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Abstract

Arithmetic research reveals longer RTs for large problems
(6x8) than small problems (2x3). While several factors
have been implicated, they cannot be dissociated in normal
anthmetic. Subjects were trained on an artificial operation
designed to independently manipulate these variables.
Results suggest that semantic operand representations and
presentation frequency are involved. A new theory of
arithmetic fact retrieval is introduced which suggests that
arithmetic facts are stored and retrieved using a magnitude
representation of the problem operands. Simulations
suggest the theory is able to account for the major
arithmetic fact retrieval phenomena.

Introduction

Arithmetic fact retrieval is one of the most important
skills underlying our ability to manipulate numbers. Two
central findings have dominated the literature and appear key
to our understanding of the cognitive processes which
underlie the ability to retrieve simple arithmetic facts (e.g.,
6 x 7 =42) from memory.

Problem Size Effect

Perhaps the most pervasive finding from simple arithmetic
research that is responses to larger problems such as 9 x 8
are on average, slower and more error prone than responses
to smaller problems such as 2 x 3 (see Figure 1, Campbell,
1985). This problem size effect has been robustly reported
in studies of both addition (Ashcraft & Battaglia, 1978), and
multiplication (Campbell, 1985; Harley, 1990; Miller,
Perlmutter, & Keating, 1984), and has been reported across
cultures (Geary, 1996).

Several possible sources of the problem size effect have
been proposed, including the size of the operands (Gallistel
& Gelman, 1992), the frequency of problem presentation
(Ashcraft, 1982), the frequency with which non-retrieval
strategies are used (e.g., successive addition; Lefevre,
Sadesky, & Bisanz, 1995; Siegler & Shrager, 1984), and the
order in which the problems were acquired (Campbell &
Clark, 1992). None of these theoretical positions have been
widely accepted, in part because each of these factors are
highly intercorrelated in normal arithmetic and little
independent evidence supporting these positions has been
acquired (see Ashcraft, 1992).
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Figure 1: Simple arithmeltic reaction times grouped by
problem family (e.g., 2xN/Nx2, eic.)

Error Types

The most common error that subjects make when producing
answers to simple arithmetic problems is to produce the
correct answer for another problem which shares one operand
with the presented problem. For example, if the problem 7
x 6 was presented, a typical error might be to produce the
answer "forty eight”. Reports indicate that operand errors
account for approximately 75-80% of all errors in production
tasks (Campbell, 1985; Harley, 1990).

An interesting characteristic of operand errors is that the
erroneous responses are usually correct for a problem that
shares one operand with the presented problem and is also
close in magnitude with respect to the other operand
(McCloskey, Harley, & Sokol, 1991). For example, it is
more likely that "forty eight” would be an error for the
problem 7 x 6 than "twelve". Most errors have been found
to have an operand distance of two or less; as operand
distance increases, the frequency of operand errors
systematically decreases. Most theories have suggested that
errors are due to confusions during retrieval from a network
of stored facts (Ashcraft, 1992; Campbell, 1995), or to
errors made when acquiring the facts and using strategies to
solve problems such as repeated additions (Lefevre et al.,
1995; Siegler, 1988).

Unfortunately, there has been little progress in
disambiguating the various possible sources of the problem
size effect and error rates because current theoretical
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positions make very similar predictions. For example, in
comparison to larger problems, small problems (e.g., 2 x 3)
are likely to be taught first, retrieved more often, and solved
using stralegies more accurately.

To overcome difficulties associated with studying normal
arithmetic, subjects were trained on an artificial arithmetic
operation designed to independently manipulate the various
potential sources of the problem size effect. While previous
artificial arithmetic studies have been performed, none have
trained subjects on a full table of problems up to a level of
performance comparable to normal arithmetic (e.g., Graham
& Campbell, 1992; Zbrodoff, 1995).

Diamond Arithmetic

Procedure

Sixty-four problems were constructed using the operands 2
through 9, the operations symbol "0" and answers from 23
10 98. Operand size and answer size were uncorrelated,
allowing the effects of operand size and answer size (o be
studied independently. Further, operands and answers were
not systematically related (e.g. 2 03 =97; 2 0 4 =43), so
problems could only be solved by retrieving the appropriate
fact from memory (non-retrieval strategies such counting up
could not be used). Subjects were trained over several
sessions (12-20) until their response accuracies and latencies
approximated normal arithmetic performance (100% correct;
average RTs under 1100ms). During training, subjects were
presented all problems equally frequently.

In summary, for Diamond Arithmetic operand size and
answer size were independently manipulated, and other
variables such as frequency, order of acquisition, and non-
retrieval strategies were controlled.

Results

Reaction Time Final test results reveal that responses
were faster for problems with smaller operands (2 ¢ 3 =47)
than those with larger operands (9 ¢ 5 = 37, see Figure 1).
However, no effect of answer size was found, implying that
fact retrieval is largely operand driven.

Errors Error types and rates during training were quite
similar to those found in normal arithmetic. A majority of
errors (74%) were found to be operand errors even when the
answers (0 the problems were quite different (e.g., stimulus:
6 0 4; response: 98; where 604 =31 and 6 0 5 = 98). As
in normal multiplication, a operand size effect was also
found. The likelihood of an operand error varied relative to
the difference between problem operands. For example,
when presented with the problem 6 0 4, subjects were more
likely to produce the answer corresponding to the problem 6
05than699.

Discussion

The results from the Diamond Arithmetic experiment
suggest that the problem size effect is related to the
magnitude of the operands (Gallistel & Gelman, 1992), and

is not related o the magnitude of the answer (Campbell,
1994).

There are several implications of the Diamond Arithmetic
Experiment for theories of arithmetic fact retrieval. First, it
appears that non-retrieval strategies (such as multiple
additions) are not required to elicit a problem size effect, or
standard error types. Despile the absence of typical non-
retrieval strategies (e.g., multiple additions), a problem size
effect and typical error pattern were found, suggesting that
these characteristics of normal arithmetic may not be
attributed to non-retrieval strategy use (e.g., Siegler &
Shrager, 1984),

There was a problem size effect in Diamond Arithmetic
(even when all problems were presented with equal
frequency), suggesting that the frequency of problem
presentation is not the primary source of the problem size
effect, as was suggested by Ashcraft (1992). Further, it also
appears that the magnitude of the answer is not provide a
significant contribution Lo reaction time latencies, or error
rates, as was suggested by Campbell (1995).

In summary, most major theories of arithmetic fact
retrieval have difficulty accounting for the findings of the
Diamond Arithmetic experiment. However, it does appear
that aspects of the various theories are important
components which can be integrated to provide a new theory
of arithmetic fact retrieval. For example, the notion that
arithmetic facts are retrieved using a representation of the
magnitude of the operands (Gallistel & Gelman, 1992) is
quite consistent with the findings from the Diamond
Arithmetic study. Further, the notion that arithmetic facts
(Ashcraft, 1992; Campbell, 1994) are retrieved from a
network of stored facts corresponds well with the reported
error pattern, in which most answers were errors to other
problems which had operands which were close in magnitude
to the correct operands. Due to the limitations of current
theories of arithmetic fact retrieval, a novel theory is
introduced.

The Semantic Network Retrieval Theory

The semantic network retrieval theory can be considered an
amalgamation of three current theoretical positions on
arithmetic fact retrieval, adopting the position that
arithmetic facts are retrieved from a network of related facts
(Ashcraft, 1992; Campbell, 1985), and the position that
arithmetic facts are stored and retrieved in a semantic form
(McCloskey, 1992) in which numerals are represented in
terms of their magnitude (Gallistel & Gelman, 1992).

Basic Structure of the Semantic Network Retrieval
Theory

The semantic network retrieval theory (SNRT) assumes
that arithmetic facts are retrieved from an associative
network of facts using a semantic representation of the
problem. The fact retrieval sysiem is composed of three
groups of nodes representing: the current arithmetic
problem, the stored arithmetic facts, and the answer output.
The problem input includes a representation of the
magnitude of the first operand, the magnitude of the second
operand, and the arithmetic operation (not presented in
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Figure 2). The answer output nodes represent the magnitude
of the tens component of the answer, and the magnitude of
the ones component of the answer. Separate tens and ones
representations are postulated due to findings from error
priming (Campbell, 1996) and acquired dyscalculia
(McCloskey et al., 1991).

Operand!

Operand2
Magnitude Representation Magnitude Representation

Problem Nodes

(2x2) ees (4x6)(3x7) »oe (5x6) +e= (9x9)

Tens Answer Ones Answer
Magnitude Representation Magnitude Representation

Figure 2: Semantic Network Retrieval Theory

Each arithmetic fact is represented by an individual
problem node which has excitatory connections with its
problem representation (e.g., the representation of 3 x 4) and
its corresponding answer (tens:1; ones:2). Problem nodes
also have inhibitory connections to problem and answer
nodes which are not involved in representing its answer
(e.g., the 3 x 4 problem node has inhibitory connections to
tens nodes which are not involved in representing ten).
Connections between problem nodes and answer nodes are
bidirectional, allowing the activation of the answer to
influence the activation of individual problem nodes.
However, the connections between the presented problem
and the problem nodes are unidirectional: the presented
problem representations remain fixed through the fact
retrieval process. It is assumed that problem nodes are also
connected to other problem nodes in an inhibitory manner.

Simulation Framework The basic components of the
semantic network simulation include 3 groups of nodes:
500 input nodes representing the presented problem, 64
problem nodes representing the stored multiplication
problems, and 500 output nodes used to represent the
answers 1o a problem.

The 500 input nodes are divided into two equal groups:
those that represent the magnitude of the first operand, and
those representing the magnitude of the second operand.
Only one arithmetic operation was simulated and therefore
no arithmetic operation units were included in the
simulation. The 500 output units also are divided into two
equal groups of 250 nodes. The first group of nodes
represent the magnitude of the tens component of the
answer, and the second group represent the magnitude of
ones component of the answer.

Each problem node represents a unique arithmetic fact by
the nature of its connection weights with the operand and

answer nodes. Problem nodes have positive connections o
operand nodes which compose the representation of its
operands. For example, the 8 x 5 problem node has positive
connections o the nodes in the first operand representation
which represent 8, and to the nodes in the second operand
which represent 5. All remaining operand nodes have
negative connections with the 8 x 5 problem node.

Problem nodes are also connected to answer units. Each
problem node has positive connections to answer nodes
which correspond to its answer. For example, the 4 x 6
problem node has positive connections 1o all of the units in
the tens answer representation which correspond to the
magnitude 2, and 1o all of the units in the ones answer
representation which correspond to the magnitude 4, All
remaining answer nodes which are not involved in
representing that problem node's answer have negative
connections with the problem node. These connections are
bidirectional: answer units receive activation from the
problem units, and the problem units receive activation from
the answer units. The weights between problem and answer
nodes are weaker than those between operand and problem
nodes. This difference allows operand activation to be the
primary influence on problem node activation.

Representations of Magnitude

In order to introduce the manner in which numerical
magnitude is represented, evidence from related arithmetic
tasks is introduced which provides insight into the nature of
the underlying magnitude representations.

Evidence from magnitude comparison judgments suggest
that numerosities (e.g., 4, 9) are not represented only as
distinct lexical-semantic entities, but are also represented in
an analog fashion along a 'mental number line' (Meck &
Church, 1983; Moyer & Landauer, 1967). This magnitude
representation appears to play a central role in many kinds of
numerical processing. For example, when asked to choose
the larger of two numbers (e.g., 2 or 3), adult human
subjects are faster (0 judge the larger of very different
magnitudes (e.g., 2 and 9) than with more similar
magnitudes (e.g., 4 and 5), suggesting that numbers which
are close in magnitude have more similar representations
than those with dissimilar magnitudes, as would be the case
if the representation that mediated the comparison were
magnitudes that obeyed Weber's law.

In addition, if the difference between numerals is held
constant magnitude judgments are faster for smaller pairs
(e.g., 3 and 4) than for larger pairs (e.g., 8 and 9), implying
that it is more difficult to differentiate between the
representations of larger numerosities. It has often been
argued that these results imply that numbers are represented
by the same kinds of mental magnitudes that represent, for
example, the durations of intervals, and that the judgment of
which number is bigger is mentally equivalent to the
judgment of which of two intervals is longer, or which of
two weights is heavier, etc. (e.g., Dehaene, Dupoux, &
Mehler, 1990; Gallistel & Gelman, 1992; Moyer &
Landauer, 1967).

Given the robust findings from non-arithmetic numerical
tasks, it is proposed that arithmetic facts are stored and
retrieved using a representation of numerical magnitude.
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This paper introduces one possible instantiation of a
magnitude representation. However, the fundamental claim
presented here is consistent with the assumptions of
Dehaene and Gelman and Gallistel that numerical magnitude
is represented such that: (a) the closer two numerals are in
terms of nodes of their magnitude the more similar their
representations are, and (b) the distinctions between adjacent
magnitude representations become smaller the larger the
quantity represented.

Simulating Numerical Magnitude Figure 4 presents
the manner in which numerical magnitudes were instantiated
in the simulation. The representations of the numerals 0
through 9 are presented. Each column in Figure 15
represents a unique pattern of activation for the same 250
nodes. Each node has an activation value of O if thin and
unshaded, and .01 if wide and shaded. The total activation
across nodes for each numeral representation sums (o 1.

Number Represented

.t N |

Zimidy ok A e T 9

50

100

Node

150

200

250

Figure 4: Simulated representation of numerical magnitude.
Broad representations correspond to node values of 1, all
other nodes have an activation of 0.

As can be seen from Figure 4, numerals with similar
magnitudes share features with one another. The closer the
magnitudes of the numerals, the more similar their
representations are. For example, while the representations
of 1 and 6 have only a small proportion nodes with
activation in common, the representations of 1 and 2 share
most features with one another.

The representation of numerals in Figure 4 also attempts
to capture the notion that larger numerals share more
features with one another than smaller numerals do.
Differences between the representations of the numerals
become smaller as the magnitude of the numerals being
represented increases. For example, the representations of 1
and 2 share approximately two-thirds of their
representations, whereas the representations of 8 and 9 share
almost 90% of their representations in common,

Arithmetic Fact Retrieval

Activation is hypothesized to spread from the operand and
operation nodes to the problem nodes, and then to answer
nodes. Activation spreads both to the correct problem node,
and other problem nodes with operands which are close in

magnitlude to the correct operand nodes. For example,
consider how activation will spread through the network
when the problem 4 x 6 is presented. Problem nodes which
share the first operand with the presented problem (e.g., 4 x
5,4 x6,4 x 8 4 + 6) will all receive strong activation
from the first operand representation. Other problem nodes
with operands close in magnitude to the first operand (e.g., 3
x 6, 5 x 7) will receive partial activation from the first
operand. Those with a very different first operand (e.g., 9 x
6) will receive inhibition from the first operand
representation. These differences are all dependent on the
amount of overlap in operand representations between the
presented problem, and the operands of each problem node.

Activation will spread from the second operand in a
similar manner. Those problem nodes with second operands
which are similar or identical to the presented second operand
(e.g., 4 x 6, 4 + 6) will receive strong activation from the
operand representation, and those with a less similar operand
will receive less activation (e.g., 4 x 5) or be inhibited (e.g.,
4 x 2) depending on the difference between the presented
operand and the problem node’s operand.

Activation also spreads from the operation nodes (note the
simulation does not currently include operation nodes).
Problems with the correct operation will receive activation
while those in other operations will be inhibited.

Several factors affect the activation levels of the problem
nodes. The strongest single factor is the activation from the
operand and operation nodes. Problem nodes with operands
close in magnitude to the presented problem (in the correct
operation) will receive much more activation (and not
inhibition) from the input representation than problem nodes
with very different operands.

The second factor is inter-problem-node inhibition.
Problem nodes mutually inhibit one another so that as
activation accumulates over time, one node will generally
win out and dominate answer node activation.

Answer node activation is the third influence on problem
nodes. As the problem nodes accumulate activation, they in
turn activate answer representations. Activated answer nodes
feed activation back to problems with answers corresponding
to the answer node activation pattern, and inhibit problem
nodes with dissimilar answers. For example, if the answer
node activation pattern approximated 72, all problem nodes
with a answer in the seventies (i.e., 8 x 9) would be
activated by the tens representation, and all others would
receive less activation, or be inhibited by the tens
representation (depending on the difference between their tens
representation, and the representation of seventy).
Similarly, all problem nodes with ones digit of 2 would be
activated by the ones answer representations (e.g., 3 x 4; 6 x
7, 8 x 9), and others with more dissimilar activation patterns
would receive less activation, or receive inhibition.

Finally, it is also assumed that there is some random
noise in the system such that incorrect problem nodes will
sometimes exceed the activation of the correct problem node
activate the wrong answer for the presented problem. This
provides an opportunity for errors to occur.

Arithmetic fact retrieval involves accumulation of
activation in the retrieval system until the pattern of
activation across the tens and ones answer nodes each arrives
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al the activation pattern for one of the ten magnitude
representations (e.g., the tens nodes adopt an activation
pattern representing thirty, and the ones nodes adopt an
activation pattern representing two).

On a typical retrieval attempt, several problems nodes
initially become active. Problem nodes with operands
which are closest in magnitude to the presented problem
(including the correct problem node) will accumulate more
activation than other nodes, creating sufficiently strong
inhibition to reduce the activation of other problem nodes to
zero. Over time this process of mutual inhibition typically
results in a single winning problem node. Once the
winning node sufficiently inhibits other problem nodes, the
winning node will be the predominate influence on the
answer nodes and will activate its answer node activation
pattern. When one problem node is dominant, the activation
pattern within the answer nodes will no longer be an
amalgamation of several answers, and instead will form one
of the ten activation patterns, allowing an answer (o be
retrieved. The answer retrieved has a separate tens and ones
magnitude value which can then be converted into the
appropriate form for production.

Account of Arithmetic Phenomena

Problem Size Effect The Semantic Network Retrieval
Theory accounts for the fact that larger problems (e.g., 7 x
8) have longer RTs than smaller problems (e.g., 4 x 6) by
hypothesizing that larger problems have more inhibition
from competing problem nodes than smaller problems do.
Because larger operand representations are more similar o
one another (e.g., the representations of 8 and 9 are more
similar to one another than the representations of 3 and 4),
larger operands will more strongly activate numerically close
problem nodes. For example, 7 x 8 will activate its
strongest competitors (e.g., 7 x 9, 8 x 8) more strongly than
4 x 6 will activate its competitors (e.g., 4 x 7, 5 x 6).
Because problems with larger operands (e.g., 7 x 8) activate
incorrect problem nodes (e.g., 7 x 9) more strongly than
problems with smaller operands (e.g., 4 x 6) activate their
competitors, the larger problems will receive more inter-
problem-node inhibition than will problems with smaller
operands. Because both problems with small and large
operands receive the same amount of activation from operand
nodes, the correct problem node for a problem with larger
operands will take longer o accumulate activation than
problems with smaller operands.

Simulation Results One way of measuring the
reaction times of the simulation is to use the number of
cycles the simulation takes to reach the criterion activation
level. If we assume that processing time in the simulation
may approximate the process of updating activation levels in
the actual system, then the number of cycles can be
considered analogous to the time a subject might take to
respond, and the 'pseudo RTs' from the simulation may be
compared to reaction times from normal subjccts.
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Figure 3: Iterations until solution for simulation of
Semantic Network Retrieval Theory

As can be seen in Figure 3, the simulation of arithmetic
fact retrieval does reveal a typical problem size effecl.
Problems with larger operands are slower on average than
problems with smaller operands, and the correlation between
problem family (i.e. RTs for all 2's problems, 3's
problems...) and simulation RT is quite strong (R2=82).

Error Effects The Semantic Network Retrieval Theory
predicts that operand errors will be the most common error
type because the most highly activated problem nodes, next
to the correct problem node, are those which share an
operand with the correct problem. For example, if we
consider which problem nodes may be activated by the
problem 4 x 6, it is predicted that all of the 4 x N problem
nodes will receive full activation from the first operand
representation, and all of the N x 6 problem nodes will
receive activation from the second operand representation.
Of the 4 x N problem nodes, the 4 x 6 problem node should
receive the most activation from the operand representations,
since this problem node corresponds Lo both operands of the
presented problem. In addition, the 4 x 5 and 4 x 7 problem
nodes will receive full activation from the 4 operand
representation, and partial activation from the 6 operand
representation, since some of the semantic features of the 6
are shared by both the 5 and 7.

Operand Distance

<3 -2 -1 +1 +2 243
SNRT Simulation 24 62 151 156 67 26
Normal 30 68 182 143 65 21

Multiplication
Table 1: Operand errors separated according to operand
distance.

Simulation Results The types and frequencies of
errors the simulation produced were compared to the errors
seen in normal arithmetic. Across one hundred runs of the
64 arithmetic problems the simulation produced 578 errors,
for an overall error rate of 9%. As seen in Table 1, the error
patterns for the SNRT simulation appear quite consistent



with the findings from normal arithmetic. The most
common type of error was the operand error.

The simulation reveals a pattemn comparable 10 the one
found in normal arithmetic. Operand errors with smaller
‘operand distances' were found to be more frequent than those
with larger distances. In fact, approximately 90% of the
operand errors had operand distances which were less than or
equal to £2, This is consistent with normal arithmetic, in
which the vast majority of operand errors are within an

operand distance of 2.

Summary

The results from this study suggest that arithmetic facts are
retrieved from a network of stored arithmetic facts in which
numbers are represented in terms of their magnitudes.

The Diamond Arithmetic experiment reveal that
representations of numerical magnitude play an important
role in arithmetic fact retrieval. In contrast to several
different theoretical positions, the standard arithmetic
phenomena were replicated despite the elimination of
differences in problem presentation frequency, answer size,
and non-retrieval strategies (such as multiple additions).

The newly introduced Semantic Network Retrieval Theory
appears Lo adequately account for a number of arithmetic
phenomena. The simulation produced a problem size effect
both in terms of solution time and error rates. The error
rates and types produced by the SNRT simulation also
appear o be generally consistent with the findings from
normal multiplication. The simulation had an overall error
rate of 9% (normal speeded error rates range from 5-15%).
As found in normal arithmetic, most errors were operand
errors, and replicated the operand distance effect.
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