M: 

Mkl = «Xk - (Xk»)(XI - (Xl»)) 

= f f ... f dXI ••. dX.(Xk - (Xk»)(XZ - (xz»)P(x" ••• , x.) 

= (XkXI) - (Xk)(XZ) 

" l 
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Here M is symmetric and nonnegative; its r diagonal terms are the variances, 
its off-diagonal terms the covariances. The correlation coefficient Pkl for the 
variables Xk, XI is defined by Pkl = Mkz/(MkkMII)I/Z = Mkl/UkUI. From the def­
inition of M and the well-known Schwarz inequality, one deduces that 
I Pkzj ~ 1. The equality holds if and only if Xk is a linear function of XI; in 
that case we are dealing with a distribution in only (r -1) random variables; 
the moment matrix is then singular,' since two of its rows are proportional. 
More generally, if there are s linear relations among the Xk, the rank of M 
is (r-s). 

Consider S linear functions y!, Yz, ... , y. 6f the N random variables 
Xl~ X2, ... , XN, 

or, in matrix notation, 

N 

y, = :E TiiXi +.a" 
i-I 

for 1 ~ i ~ S 

y = T·x + a 2. 

Now the moments of the y's are clearly linear functions of the moments 
of the x's; for the mean we have 

(y) = T·(x) + a 3. 

The moment matrix of the y's, say My, is given by 

M. = «y- (y».(y - (y»t) 

= T·(x - (x»· (x -(x»t·Tt 

or 

4. 

(here M", is the moment matrix of the x's, and the dagger indicates trans­
position). If the y's are functions of the x's that are nearly linear in that 
part of the space where P(x) is large, Equation 4 may sometimes give an 
adequate approximation to the moment matrix My, if one takes for Ti; the 
first partial derivatives (ay,/ax;) evaluated at or near the mean (x); this 
approximation is known to physicists as the propagation of errors. 

If the Xi are statistically independent, then M", is diagonal, and the 
varia~ of the y; become linear functions of the variances of the Xi: 

~4n .. ~ N N 

Vy, = (Mu);, = :E (T,j)2(M,.)jj = :E (Tij)2Vzj 
;_1 i-I 

or, in terms of standard deviations, 
N 

tTu,2 = :E (T,j)2tTzi2 
i-I 

5. 

Consider now N statistically independent random variables Xl, ••• , XN, 

each obeying the same distribution (the Xi might, for instance, represent N 
independent repetitions of a measurement of some quantity). The linear 
function 
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N 

t = (liN) LXi 
i-I 

is known as the "sample mean"; it is a random variable and hence quite 
different in nature from a mean such as (x), which is a constant. By setting 
T,; = (1/ N), a, =0, and ~= Y1, we get, from Equations 3 and 4, 

<0 = (x) 

1 
0",2 = - O"z2 

N 

6. 

7· 

The standard deviation u, is a measure of the spread of the distribution of ~. 
Since it decreases as (N)-1/2, the probability density for ~ becomes more 
concentrated near the mean (x) as N increases. In other words, for large N, 
the sample mean ~ is very likely to be near (x). We can easily generalize 
these results to the case in which the ith "observation" consists of several 
random variables Xi, Yi, Zi, •••• The quantities 

N N N 

t = (liN) LXi, 11 = (liN) L Yi, r = (liN) L Zi, etc. 
i_I i-I i_I 

have the means (~) = (x), (1/) = (y), (n = (z), etc.; the moment matrix for the 
variables ~, 1/, t, . . . is just 1/ N times the moment matrix for x, y, Z, ••• ; 

This can be shown by application of Equations 3 and 4. 
1.3 Multinomial and Poisson distributions.-Let us illustrate the ideas 

developed in the preceding section with the help of a few well-known ex­
amples. Consider, first, a reaction which can go into r different channels, 
and has probability Pi of going into the ith channel 

( tPi = 1) ._1 
Suppose we observe N examples of the reaction; the probability of having n1 

" 

going into the first channel, n2 into the second, etc., is given by the multi- t, 
nomial distribution 

N! r 

Pmult(ni) = --II Pini 

II
r 

., i_I 
n •. 

i_I 

8. ' 

We must consider Pmult as a function of only (r-1) random variables, since 
the r variables n; are functionally related, ' 

( tn;=N) ._1 
The form of P is derived by repeated application of the product rule and use 
of the additive property of probability. We have, for the means and moment 
matrix of the n;, 

(ni) = Np. 
«on;)(oni» = NP.(Oii - Pi), 1 ~ i, j ~ r 

9. 

10. 

,~./ 
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,J where 

lin, "" n, - (ni) 

These results are easily verified for the trivial case of N = 1, i.e., a single ob­
servation; they are the~ directly generalized to ~ny N by use of the results 
about repeated observations developed in the preceding section. The mo­
ment matrix is singular, since the n; are linearly dependent. 

In an experimental run of given duration, the probability of observing 
some reaction N times is usually assumed to take the Poisson form, 

ANe-A 
Ppoi.(N) = -m 

The Poisson law is an approximation to the binomial distribution which 
is good when the maximum possible value of N is very large compared with 
the expected value; even when this condition is satisfied, the Poisson law 

-\ may not apply because the basic assumption of the statisticaJ independence 
of the individual observations is not valid (as, for instance, in a counter 
experiment in which the resolving time is not negligible compared with the 
average time between counts). 

The probability of observing 111 reactions going into the first channel, 
n2 into the second, etc., may be expressed as the product of the probability 
for observing a total of N .reactions and the conditional probability, given 
N, of having a division into n1, n2, etc.: 

P(n1, n2, ... , rtr-I, N) = Pmult(nI, n2, .•. ,nT-II N)Ppoi.(N) 
N! T ANe-A 

= ---II Pini'---

II
T i_I NI 

nil 

'. 

= tr (Ap;)nie-(APi) 

i-I n;l 

we see here that P can also be written inthe form of a product of Poisson 
distributions, as one ,,,ould expect. 

1.4 Normal and X2 distributiolls.-0ne can show, under quite general 
conditions, that the distribution of the sum of N random variables ap­
proaches the Gaussian or "normal" form as N --> 00 ; this result, familiar to 
physicists from the theory of the random walk, is known in statistics as the 
central limit theorem. l In many applications in which N is large though 
finite, the Gaussian or normal distribution provides an adequate approxima­
tion. 

The probability density for the most general normal distribution III n 
variables Xi can be written as 

P(x) = C· exp [- (1/2) (x - a) t. B·(x - a)], - 00 :::; Xi - 00 11. 

I For derivation of this and other results in the theory of statistics, the reader 
should consult the texts of Cramer (2) and of Kendall & Stuart (3). 
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here X and a are r-component column vectors and B is a positive definite 
symmetric n-by-n matrix (if B were not positive definite, the normaliza­
tion integral would diverge). Since P is an even function of (x-a) we must 
have 

r: r: ... r:d"x(X - a)P(x - a) = 0 12. 

hence 

«x - a» = 0, or (x) = a 13 .. 

We can obtain the moment matrix by differentiating Equation 12 with re­
spect to a; we obtain 

J f . . . J d"x[ -1 + (x - a)· (x -a) t. B ]P(x - a) = 0 

or 

-1 + «x - a)· (x - a) t). B = 0 

hence 

«ox) (ox) t) = B-1, where oX = x - a 14. 

Any set Yl, ... , y. of linear independent functions of the n variables is 
also normally distributed. We briefly outline the proof: For s=n, we are 
dealing with a transformation of variables; the quadratic form in the ex­
ponent of Equation 11 goes over into a quadratic form of the y.; the Ja­
cobian is constant and can therefore be absorbed into the normalization 
constant. If we are dealing with fewer than n variables Yi, they can always be 
considered a subset of a complete set of n variables. Such a subset of Gaus­
sian variables is itself a set of Gaussian variables; to show this we must in­
tegrate the probability density over the remaining (n-s) variables. Each 
integral can be carried out by completing the square in the exponent, and 
this procedure always leaves a quadratic form of the remaining variables 
in the exponent. Fortunately we do not need to carry out this procedure to 
obtain the probability density, say Q(y), of the variables y .. , since the form 
of Q is completely determined by the means and the moment matrix of the 
y/s. Let us set 

Y = T·x + b 

then 

(y) = T·a +b 

and 

«oy)(oy)t) = T·B-l.Tt = H-l 

hence we have 

Q(y) = G'exp [-(1/2)(y - (y})t-H'(Y - (y))] 

We are often interested in the distribution of the quadratic form in the 

l' 
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exponent of Equation 11. Let us first consider the case in which a=O, 
B=I); t~n 

P(x.) = C exp [- (1/2)x2(x;) 1 15. 

with 

16. 

Here the Xi are independent Gaussian variables with mean (Xi) = 0 and 
standard deviation Ui = 1. We can consider X to be the length of the radius 
vector in the n-dimensional state of the Xi. The volume element is then 
proportional to Xn-1dX, or (x2)(n/2)-1. d(X2) , if we want to express it in terms of 
the variable X2• We have, therefore, 

P n(x2)d(x2) oi: eX2/2(x2) (n/2)-ld(x2) 

or 
1 

Pn(X2) = e-X2/2(X2) (n/2)-1 

2n/2r (~) 
the normalization constant follows directly from the definition of the 
function. One finds, for the mean and the standard deviation, 

"X2 = (2n)1/2 

17. 

18. 

this last result can be shown most simply by appealing to the general re­
sults for sums of random va'riables developed in Section 1.2. If n is large, 
then Pn is nearly Gaussian; this follows from the central limit theorem, but 
can also be shown directly by asymptotic expansion of Eql.lation 17. 

If we now consider the general case of the n-dimensional Gaussian, 
Equation 11, we can show that the quantity 

x 2 =(x-a)t·B·(x-a) 19 . 

also has the probability density given by Equation 17: we can always con­
struct a linear transformation of the variables Xi so that X2 will take on the 
form of Equation 16; since the Jacobian is constant, P will take the form of 
Equation 15, and the result follows. 

2. ESTIMATION OF PARAMETERS 

We now return to the central problem: what can we say about nature 
after we have made some experimental observations? Very often the prob­
lem presents itself in the following way: we know the form of the statistical 
law which the observations must follow, but the law may contain some un­
known or poorly known parameters; given some observations, what can we 
then say about these parameters? This problem of estimation of parameters 
has been treated at great length in the statistical literature [for an extensive 
treatment and bibliography, see Kendall & Stuart (3)]. We shall confine 
ourselves to a brief discussion of the underlying ideas involved in various 

o 
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different approaches, and then present some illustrative examples. In the 
following we shall denote the observations of a single experimen1(by Xi and 
the parameters by a. The joint probability density L(x;; a) for the experi­
ment is usually referred to as the likelihood function. 2 

We shall use as our "standard example" an experiment consisting of N 
independent observations Xl, X2, ••• , XN of some quantity a (say, for in­
stance, the length of some object); suppose that the resolution of our meas­
uring instrument is known to be Gaussian in form with a standard deviation 
CT. Then the likelihood function for the experiment has the form 

L(Xi; a) = c·exp [- _1_ t (Xi - a)2J 
20-2 i_I 

20. 

2.1 Bayesian approach.-The Bayesian postulates that at any stage his 
relative strength of belief in various possible values of a may be described 
by a probability density pea). Such a probability does not have a frequency 
interpretation, but it may still be assumed to obey the axioms of probability 
distributions in general. The likelihood function can then be regarded as a 
conditional probability density L(x.1 a) for the Xi, given a. If our particular 
experiment yields a particularly set of observations Xiobs , we can express our 
strength of belief after the experiment with the help of Bayes' theorem, 
Equation 1: 

Pnew(a I X,ObB) ex L(X,obB I a) ·Pold(a) 21. 

where P old describes our strength of belief prior to the experiment, Pnew 

that after the experiment. Here Pnew is seen to be a conditional probability, 
since it depends on the given observations xobs.3 Equation 21 is the formal 
statement of Bayes' principle. It illumines the fact that different physicists 
faced with the same experimental observations may legitimately come to 
different conclusions: they have different "prior" knowledge and therefore 
assess the prior probability Pold , differently. How then can an experimenter 
present the results of his work in an "objective" fashion, that is, without 
introducing his own prior beliefs? One way, often used by physicists, is to 
present L(x,obs; a) as a function of a for his particular observations Xiobs ; it 
is then left up to each reader to apply Bayes' principle in his own way, that 
is, to put in his own knowledge or prejudice. 

There is often a temptation to go one step farther and to try to give the 
conclusions of the experiment, assuming "complete ignorance" of a prior 
to the experiment. In order to do this we have to give Pold , corresponding to 
to "complete ignorance." There is, however, no universal prescription for 

2 We assume that a can take on a continuum of values. The Xi can be either dis­
crete or continuous random variables; if all the Xi are discrete variables, then L is a 
probability rather than a probability density. 

3 The quantity POld depends, of course, on previous knowledge and observations; 
it therefore seems best to abandon the rather misleading term of "a priori probability" 
which has often been used [see Jeffreys (1)]. 
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doing this. One rule that tends to suggest itself is to say that ignorance cor­
responds to the assumption that Pold is constant over the interval in which a 
is defined. This rule leads to the following difficulty: Suppose we were to 
state the likelihood in terms of some other parameter (3, which is some non­
linear function of a. Then we must require, for consistency, that the 
prior probability for (3, say Qold, is given by Pold (a)da = Qold ((3)d(3 

= Qold((3) (d(3lda)da. Since we cannot have both Pold and Qold constant, we 
see that according to the above rule, ignorance of (3 leads to different results. 
Jeffreys (1) has tried to fOrmulate rules which partially meet this and other 
objections. One may, however, question the necessity or even the desirability 
of giving a precise definition to a concept as vague as ignorance. The crucial 
point is this: An experiment that gives a "good" measurement of a is one 
for which L(xiObSI a) is a sharply peaked function of a; if we were relatively 
ignorant of a before the experiment, we imagine Pold(a) to be a relatively 
smooth function, and our new belief, Pnew(al Xiobs), dominated by the peak 
in the likelihood function. 

In our standard example of N repeated measurements of a, L(x,obs; a) 
is easily seen to be a Gaussian function of a with its peak at 

N 

(UN) L Xiob, 
i_I 

and its width given by the standard deviation u I Nl/2. The width of L does, 
therefore, decrease with increasing N. Consider now the more general case 
of Xi independent observations, each of which has the the probability density 
P(Xi; a). Then the likelihood function is L(xi; a) =I1i==l N P(Xi; a). Now one 
can show that under quite general conditions L(Xi; a) is very likely to be 
approximately Gaussian in a for sufficiently large N.4 Take, for example, the 
measurement of the lifetime of an unstable particle: the probability density 
for observing a time t; for the ith event is P(ti; T) = T-1e(ti/T) , so that the 
likelihood function is 

with 
N 

T= Lti, 
i_I 

22. 

for 0 ::; ti < 00 

(We ignore, for simplicity, effects due to the finite time of observation, un­
certainty in ti, etc.) For some particular value of T, say Tobs, and for large N 
we can expand Equation 22 asymptotically; we find that it is approximately 
a Gaussian with its maximum at Tmax = (11 N) Tobs, and a width (standard 
deviation) equal to Tmaxl NI/2. Re-expressedin terms of the decay rate A, the 
likelihood function takes on the form 

L'(ti; A) = AN exp (-AT) 

4 This result, though well known to physicists, is not found in this form in the 
standard texts on statistics, since anti-Bayesians attach no particular significance to 
the shape ofL(x,ob,; a). 
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where A = liT. The quantitities Land L' are of course quite different func­
tions of their respective parameters, although they contain exactly the 
same information. For sufficiently large N, L' is also nearly Gaussian. If N 
is not very large, it turns out that L'('A) is more nearly Gaussian than L(T); 
therefore, if we wish to characterize the shape of the likelihood function by 
the position of its maximum and its width, this is better done in terms of A. 
Alternatively, one can often adequately characterize L by three values of 
the parameter: the value at which L has its maximum and the two values at 
which it has dropped by a factor of (e) lIz, that is, the two points which cor­
respond to (IL ±u) for a Gaussian of mean IL, standard deviation u. 

Likelihood functions that depend on several parameters ax may often 
be adequately described by giving (a) the point where L has its maximum, 
and (b) the shape of L near that maximum; if L is roughly Gaussian near its 
maximum we can specify the shape in terms of the moment matrix,6 that is, 
the inverse of the matrix [ - (aZlnL) l(aaxaal')lam.X" Physicists often refer to 
this moment matrix for the parameters as the error matrix. If L is relatively 
large in several distinct regions of the space of the ax, we can describe it by 
giving the positions and heights of all the important maxima and the cor­
responding error matrices. Here L may be large on or near the boundary of 
the "physical region," that is, the region in which the ax are physically 
meaningful; even in that case it may be expedient to give the position and 
height of the maximum, which may be outside the physical region, and the 
error matrix. 

Bayes' principle, Equation 21, leads to a simple and consistent method 
of combining independent experiments: Suppose a second experiment is 
described by a likelihood function L' and has yielded a set of observations 
y,ob" then we must again revise P new, -the belief we had after the first experi­
ment, to obtain Pnewest: 

P newe.t(a , Yiobs, Xiobs) ex: L' (Yiob, , a)P new (a , Xi) 

ex: L'(y,obB' a)L(xiob., a)Pold(a) 

Had we considered the two experiments as one composite experiment, we 
would have formed L'L, the joint probability density for the set of observa­
tion Xiob., y,ob., and would therefore have arrived at the same result. This 
rule for combining experiments must be used with caution, because of 
possible uncertainties common to the experiments. Thus, for instance, in 
the determination of the lifetime of a particle we have to know the mass in 
order to calculate the proper times ti; several experiments using the same 
mass determination in their analysis are then subject to a common uncer­
tainty. 

The combination of several experiments becomes particularly simple if 
all the likelihood functions are Gaussian functions of the parameters, since 

6 Since L(x" ax) is not a probability density for afx, the term "moment matrix" 
is here used in a somewhat extended sense. 

t 
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a product of Gaussians is itself a Gaussian. (This is one reason for trying to 
pick the parameters in a way that makes the likelihood functions appear 
nearly Gaussian.) Consider the case of two likelihood functions with peaks 
at 0<1 and 0<2 and error matrices £1 and £2, respectively: 

L 1 0c exp [-!Co< - O<I)t. £1-1 . (0< - 0<1)] 

L 2 0c exp[-!Co<- 0<2)t·£2-1 .(0<- 0<2)] 

Then, if we form the product and regroup the terms appropriately, we find 

23. 

where 

and 

The extension to more than two experiments is immediate. For a single 
parameter, Equation 23 reduces to the familiar inverse-square weighting 
rule; with €1=U12 and €2=U22 we get 

al.2 = 0"1.2
2 (~at + ~ a2) 

0'1 0"2 

2.2 Anti-Bayesian approach-point estimation.-The problem of estima­
tion can be put in the following way. Let us try to find some function a* of 
the random variables Xi which is likely to represent a "good estimate" of 
the true value of the parameter a. Since a*(xi) is a function of random vari­
ables, it is itself a random variable; that means that if we were to consider 
a series of experiments performed under identical conditions, a* would take 
on a series of values. The probability density of any such function can be de­
rived from that of the Xi, that is, from the likelihood function. A particular 
a*(xi) is considered to furnish a good estimate if its probability density 

"i g(a*; a) is highly concentrated near a for all admissible values of a. The 
result of a particular experiment which has yielded the particular observa­
tions Xiobs is then "summarized" in aobs*=a*(xiobs). We can thus avoid use 
of Bayes' principle, by simply confining ourselves to the statement of 
CI!obs* and g(a*; a); but we do this at the cost of not saying anything about 
the true value of the parameter. If we did want to conclude something about 
the true value of a, we would have to say that since the probability density 
of a*, g(a*; a), is strongly peaked about a, CI!obs* is likely to be close to the 
true value of a; therefore, the true value of a is likely to be close to CI!obs*. We 
are thus consciously or unconsciously applying Bayes' principle to the dis­
tribution of a*(x;) rather than directly to the distribution of the observa­
tions Xi, that is, the likelihood function. 

Two principal criteria are usually applied in picking a "good" estimator 
a*: (a) the u of a* should be as small as possible; (b) the "bias," i.e., the dif­
ference between (a*) and a, should be small compared with the u. A third 
criterion, simplicity of the form of a*, may also come into play. Consider our 
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standard example of N repeated observations Xi of some quantity a. We 
might try, for simplicity, some linear function of the Xi say 

N 

a*(x.) = L WiXi 
i-1 

The bias and the a of a* depend on the particular choice of the weights 
Wi; it is easy to show that the choice Wi= 1/ N leads to zero bias and the 
smallest a. Is it possible to find some other, nonlinear, estimator that is 
even better? The answer to this and similar questions is contained in a 
fundamental theorem6 that puts a lower limit on the standard deviation of 
any unbiased estimator: 

_1_ < /(0 In L)2\ = _ /02 In L\ 
ua *2 - \ 00 / \ oa2 / 

If· the likelihood function is of the form L(xi;a) =II! P(Xi; 
Equation 24 takes on the form 

_1_ ~ Nf dxP(x) (oInP)2 = _ Nf dxP(x) 0
2 

In P 
ua*2 oa oa2 

24. 

a), the 

25. 

An estimator that attains the minimum a-that is, one for which the equal­
ity sign in Equation 24 (or Eq. 25) holds-·is said to be an efficient estimator. 
Such efficient estimators exist only for a very limited class of problems: the 
likelihood function has to have a form such that 

° In L(x.; a) [() 1 ( ) -----'-- = f Xi - a k a 
oa 

26. 

the function a* = !(Xi) is then an efficient estimator of a. For the likelihood 
function of our standard example, Equation 20,011e finds 

° In L = (~ t Xi _a) N 
oa N ._1 u 2 

Therefore a* = (1/ N) LXi is indeed an efficient estimator of a-there are 
no unbiased estimators with smaller a. Similarly one readily verifies that 
r* = 0/ N) Lti is an efficient estimator for the lifetime problem, Equation 22. 

One method of estimation with a number of desirable properties is known 
as the maximum-likelihood (m.L) method: the m.l. estimator of a is that 
value of a-say a*-for which the likelihood function takes on its greatest 
value. This method has such a close apparent similarity to the Bayesian 
approach that it is often confused with it; for in the Bayesian approach we 
would say that the most likely value of a must be near the point where L has 
its maximum, as long as our prior probability is reasonably flat. The intent 
of the m.l. method is, however, quite different from that of the Bayesian 
approach: The value a*, at which L(Xi; a) has its maximum, is considered a 
random variable. In order to see whether a* is a good estimator, we have to 

6 For proofs of this and other theorems quoted in this section, consult Cramer (2) 
or Kendall & Stuart (3). 

ti 
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examine its probability distribution; we pay no attention to the shape of L 
for our particular experiment. It can be shown that the m.L estimator is the 
efficient estimator whenever one exists (this follows essentially from Eq. 26). 
Under very general conditions, the m.l. estimator is asymptotically un­
biased, Gaussian, and efficient; that is, for sufficiently large N, the distribu­
tion of a* is approximately Gaussian with its mean at a, and its 0' is nearly 
equal to the smallest possible one. 

In spite of the desirable properties jUst mentioned, the m.l. method is 
inadequate for many problems encountered in physics. For instance, in the 
partial-wave analysis 6f scattering processes we often find that the likeli­
hood function llas several maxima of comparable height. In that case, the 
various theorems about the m.l. method are of no help. If one were to follow 
the prescription of the m.l. method, one would report only the largest 
maximum of L; this is clearly an unsatisfactory way of summing up the 
conclusions of the experiment. Even when L possesses only one maximum, 
the m.l. estimate is not guaranteed to be nearly unbiased or nearly efficient 
when the number of observations is small. 

2.3 Confidence intervals.-Suppose we have an estimator a* and its 
probability density g(a*; a). Then we can, in general, construct two func­
tions, al(a*) and a2(a*), such that there is a fixed probability, say (I-E), 
that the interval (al' (2) includes the true value of a; i.e., if the experiment 
were repeated many times, the confidence interval (al' (2) would include the 
true value of the parameter a fraction (I-f) of the time. In our standard 
example, we know that the estimator a* = (1/ N) LXi obeys the Gaussian 
distribution with mean a and 0' a* = 0'/ Nl/2; we can state that the probability 
that the interval (al=a*-CT a *, a2=a*+O',,*) includes the true value of a 
is 68 percent(the area under a Gaussian up to 0'). We could, therefore, report 
the result of our experiment by giving alobs=a*obs-O',,* and a2obs =aob.* 
+0',,*, that is, a confidence interval with a 68 percent confidence coefficient. 

'~) We cannot assert without recourse to Bayes' principle that the true value of 
a has a probability of 68 percent of lying in the particular interval; we have 
formulated a rule by which we get the "right answer" (the true value inside 

\1 the interval) 68 percent of the time, but we cannot say whether or not we 
have obtained the right "answer" in our particular experiment. 

In principle we can construct a confidence interval even when the dis-
tribution of a* is not Gaussian. We define Jt(a) andh(a) by 

f
f1 E 

g(a*; a)da* = -
_~ 2 

r ~ g(a*; a)da* = ....:.. 
J/2 2 

If the observed value of the estimator is a*obs, the corresponding values 
al, a2 specifying the confidence interval are given by the equations 

." aobs*=Jt(al), aobs*=j2(a2) (the interval may be broken into several pieces 
ifJt andh are not monotonic functions of a). Different estimators for a given 
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problem clearly lead to different confidence intervals. A good estimator­
one with a relatively small <T-will, in general, lead to a shorter confidence 
interval than a poor estimator. The shorter interval has the same probability 
of including the true value as the longer one, because it fluctuates less. 

It is generally not practical to calculate exact confidence .intervals; 
however, Bartlett has given a good method of approximation and applied it 
to the problem of lifetime determination (4). 

The confidence-interval (or confidence region) method is probably not 
so useful iIi really complicated problems in which the likelihood function 
contains many parameters and has a number of relative maxima. In any 
case, it is not a method suited to the combination of the results from several 
experiments. 

3. METHOD OF LEAST SQUARES 

When the random variables x. in an experiment are distributed according 
to the Gaussian law and their moment matrix Gij is known, then the like­
lihood function takes on the form 

L oc exp [- (1/2)x2(x; a)] 

with 

x2 = [x-!(a)]t.G-l.[x-!(a)] 

Finding the minimum (or minima) of X2 is clearly equivalent to finding the 
maximum (or maxima) of L. Thus, in the case of Gaussian variables, the 
maximum-likelihood estimate leads directly to the well-known least-squares 
method. (Note that if the variables Xi are independent, then G is diagonal 
and X2 is a sum of squares.) The least-squares criterion may provide a rea­
sonable method of estimation even if the Xi are not exactly Gaussian, and 
even if their moment matrix is only approximately known. It therefore has 
a vast number of applications in experimental physics to problems such as 
orbit-fitting, curve-fitting, mensuration and surveying, the determination 
of atomic constants (5), kinematic analysis of particle reactions (6), and 
analysis of angular distributions. We shall briefly review the method and a 
few of its applications. 

3.1 Linear problem.-Let us first assume that the n quantities fi are 
linear functions of the r parameters all. Then X2 is a quadratic function of 
the parameters: 

where we have set 

We also have, by assumption, 

! =fo+F·a 

x =!o+~ 

(~) = F· a 

«o~ (o~) t) = G 

, 
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The values, say a*, of the parameters that minimize X2 are obtained by set­
ting the first derivatives of X2 equal to zero: 

Vax2 = - 2Ft.G-l.(~ - F·a*) = 0 

lienee 

where 

H= Ft·G-l·F 

Note that 

(a*) = H-l.Ft·G-l·F· a = a 27. 

hence a* is an unbiased estimator. 
The matrix His nonsingular if, and only if, thefi are linearly independent 

functions of the aA• If there is a linear dependence among the fi' one clearly 
cannot determine all the parameters from the data. The estimates a A * are 
linear functions of the Gaussian variables ~i, and are therefore also Gaussian; 
the moment matrix of the a* is particularly simple: 

(oa*)· (oa*)t = H-l.p+. G-l. (o~)' (o~+· G-i·F·H-l 
= H-l. p+. G-l. G· G-l. F·H-l 

=H-l·H·H-l 

=H-l 28. 

We can write x 2(a) as a sum of its value at the minimum, x2(a*), and a term 
quadratic in (a -a*). One finds, after some algebra, 

(~- F· a)t. G-l.(~ - F· a) = (~- F· a*)t·G-l.(~ - F· a*) + (a - a*)t·H·(a - a*) 

Let us consider a linear transformation from the set of n variables ~ to the 
set consisting of the r variables a* and some (n -r) additional variables, 
say y. The probability density for the new set has the form 

L(a*, y; a) ex exp [-i(~ - F· a*)t. G-l. (~ - F· a*)] 

·exp[-i(a*- a)t.H·(a*- a)] 29. 

The second exponential factor is evidently just the probability density of 
the a* (except for a normalization constant). The first factor must therefore 
be the probability density for the remaining (n-r) variables y. It follows 
from the general results of Section 1.4 that X2(a*)-thatis, the quadratic 
form in the exponent-obeys the X2 distribution for (n -r) degrees of freedom. 
We have assumed up to now that we knew the form of the basic distribu­
tion, that is, the likelihood function. If our theory is incorrect, we would be 
quite likely to get a poor fit: there will be no set of values a* such that Xi will 
be close to fi(a*) for all n observations. In such a case one may obtain an 
improbably large value of X2. A very large value of X2 is therefore taken as 
an indication that the original hypothesis (i.e., the original likelihood func­
tion) may have been incorrect. We can not "prove" that the original hypoth­
esis was wrong; we cannot even attach a Bayesian probability to the 
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correctness of the hypothesis unless some other hypotheses present them­
selves to which we would attach nonvanishing probability. In other words, 
an unexpectedly large value of X2 will motivate us to search for possible 
alternative hypotheses. 

Very often the mistake does not lie in the overall formulation, but in one 
or a few of the n observations. One can often establish which ones of the 
observations are in error by an examination of the "residuals" Pi=[X; 

-fi(a*)J; their expected values are zero; their moment matrix is readily 
calculated: 

«O(l)(O(l)t) = (o(~ - F· a*)o(~ - F· a*) t) 

= (1- F·H-l. Ft. G-1). «o~)(o~)t). (I - G-1. F·H-l. Ft) 

= (1- F·H-l·Ft. G-1) ·G· (1- G-1.F·H-l·Ft) 

= G - F·H-1.Ft 

Hence the U of Pi is given by 

An observation whose residual Pi is large in magnitude compared to its 
standard deviation uP. may be considered suspect. This method must be 
applied with caution; it is most likely to be useful when the number of de­
grees of freedom (n-r) is large and the number of mistakes small. In the 
extreme case of only one degree of freedom, one can show that the quantity 
IPil/uPi is the same for all n variables; in this case the residuals contain no 
more information than the value of X2. A more detailed discussion of this 
method and its application to the problem of the determination of the atomic 
constants is found in (5). 

3.2 Polynomial fit.-Let us consider the following simple example: we 
want to fit a polynomial, 

y(x) = t aAxA- 1 

X-I 

to a set of n observations Yi made at a series of points Xi. Let us assume that ;-
the observations are independent and that the ith one has a standard devia-
tion Ui. Then we have 

where 

We also find 

ax* = t (H-I)X"Y" ,,_I 

HAp. = t (Xi)AW-2/ui2 
i-I 

Y" = t Yi(Xi),,-I/Ui2 
i=l 
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«(oax *) (oa,u*) = (H-l)>.1' 

n [r J' n (Yl)' r x'(a*) = L Yi - L aA*(Xi)A-l lUi' = L - - L a>'*YA 
i_I A=l i_I CT i A=1 

Pi = Yi - L aA*(Xi)A-l 

UP; = CUi' - t (Xi)A+,u-'(H-1hI'J II' 
>"1'-1 
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30. 

Equation 30 gives a useful check on the numerical computation. We can 
also obtain the uncertainty in the fitted curve y*(x) = La>. *XA-l: 

r 

(oY*(Xa)OY*(xz,) = L (Xa)>'-I(Xb),u-l(H-l».p 
1.'1'-1 

The matrix H will not be singular as long as at least r of the coordinates 
Xi are distinct. However, one may run into one of two numerical difficulties: 

(a) The differences between various values of Xi are small compared with 
their average; in that case H may become very nearly singular; this difficulty 
is circumvented by making a translation along the X axis, say x'=x-a, such 
that the average value of the xi' is small or zero. 

(b) The (T of one of the variables may be much smaller than all the others; 
then its contribution to HAP dominates, and H may therefore become nearly 
singular; in cases of that type one can ahvays find a rearrangement of the 
equations for a A which avoids the difficulty. 

3.3 Optimum properties.-One can show that the least-squares method 
yields efficient estimates of the parameters a A if the variables Xi are Gaussian 
and the fi(a>.) are linear functions of the a A• Even if the variables Xi are not 
Gaussian, the least-squares method gives the most efficient unbiased linear 
estimates, i.e., a>.*, which are linear functions of the observations [see (3) 
or (5)). The fact that the (T'S of the estimates are minimum when G;j, the 
correct moment matrix for the Xi, is used has the following important prac­
tical consequence: A small error in G will have only a second -order effect on 
the standard deviations of the a>. *. One can sometimes obtain a very great 
simplification in the numerical computation by neglecting some small cor­
relations. In any case, G is generally known only approximately. One can 
very often improve one's knowledge of G by a study of the distribution of 
X' arid the residuals over a series of experiments. 

3.4 Nonlinear problem.-In most applications the functions fi(a>.) are at 
best only approximately linear. In the nonlinear case the least-squares es­
timator is no longer unbiased or efficient. However, if the nonlinearities are 
small within the part of the space of the parameters in which the likelihood 
function is large, then various properties deduced for the linear case may 
still apply to good approximation. It is often adequate to represent fin 
the form 

31. 

where a>. 0 is a point near the minimum of X2 found by some method of ap-
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proximation. If the first approximation is not adequate, one can often find 
the minimum by a simple iteration procedure: Find the minimizing values 
Ol).,' assuming the form 31; re-expandii(Ol).,) about Ol).,', find the new minimum, 
etc. Occasionally more powerful minimizing methods may be necessary. 

3.5 Lagrange multipliers.-In the least-squares problem we try to "fit" 
n observations Xi with n functions, ii, of r parameters. There are therefore 
(n-r) functional relations among the Ii. It is often convenient to reformu­
late the problem in a mathematically equivalent way: We introduce the 
(n -r) constraints Ck(f,) explicitly with the help of the Lagrange multipliers 
~k. We rewrite X· in the form 

X2(X; j, J,,) = (x - j)t. G-1. (x - f) + 2J"t. C(f) 

The least-squares solution is then given by the stationary point of X· as 
a function of the n variables fi and the (n-r) variables ~k. Sometimes the 
constraints will be functions not orily of the h but also of some additional s 
unknowns, say Yu. One can then either reduce the number of constraints by 
diminating the Yu, or find the stationary point of X· as a function of the 
set of variables j, A, and y. Let us assume that the Ck are linear functions of 
the ii and Yu: 

C(f, y) = Co + Ut.f + yt. y 

One obtains three sets of linear equations on setting to zero the first deriva­
tives of X· with respect to i, y, and A: 

-G-1·(X - f*) + U'J,,* = 0, 

V'J,,* =0, 

Co + Ut.f* + yt. y* = ° 
The most straightforward way of solving these equations is to eliminate 
j*, using the first and last set, then using the result and the second set to 
eliminate A* and solve for y*; back-substitution then gives A* and f*. One 
obtains 

here 

E E! G· U, 

y* = - K-1·j·(CO+ Ut.x) 

J-,* = H-1. (Co + Of·x + yt.y*) 

j*=x-E·J-,* 

HE! Of·G· U, K E! Y.H-1. yt 

It may happen that H is singular or nearly so, although the overall set of 
equations has a well-defined solution; in that case one must rearrange the 
equations. If, for instance, G is. diagonal and one particular Xi has a much 
larger (J' than the others, H will be nearly singular; one can avoid this dif­
ficulty by grouping the equations for the corresponding ii with the set for 
the unknowns Yu [see (7)]. 

The y*, A*, f* are linear functions of the variables x, and their moment 
matrices are readily calculated; one finds 

'. 
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<COf*) (Of*)t) = G - E· (H-l- It· K-l. J). Et 

«Of*)(oy*)t) = - E·J·K-l 
«oy*)(oy*)t) = K-l 

The moment matrix of the residuals is given by 

(o(f - x)-o(f - x)t) =i E· (H-l - Jt. K-l. J). Et 
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If the constraints are nonlinear functions, one can usually find the 
least-squares solution by expanding them to first order in I and y and 
iterating. 

The method described above is widely applied to the kinematical anal­
ysis of interactions observed in bubble chambers (6-8);' the Xi are the 
measured directions and momenta of the observed charged tracks at an 
interaction vertex, the Ii the corresponding quantities satisfying the con­
straints of energy and momentum balance. If some of the directions or 
momenta are unmeasured (e.g., if an unobserved neutral particle takes part 
in the interaction), the corresponding variables may be introduced as un­
knowns y", or they may be eliminated by using a subset of the energy­
momentum constraints. The "measured" momenta and directions are es­
timates based on an analysis of the stereo images of the tracks. These es­
timates are usually the result of least-squares fits. Thus, the overall analysis 
of an interaction or a chain of interactions usually proceeds through a series 
of least-squares fits. An alternative approach is to make an overall fit to the 
"primitive" measurements by introducing a sufficient number of variables, 
unknowns, and constraints. The breakdown of the overall problem into a 
series of steps has several advantages: It allows one to deal with problems of 
smaller dimension which are more manageable from the computational view­
point; it also makes it easier to track down mistakes and inconsistencies. On. 
the other hand, the breakdown usually necessitates neglect of some correla­
tions, and therefore involves some loss of information. There are in general 
a number of ways in which a complex analysis problem can be broken down 
into a series of phases. The detailed choice clearly involves a considerable 
amount of judgment and experience. 

The kinematical analysis serves two distinct purposes: (a) It yields es­
timates of the unmeasured momenta and directions and improved estimates 
of the measured momenta and directions; these are used to calculate quan­
tities of physical interest suth as center-of-mass angles, or the invariant 
masses of groups of particles participating in the interaction. (b) The rela­
tive goodness of fit may help to decide among different possible interactions 
when the masses of the participating particles are not known. If hypothesis 
A gives an improbably large value of X2 and hypothesis B gives a X2 value 
of the order of the expected value or less, then, by Bayes' principle, one 
would consider B more likely to be correct than A unless one has other strong 
reasons to prefer A. If neither X2 is very large, one cannot make a decision 
with any confidence on the basis of kinematics alone. Formulating a X2 
criterion must be done with care; choosing consistently the hypothesis with 

," 
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the smaller X2 may lead to quite erroneous results: (a) Reaction A may occur 
much more frequently than B-there might even be a selection rule against 
B; taking always the smaller x2 would lead one to conclude erroneously that 
the selection rule is violated in cases in which by chance B happened to lead 
to a smaller X2 • (b) Even if reactions A and B occur with comparable rates, 
A might be more likely to "fake" B (that is, lead to a small X2 for B) than B 
to simulate A; a division based on the smaller X2 would then lead to too large 
a fraction of events assigned to B. Thus, before one can attempt a division 
of a sample of ambiguous events, one must have some idea of the relative 
rates of the possible reactions and some knowledge of how likely it is that 
one reaction will simulate another. 

Let us mention one other type of application of the least-squaresme.thod 
with Lagrange multipliers. Suppose we want to determine the geometrical 
parameters describing a bubble chamber and its associated camera. We 
may do this by measuring the positions of a series of reference marks and the 
positions of the images of these reference marks. The true positions of a 
reference mark and its image are constrained to lie on a light ray. The con­
straints are then functions of the coordinates of the reference marks and 
their images, as well as unknown parameters of the optical elements. In 
general, measurements of some of the optical parameters are necessary; they 
must be included in the least-squares sum. The least-squares equations will 
be nonsingular only if the measurements are adequate to determine the 
unknowns. There must clearly be at least as many constraints as unknowns, 
but this condition is not sufficient; if, for instance, all reference marks are in 
a plane parallel to the plane containing the lenses, one can learn nothing 
about the lens separation from the stereo images. 

4. ANALYSIS OF ANGULAR DISTRIBUTIONS 

4.1 Single-parameter case.-Let us first consider the simple case of the 
decay of a spin t particle such as a A into a spin 0 and a spin t particle. The 
angular distribution is of the form 

P(x; a) = 1(1 + ax), for -1 ::; x ::; 1 

Here x is the cosine of the angle of one of the decay particles with respect 
to the direction of polarization of the decaying particle; a is the product of 
the degree of polarization and the parity-nonconservation parameter. We 
find, for the first two moments, 

1 

(x) = f dx·H1 + aX)·x =!a 
-1 

«c5x)2) = (x2) - (X)2 = l(3 - a 2) 

Suppose we have a sample of N decays, i.e., N cosines Xi. The simplest es­
timate of the parameter a is then one proportional to the sample mean: 

3 N 
a* = -Lxi 

N i_l 

).1 

/ 
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.' This estimate is constructed to be unbiased, i.e., (a*) =a. Let us call a* the 
moment estimator. For the variance of a* we find 

9 1 
«oa*)2) = N «OX)2) = N (3 - ( 2) 32. 

The minimum possible variance is given by Equation 25. 

[ 

1 1 x, J-1 

= Nf dx·--
-1 2 1 + ax 

= - In---2a [ 
N ( 1 +a )J-1 

2a3 1 - a 

1 [1 1 1 J-1 

= N "3 + -:5 a' + 7" a 3 
••• 33. 

:) Comparison of Equations 32 and 33 shows that the moment estimator is 

,I} 

. very nearly efficient in this case, as long as I a I is not very close to unity. 
It should be noted that a* can range between -3 and 3, although the 
parameter a is meaningful only in the interval -1 ~a ~ 1; a value of a* 
greater than unity would be taken as evidence that the true a is probably 
close to unity, at least if N is not very small. The moment estimator leads 
to a very simple rule for combining experiments: 

3 N,+N. 1 
aeomb= L Xi= (N1 al*+N.a2*) 

NI + N2 i_,N, + N2 

(here al"', a2* are the moment estimat'es for two experiments, and N I, N2 
the number of events). 

The maximum-likelihood (m.l.) estimator has some advantages and 
disadvantages compared with the moment estimator. It approaches efficiency 
as N becomes very large, hence for sufficiently large N and I a I close to 
unity it may be appreciably more efficient than the moment estimator. For 
small values of N, however, the m.l. estimator will be distinctly biased 
towards small values of I a I, since it must be confined to the interval 
-1 ~am;1.* ~ 1. One should therefore not attempt to combine directly the 
m.l. estimates obtained for two low-statistics experiments; one should in­
stead multiply the two corresponding likelihood functions and derive a 
new m.l. estimate from the product. 

Let us next take a slightly more general case; consider a distribution of 
the form 

P(x; a) = [1 + af(x)]g(x) 

Let us further assume thatfis an odd function of the variables x in the sense 
that 

f f(x) g(x) dx = 0 
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and 

Then we have 

where 

SOLMITZ 

J P(x)g(x)dx = 0 

(j) = ah 
(j2)=h 

((Of)2) == /2(1 - a2j2) 

h "" J P(x) g(x) dx 

The moment estimator for a is then 

liN 
a* = - - Lf(Xi) 

h N .-1 
the variance is 

«oa*)2) = ~ (~ - (2) 
N h 

34. 

In the case of scattering of polarized spin t particles, we have a distribution 
of the form 

(1 + Pinc·P'(O)·sin <1» 

where Pine is the degree of polarization of the incoming particle, pI is the 
analyzing power of the scattering process, and 0 and cp are the scattering 
angle and azimuth of the scattered particle. If P' is known, we can estimate 
angle Pine by the moment method; evidently 1(0, cp) =pl(O) sin cpo 

As another example, consider an experiment to determine the magnetic 
moment of the A: A sample of A's with a polarization PI. initially in the x 
direction is decaying in a magnetic field oriented in the z direction. The direc- '} 
tion of polarization will precess at a frequency w proportional to the A mag-
netic moment. The distribution of the decay proton is then of the form 

35. 

Here n is the direction of the decay proton in the A rest frame, t the decay 
time, aA the decay asymmetry parameter, and TA the A lifetime; we assume 
WT A «1. We can estimate W by the moment method, 

with 

1 N 
w* = - Lf(n., to) 

Nhi-1 

fen, t) = aAPAnyt 

Note that the term in nx in Equation 35 has no effect since it is orthogonal to 
the other two terms. If the efficiency for detecting decays is nearly independ-
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ent of the timet and the direction n, then (t2) "",iTA
2 and (ni) ""'t. Hence we 

obtain 

12"'" i(aAPATA)2 

In many practical situatio~s, the functionsj(x) and g(x) are so compli­
cated that it is hard to calculate the integral for h, Equation 34. If N is not 
t06 small, one can obtain a reasonable approximation to h by taking the 
sample average of p; that is, 

This method can ,be used even if the exact form 6f g is not known. However, 
the method will be biased unless ff(x)g(x)dx = O. 

4.2 General case.-Let us assume that the general angular distribution is 
given by P(x; a);. the variables x represent all the angles in the problem­
in the case of an interaction chain, not only the primary production angles, 
but also those of the subsequent interactions or decays; the reaction or scat­
tering amplitudes are assumed to be expressed in terms of the parameters a. 

The total expected number of events, II, is also a function of a. Let us define 
R(x; a) = lI(a)P(x; a); the function R specifies the number of events ex­
pected in an element of the angular space. We can now write the likelihood 
function for the experiment in one of two slightly different forms, 

1 N 
£(N x·' a) = - e-'(a) IT R(x·· a) 

'" N! i.,..I'" 

e-'"N 
= 1i!.L(X;; a) 36. 

where 
N 

L(x;; a) = IT P(Xi; a) 
i-I 

and 

-,' f P(x, a)dx = 1 

The generalized likelihood function £ describes the probability distribution 
in N, the total number of events, as well as in the N sets of continuous vari­
ables Xi; on the other hand, L is just the probability density describing the 
shape of the angular distribution. Whether to deal with the generalized 
function £ or the "usual" likelihood L is primarily a question of conven­
ience. In problems in which the shape of the distribution is of primary in­
terest, one would in general use L; it contains one free parameter less than £, 
because it is independent of the total rate. On the other hand, removing one 
parameter from P makes it a somewhat more complicated function of the 

t remaining variables. 
Once the likelihood function, either Lor £, has been formulated, one geil-
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erally makes a numerical search for regions in the parameter space in which 
L (or £) is relatively large. 7 

4.3 Histogram method.-When the number of events is very large, one 
can reduce the amount of computation by splitting up the angular space 
into s intervals. Let Pk(a) be the expected number of events in the kth 
interval and nk the observed number. The likelihood function is then a prod­
uct of Poisson distributions: 

37. 

where 

The grouping of events into histogram intervals always results in some loss 
of information, but this loss will be quite small as long as the variation of 
R(x; Q) over each interval is relatively small for all admissible values a. In 
general it is more convenient to deal with the logarithm of the likelihood 
function than with the likelihood function itself. Let us define w by 

w(nk; a) = t 1m In Pk( a) - Pk( a) 1 38. 
k_l 

the quantity w is the logarithm of £ to within an additive constant. 
If nk»l for all histogram intervals, then the differences (nk-pk) are 

expected to be small compared with nk. Let us write 

. Pk - nk 
with Ek""--­

nk 

Expansion of the logarithm in Equation 37 in powers of ~ gives 

39. 

The first term in Equation 38 is independent of a; the second term is minus 
one-half the least-squares sum that one obtains when one approximates the 
{]" for nk by (nk)'i2. . 

Many scattering experiments do not contain enough information to allow 
one to determine the phase shifts or scattering amplitudes. In that case, one 
has to content oneself with determining the coefficients of the spherical 
harmonics entering into the description of the angular distribution; Pk(a) 

is then linear in the parameters a, and the least-squares approximation, 
Equation 39, leads to linear equations for the a. When the least-squares ap­
proximation is not justified (that is, when nk»l does not hold for some inter-

7 For a brief description of some search techniques, see Rosenfeld & Hum­
phrey (8). 

" 

*,,-1 

J' 
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vals) , one should maximize the exact expression for w, Equation 38; in that 
case the least-squares approximation will generally provide a good starting 
point for an iterative solution. 

In a counter experiment one always deals with likelihood functions of 
the form of Equation 37, which are functions of the discrete variables nk, 
the number of counts registered by a particular counter or counter combina­
tion. 

4.4 Detection efficiency.-In a bubble chamber experiment, the probabil­
ity of detecting an event will in general depend on the angles X as well as on 
some additional variables y specifying the position of the interaction vertex 
(or vertices). Let us assume that the detection probability is given by 
e(x, y) and the distribution of y by Q(y). Our likelihood function, Equation 
36, must then be modified by replacing R by R' and v by v', where 

R'(x, y; a) = R(x; a)e(x, Y)Q(y) 

and v'is the integral of R'. The quantity R can in general be written as a 
sum of products: 

A 

R(x; a) = L: V.(a)g.(x) .-1 
The logarithm of £ can then be written in the form 

A N 
W = - L: e.V.(a) +L:ln R(xi; a) 40. 

where 

e. = f g.(x)e(x, y)Q(y)dxdy 41. 

we have dropped terms in W independent of the parameters a. Wesee that 
the detection efficiency enters the problem only through the constants ea 

defined by the above integral, Equation 41; they can be calculated once and 
for all for a given experiment. 

In practice it is often quite difficult to evaluate the integrals for ea. An 
alternative, simpler method consists in "weighting" the individual events 
with the reciprocal of the detection efficiency. One defines a new quantity 
W': 

N 1 
W' = - f R(x; a)dx + t; -;: In R(xi; a) 42. 

where 

e; = e(xi, Yi) 

Maximization of W' leads to asymptotically unbiased estimates of the 
parameters a [this can be shown by expanding W' to second order about the 

~. true values of the parameters and showing that «(aW'jaa)atrue=Ol. Since 
" W' is not simply related to the true likelihood function of the problem, the 
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inverse error matrix is not given by ~ (aZW' jiial-aa,,). One can show (again 
by use of a Taylor expansion) that the error matrix is given asymptotically by 

«(oa*)(lltr*)t) = H-1.H'·H-l 

where 

and 

, ~ ( 1 )2 oR, oR, 
HAl' = L... -- ----

i_I eiRi oa,. oap' 

There is some loss of information involved in the use of this method of 
"weighting." This loss is serious if the function e(x, y) is close to zero for 
some values of x and y (this difficulty can usually be avoided by a suitable 
choice of fiducial volume). 
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