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Abstract

The bootstrap is an increasingly popular method for performing statistical inference. This
paper provides the theoretical foundation for using the bootstrap as a valid tool of inference for
quasi-maximum likelihood estimators (QMLE). We provide a unified framework for analyzing
bootstrapped extremum estimators of nonlinear dynamic models for heterogeneous dependent
stochastic processes. We apply our results to two block bootstrap methods, the moving
blocks bootstrap of Kiinsch (1989) and Liu and Singh (1992) and the stationary bootstrap
of Politis and Romano (1994), and prove the first order asymptotic validity of the bootstrap
approximation to the true distribution of QML estimators. Further, these block bootstrap
methods are shown to provide heteroskedastic and autocorrelation consistent standard errors
for the QMLE, thus extending the already large literature on robust inference and covariance
matrix estimation. We also consider bootstrap testing. In particular, we prove the first order
asymptotic validity of the bootstrap distribution of a suitable bootstrap analog of a Wald test
statistic for testing hypotheses.

Keywords: block bootstrap, quasi maximum likelihood estimator, nonlinear dynamic
model, near epoch dependence, Wald test.



1. Introduction

The bootstrap is a powerful and increasingly utilized method for obtaining confidence intervals
and performing statistical inference. Nevertheless, despite its power and increasing popularity,
results establishing the general applicability of the bootstrap to the quasi-maximum likelihood
estimator (QMLE) or generalized method of moments (GMM) estimator commonly used in econo-
metrics are currently available only under restrictive assumptions, such as stationarity. A main
purpose of this paper is therefore to provide results that establish the first order asymptotic
validity of the bootstrap for the data generating processes, models and estimators analyzed by
Gallant and White (1988) and Potscher and Prucha (1991): extremum estimators for nonlinear
dynamic models of stochastic processes near epoch dependent (NED) on an underlying mixing
process. We discuss primarily QML estimators both for concreteness and because there are fewer
results in this area. We apply our results to two common block bootstrap procedures, the mov-
ing blocks bootstrap of Kiinsch (1989) and Liu and Singh (1992) and the stationary bootstrap of
Politis and Romano (1994a).

In pursuing this goal, we make a number of distinct but related contributions, both theoret-
ical and practical: (1) we prove the consistency of the moving blocks and stationary bootstrap
distributions of the bootstrapped QML estimators; (2) we provide new general purpose tools
useful for analyzing the application of any bootstrap method to extremum estimators, such as
the QMLE or GMM estimator, analogous to those of Gallant and White (1988); (3) we show that
the moving blocks and stationary bootstrap provide new HAC covariance matrix estimators for
the QMLE, and (4) we prove the first order asymptotic validity of the bootstrap distribution of
a new bootstrap analog of a Wald test statistic for testing general nonlinear hypotheses on the
pseudo-true parameters of a nonlinear dynamic model. Similar results hold for our new bootstrap
Lagrange Multiplier statistic.

The plan of the paper is as follows. In section 2, we provide background and further motivation

for the focus of this paper. Section 3 provides results applicable to extremum estimators generally



and applies these to the QMLE under the nonparametric block bootstrap methods. Section 4
considers bootstrap testing. Section 5 concludes. Detailed assumptions and mathematical proofs

of results in Section 3 appear in Appendix A; proofs for Section 4 are contained in Appendix B.

2. Background and Motivation

The bootstrap has gained increased popularity as an inference tool in econometrics since the
seminal paper of Efron in 1979. Although the early work in the bootstrap literature applied only to
statistics obtained from a sequence of independent identically distributed (i.i.d.) random variables
(e.g., Bickel and Freedman (1981), Singh (1981)), the failure of Efron’s bootstrap in non-i.i.d.
settings was soon recognized (cf. Singh, 1981) and several bootstrap methods were suggested to
overcome the problem. One approach was to reduce the problem to an approximate i.i.d. setting
by bootstrapping the residuals of some parametric model. See for example Freedman (1981) and
Liu (1988) for linear regression and Freedman (1984) and Efron and Tibshirani (1986) for ARMA
models. More recently, several block bootstrap methods that do not require fitting a parametric
model first were developed as a way to capture the dependence structure of the observed data in
the “resampled” data. Examples are the moving blocks bootstrap (MBB) of Kiinsch (1989) and
Liu and Singh (1992) and the stationary bootstrap (SB) of Politis and Romano (1994a). These
methods amount to resampling blocks of observations instead of individual observations and were
first proposed for stationary strong mixing observations.

The goal of this paper is to extend the estimation context in which bootstrap methods are
validly available. In particular, Politis and Romano (1994b) demonstrate the validity of the
stationary bootstrap for minimum distance estimation with stationary mixing processes. Fitzen-
berger (1997) establishes the validity of the moving blocks bootstrap for instrumental variables
estimation of linear models of heterogeneous mixing processes. Although these results represent
important advances, they do not apply generally to a considerable portion of the estimation
procedures encountered in econometrics, which are applications of quasi-maximum likelihood

methods or the generalized method of moments. Establishing the validity of the bootstrap for



these estimation procedures is thus of great interest.

For these methods, existing results are available only for an array of special cases. For example,
Hahn (1996) establishes the first order asymptotic validity of Efron’s bootstrap for the GMM in
the 1.i.d. case. Asymptotic refinements for bootstrapped GMM estimators are studied by Hall
and Horowitz (1996) in a stationary ergodic context. Recently, Andrews (1999) has extended Hall
and Horowitz’s results by establishing higher-order improvements of the bootstrap for nonlinear
extremum estimators, thus including GMM and ML estimators. As in Hall and Horowitz (1996),
Andrews (1999) assumes a stationary ergodic data generating process for which the true moment
conditions for the extremum estimator are uncorrelated after finitely many lags.

In this paper, we provide conditions ensuring the first-order asymptotic validity of the moving
blocks bootstrap and the stationary bootstrap when applied to extremum estimators (e.g., QML
or GMM) of nonlinear dynamic models for processes NED on an underlying mixing process. To
accomplish this goal we rely on the results of the bootstrap of the sample mean for NED processes
established in Gongalves and White (2000a).

We focus on the nonparametric block bootstrap (MBB and SB) to define the bootstrapped
QML estimator, although we provide results that cover bootstrap methods generally. The non-
parametric block bootstrap does not depend on a particular parametric model to generate the
resamples and it is therefore robust to model misspecification. In the context of nonlinear dy-
namic models, it amounts to resampling observations on a vector valued array containing all the
dependent and explanatory variables that enter the log-likelihood for a given observation, where
lagged dependent variables may be included as explanatory variables. In order to capture the
serial dependence in the data, blocks of observations on the vector valued data are resampled
instead of individual observations.

By extending the applicability of bootstrap methods to a context comparable to the general
setting of Gallant and White (1988) or Potscher and Prucha (1991), we show that the bootstrap
applies not only to a useful range of data generating processes, but also to a useful variety of

modeling and estimation procedures relevant to economics and finance.



We do not attempt here to obtain asymptotic refinements. Our goal is rather to prove the
consistency of the block bootstrap estimators of the QMLE sampling distribution for a broad
class of models and data generating processes. In particular, we avoid the stationarity assump-
tion and restrictive memory conditions used by Hall and Horowitz (1996) and by Andrews (1999)
in studying higher order properties of the bootstrap. Among other things, we prove that the
block bootstrap distribution of the QMLE converges weakly to the distribution of the QMLE in
probability. As a consequence, bootstrap confidence intervals have asymptotic coverage probabil-
ity equal to the nominal coverage probability. Further, the MBB and SB methods are shown to
provide heteroskedastic and autocorrelation consistent standard errors for the QML estimator,
thus extending the already large literature on robust inference and covariance matrix estimation.

An important application of the bootstrap is in hypothesis testing. The consistency of the
bootstrap distribution of the QMLE is a first step to proving the validity of the block bootstrap
methods for studentized statistics and hence for hypothesis testing. In particular, we propose
and show the first order asymptotic validity of a new bootstrap Wald test for testing restrictions
on the pseudo-true parameters of a nonlinear dynamic model. A variance estimator is typically
required to studentize the statistic. For block bootstrap methods with dependent data, the choice
of the variance estimators used to studentize the bootstrap and the original statistic is crucial, if
second order improvements are to be expected (see Davison and Hall (1993), Gétze and Kiinsch
(1996) and Lahiri (1996, 1999b)). In particular, for smooth functions of means of stationary
mixing data, to studentize the bootstrap statistic Gotze and Kiinsch (1996) suggest a variance
estimator that exploits the independence of the bootstrap blocks and that can be interpreted as
the sample variance of the bootstrap block means. (Lahiri (1996) and Lahiri (1999b) also use this
variance estimator in the context of the MBB for M-estimators and the SB for the smooth function
model, respectively) To studentize the original statistic, Gotze and Kiinsch (1996) use a kernel
variance estimator with rectangular weights and warn that triangular weights will destroy second-
order properties of the block bootstrap. Here, to studentize the bootstrap Wald test statistic we

use the multivariate analog of the Gotze and Kiinsch (1996) variance estimator, adapted to the



QMLE context. We prove that our new bootstrap Wald statistic is asymptotically distributed as
a chi-squared distribution in probability, which implies that to first order we can use the block
bootstrap to estimate the critical values of the Wald test statistic. Similar results hold for an
analogous bootstrap Lagrange Multiplier statistic.

Bootstrapping extremum estimators for nonlinear models often requires solving a large number
of nonlinear optimization problems, one for each resample, which may be computationally very
demanding. Davidson and MacKinnon (1999) have recently proposed a class of k-step bootstrap
estimators which only requires a small number of Newton or quasi-Newton steps starting from the
estimate based on the original sample. The higher order properties of these attractive bootstrap
estimators have been subsequently established by Andrews (1999) for the stationary ergodic
context. Davidson and MacKinnon’s (1999) one-step bootstrap estimator is easily obtained by
a closed-form expression that only requires resampling the scores and the Hessian matrix of the
model evaluated at the QMLE based on the original sample. A closely related computationally
even simpler bootstrap estimator was suggested by Shao and Tu (1995, Section 8.1.2) which only
requires resampling the scores at the QMLE for the original sample. We show that the one-step
bootstrapped QML estimators of Davidson and MacKinnon (1999) and of Shao and Tu (1995)
are first-order asymptotically equivalent to the standard (i.e. fully-optimized) block bootstrap

QML estimator when the data is NED on a mixing process.

3. The Bootstrap for Extremum Estimators and Application to the QMLE

In this section we provide conditions ensuring the first order asymptotic validity of the bootstrap
for quasi-maximum likelihood estimation (QMLE) methods under a setup identical to that used
by Gallant and White (1988). The goal is to conduct inference on a certain parameter of interest
07 from a given observed sample X,1,... , Xy, assumed to be near epoch dependent on an un-
derlying mixing process. We let X,;; denote a vector that contains both the explanatory variables
and the dependent variables that enter the likelihood of observation ¢ and we define {X,;} to

,

be NED on a mixing process {V;} provided E (X,%t) < 00 and vy, = sup,, HXnt — Eff,lj (Xnt)




tends to zero at an appropriate rate. Here and in what follows, || X, = (E | X e | )1/ P denotes
the L, norm and E-TF (1) = B (]fff,f) , where FIF = 0 (Vi g, ... , Vipg) is the o-field generated
by Viek, .-, Visk. In particular, if vy = O (k797?) for some § > 0 we say {Xy;} is NED of size
—a. The sequence {V;} is assumed to be strong mixing; analogous results could be derived under
the assumption of uniform mixing. We define the strong or a-mixing coefficients as usual, i.e.
Qj, = SUDy, SUD{AeFm  BeFe, ) |P(ANB)— P (A)P(B)|, and we require oy — 0 as k — oo at
an appropriate rate.

The statistical properties of the QMLE 0,, (consistency and asymptotic normality) are es-
tablished in Gallant and White (1988) under the possibility of model misspecification. For this
context, we establish the usefulness of two commonly used block bootstrap procedures, the mov-
ing blocks bootstrap and the stationary bootstrap, to approximate the sampling distribution of
NG (én — 92) Given the original sample X,,1,...,Xun, a bootstrap version of én, say é;, is
obtained by considering the QMLE for the bootstrap resamples X,,..., Xy . We show that
the bootstrap approximation to the sampling distribution of \/n (9n — H%) given by the distri-
bution of /n (é; — én) , conditional on X1, ..., Xy, is asymptotically normal with the correct
asymptotic covariance matrix, in probability. We also give an explicit formula for the boot-
strap covariance matrix of the scaled mean of the resampled scores evaluated at 6,, which is
heteroskedasticity and autocorrelation consistent (HAC), in that it converges in probability to
the covariance matrix of the scaled mean of the scores evaluated at 6.

We follow Lahiri (1999a) in describing the block bootstrap methods. Let ¢ = ¢, € N
(1 < ¢ < n) denote the (expected) length of the blocks and let By p = {Xns, X t41,--- s Xnte—1}
be the block of ¢ consecutive observations starting at X,;; ¢ = 1 corresponds to the stan-
dard bootstrap. Assume for simplicity that n = k¢. The MBB resamples k& = n/¢ blocks
randomly with replacement from the set of n — ¢ + 1 overlapping blocks {Biy, ... ,Bp_r+1.¢}-
Thus, if we let I,1,..., I, be iid. random variables uniformly distributed on {0,... ,n — ¢},
the MBB pseudo-time series {X;gl),t =1,... ,n} is the result of arranging the elements of
(1)

. 1
in a sequence: X,1’ = Xy 1,141, - ,X;g )= X

the k£ resampled blocks Bj Iy +00

nly: -

7BI

nk



X;(elj_l = XnInot1--- ,X:L(,il) = Xy 1,,+¢- Here and throughout, we use the superscript (1) in
X;ftl) to denote the bootstrap samples obtained by the MBB. Similarly, we will use the super-
script (2) to denote bootstrap samples obtained by the SB resampling scheme.

Unlike the MBB, the stationary bootstrap resamples blocks of random size. Let p = ¢!
be a given number in (0,1); p = 1 corresponds to the standard bootstrap. Let Ly1, Lpa, ...
be conditionally i.i.d. random variables having the geometric distribution with parameter p so
that the probability of the event {L,; =k} is (1—p)*'p for k = 1,2,... . Independent of
{Xnt} and of {Ly;}, let In1, Lo, ... be ii.d. random variables having the uniform distribution
on {1,...,n}. The SB pseudo-time series {X;§2)} can be obtained by joining the resampled

blocks B[n17Ln1,B[n27Ln2, ... ,B[n where K = inf {]{Z >1:Lpi+...4+ Ly > n} . Thus, the

Kolmi
stationary bootstrap amounts to resampling blocks of observations of random length, where each
block size has a geometric distribution with parameter p and expected length equal to % = /.
We shall require £ = ¢, to tend to infinity at an appropriate rate, which is equivalent to letting
p = py,, tend to zero. Hence, on average the lengths of the SB blocks tend to infinity with n as
also happens with the (fixed) MBB blocks lengths.

In contrast to the MBB resampling method, the stationary bootstrap resample is (condi-
tionally) a strictly stationary process (Politis and Romano, 1994a), hence the name stationary
bootstrap.

A convenient way to formalize any bootstrap procedure is as follows. Given the underlying
probability space (€2, F, P), we observe a sample Xp1 (w), ..., X, (w) of size n from a given
realization w € Q, where X, (w) assumes values in RY, [ € N. We let (A,G) be a measurable
space and for each w € 2 and n € N, we let F; , denote the probability measure induced by the
bootstrap on (A,G). The bootstrap is a method to generate a new time series on (A,Q,P;f,w)
conditional on the data Xp1 (w),..., Xu, (w) from which we can obtain as many (re-) samples
as we want.

For each n € N, let 75t : A — {1,2,... ,n} denote a random index generated by the resam-

pling scheme for each t = 1,2,... . For example, for the standard bootstrap, {7,:} is a sequence



of i.i.d. random variables uniformly distributed on {1,2,... ,n}, independent of {X,:}. For
the MBB described above, {7,:} = {Tgt)} ={lLu+1,...,Ln+{Ia+1,...}, where {I,;}
are conditionally i.i.d.uniform on {0,...,n — ¢} and ¢ is the fixed block length. For the SB,
{Tnt} = {Tﬁ?} =A{Ip, In1+1,... , In1+ Lyp1 — 1, Lo, Lo+ 1,... }, where {I,;} are condition-
ally 1.i.d. uniform on {1,2,... ,n} and {L,;} are i.i.d. random variables having the geometric
distribution with parameter p, independent of {X,;} and {I,;}.

We define the stochastic process induced by the bootstrap as the mapping X} (-,w) =

(X5 (Lw),t=1,2,...} : A =R weQ n=12,... and [ €N, such that for (\,w) € A x Q,
Xt (A w) =X rn) (W), t=1,2,... .

As Lemma A.1 in Appendix A establishes, X, (-,w) is G-measurable and thus it indeed defines
a stochastic process on (A, g, P;;yw). In this context, a resample obtained by the bootstrap is a
sample of size m (say) corresponding to a given realization X (A\,w) of the stochastic process
X} (-,w), conditional on the original sample X1 (w), ... , Xy (w). We will let m = n throughout.

We first establish the ability of the block bootstrap methods to provide HAC covariance
estimators for the QMLE.

The QML estimator 6,, solves the problem
Lo (X2,0)=n"1) log fur (XL, 0 =1,2,...
Hl(:;iX ( nv) n ;ngt( n7)7 n » Sy )

where X! = (X]

L, XY t=1,2,... ,n, and 6 is an element of O, a compact subset of R?,

p € N. Thus, X!, is a vector valued array that contains all the relevant explanatory and dependent
variables that enter f,;, the “quasi-likelihood function” for observation ¢. The function L,, is the
“quasi-log-likelihood function”.

The asymptotic properties (consistency, asymptotic normality) of 6,, have been established
by Gallant and White (1988) under certain regularity assumptions, which we collect in Appendix
A for convenience. Gallant and White’s (1988) data generating assumption assumes a singly

indexed stochastic process {X;}. Nevertheless, as they remark in page 9 of their book, their



results can easily be extended to doubly indexed arrays by relying on weak laws of large num-
bers for double arrays {X,:} (such as Andrews’ (1988) weak law of large numbers for uniformly
integrable L;—mixingales) under even weaker conditions than those used in their work. Our
assumptions A.1-A.10 are the doubly indexed versions of Gallant and White’s (1988) regular-
ity conditions. Thus, under assumptions A.1-A.10, Theorem 5.7 of Gallant and White (1988)
in particular shows that! By, 1 2A°\/_ ( — 9‘,1) = N (0,1I,), where = denotes convergence
in distribution. The asymptotic covariance matrix of 6, is thus C° = A2 1B2A°~1 where
A% = E [V2L, (X2,05)] and BS = var (n_1/2 iy Vi1og fu (X5,65)) . Because A9 and B are
generally unknown, consistent estimators are needed in order for the normal approximation to be
useful in constructing asymptotic confidence intervals or testing hypotheses. A consistent estima-
tor of A is A, = V2L, (X;}, én) , as proven in Theorem 6.1 in Gallant and White (1988) under
the same assumptions that deliver the asymptotic normality result. The consistent estimation of
B¢ is a more challenging task. Gallant and White (1988) establish the consistency of a particular
estimator of B2 when the data { X} is NED on a mixing process and misspecification is allowed.
Alternative consistent estimators of B are given by the block bootstrap variance estimators, as
We NOW prove.

We first consider an infeasible estimator based on ;. We then build on this estimator to obtain
a feasible estimator. Accordingly, let g, = Vlog fur (X}, 69) so that B = var (n~ /237 s9,).

For j = 1,2, let Bfw. = var* ( —1/2 v f;;(] )> denote the block bootstrap covariance matrix

©)
estimators based on the resampled scores {sn U) = = Vlog f ) (X;"t ,92)} evaluated at 6,

Tht

T

where {T(lt)} and { 2 )} denote the random indexes chosen according to the MBB and the SB,
respectively. Here and throughout we let E* (var*) denote expectation (variance) with respect

to the bootstrap probability measure, conditional on Xy1, ..., Xnn.

'Note that 62 here plays the same role as 67 in Gallant and White (1988). The change in notation is due to
the fact that we reserve the superscript star for the bootstrap, as is usual in the bootstrap literature.
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The following formula is available to compute By, | (Kiinsch, 1989, Theorems 3.1 and 3.4):

(31) n 1= Zan n - a,n) (S;)Lt _ggz,n)/
—1 -
_ _ I _ _ !
+ Z <]- - Z) Z 5n (taT) {(Sgt - Sg,n) (S?L,t+7’ - Sg,n) + (S?L,t+7’ - Sg,n) (Sglt - Sg,n) } ’
=1 t=1

where 55, = Y i oy (t) sp;. The weights a,, (1) and 3, (t,7) are given as follows (cf. Kiinsch,
1989, expressions (3.2) and (3.7)):

m ifte{l,...,0—-1}

(3.2) an () = 'n,€+1 ifte{l,...,n—0+1}
Z(’r;/ltfj—ll) ifte{n—0+2,... ,n},

m ifte{l,... 0—|r|-1}
(3.3) Butr) =4 g ite{t—rl,...,n—C+1)

ﬁlﬂ% ifte{n—0+2,... ,n—|7|},

where Y 3" ; ay, (t) =1 and Z;’;‘T‘ B, (t,7) = 1.
Similarly, we can compute By, , without resampling (Politis and Romano, 1994a, Lemma 1):

n

(3.4) na=ntY (sn -5)

t=1
+§) Y Y (s =2 (ar = 0)" + (sh0er —0) (550 =00
t=1
where 3¢ =n=1Y 7 | 59, and
(3.5) ba(r)=(1=2) A =p) + = (1=p)" ",
n n

with p = p, = (1.

Gongalves and White (2000a) give sufficient conditions for the consistency of the MBB and
SB covariance matrix estimators of the sample mean of a vector NED array on a mixing process.
In particular, an application of their Theorem 3.1 shows that under the NED assumption, By ;
is consistent for By + Uy ;, where Uy ; = var* (n*1/2 S E (S%t)}*(j)) and {[E (s%t)]*(j)} is a

resample of {E (s9,)} obtained by the MBB if j = 1 and by the SB if j = 2. The bias terms

U, ; can be written explicitly as a function of {E (s7,)} (see Lemma 2.1 of Gongalves and White,

11



2000a).

To obtain a feasible estimator, we consider instead the block bootstrap covariance matrix

estimators B, ; = var* (n_l/ 23 §Z§] )) that are based on the resampled estimated scores

; ) . A
{é;g]) = Vlog fn ) <XTTL"]t ,9n> } obtained from {ént =Vlog f,, (Xfl, Qn)} by the MBB and

vint

A

by the SB resampling schemes. Again, no resampling is necessary to compute B’n,j:

n

(36) Bn,l = Zan (t) (§nt - ga,n) (=§nt - ga,n)/
t=1
-1 o\ T B 3 , 3 B )
+ Z <]- - Z) Z Bn (tﬂ-) {(gnt - <§a,n) (én,t+7’ - ga,n) + (g’n,,t+7' - ga,n) (§nt - §a,n) } )
=1 t=1
where oy, (t) and 3, (¢,7) are defined in (3.2) and (3.3), 30, =171 Y1 | vy (t) S, and
n n—1 n—T1
(3.7) Boo=n""Y 4wty + D b ()07 [Buthr + Sntr )
t=1 T=1 t=1

with by, (7) as defined in (3.5).

Careful argument establishes that the difference between Bnyj and By ; converges to zero in
probability, which implies the consistency of Bn, ; for By, +Uy, ;. Moreover, Bn, j is positive semidef-
inite by construction. To obtain this result, we strengthen assumptions A.1-A.10 in Appendix A

in the following way:

Assumption 3.1
3.1.a) {sm (Xfl, 9) = Vlog fut (Xfl, 9)} is 3r-dominated on © uniformly inn,t =1,2,... ,r > 2.

3.1.b) The elements of {snt (Xg,e) = Vlog fnt (Xﬁ,@)} are NED on {V;} of size —2(::21) uni-

formly on (0, p) .

Theorem 3.1. Given Assumptions A.1-A.10 as strengthened by Assumption 3.1, if ¢,, — oo and

by =0 (nl/z) , then for j = 1,2,
Bnj— (Bs+Ug;) =0,

where U2, = var* (n- /2 350, [E (5))")

12



Theorem 3.1 gives sufficient conditions for the consistency of the block bootstrap variance
estimators Bn,j under the possibility of misspecification. By allowing for general heterogeneous
dependent data generating processes and the possibility of misspecified models, it adds to the
already extensive literature on heteroskedastic and autocorrelation consistent (HAC) covariance
matrix estimation (see e.g. Eicker (1967), White (1980), Hansen (1992a), White (1984), White
and Domowitz (1984), Newey and West (1987), Gallant and White (1988), Andrews (1991),
Andrews and Monahan (1992), Den Haan and Levin (1997), and de Jong and Davidson (2000)).

Assumption 3.1 ensures that the elements of the double array {s%,} satisfy Assumption 2.1
of Gongalves and White (2000a). Except for Assumption 3.1.a), we use the same assumptions
as Gallant and White’s consistency result (Theorem 6.8(b), 1988). However, their result only
requires {snt (Xfl, 9)} to be 2r-dominated on © uniformly in n,t =1,2,..., r > 2, rather than
3r-dominated as we assume here.

In the presence of heterogeneous observations and arbitrary misspecification, the stationary
bootstrap is not consistent for By, but instead for By + Uy, ;. A sufficient condition for the bias
term {Ugyj} to vanish is that F (s9,) be zero for t = 1,2,... ;n, n = 1,2,... . Most of the
literature on robust covariance matrix estimation has adopted this assumption. One exception is
Gallant and White (1988). As they point out (Gallant and White, 1988, p.102), this condition
is true if for example the model is correctly specified or if {X,;} is stationary and the model
embodies no regime changes (i.e. fp (-,0) = f(-,0) for all n,t).

We next investigate the asymptotic properties (consistency and asymptotic normality) of the
bootstrapped QMLE for generic bootstrap procedures.

We use the following notation (see Hahn, 1996, p. 190, for similar notation). For any bootstrap
statistic T}, (-,w) we write T); (-,w) — 0 prob — Py, a.s. — P if T;; (-,w) converges to zero in
probability— Py, for almost all w, i.e. if for any ¢ > 0 there exists F' € F with P (F) = 1
such that for all w in F) limp .0 Py, [A : [T} (A, w)| > €] = 0. We write T); (,w) — 0 prob— Py,
prob—P if for any e > 0 and for any § > 0, limy, o0 P [w : Py, [X: [T} (\,w)| > €] > 6| = 0. Using

a subsequence argument (e.g. Billingsley, 1995, Theorem 20.5), T;; (-,w) — 0 prob— P ,, prob—P

13



is equivalent to having that for any subsequence {n'} there exists a further subsequence {n”} such
that T, (-,w) prob — Poy s a.s.—P. We write? T} (-,w) =%, N (0,1) prob— P when for every
subsequence there exists a further subsequence for which weak convergence takes place almost
surely. This subsequence argument will often be used in our proofs for the bootstrap. For example,

to prove that T, (-, w) =4

Piw N (0,1) prob— P, we consider an arbitrary subsequence indexed by
{n’} and prove that there exists a further subsequence {n”} for which T}, (-,w) :dp:b”vw N (0,1)
for fixed w in a set with probability one. Because for such w we have that T, (-,w) is a random
variable in the usual sense, this can be accomplished by applying a standard central limit theorem
to T,y (-,w) under the bootstrap probability measure Py, .

For a general bootstrap method, we define the bootstrapped QMLE, 9; (,w), w € Q, as the
solution to

n
mng;’; (,w,0) =n"t tz;logf;’;t (hw,0), n=1,2,...,

where, for each n = 1,2,... and for each § € ©, {f* (-,w,0),t=1,... ,n} is a bootstrap re-
sample of size n from { fur (X}, (w),0), t=1,...,n},ie fi (w,0) = fur.0) (XTT{”(') (w) ,9) ,
and Tpt : A — {1,2,... ,n} is a random index chosen according to a given bootstrap resampling
scheme, t = 1,2,... ,n, e.g. the MBB or the SB. As above, we let {Tgt)} denote the random

index generated by the MBB if j = 1 and by the SB if j = 2. Consequently, é:;(j)

(-,w) will denote
the MBB and the SB QMLE’s, for j =1 and j = 2, respectively.

Given assumptions A.1 and A.2, the existence of é:; (-,w) as a measurable-G function for each
n and almost all w follows by Lemma 2 of Jennrich (1969). Because for almost all w 8, (-,w) is
a random variable in (A, g, P;;w), we can study its stochastic properties.

The next result helps in establishing the consistency of a general bootstrapped QMLE. The
same heuristics that deliver the consistency of 6,, for 6, apply in the bootstrap context. Specif-

ically, if for all w in a set with probability approaching one, L} (-,w,f) tends (almost surely or

in probability) to Ly (w,6), then we should expect 6, (-,w), which maximizes L (-,w), to tend

2We follow Giné and Zinn (1989, p. 688) to define weak convergence in probability; in particular, we use the
distance induced by the sup norm of distribution functions to metrize weak convergence.
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to 0y, (w), which maximizes Ly, (w,0). As the next lemma shows, the consistency of 6, for 62,
where 69 is assumed to be identifiably unique?, ensures that 6, (w) is identifiably unique for all

n sufficiently large and w in a set with probability one or approaching one.

Lemma 3.1 (Identifiable uniqueness of 0,, for all n sufficiently large). Let (2, F,P) be
a complete probability space and let © be a compact subset of RP, p € N. Let {Qn X0 — E}
be a sequence of random functions continuous on © a.s. — P, and let 6, = arg maxe Qy, (+,0)
a.s.—P. If Q, (-,0) — Q,, () — 0 a.s. — P uniformly on © and if {@n 10 — E} has identifiably
unique maximizers {65} on ©, then the sequence {én} is identifiably unique on © with respect to
{Qn} a.s. — P, i.e. there exists F € F, P (F) = 1, such that given any € > 0 and some ¢ (&) > 0,

for each w € F, there exists N (w,e) < oo such that

sup [ max @ (w,0) —Qy <w,én)] < —6(e) <0,

n>N(w,e) nc(én,a)

where 75, (9n,5) is the compact complement of n (97“5) = {0 €0O: )9 — O

< 5} for n =
1,2,....

If instead Q, (+,0) — @Q,, (8) — 0 prob — P uniformly on © then for any subsequence of {@n},
say {(2),,/ }, there exists a further subsequence {én”} such that {énu} is identifiably unique with

respect to {Qn} a.s. — P.

By applying Lemma 3.1, we can obtain the following fundamental consistency result in the
bootstrap context, which can be used to prove the consistency of bootstrapped estimators for the

case of the QMLE as well as for other extremum estimators such as GMM.

Lemma 3.2. Let (2, F, P) be a complete probability space and let © be a compact subset of

RP p e N. Let {Qn :x 06— R} be a sequence of random functions such that

al) Q, (-,0):Q — R is measurable-F for each§ € ©, n=1,2,... ;

a2) Q (w,-): © — R is continuous on O a.s. — P (i.e. for almost allw), n =1,2,... .

3The definition of identifiable uniqueness was introduced by Domowitz and White (1982). For convenience, we
restate it in the Appendix as Assumption A.3.
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Let 6, = arg maxg Q, (',0) a.s. — P be measurable and assume there exists {@n 10 — K}

with identifiably unique maximizers {6} such that
a3) Qn(-,0) —Q, (0) — 0 as n — oo prob — P uniformly on ©. Then,

(A) 0,, — 0° — 0 prob — P.

Let (A, G) be a measurable space, and for eachw € 2 and n € N, let (A, g, P;yw) be a complete

probability space. Let {Q;‘L AXQO X0 — R} be a sequence of functions such that
bl) Q: (-,w,0) : A — R is measurable-G for each (w,0) in QA x O, n=1,2,... ;
b2) Qf (\,w,-): © — R is continuous on © a.s.— P (i.e. for all A\ and almost allw), n =1,2,....

Let {éz AXQ—-0,n=12,... } be a sequence of random functions such that for each

w € 1, (Z)Z (-,w): A — © is measurable-G and (Z)Z (-,w) = argmaxe @}, (-,w,d) a.s. — P. Assume

b3) Q; (-,w,0) — @y, (w,0) — 0 as n — oo prob — P}, prob — P uniformly on ©. Then,

7,w?

Ak A~

(B) 0, (,w) = Oy (w) — 0, prob— Py, prob— P.

Theorem 3.2. Let Assumptions A.1, A.2, A.3, A.5(i), A.6(i), A.7 and A.8(i) hold. Then, 6,, —
0y — 0 prob— P. If we assume further that ¢,, — oo and ¢, = o(n) then for j = 1,2, é:;(j) (,w)—

N

O (w) — 0 prob— Py ,, prob — P.

The same set of assumptions that delivers the weak consistency of the QMLE 0,, for 6, also
delivers the weak consistency of the block bootstrapped QMLE’s 9:}” (-,w) for 5, for all w in
a set with probability approaching one, provided ¢,, = o(n) and ¢,, — oco. (for the SB, this is
equivalent to requiring that np, — oo and p, — 0). In particular, we don’t need to impose
the stronger condition ¢,, = o (nl/ 2) used in Theorem 3.1 to obtain the present result. To prove

Theorem 3.2 we apply Lemma 3.2 with
Qn (79) = Ly, (X:zl () 7‘9) =n"" Zlog fnt (X’IIEL () 79) ’

t=1
@n(0) = E[Ln(Xy,0)],
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and, for j =1,2,
G (.0) = L (o) =0t S 0w (%270 @).6)
t=1 o ()
To study higher-order properties of the bootstrap, Andrews (1999) suggests a recentering of
the criterion function to define bootstrapped extremum estimators. In particular, his criterion

function is
L9 (w,0) = n ' Y B (s:;;gj))'e.

t=1
The recentering term E* (§Zgy )/9> is intended to yield bootstrap population first-order conditions
that are zero at 6,. This is relevant for the MBB since E* [nfl S Wl =3 (8) S,
which in general is not zero. For the SB, E* [n_l S §Z§2)} =n"1Y" | §u = 0, where the
second equality holds by the first-order conditions for én, and no recentering is needed. Nev-
ertheless, here we do not need to recenter the moving blocks bootstrap log-likelihood function

*(1

) .
L, - 1t is easy to

because it does not impact the first-order properties of the bootstrap QMLE 0
show that if ¢, = o(n) E* [Lq(zl) (-,w,@)} = Ly (w,0)+Op (%”) . By a law of large numbers, for
w in a set with probability tending to one, v (,w,0) — E* [L%l) (-,w,@)} s 0. These two
facts imply that the conditions of Lemma 3.2 (in particular, condition b3)) are satisfied with our
choice of Q7 (-,w, @) for the moving blocks bootstrap provided ¢, = o (n).

We next investigate the first order asymptotic validity of the bootstrap to approximate the
sampling distribution of y/n (én — 9‘,1) . The bootstrap approximation to the true sampling distri-
bution of \/n (én — 9;) is given by the distribution of \/n (@Z — 9n> conditional on the original
sample X,1,...,X,,. Typically, we can show that Bffl/ 2A;’L\/ﬁ (én — 9%) has an asymptotic
normal distribution. If we can show that the limiting distribution of ByY QA;’L\/H ((Z)Z - (Z)n) is
also the standard normal distribution, conditional on X1, ... , Xu,, then the bootstrap approx-
imation is appropriately close to the true sampling distribution of \/n (én — 9‘,1)

The next lemma is used in the proof of our approximation theorem (Theorem 3.3 below). Its

usefulness extends to other applications as the assumptions can be verified for other bootstrap
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procedures and for other extremum estimators.

Lemma 3.3. Let (2, F, P) be a complete probability space and let © be a compact subset of

RP p e N. Let {Qn X0 — E} be a sequence of random functions such that

al) Qy, (-,0):Q — R is measurable-F for each €0, n=1,2,... ;

a2) Q, (w,-): © — R is continuously differentiable of order 2 on © a.s. — P,n=1,2,... .

Let 0, = argmaxeg Qy, (+,0) a.s.— P be measurable such that 6, — 07 — 0 asn — oo prob— P,
where {62} is interior to © uniformly in n. Suppose there exists a nonstochastic sequence of p X p

matrices {BS} that is O (1) and uniformly positive definite such that
a3) By *\/nvVQn (-62) = N (0,1,).

Suppose further that there exists a sequence {A, : © — RP*P} such that {A,} is continuous

on © uniformly in n and
a4) V2Q, (-,0) — A, (#) — 0 as n — oo prob — P uniformly on ©,
where {A? = A,, (09)} is O (1) and uniformly nonsingular. Then,

(A) B Y240 /0 (én - 9;) = N(0,1,).

Let (A, G) be a measurable space, and for eachw € 2 and n € N, let (A, g, P;yw) be a complete

probability space. Let {Q;‘L AXQ X0 — R} be a sequence of functions such that
bl) Q: (-,w,0) : A — R is measurable-G for each (w,0) in QA x O, n=1,2,... ;
b2) Q (\,w,-): O — R is continuously differentiable of order 2 on © a.s. — P,n=1,2,... .

For eachn =1,2,..., let (Z):; (-,w) = argmaxe @}, (-,w,0) a.s. — P be measurable such that

Ak ~

O, (w) = 0 (w) — 0 as n — oo, prob — Py ,, prob — P. Assume further that

b3) Bz_l/QﬁVQ;‘L (-,w, 0, (w)) = N (0,1p) in prob — P;
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b4) V2Q: (-,w,0) — V2Qy (w,0) — 0 as n — oo prob — Py o> prob — P uniformly on ©. Then,

(B) By 25/ (0, () = b (@) ) =7 N (0, 1) prob— P.

A slightly stronger dependence assumption than Gallant and White (1988) use is imposed
to satisfy condition b3) in our application of Lemma 3.3. Specifically, we require the elements
of the scores to be Lois—NED on a mixing process (see Andrews (1988)), for small 6 > 0. We

strengthen Assumptions A.1-A.10 as follows.

Assumption 3.1.b’) For some small 6 > 0 and some r > 2, the elements of {sm (X”t, 9)} are

Ly s — NED on {V;} of size —g:_;le uniformly on (0, p); {V;} is a—mixing with «y, of size

(2+6)r

r—2 °

Assumption 3.2 n 1Y} | E(s9;) E (s5;) = 0 (¢,,!), where £,, = 0 (n) and ¢, — oo.

T

Assumption 3.2 is satisfied under correct specification or stationarity of {X,;} and fpt (-,0) =

f(-,8) for all n,t, since in these cases it follows that F (s9,) =0 for all n,t =1,2,... .

Theorem 3.3. Let Assumptions A.1-A.10 as strengthened by Assumptions 3.1.a), 3.1.b') and

3.2 hold. If ¢,, — oo and {,, = o (n1/2) , then for any ¢ > 0 and for j = 1,2,

P {w : sup
T€ERP

where “ <7 applies to each component of the relevant vectors.

P [V (02 ) =) < a] = P [V (B - ) <] | >} 0,

Theorem 3.3 establishes the consistency of the MBB and SB approximations, given by the
conditional distribution of \/n (é;(j) — én) , for j = 1,2, respectively, for the true sampling dis-
tribution of y/n (9n - 0%). Thus, the order statistics of the bootstrap distribution can be used
to construct confidence intervals for 0, with the asymptotically correct coverage probabilities.
Note nevertheless that Theorem 3.3 does not justify the use of the variance of the bootstrap
distribution as a consistent estimator of the asymptotic variance of the QMLE without further

conditions, for example that the sequence {\/ﬁ (é;(j) — én)} is uniformly integrable (see e.g.
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Billingsley, 1995, p. 338). This point has been sometimes overlooked in the bootstrap literature.
For instance, Fitzenberger (1997, p. 250) claims that his Theorem 3.2 (which shows that the
discrepancy between the bootstrap and the normal distributions for the least squares (LS) esti-
mator converges uniformly to zero in probability) “establishes that the MBB procedure provides
a means for HAC inference in LS linear regression”, without proving uniform integrability. Coun-
terexamples of the inconsistency of the bootstrap variance of smooth functions of sample means
in the i.i.d. context can be found in Ghosh et al. (1984) and Shao (1992). The consistency of
the block bootstrap variance of \/n (é;(j) — én) when 6, is a smooth function of sample means
and, in particular, a nonlinear function of the LS estimator in linear dynamic models is studied
in Gongalves and White (2000Db).

As remarked in Section 2, bootstrapping maximum likelihood estimators for nonlinear dy-
namic models may be computationally costly as it requires solving a QMLE optimization prob-
lem for each resample. In the context of testing nonlinear models, Davidson and MacKinnon
(1999) have recently proposed approximate bootstrap methods that are based on a small number
of iterative steps starting from the QMLE obtained for the original sample and that achieve the
same level of accuracy as the fully-optimized bootstrap. For nonlinear regressions, Shao and Tu
(1995) suggested a related one-step bootstrap estimator that further simplifies the computations
by only requiring resampling the gradient of the nonlinear objective function. We will call this
one-step bootstrap estimator Shao and Tu’s one-step bootstrap estimator to distinguish it from
Davidson and MacKinnon’s (1999) one-step bootstrap estimator.

Let A, = n! Sy V2 1og fot (Xﬁ,9n> and let {é;';(t])} be the resampled estimated scores
obtained by the MBB and SB resampling schemes. The MBB and SB analogs to Shao and Tu’s

(1995) one-step bootstrap estimator are
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Davidson and MacKinnon’s (1999) one-step procedure uses A1 i place of A;1:

o) =, — A1 3" g1
t=1

Corollary 3.1 states the first-order asymptotic validity of éz(]) and (‘)L*(j ) in the context of quasi-

maximum likelihood estimation of nonlinear dynamic models with heterogeneous NED data.

Corollary 3.1. Let Assumptions A.1-A.10 as strengthened by Assumptions 3.1.a), 3.1.b') and

3.2 hold. If ¢;, — o0 and ¢, = o (n1/2) , then for j = 1,2, and for any € > 0,

~

P [\/ﬁ (9;@ (w) - 0,, (w)) < x} - Py, [\/ﬁ ((‘);(j) (,w) — 0, (w)) < m} ) > 5} — 0,

P{sup
TERP
©)

where é;(j ) denotes the one-step bootstrap estimator (‘)Z] or (‘)L*(j ).

Analogous results hold for the multi-step estimators.

4. Hypothesis Testing

Although the results of Section 3 justify the use of the bootstrap to approximate the distribution of
NG (9n — 9%) , they do not immediately justify testing hypotheses about 8; based on studentized
test statistics such as a t-statistic or a Wald statistic. Nevertheless, they are an important step
towards proving the validity of the bootstrap to approximate the distribution of studentized
statistics based on the QMLE g)n, as we show in this section. In particular, we prove the first
order asymptotic validity of a suitable bootstrap analog of the Wald test statistic for testing
general nonlinear restrictions on 6. We focus on the moving blocks bootstrap, which is easier to
analyze, but analogous results are expected to hold for the stationary bootstrap. Proving second-
order optimality properties of block bootstrap tests in our framework is beyond our present scope.
See Hall and Horowitz (1996) and Andrews (1999) for higher order improvements of bootstrap
testing based on extremum estimators in a dependent stationary context.

Let {r, : © — R?}, with © C RP, g < p, be a sequence of functions that satisfy the usual reg-

ularity conditions (see e.g. White, 1994, Assumption 8.2). In particular, assume it has elements
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continuously differentiable on © uniformly in n such that {R2 = V'r,, (69)} is O (1) and has full

row rank ¢, uniformly in n. The Wald test statistic for testing H, : /nr, (62) — 0 is
RN
Wa =i, (FuColty)

where 7, = 7, (@n) , R, = V'r, (@n) and C,, = Afl 1BTLA;L 1 is a consistent estimator of Co =
A9 1B2 AL In particular, A, = n ! S V2 og fur (Xfl, @n) and By, is such that B,,—B2 £o.
In our NED context, Bn is a kernel-type variance estimator, e.g. Bn,l or Bmg in Section 3. For
first order properties, the particular choice of B, is not relevant as long as it is a consistent
estimator of BS. Nevertheless, this choice becomes important for second order properties (see

remarks below). The bootstrap Wald statistic we consider is given by

Wi = (i — ) (BRGIRY) (55— ).

Ak

where, with é; the bootstrap QMLE, we set 7, = r,, <9n), R =V'r, (é;) and C* = A*~1B* A*~1,
A? is the bootstrap analog of Ay, defined as A% =n=13" | V2log for., (X,Tbnt, (2):;) , where {7}
is a random array generated by the bootstrap resampling scheme. For the MBB, recall from Sec-
tion 3 that {7y} ={lLn+1,... , Lu+4,... , L+ 1,... Ik + £}, where for each n, {I,;} are
i.i.d. uniform random variables on {0, ... ,n — ¢} . In particular, for any sequence {Z,:} we have
that Z;“L,(Fl)@rt = Zy1,,+t fori=1,... kand t = 1,... ¢, where k = n/l is the number of
blocks used to form the bootstrap sample. B;‘L is the bootstrap analog of Bn, given by
k ¢ ¢ !

41 Bi=k1Y <e—1/225n71m.+t (X;m“,é;)) (e—l/Qan,zm+t (Xé"i“’@Z)) :

i=1 =1 —
B’;‘L is the multivariate analog of the estimator of the MBB variance proposed by Goétze and
Kiinsch (1996) for studentizing the bootstrap resampled mean, adapted to the QMLE context.

To motivate this choice of B’;; recall that B;‘L is the bootstrap analog of B,,, which is an estimator

of BY, the variance matrix of the scaled scores evaluated at the “true parameter” 6;. Analogously,

A~

B is an estimator of the bootstrap variance matrix of the scaled average of the resampled scores

~

evaluated at the “bootstrap true parameter” 6, i.e. B;‘L is an estimator of B’n’l in Section 3. By
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definition,
n k ¢
(4.2) B,y = var* <n1/2 Zsfzt (%)) = var” <k1/2 Z (€1/2 ZS,L’IMH (Xé"ﬁt,@n))) )
t=1 i=1 t=1
Because the block bootstrap means ¢~ Zle Sp, I+t (X#”*t, én) are (conditionally) i.i.d., the es-
timator of the (bootstrap population) variance (4.2) is simply the sample variance of the bootstrap
variables {5_1/2 Zle Sp,I,i+t (Xém'“, én> i=1,... ,k} , where 0, is replaced by its bootstrap
estimator é; to mimic the fact that 62 is replaced with 6,, when computing B,. Thus, (4.1)
exploits the independence of the blocks bootstrap means and is a natural estimator of Bnyl. No-
tice that we simplified (4.1) by using the first order conditions of the bootstrap problem to set
G =ntY0 sk, ((Z)Z) =0.

Gotze and Kiinsch (1996) prove the second order correctness of the MBB distribution of a
studentized statistic of smooth functions of sample means of stationary mixing data that uses
(an equivalent version of) B to studentize the bootstrap statistic in the context of one-sided
bootstrap-t intervals. As Gotze and Kiinsch (1996) remark, Bz differs from B,,; (or from any
other HAC covariance estimator we might want to use) in a fundamental way: while for Bn,l
we consider all pairs of observations at lag distance less than ¢ (with an appropriate lag weight),
instead for B;“L we only consider pairs in the same blocks. In order to have second order improve-
ments, they note the need to choose the kernel variance estimator for studentizing the original
statistic carefully. In particular, they claim that triangular weights should not be used, which
suggests that Bml should not be used to studentize the Wald test statistic in the first place.
Instead, rectangular or quadratic weights should be used in defining the HAC estimator of B.

In addition, as we remarked in Section 3, in order to achieve second order improvements, 6,,
should be computed with recentering, as in Hall and Horowitz (1996) and Andrews (1999). For
simplicity, we abstract from these considerations as they do not affect our first order asymptotic
results, although they should be borne in mind in applications.

In order to obtain the first order asymptotic validity of the bootstrap Wald statistic W), we

strengthen Assumption 3.2 as follows.
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Assumption 3.2/ n 17 |E(s2,)* =0 (&;1_6/2) fori=1,...,p.

nti

Theorem 4.1. Let the assumptions of Theorem 3.3 hold as strengthened by Assumption 3.2’.

Then, under H,, for alle > 0, if { = o (n1/2) ,

rERY

P {sup Py, Wi (hw) <x)— P (W, <) >5] — 0 asn — 0.

Heuristically, by a mean value expansion of r,, (é;) about ,, we have that with probability ap-
proaching one +/n (rn (9;) — Ty ((Z)n)) =drs N (0,RSCRY), which implies that
n (7% — ) (RGCORY) ™ (7% — i) = Xq2. In particular, the consistency of B for B2 implies
the consistency of RXC*R¥ for RSC°RY, which delivers the first order asymptotic equivalence
under the null between the bootstrap Wald statistic and the original Wald statistic.

The bootstrap can also be shown to work for an appropriate version of the Lagrange Multiplier

(LM) statistic. Using notation analogous to that of Gallant and White (1988), the bootstrap LM

statistic can be written

o=V (8) &Ry (RCaiy)” BA VL (7).

n—mnm-"mn

where, with 6 the constrained bootstrap QMLE, we set VL, <~*) =n 1Y, nt( ) R =
V'ry (é;), Cr = ABEAS, and A% = n 1", V2og fur, (Xgm,é;). Similarly, B

is defined as in (4.1) with 8, instead of 6, , where ¢Y/2VL? (é*

n) is subtracted off each term

CRSY spra (Xém‘*t,é;) to account for the fact that VL ((Z)Z) is not zero for the con-
strained optimization problem. As the development is entirely parallel to that given in Gallant

and White (1988), using arguments analogous to those of Theorem 4.1, we omit the formalities.
5. Conclusion

This paper gives conditions under which two commonly used block bootstrap procedures, the
moving blocks bootstrap of Kiinsch (1989) and Liu and Singh (1992) and the stationary boot-

strap of Politis and Romano (1994a), provide valid tools for inference using maximum likelihood

estimators of nonlinear dynamic models with heterogeneous dependent data. Our results apply to
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a wide class of data generating processes, the processes near epoch dependent on a mixing process,
thus allowing for a considerable degree of heterogeneity and dependence in the data. We prove
that the bootstrap works for the QMLE in that it gets the limiting distribution of the QMLE
right. We introduce a new heteroskedasticity and autocorrelation consistent covariance matrix
estimator for the QMLE. We also show the first order asymptotic validity of a suitable boot-
strap analog of a Wald test statistic for testing general nonlinear restrictions on the pseudo-true

parameters of the model.
A. Assumptions and Proofs for Section 3

Assumptions A.1 through A.10 are the doubly indexed counterparts of the regularity conditions
used by Gallant and White (1988) to deliver the consistency and asymptotic normality of the
QMLE.

Assumption A.1 Let (2, F, P) be a complete probability space. The observed data are a real-
ization of a stochastic process X = { Xy : Q > RL 1N, n,t =1,2,... }, where Xy (w) =
Wt (., Vic1 (w), Vi (W), Vg1 (w) ... ), w € Q, where V; : © — RY, v € N, and Wy, :

x> RY — R! are such that X,,; is measurable-F, n,t =1,2,... .

T=—00

Assumption A.2 The functions fu; : R¥ x © — R are such that fy (,0) is measurable-B*
for each 6 € O, a compact subset of R? p € N, and f,,; (Xfl, ) : © — RT is continuous on
Qas.—P,nt=12....

Assumption A.3 69 is identifiably unique with respect to L, (8) = E (L, (X7?,0)), i.e. given
e > 0 there exists NV, (¢) < oo and ¢ (¢) < 0 such that

sup | max Ly, (0) — L, (6%)| =6(c) <0,
n>No(e) LOE5(€)

where 75 () is the compact complement of 7,, (¢) = {0 : |0 — 0, | <} NO.

Assumption A.4 67 is interior to © uniformly in n, i.e. there exists ¢ > 0 such that for all n

sufficiently large {# € RP : |0 — 62| <} ={0 €O :|0—05| <e}.
Assumption A.5

(i) {log fu: (X£,0)} is Lipschitz continuous on 6, i.e. ‘log ot (X, 0) —1og fru (X,i,@o)} < Lyt
|0 — 0°| a.s. — P, V6,0° € ©, where sup,, {n_l S E (Lnt)} =0(1).
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(ii) {V'sn (X],0) = V21og fot (X},,0)} is Lipschitz continuous on ©.
Assumption A.6

(i) {log fu: (X%,0)} is r—dominated on © uniformly in n,t, i.e. there exists Dy : R — R such
that }log ft (Xﬁ,@)} < Dy for all @ in © and Dy, is measurable-B' such that ||Dyl|, <

A<ocoforr>2andallnt=1,2,....
(i) {snt (Xﬁ,@) = Vlog fu (Xﬁ,@)} is r-dominated on © uniformly in n,t =1,2,...,r > 2.
(iil) {V'sn (X5,0) = V21og fot (X}, 0) }is r-dominated on © uniformly in n,t=1,2,..., 7> 2.

Assumption A.7 {V;} is an a-mixing sequence of size —%, with r > 2.

Assumption A.8
(i) The elements of {log fu: (X%,0)} are near epoch dependent (NED) on {V;} of size —1.

(ii) The elements of {snt (Xfl, 0) = Vlog fut (Xfl, 0)} are NED on {V;} of size —1 uniformly on

(0, p), where p is any convenient norm on RP.

(iii) The elements of {V's,; (X!,0) = V*log fye (X}, 60) } are NED on {V;} of size —% uniformly
on (©,p).

Assumption A.9 {BTOL = var (n_% Sy Viog fir (Xfl, 9%))} is uniformly positive definite, i.e.
B¢ is positive semi-definite for all n and det BS > k > 0 for all n sufficiently large for some

Kk > 0.

Assumption A.10 {A" =F (n_l Sy V210g fui (Xt 90))} is uniformly nonsingular, i.e.

ni)rn

|det A%| > k > 0 for all n sufficiently large.

Lemma A.1. Let (Q,F,P) be a complete probability space, and let X,;; : @ — R, [ € N, be
measurable-F, n,t =1,2,... . Let (A,G) be a measurable space and for each w € (2, let Py ., be

the probability measure induced by the bootstrap on (A, G), a complete measurable space. For

eachn =1,2,..., and each w € Q, define X}, = {X}, (-,w)} : A — RI*® as
X:;t (Avw) = XTL,Tnt()\) (w) > t=1,2,...,

where T, is a double array of random indexes on (A,Q,P;yw) taking values in {1,... ,n} for
n € N. Then X} (-,w) is a measurable mapping with respect to G/B!*, ie. X} (-,w) is a

stochastic process on (A, g, P;;’w) foreachn=1,2,... .
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Proof. FixweQandletl € N, n=1,2,.... For any Borel set H € B(Rl) , consider
ANeA: X (\Nw)eEH, t=1,2,...]= [)\EA:X,,J,TM()\) (w)eH, t=1,2,...]

=N Ui AeAimu(N) =kNAeA: Xy (w) € H].

We claim this set is in G. Indeed, for each ¢t and k it is true that [A € A : 7t (A) = k] € G because
Tnt is a simple random variable on G. Because X, ;, (w) is a constant for fixed w, it trivially follows
that A€ A: X, (w) € H € G: [N€ A: X, 1 (w) € H] is either A or @ depending on whether
Xk (w) is in H or not. Since a o-field is closed under countable unions and complements the
result follows.

Proof of Theorem 3.1. Theorem 3.1 of Gongalves and White (2000a) implies B, j —
(B + Un,j) £ 0 for j =1,2. Thus, it suffices to show that Bnyj - By ; £ 0 for j=12

We start by proving this result for the MBB, ie. for j = 1. We let an: = a, (t) and
Bpir = By (t,7) throughout. Given that " | ayy = 1, and that for each 7, Y"1 =1, by
(3.1) and (3.6) one can write

n,t,T

0 / /
Bn71 — Bn,l = Dp1— Do+ Dng + Dn3 — Dypa — Dn4 + Dn5, where
n
— a ol o ol
Dy = E Qg (sntsm — smsnt)
t=1
D — 2 = —0 o/
n2 = SanSan ~ SanSan
-1 n—r
D — 1 z ﬁ s ol o ol
n3 = - 7 n,t,T (sntsn,t—&—T - Sntsn,t—i—’r)
=1 t=1
—1

S
2
Il
(]

n—r
T ~ ~ —/ —o/
<]- - Z) Z Bn,tﬂ' <(Snt + Sn,t+T) San (Sgbt + 8%,t+7’) Sg,n)
=1 t=1
= =/ — —
Dys = (0-1) (saynsayn — sgmsg’m) )

!/

To prove that Dy, L 0, we take a mean value expansion of a typical element of > )" | ¢SS,

around 0, . Let 5,4 be a typical element of §,;. Then,
n
Zant (éntigntj - Sgtz’Sth) = an (en - 9%) 5
t=1

where @y, = Y11 it (5ntiV' 8t + 5045V Snti), Snti = Snti (9n) , and 6, lies between 0,, and 0.
Given Assumptions A.6.(i1) and A.6.(iii) and the fact that > ;' ; o, = 1, an application of the
Minkowski and Hoélder inequalities implies that for some r > 2, ||Ezn||% < 2A? < co. Thus, by

Markov’s inequality, a,, = Op (1). It follows that a,, <9n — 9%) = op (1) because 0, — 0%, = op (1)
by Theorem 3.19 of Gallant and White (1988) under our assumptions.
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Similarly, to prove that D3 Eit 0, we take a mean value expansion of a typical element of

é 1 T S8 around 65 and get
-7 n,t,T n,t+7

-1
~1/2 )
Z (1 B _) Zﬁnm (8ntidn,trr,j — Sntisgt,t+7',j) =" 2an/n <9n - 9%) )

=1
[ _ _ _ _ _ - -
where a@,, = 27:11 (1 — %) 1 Brtr (5nutiV'8nt475 + BntriV dnti), With 8ng = Spg (Qn) for
some 6, lying between 6,, and 6, . Routine arguments deliver n~12a, = Op ( - /2) (apply the

Minkowski and Holder inequalities and notice that for fixed 7 Zt; = 1 to conclude that

nt,T
||an||§ < A%/ for some r > 2). The desired result follows because \/n (én — 9%) = Op(1)
under our assumptions and because ¢ = ¢, = o (nl/ 2) by assumption. A similar argument yields
Dy L 0. To prove that D,» and D,,5 converge to zero in probability, it is first convenient to note
(Fitzenberger, 1997, Lemma A.1) that if £ = o(n), 37,,, = 8}, + Op (%) and $4.n = 8, + Op (ﬁ) .
But 32 =n 1>} 82 = Op (n*1/2) , because under our assumptions B,OL_I/Q\/EE% = N (0,1)
and By~ 12 _0 (1) ; moreover, the F.O.C. for 0,, allow us to set 3,, = 0. Thus, Do = Op (nil) +
Op (#) + Op (f;—i) and D,5 = Op( ) + Op ( 3/2) +Op ( ) , which converge to zero in
probability given our assumptions on £.

The proof that B, j — By ;i L0 for j = 2 follows similarly once we use (3.4) and (3.7) to write

A~

B> — B;,

n,2

n
_ -1 A4l /
Fi = n E (sntsnt—s%ts%t)
n—1 n—r
-1 A al o .o/

E bn, (T)TL E (sntsn,t+7'_snt8n,t+7)
=1 t=1

n—1
Fuy = (%959 + 25059 (1——)(1— P,

n

T=1

= I+ Fe+ F,’LQ — Fh3, where

Fn2

and notice that S""1 b, (1) < pin =/, 1

Proof of Lemma 3.1. Under our assumptions it follows by Theorem 3.4 of White (1994) that
én—O;’L —0asn — o0a.s.—P. Let F' = {w : @n( ) — 69 — O}O{w supg ‘Qn w,0) — } — 0}
By hypothesis, P(F) = 1. Fix & > 0 and w in F. Because 0, (w) — 09 — 0 there ex-
n(w) =0y,
identifiably unique on ©, given & > 0 there exists N; (¢) < oo and &' (¢') > 0 such that
SUDy,> N (/) [maxnc(gz78/)@n 0 —-Q, (90)] = ¢ (') <0,wheren (05,e) ={0€0:]0—0%] <}
Next, by Corollary 3.8 of White (1994), for w in F' there exists Ny (w & (e )) < oo such that for
alln > N (0,8 (&) | @n (w00 (@) = @ (62)] < T2, 01 =Qu (0,00 (@) < =@, (0)+ 552,

ists Ng (w,e’) < oo such that for all n > Ny (w,e’), < ¢. Because {07} is
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Forwin F and alln > Ny (w, & (€)) it is also true that max;,e(ge o) Qn (w, ) < maxego . Q,, (6)+
&) 45’ (by uniform convergence of Q. (.,0) — @, () to zero). Let N (w,e') =
max { Ny (w,e’) , N1 (¢), Ny (w, 8 (¢/)) } and notice that n° (én (w) ,26’) C n°(0;,¢) for n >

No (w,e’) . Tt follows that

sup [ max @y (w,0) — Qp (waén (W))]

n>N(w,e’) 7¢(Bn (w),2¢")
! !/
< sup [ max Qn(w79)—@n(03)+6 (5)}
n>N(w,e’) L1°(0%:¢") 4

! / ! /
< sw [max Q. (0) -0, (0) + 2 “”} < 1)
n>N(w,e’) n°(07,.¢) 4 2

Set e =2¢" and 6 (¢) = ﬂ%@ > 0. Since £’ is arbitrary so is €, and we have

(A1) sup [ max @ (w,0) —Qy <w,9n (w))] < —=d(e) <.
n>N(w,e/2) |1°(0n(w).e)
Because this holds for all w in F and P (F) =1, (A.1) holds a.s. — P.

If instead supg |Qn (w,8) — @, (8)| = op (1), which implies 0,, (w) — 09 = op (1), then for any
subsequence {n'} there exists a further subsequence {n"'} such that supg |Qy~ (w,6) — @, (9)| =
0(1) and O, (w) — 6%, = o (1) for all w in a set with probability—P equal to one. Now apply the
above result to conclude that (A.1) holds for this subsequence {n"}. B

Proof of Lemma 3.2. (A) follows by Theorem 3.4 of White (1994) under conditions al)-a3).
To prove (B), pick any subsequence {n’}. Given al)-a3), by Lemma 3.1 there exists a further
subsequence {n”} such that {én”} is identifiably unique with respect to {@Q,~} a.s. — P, i.e.
for all w in some F' € F with P (F) = 1. By bl) and b2) and for all w in some G € F with
P(G) =1, {Q;;,, (-, w, 9)} is a sequence of random functions on (A, g ,P;[yw) continuous on © for
all A € A. Hence, by Theorem 2.11 of White (1994) for fixed w in G there exists 6, (hw):A— 06
measurable-G such that 9;,, (r,w) = argmaxe @}/ (-,w,0). By b3), @/ (-,w,0) — Qpr (w,0) — 0
as n” — oo prob — Py ,,prob — P uniformly on ©. Hence, there exists a further subsequence
{n"} such that Q}, (-, w,0) — Qur (w,0) — 0 as n"" — oo prob — Py , for all w in some H € F

with P(H) = 1. Choose w in § = FNGNH, § € F. By theorem 3.4 of White (1994),
O (-, w) = O (W) — 0 as 0" — oo prob — Py, for this fixed w (note that {én”’} is identifiably
unique for w in F since {@)n”} is). Because this is true for any subsequence {n'} and P (§) =1,

the result follows, i.e. 9; (-,w) — by, (W) — 0 as n — co prob — Py ,prob—P. 1
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The proof of our QMLE bootstrap consistency results below (Theorem 3.2 and Theorem
3.3) makes use of the following two lemmas. Lemma A.2 provides a convenient approach to
establishing a bootstrap uniform weak law of large numbers. It requires a pointwise bootstrap

weak law of large numbers, which we establish in Lemma A.3.

Lemma A.2 (Bootstrap Uniform WLLN). Forj = 1,2, let {qngj) (- ,w,@)} be the MBB and
SB resample obtained from {qnt (w,0),t =1,... ,n}, respectively, and assume the two following

conditions hold:
Bootstrap P-WLLN For each § € © C RP, © a compact set,
nt Z <q2§] yw,0) — gt (w, 9)) — 0, prob— P, ,, prob— P.

Global Lipschitz V0,0° € O, |qnt (+,0) — qut (+,0°)] < Lyt |0 — 0°| a.s. — P, where
sup,, {n ' 32y B (L)} = O (1)

Then, if ¢,, — oo and ¢,, = o (n), for any § >0 and £ > 0,

zn: (Qng‘]) (w,0) — Gt (w,&)) >

t=1

lim P

n—oo

Py, | sup n~t
0cO

5>>f]:

Proof. We follow the idea of the proof of Lemma 8 of Hall and Horowitz (1996). So, given
e > 0 (to be chosen appropriately later), let {n (6;,e) :i=1,...,I} be a finite subcover of O,
where 7 (0;,¢) = {0 € © : |0 — 0;| < &}. Then, for j = 1,2,

supn -1

Z <q;§] — Qnt (9))' = max sup n~t

t=1 to0en(bs.e)

5 () 6) ~ g 6) '

t=1

where for simplicity we omit the arguments w and A in the notations qn(] ) (0) and g (0). It

>5>.

follows that for any 6 > 0 (and any fixed w),

supn~!
0cO

Now, for 0 € n (6;,¢),

zn: (qugj — dnt (9)>

t=1

> (4 )~ 00 0)

t=1

I
> 6) < ZP;;W < sup n~!
i=1

1(0s,€)
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(a8 6) = ut 0)) '

H
Il

1
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IA
S

L
M3

(qngj) (6:) — qne ( )

1 Z
-1 Z L*(] e+nt Z Ly,
=1

n”! Z |9t (6) = Gne (64)]

qnt ’l

H
Il

1

IA
3
L
NE

(qZ?) (6:) — e ( )

o+
Il
N

L:ng )) is the Lipschitz (resampled Lipschitz) function. By Markov’s inequality and
because {E (R 237 L)} = O (1), for any § >0 and £ >0, P [n 137 | Liye > §] < 328 <

. . § . .
&/3, for all n sufficiently large, if we choose ¢ < gg_A’ where A is a sufficiently large constant.

where Ly

/N

Thus,
. +(j)
Pt (eei‘gj@” ' ; (qm] (0) — gt (9)) > 6) >¢
< P -1 S ]) i) — qut (05) >é>>§]
( tz; ( ¢ ) 3 3
+P ( -1 ZL*(]) ) 1 ZLntE - ]
t=1

By the Bootstrap P-WLLN,

v 6 £ ¢
P|P: 1§<(J)9i—n0i)>— >2 <2
n,w (n Pt q’l’Lt ( ) q t( ) 3 3 37
for all n sufficiently large. For fixed w, Markov’s inequality implies that P, ( ISt L ) > 35) <

n~ty%  E* (L*(] ) /3 , since L (])IS nonnegative. Now, for j = 1, n_l S EF (L*(])> =
Sy (t) Ly < m St Lnt, since a,, (1) < €+1 by definition (3.2). For j = 2,
n~ty%  E* (L*(])) =n 1Y Ly < n+€+1 Sy Lm. Hence, for j = 1,2, and for n sufficiently

large (which implies

— — 1 given that ¢ = o(n)), we can make
P [P;[ ( n1 S, L J) 31 %} < %, if we choose € < min{g—g,%}. This completes the
proof.

Lemma A.3 (Bootstrap Pointwise WLLN). For some r > 2, let {q,, : 2 x © — R} be such
that for n,t = 1,2,..., there exists Dy :  — R with |gu (-,0)] < Dy for all 8 € © and
| Dl < A < oo. For each 8 € © let {qngj) (-, w, 9)} be obtained from {qn: (w,0)} by the MBB
and by the SB, for j = 1,2, respectively. Then, if ¢, = o (n) and ¢,, — oo, it follows that for any
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6>0,& >0, and for each 6 € O,
( o
Proof. For j = 1,2, write

n Y (0 (0) = gt (0)) =™ > (a:” 0) = B (42" 9)))
t=1 t=
B (w > <9>) N <9>] = Qp) + Q3
t=1 t=1

For j =1, by Lemma A.1 of Fitzenberger (1997), E* (nfl driq ;gl) (9)) =n 130 qne (0)+
Op ( ), which implies QQn Lo since £ — 0 by assumption. For j = 2, E* ( n 13T g *(2) (0 )) =
n 13 | gnt (0), so that QQn = 0. Thus, it suffices to prove that for any 6 > 0 and £ > 0 and n
sufficiently large, P { (‘Q ) > f} < &. But by Chebyshev’s inequality, Py , ( )
< sntvar® ( “lzse g9 (9)) , where var* (n*1/2 S g (0)) has a closed form expres-

lim P

n—oo

5 (6 () — s (.0)) | >

t=1

>>5] =0, 5=1,2.

_|_

sion involving products of g (0) and gn ¢4+ (6) (the exact expressions are given by the uni-
variate analogs of (3.1) and (3.4) for j = 1,2, respectively, with s%, replaced by gn:(0)). Un-
der the domination condition on {gn: (6)} and the properties of the sequences of weights (3.2),
(3.3) and (3.5), repeated application of Minkowski’s inequality and Holder’s inequality yields
Hvar* (n*1/2 S g (9))‘13 = 0(0), where || X, , = E*(IX")"/" for some r > 2.

w,mry
) >¢
O ((E)Tﬂ) , which completes the proof, given that ¢ = o (n) by assumption. l
Proof of Theorem 3.2. We apply Lemma 3.2 with @y (-,0) = n71 31 | gt (-,0) and
Z(j) (yw,0) = n7 30 q;gj) (-,w,0), where we define g (+,0) = log fu (Xnt () ,9) and, for

Thus, by Markov’s inequality, for all n sufficiently large and for j = 1,2, P { (’Q

j=1,2, we let {qng] ) (-,w,@)} denote the MBB and SB resamples, respectively. Assumptions
A1, A2, A3, A5.(i), A.6.(1), A.7 and A.8.(i) ensure that conditions al) through a3) in Lemma
3.2 are verified, which proves (A). The proof is identical to that of Theorem 3.19 of Gallant and
White (1988), except that we rely on a generic uniform law of large numbers due to Andrews
(1992, Theorem 3) to prove b3) instead of Gallant and White’s (1988) Theorem 3.18. This
requires that a pointwise law of large numbers and a global Lipschitz condition on © holds for
{qnt (+,0)} . In particular, our assumptions guarantee that Andrews’s (1988) weak law of large
numbers for uniformly integrable L; —mixingales applies to {g.: (-,0)}. To prove (B) we verify
the additional conditions bl), b2) and b3) of Lemma 3.2. For each w in Q and n =1,2,..., for
j = 1,2, the functions qn(]) (,w,") : A x ® — R are such that q*(]) (-,w, 0) is measurable-G for
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each § € © (by Lemma A.1) and q;zgj ) (A, w,-) is continuous on O for all A, a.s.— P by Assumption
A.2. For almost all w € (2, the existence of é:;(j) (-,w) as a measurable-G function follows then by
Lemma 2 of Jennrich (1969), for each n. Condition b3) requires a bootstrap uniform weak law of
large numbers to apply to { ) (w,0) — Qp (w, 9)} . This follows straightforwardly under our
assumptions by Lemma A.2 and Lemma A.3, once we assume ¢, = o (n) and ¢,, — co. B
Proof of Lemma 3.3. (A) is a restatement of Theorem 6.2 of White (1994, p. 89) under
conditions al) through a4). To prove (B), by the method of subsequences it suffices to show that

for an arbitrary subsequence indexed by {n'} there exists a further subsequence indexed by {n"}

such that as n” — oo,

. . . dps
Bn// 1/214;:// vn/ (en// ('7w) - en” (w)) = Pn”,w N (07 Ip) » @.8.— P’

i.e. for all w in some set F' with P (F) = 1.

Pick an arbitrary subsequence {n’}. By al) through a4), there exists a further subsequence
{n""}, say {(én” (w) — 6)%,,>/ ,ved [V2Qur (w,0) — Ay (9)]} — 0 for all w in some Fy € F with
P (F1) = 1 uniformly on ©. Under bl) and b2), for all w in some Fy € F with P (Fy) = 1,
{Q;‘L,, (-,w,-)} is a sequence of random functions on (A, Q,P;,,7w> continuously differentiable
of order 2 on ©. Thus, by Lemma 2 of Jennrich (1969) (2)2,, (-,w) = argmaxe @, (-,w, ) for
n’ =1,2,...,and win F». Under bl) through b4), and for all w in some F3 € F with P (F3) =1,

L R /
the sequence {<9n// (,w) — Oy (w)) ved [V2Qr, (-,w,0) — V2Qur (w, 9)]} contains a further

- R /
subsequence, say {<6n/// (,w) — O (w)) ,ved [V2Q;‘Lm (,w,0) = V2Qun (w, 0)] } , which con-

verges to zero in probability—P;L‘,,,’w, and BZ,_,,l/ 2" V@ (-,w, én/// (w)) converges in distribu-
tion to IV (0, ,) under Py, .

Define § = F1 N F> N F3 so that P(F) = 1. For fixed w € § and n” sufficiently large,
it follows that O, (w) is interior to © given that Gm (w) — 6%, — 0 and given assump-
tion A.3; and A, (w) = V2Qum (w,énm (w)) is O (1) and nonsingular given that for w €

Fy, |det Anm (w) — det A°

nlll

< § for any ¢ > 0 and all n"'sufficiently large, which implies

det A, (w)) > 5 > 0 given assumption A.10.
For all such n" and fixed w in §, by Theorem 6.2 of White (1994) it follows that

(AZ) ! (é:,’” (’w) — én”’ ((.U)) = —An/// (w)fl 1/7’L///VQ;’/‘L”, (.7w7 én/u ((.U)) + OP*/// (].)
(A.3) = =AY NNNQhm (w Orr (w)) +opx,, (1).

nlll’w
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0o—1/2

n/ll

~ d *
Given that {B A;;,,,} is O (1) and that B%,"*VaVQ*,, (.,w,enm (w)) =" N0, 1) |

nlll
. . dpx
(A.3) implies that B%,'/?A°,,v/n" (9;},, (-, w) — Oym (w)) = " N (0,1,). The desired result
follows because this holds for any subsequence {n'} and all w in § with P (§) =1. B
The proof of our next results makes uses of the following lemma. Part (A) is just a restatement

of Corollary 3.8 of White (1994) and part (B) is an extension of this result to the bootstrap

context.

Lemma A.4. Let {Q, : Q@ x © — R} be a sequence of functions continuous on O a.s. — P and
let {én Q- @} be such that 0,, — 6% — 0 prob — P for some nonstochastic sequence {6°, € ©}.
Suppose that supgeg |Qn (+,0) — Q,, (8)| — 0 prob — P where {Q,, : © — R} is continuous on ©

uniformly in n. Then,
(A) Qn <7én ()) -Q,, (6%) — 0 prob — P.

Let (A, G) be a complete probability space and for each w € €, let Py, be a probability measure
on (A,G). If@:; (w)— 0,, (w) — 0 prob— P} ., prob— P and supycq Q% (-, w,0) — @y (w,0)] — 0
prob— F; ,, prob— P, then

(B) Qr (-,w, 9; (-,w)) —Qn (w, 0., (w)) — 0 prob— Py, prob— P.

Proof. (A) is a restatement of Corollary 3.8 in White (1994, p. 32). To prove (B), by the

continuity of Q,, on © uniformly in n, given ¢ > 0 there exists a ¢ (¢) > 0 independent of n such

that |Qy, (6) — Qn (én)

> ¢/3 implies ‘6) - 9n) > 0 () . It follows that
P[P (|@n (e 0h) = Qn (w.0)
<p [P:,w (sgp Q% (10,0) — @ (,0)] > 6/3) > 6/3}

>s>>s}

4P [P;;w <2 up |Qn (2, 0) = Qu (0)] > 5/3> > 5/3}

0, — 0,

4P [P,’;w (

>5(5)) >5/3} =&+ 8+ &3,

with obvious definitions. By uniform convergence of Q7 (-,w,0) — Q,, (w,6) to zero £&; — 0.
Similarly, by uniform convergence of Q,, (-,0) — Q. () to zero, £, — 0 once we note that & <
P (2supg |Qn (w,0) — Qn ()| > ¢/3) . Finally, {5 — 0 because 0, (-,w) =6, (w) — 0 prob— Py
prob— P. 1

Proof of Theorem 3.3. We show that (A) and (B) of Lemma 3.3 apply to the QMLE
with the same choices of @, (+,60) and Qz(j) (,w,0), 7 = 1,2, as in Theorem 3.2. The desired
result follows then by Polya’s theorem (see e.g. Serfling, 1980, p. 20) since C2 = AS~1B2 A%~ is
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O (1) by assumption and the normal distribution is everywhere continuous. Part (A) of Lemma
3.3 follows in our particular application by Theorem 5.7 of Gallant and White (1988) given our
assumptions A.1 through A.10, which imply conditions al) through a4).

Next we verify conditions bl) through b4) to obtain the analog of (B) in Lemma 3.3 in the
QMLE application. Given assumptions A.1 and A.2, by Lemma A.1 Qz(j ) (-,w, ) satisfies the
measurability and continuity requirements (i.e. bl) and b2)) of Lemma 3.3. Given assumptions
A.5(ii) and A.6(iii) and the conditions on £, it follows from Lemmas A.2 and A.3 that a bootstrap
uniform weak law of large numbers applies to {V2Q;§(j ) (-,w,0) — V3Qy, (w,&)} , which verifies
b4). Lastly, we verify condition b3). Add and subtract appropriately to obtain (for any n and

any w)
mn

n71/2 zn: S:LSSJ) (-, w, én> - n71/2 Z Snt <w; én) = 55‘2 + €2n + fg}]n)7 where
t=1 t=1

€0 (o) =2 (51 (o 02) = s (0,63)):

t=1

€op (W) = —n /2 zn: (Snt (w,én) — St (%9%)) ; and
t=1

n

5 Cw) =023 (5 (s bn) = s (w,69) )

t=1

Consider an arbitrary subsequence n’. Under assumptions A.1-A.10 strengthened by 3.1.a), 3.1b’)

and 3.2, by Theorem 3.2 of Gongalves and White (2000a) there exists a further subsequence
, dp

n such that if ¢,» = o(n"l/Q), 3221/2 5{3,, (w) = e N (0, L), for j = 1,2, for all w in

some set Fy with P (F;) = 1. Because 6,, — 6%, L0, it follows that &, (w) =0y, — 0 and
n/=t Z?:l Spirt (w, énu> = 0 for all n” sufficiently large and for all w in F5 with P (Fy) = 1 (since
07, is interior to © by assumption). We will show that £, (w) —|—§gj72,, (,w) — 0 prob— Py, , for
all w in some F' with P (F') = 1, which by Lemma 4.7 of White (2000) implies the desired result.
F will be taken to be Fy N Fy N F3, where F3 is defined as the set of w for which conditions a3),
a4), b3) and b4) of Lemma 3.3 are satisfied. By definition, P (F3) = 1 along an appropriately
defined subsequence, here indexed by n”. Thus, P(F) = 1. For fixed w in F' we consider the

following two mean value expansions
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1

§2n” (w) = _n”_l ivlsn”t (waén”) \/ﬁ (én” (w) - 9%”) )

t=1
D, (w) = 0PSOV (w,B) Vil (en (W) — e;,,) ,
t=1
where 6,,» and 6, are (possibly different) mean values lying between 0, and 07,. Hence
Eop (W) + ng,, (hw) = n'? Z (V's;s,jt) (r,w, b)) — V' sprg (w, 9,,;:)) n'! (énu (w) — 9%,,)
t=1
(A.4) = (9 (,w) Vi (en (w) — 9;;,,)

Now, for j = 1,2, the bootstrap uniform convergence of {VQQ;W (,w,0) — V2Q,n (w,&)},
the uniform convergence of {V2Qnu (w,8) — Apn (9)} and the convergences of 6,» — 6%, and

67, —0°, to zero together imply by Lemma A.4 that C(j) (-,w) — 0 prob— P},  forallw e F.

n n’’ n!

Since v/n/ (@nu (w) — %,,) =0 (1) on F, it follows that &,,,» (w) + fz(,i),, (,w) — 0 prob— Py, ,

n

for w € F, P(F) = 1. This delivers (B) in Lemma 3.3 and completes the proof. B
Proof of Corollary 3.1. The definition of é*(j)

3.3 imply \/n (éz(j) - én) —\/n (@Z(j) - @n> — 0 prob— Py ,, prob — P, which delivers the result

for éz(j). A similar result can be established for QIL*(j ) since by Lemma A.4 Az(j ) _ fln — 0

prob— Py, prob—P. B

and equation (A.2) in the proof of Lemma

B. Proofs for Section 4

Throughout Appendix B, C' will denote a generic constant that might change from one usage to
the next. The dependence of the bootstrap variables on w and on n will also be omitted as it is

not relevant for the arguments made here. For instance, P* = P  and X}, = X

n,w nt ('7w)7 where

the star denotes resampling under the MBB.

Lemma B.1 (Studentization of the sample mean). Let {X,;} satisfy Assumptions 2.1 and
2.2 of Gongalves and White (2000a), where Assumption 2.2" is strengthened by

Assumption 2.2’ n=1 30 |, — i, P =0 (55176/2) for some small § >0 (i.e. 0 < 6 < 2).

Then, if ¢, — oo with £, = o (n1/2) we have that for any ¢ > 0,

lim P (P*(|633 — 67, >¢) >¢) =0,

n—oo

_ _\2
where (}%71 = var* (y/nX};) and (}7*1?1 =k! Zle <€71/2 Zle (X140 — XT*L)) .
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Proof. The proof consists of two steps:

Step 1: Show that 5*2 — (“7271 — 0 prob — P*,prob — P, where
¢ 2
~;21 = Z < —1/2 Z (XI¢+t - Xa,n)) ) with Xa,n =FE* ( _;;) ; and
t=1

Step 2: Show that 6734 — &34 — 0 prob — P*,prob — P.

Define A; = ¢1/2 Zle (Xiqe — X)) and A; = 01/2 Zle (Xigt — Xan) so that Un1 =
k132 (A2 and 533 = K~ 1Y0F | A7, By Kiinsch (1989, Theorems 3.1 and 3.4), we can also
write 67, 1 = (n— 0+ 1)~y A2,

To prove step 1, use Markov’s inequality to write

P* (|67,

552 (“77211} > ¢) SE_pE*‘ﬁ':L - &2 ‘ for any € > 0 and some p > 1.

Given that the I; are i.i.d. uniformon {0,... ,n — ¢}, E* (637) = E* (A7) =(m—L+1)" Z”’*Oe A2 =
which implies that

nlv

P
<k PCE*

k p/2

Do (Af - B (A))"]

i=1

k

KD (4] - B (AD))

i=1

E" }5':31 - 5’%,1‘13 =L

for some C' < oo by Burkholder’s inequality, given that {Ai — E* (A%l)} are i.i.d. zero mean,
conditional on the original sample*. For 1 < p <2, 2 >0 and y > 0, the inequality (z + y)p/ 2 <
aP/2 4 yP/2 (this is the cq-inequality with » < 1, e.g. Davidson, 1994, p. 140) implies that
E* Y (A3 - E*(43))° o < kE* |A3 — E* (A3)|" so that

E* 630 — ol < km0TVCE | A}, - B (AL)|P < 2°Ck™ VB | AL 7

Take p =1+ 6/2 with 0 < § < 2. Then, by another application of Markov’s inequality,
502 0'%1} >e)>¢e) < P (6’(”‘5/2)Ck*‘5/2E* Ap 40 > 6)
< /D) o-0/2 <E* | A, ’2+6) -

P (P* (|6,

Next, we show that k—%/2F (E* | Az, |2+6> =o0(1). We have

“More precisely, we use an extension of Burkholder’s inequality to m.d.s. triangular arrays due to Chen and
White (1994) since {A%i — B (A%l)} is in fact a m.d.s array with respect to 7' = o (I1,... , ;).
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2+6

n—~{
E <E 1AL yM) =(n—t+1)7 Y g it =X
i=0

2+6

n—~t
:(n—é+1)*1Z£*1*5/2E < Fy+ Fy + F3,

nyi+t Z (Hn,ith - laa,n) - EZC%”
i=0 t=

where Znt = Xt — fngs Yam = (n =€+ 1) PS5 Vi = S0 @y for any {V}

and where, apart from a multiplicative constant,

) 2+6

o= (n—t4+1)7 'y ¢10PE it ;
=0

B = (n—0+1)" Ze—l 21N (Hnive = Faw)| 5 and
= t=1

F; = (n—(0+1)" ZZ‘I 82 p <}€Zan}2+6>
i=0

By an extension of a maximal inequality for Lo, s—mixingales to a triangular array setting (e.g.
Lemma 1 of Hansen, 1991; see also Hansen, 1992b), ‘Zt 1 mﬂ‘ﬂ(s < C0+%/2 ynder As-
sumption 2.1’, which implies that }k:_‘s/QFl} < Ck—8/2¢=1-0/2p148/2 — O ((%)6/2) = o(1) given
that £ = o (n1/2) Similarly, £ (}EZQ n}2+6) (n— ¢+ 1)"+8) 0p1+8/2 < C1+5/2 implying that
k—®2Fy = O (( )6/2) =o0(1). If p,, = p for all ¢, F = 0 because fi,,, = > ;1 Quft = ji since

> g e = 1. Otherwise, we can show that

n—~_ l
B < €1+6/2( —0+1) 1Z€ 1Z}ﬂnz+t Man}Q—HS £1+6/2Zammm ﬁan2+6
1=0 t=1 t=1
n
n _ _ 6
< mgl—i_é/Qn 1;‘Mn,t_ua,n}2+ )

since 0 < ap < Routine calculations show that Assumption 2.2’ is sufficient to yield

=T
Fy = o(1), and thus k~%/2F, = o(1), given that ¢ = o (n¥/2). In fact, the weaker condition
Y bt — Bl *T° = 0(£,1) is sufficient for the result. This condition may be stronger or
weaker than Assumption 2.2 depending on whether |u,, — f1,|] > 1 or < 1. Assumption 2.2’
is slightly stronger than both of these other conditions and it is adopted for simplicity of the
presentation of the results.

To prove step 2, notice that we can write A[i =0 (X'Ii — X,’;) , where X, = ¢! Zle X1+t
and A; = /¢ (X' I — X’ayn). Thus, with probability approaching one,
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I Z ( (X1, — —0(Xp, — Xa,n)Q) = —0(X} — Xan)® = Op: (g) -0,

since under our assumptions /n ()_(:; — )_(a,n) =ar* N (0,1) prob— P by Theorem 2.2 of Gongalves
and White (2000a). This completes the proof of Lemma B.1. B

Lemma B.2. Let {X,;} and {Zy} satisfy ||Xullops < A and || Zullops < At =1,...,n,
n=12,..., forany 0 < 6 < 2 and A < co. Let k = n/l. If {Iz-}f:1 are i.i.d. uniform on
{0,...,n— ¢} and if ¢,, — oo and ano(n1/2), then for any € > 0,

nh_)n(;P( < IZZ ZXTLI-HZZTLL-H >n! 5>>5>:O.

Proof. Let S}L Zt 1 Xn,i+t and S = Zle Zn,i+t- By Markov’s inequality, for some

P
pP* < IZZ lSl >n1/25> < 7P PI2E* < ) )

Adding and subtracting appropriately yields
p)

p k
E* < -1 Ze 151 ) <c {E < K (8L, 82, — B (SL,82)
i=1
p
) } = F + Fs.

k
e ( FY B (8L,8E,)
i=1
. p/2
F) < CUPEPE* (Z |Sp.1.5m 1, — E* (Sp 1,57 1.) ‘2> <o rp-P-Dpe S S

l<p<?2

IZ£ 1511

By the Burkholder and ¢,-inequalities (with r =p/2 <1)

given that {S}L I th 5 —E (S}L IZS )} are i.i.d. with zero mean. Repeated applications of the
S, 82,1 . Take p = 1+ §/2 with

n,I1~n,I

cr-inequality and Jensen’s inequality yield Fo, < C?¢ PE*
0 < 6 < 2. Then,

IZE 151

146/2

*

IN

Com/D (k=02 |5 1 82 [ S 52 [ )

IN

_ " 14+6/2
ce O+ pr gl 52 [T

M

5/2

because k7°/* = (%)6/ 2 < 1. By the implication rule and Markov’s inequality, it follows that
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(s

An application of the Cauchy-Schwartz and Minkowski inequalities implies

n—~¢
E <E* ‘S}L,IlSiJl}Hém) = (n—t+ 1)_1 ;E (}S}Sﬂpﬂm)

S n1/2€> >€> < o= (2+6/2) = (148/2)/29-(14+6/2) (E*} 53,11\1%/2)-

n—~_
= =t Y S S < A,

Thus, P (P* (‘k 122 0 1551 S?” ‘ > nl/2e ) > 5) =0 ((nf/2>1+6/2) — 0 given that ¢ =
0 (nl/z). |

Proof of Theorem 4.1. By Theorem 7.5 of Gallant and White (1988), W, = XZ under H,.
Thus, it suffices to prove that W =d4r* qu with probability approaching one. By a mean value
expansion of r, (@Z) around 6,,, it follows that \/n (rn (2) — («%)) =Ir* N (0, RCC°R%)
prob — P, which implies that n (7 — #,) (RGCSRY) ™ (7 — #,) =P X7 prob — P. Thus, it
suffices to prove: (i) R% — RS — 0 prob — P*, prob — P ; (ii) A% — A2 — 0 prob — P*, prob— P ;
and (iii) B* — B2 — 0 prob — P*, prob— P.

(i) follows by continuity of r,, on © (uniformly in n) and because 8, — 6% — 0 prob — P*,
prob — P by Theorem 3.2; similarly, by Theorem 3.2 and Lemma A.4, we have that /1;‘; — A, —0
prob — P*, prob — P, which together with the fact that A,, — A2 — 0 prob — P implies (i).

To prove (iii), consider the infeasible estimator based on 6,

k ¢ ¢ !
B =ty (em 3 (smree (XET,02) — 51‘;’)) (51/ 2 (e (XET05) - 512“))
i=1 t=1 t=1
k ¢ ¢
(Bl) = kil Zéil Z Sn, I+t (XrILi+t7 ‘9%) Z S;L,I¢+t (X#th? 90) ES:LO :LO/a

=1 =1 =1
n»-n
nonzero fixed A € R?, it follows that B,’,‘L—BT°L71 = O, prob—P, where By ;| = var* (n*1/2 Sy sk (69)).
By Theorem 3.1 of Gongalves and White (2000a), By ; — By — 0, prob — P, which implies
B: — B2 = 0, prob — P. Therefore, it suffices to show that B — B = 0, prob — P. From (4.1)

where §5° = n~ 1Y 0 | 54, (67). By Lemma B.1 applied to {Ns, (X},05)} with an arbitrary

and (B.1) we can write

B — B = Dy + Da, where
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k 4 l
=S S o () S ()
i=1 t=1 t=1
L L
= smairt (XL 00) D g (X ‘90)] and
t=1 t=1
Dy = 51055

Consider D5 first. We can write 5,° = ol/2po=1/2 (550 —50)+ B By l? sp, = E1 + Eo, where
50 =n"135"1 | spt (605). By Theorem 3.2 of Gongalves and White (2000a), By, 1/2\/ﬁ (50 —59) &
N (0, 1) prob — P so that E; = Op-~ (n_1/2) with probability approaching one. By the CLT for
{s9,} and noticing that E (59) = 0 by the F.O.C. that define #;, it follows that Ey = Op (n_1/2) .
This implies that Do 2o prob — P, since £ = o (nl/ 2).

Next, consider Dy. For J =1,... ,p, let 57{,11 (0) = Zle SnLi+t,, (X21E,0), where J indexes
the J* element of the score. A mean value expansion of k! Zle 5_152 I, (é;) Sff 1, (@Z) around

¢ yields for a typical element (j1,j2) of Dy

D§j1’j2) -1 Zg— 50 (5’%1] (9;) Sf,fji (9;)) (é; — 9%) ,

where 9; lies between é; and 6. It follows that

’ngl,dg)

k
S WAL IE N SRS YE I S VI CROTE
i=1 t=1

1/2 . j
where |z| = (') / ZTJL 1;+t = SUPgeo ‘%Sn,lﬁt,j (X5+,0)], and yyjz,[i-s-t SUPgce |Su, 1+t (XnH,0)],
j = {j1,j2} - Given Assumption A.6 we can apply Lemma B.2 twice with X,,; = supgeg |5 s, (X5, 0)]

and Zn; = suppee |snt,j (X%, 0)| to obtain that

k ¢
TR e {ZZTJLILH D Vot ZZDL—H Zym +t} — 0 prob— P7, prob—P.
=1 t=1 t=1 t=1

t=1
By Theorem 3.2, with probability approaching one \/n (é:; — 9%) = Op- (1), which delivers the
result.
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