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The future of wind energy in California:
Future projections with the Variable-Resolution CESM

Meina Wanga,b, Paul Ullricha,b, Dev Millsteinb
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bLawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Shifting wind patterns are an expected consequence of global climate change,

with direct implications for wind energy production. However, wind is notori-

ously difficult to predict, and significant uncertainty remains in our understand-

ing of climate change impacts on existing wind generation capacity. In this

study, historical and future wind climatology and associated capacity factors

at five wind turbine sites in California are examined. Historical (1980-2000)

and mid-century (2030-2050) simulations were produced using the Variable-

Resolution Community Earth System Model (VR-CESM) to understand how

these wind generation sites are expected to be impacted by climate change. A

high-resolution statistically downscaled WRF product provided by DNV GL, re-

analysis datasets MERRA-2, CFSR, NARR, and observational data were used

for model validation and comparison. These projections suggest that wind power

generation capacity throughout the state is expected to increase during the sum-

mer, and decrease during fall and winter, based on significant changes at several

wind farm sites. This study improves the characterization of uncertainty around

the magnitude and variability in space and time of California’s wind resources

in the near future, and also enhances our understanding of the physical mecha-

nisms related to the trends in wind resource variability.
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1. Introduction

Renewable energy installations, particularly wind and solar, have been rapidly

deployed in recent years in an effort to displace existing fossil fuel-based energy

sources [1]. Within the U.S., California was the first state to undertake devel-

opment of large wind farms starting in the early 1980s. In terms of absolute5

capacity, California’s wind-generated electricity has roughly doubled during the

past five years, to meet 6.81% of the states total system power (as of 2016).

Research has also indicated that, globally, a moderate wind energy deployment

plan in which wind displaces coal (i.e., 14% wind-derived electricity generation

by 2050) would help delay by 1-6 years crossing the 2◦C warming threshold, of-10

ten considered a lower threshold for dangerous climate change [2]. The growing

adoption of wind power emphasizes that wind is a proven, reliable, and cost-

effective source of low-emission power that can grow at scale. However, wind

power is also dependent on sufficiently high wind speeds, which can significantly

vary by location and time period. Several past studies have demonstrated his-15

torical decreases in near-surface wind speeds over many regions of the Northern

Hemisphere, including the United States [3, 4]. Consequently, an understand-

ing of present and future wind climatology is very important when determining

where investments in the construction of new wind farms should be made. In

particular, given that the lifespan of wind farms is typically around 20-25 years,20

climate change over the coming decades has the potential to significantly affect

the wind farm productivity[5].

Like many other renewable energy technologies, wind energy is influenced

by climate change through changes in global energy balance and resulting shfits

in atmospheric circulation patterns [6]. The few studies that have examined the25

impact of climate change on wind resources over California using global and/or

regional climate models [7] have been largely inconclusive. These prior stud-
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ies have shown sensitivity to model setup, including choice of physics scheme,

downscaling method, and number of models used [8, 9, 10, 11, 12, 13]. Fur-

thermore, the spatial variability of wind energy resources and its sensitivity to30

model settings emphasizes the benefit of higher resolution models and multiple

model inter-comparisons [7].

In order to better understand how climate change will impact wind energy

resources in California, this study has utilized a state-of-the-art global climate

modeling system with support for regional refinement, the Variable-Resolution35

Community Earth System Model (VR-CESM). The goal of this study is twofold:

First, to validate, analyze, and understand the biases in the historical hub-height

wind field as produced by VR-CESM, and second to use VR-CESM to under-

stand how climatological trends will impact wind power. Seasonal synoptic-scale

patterns were investigated as part of this work to better understand how shifts40

in large-scale systems can impact local-scale changes in wind energy. For this

study we have divided California into two primary sub-domains: Northern Cal-

ifornia (NC) sub-domain, which includes Shiloh and Altamont Pass sites, and

Southern California (SC) sub-domain, which includes Alta, Tehachapi, San Gor-

gonio, and Ocotillo sites. These five wind farm locations constitutes a selection45

of both wind farm sites currently at service, and wind project sites are slated for

new development. Note the Tehachapi wind farm (35◦06’08” 118◦16’58”W) is

very close to the Alta Wind Energy Center (35◦1’16”N 118◦19’14”W), so only

the Alta site was used for assessing the wind field in that area. Figure 1 de-

picts this region, along with the six wind farms and three atmospheric sounding50

locations.

Previous studies [14, 15] utilizing VR-CESM have demonstrated its com-

petitiveness in studying high-resolution regional climatology when compared to

other regional climate models, especially when non-local processes have signif-

icant influence on the local climatology. VR-CESM has demonstrated a much55

better representation of climatology within regions of complex topography, due

to the relatively fine regional resolution compared with conventional GCM sim-

ulations [16, 17, 18].
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Figure 1: Six wind farm sites, and three sounding locations assessed in this study. Markers

shown for each location are consistent as in the rest of the figures.

The remainder of the paper is as follows. Section 2 describes the VR-CESM

model setup and the datasets used in this study. In section 3, historical wind60

speeds are compared across all datasets, including the available sounding obser-

vational sites and surface observations. Future projections from the mid-century

VR-CESM simulation are discussed in section 4. Changes to the synoptic-scale

climatological background fields are also analyzed and described in this section.

Discussion and conclusions follow in section 5.65

2. Datasets

Two model simulations, three reanalysis products, and two observational

datasets are used for model validation and inter-comparison of wind speed at

hub height (summarized in Table 1). In this section we provide an overview of

these products.70
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Table 1: Model, reanalysis, and observational datasets used in this study

Dataset Spatial resolution Temporal resolution Time period

VR-CESM ∼14km(0.125◦) 3-hourly 1980-2000; 2030-2050

Virtual Met 4km 1-hourly 1980-2000

MERRA-2 ∼55km(0.5◦) 3-hourly 1980-2000

CFSR ∼55km(0.5◦) 6-hourly 1980-2000

NARR 32km 3-hourly 1980-2000

ISD Point stations 1-hourly 1980-2000

Soundings OAK, VGB 12-hourly 1980-2000

NKX 12-hourly 1990-2000

2.1. Summary of datasets

VR-CESM (Global climate model product). CESM version 1.5.5, a fully cou-

pled atmospheric, land, ocean, and sea ice model, was utilized for this study.

All simulations used the F-component set (FAMPIC5), which prescribes sea-

surface temperatures and sea ice but dynamically evolves the atmosphere and75

land surface component models. The atmospheric component mode is the Com-

munity Atmosphere Model, version 5.3 (CAM5) [19] with the spectral-element

(SE) dynamical core [20] in its variable-resolution (VR) configuration [21]. The

VR model grid used for this study, depicted in Figure 2, was generated for use in

CAM and CLM with the open-source software package SQuadGen [22, 23]. On80

this grid the finest horizontal resolution is 0.125◦(∼14km), with a quasi-uniform

1◦mesh over the remainder of the globe. Two simulations were conducted using

this grid structure: First, the historical run covers the period from October 1st,

1979 to December 31st, 2000, with first three months discarded as the spin-up

period, for a total of 21-years outputted every three hourly. This historical85

time period was chosen to provide an adequate sampling of the inter-annual

variability, and to coincide with the time period from the rest of the model-

ing and reanalysis datasets. For projections of future wind energy change, our

mid-century simulation ran with the “business as usual” Representative Con-

centration Pathway 8.5 (RCP8.5) [24] from October 1st, 2029 to December 31st,90
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Figure 2: The VR-CESM grid used in this study, constructed by first successively refining a

cubed-sphere grid with a 1◦(111km) quasi-uniform resolution to a resolution of 0.125◦(∼14km)

over the western USA.

2050, again discarding the first three months for a total of 21-years. The future

time period was chosen to emphasize the mid-century focus of this study and

avoid divergence in the predicted impacts among different RCPs. Greenhouse

gas (GHG) and aerosol forcings are prescribed based on historical or RCP8.5

concentrations for each simulation. More details on VR-CESM can be found in95

[14].

DNV GL Virtual Met (Dynamically-downscaled regional model product). The

Det Norske Veritas Germanischer Lloyd (DNV GL) Virtual Met product is

derived from a hybrid dynamical-statistical downscaling system based upon the

Weather Research and Forecasting (WRF) model and an analog-based ensemble100

downscaling method (denoted as Virtual Met in table 1). The predictor consists

of a coarse resolution WRF simulation that is run for the entire simulation

period. To provide training data for the statistical model, a nested version of

the same model is run at high resolution. The period over which the coarse and

high-resolution runs overlap is called the training period, while the remaining105

portion is termed downscaling period. To downscale the predictor data outside

of the training period, the best matching coarse estimates (termed “analogs”)
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over the training period are found. The downscaled solution is then constructed

from the set of high-resolution values that correspond to the best matching

coarse analogs. This method is based upon Delle Monache et al.[25, 26].110

The WRF simulation uses telescoping computational grids with one-way

interaction. For this study the respective horizontal grid increments are 20 km

and 4 km, with the 4 km grid centered over California. The initial and lateral

boundary conditions are specified using MERRA-2, which is widely accepted

in the wind energy community as a high-quality (albeit coarse resolution) wind115

product. The coarse model was run for the entire 01 Jan 1980 - 31 Dec 2015

period, and generated output every hourly, whereas the nested 4 km grid was

run only during the last year of the full simulation (01 Jan 2015 to 31 Dec

2015). The high resolution downscaled dataset is then reconstructed for the

entire 36-year period using the 4 km resolution training data and the 20 km120

simulation (both from the same WRF model configuration). The result is an

hourly time series at each 4 km grid point for January 1st 1980 to December 31st

2015. Wind speed and direction at hub heights, including 50m, 80m, 140m, are

predicted and output. This study purely utilized the 80m wind speed output,

as the 80m hub height is typical for most present-day industrial wind turbines.125

DNV GL served solely as a data provider for this project, and is not responsible

for any results from this study.

MERRA-2 (Reanalysis product). The Modern-Era Retrospective analysis for

Research and Applications, Version 2 (MERRA-2) is a reanalysis product for

the satellite era using the Goddard Earth Observing System Data Assimilation130

System Version 5 (GEOS-50) produced by Global Modeling and Assimilation

Office (GMAO) at NASA [27]. MERRA-2 integrates several improvements over

the first version MERRA product, as described in [28]. For the fields used in

this study, the spatial resolution is ∼55km with 3-hourly output frequency from

1980 to present. Vertical interpolation of MERRA-2 data, as described in the135

following section 3, was performed to calculate hub height wind speed at 80m.

Variables used in vertical interpolation were extracted from two subsets: 3-
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hourly instantaneous pressure level assimilation [29], and hourly instantaneous

single level assimilation [30] (extracted at 3-hourly frequency).

CFSR (Reanalysis product). The Climate Forecast System Reanalysis (CFSR)140

from NCEP (National Centers for Environmental Prediction) is a global, coupled

reanalysis that spans from 1979 to present, with ∼55km spatial resolution and

6-hourly temporal resolution of relevant wind fields [31]. Notably, this temporal

resolution is the lowest out of the five dataset used. The analysis subset was used

in this study, and vertical interpolation was performed at 6-hourly frequency.145

NARR (Reanalysis product). The North American Regional Reanalysis (NARR),

another NCEP reanalysis product, features a slightly higher spatial resolution of

∼32km. It is a dynamically-downscaled data product with spatial coverage over

North America, with 3-hourly temporal resolution from 1979 through present

[32]. Hub height wind speeds from NARR were also calculated at this frequency.150

ISD (In-situ observations). The Integrated Surface Database (ISD) from NOAA’s

National Centers for Environmental Information (NCEI) were used for assess-

ment of hourly 10m wind speed from model and reanalysis. The ISD observa-

tional stations are distributed globally, with the highest concentration of stations

found in North America. Stations across California that provide full year data155

were selected. As not all stations had continuous temporal coverage between

1980 to 2000, each year was examined separately so as to maximize the number

of available stations. To compare 10m wind speeds from model and reanaly-

sis datasets to ISD, the nearest grid point values to each of the ISD stations

was used. Coastal stations were neglected in the analysis of 10m winds, due160

to coastal biases that tend to occur in near-surface coarse-resolution reanalysis.

These biases tend to emerge because similarity theory is typically employed to

extract 10m wind speeds, which produces distinctly different results over the

ocean and land surface.

Upper air soundings (In-situ observations). Upper air soundings (vertical wind165

profiles) from all the available locations across California are incorporated into
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the comparison (University of Wyoming, Department of Atmospheric Science

http://weather.uwyo.edu/upperair/sounding.html). The three sounding

locations used in this study are OAK at Oakland airport (station number 72493),

VBG at Vandenberg Air Force Base (72393), and NKX at San Diego (72293)170

(see Figure 1). The time period used in this study from the first two stations

spans 1980 to 2000. NKX only has data available starting from September 1989,

so only the full years 1990-2000 were assessed. Soundings were collected every

12 hourly at 00Z and 12Z, and logarithmic vertical interpolation was performed

to calculate 80m wind at each sounding location. However, this logarithmic175

interpolation from sparsely sampled profile data could introduce uncertainties

into the calculation.

2.2. Representation of topography

Local topography is particularly important in representing the wind field,

particularly in the regions of significant topographic variability that tend to be180

well-suited for wind power generation. Consequently, the importance of model

resolution cannot be understated. Topographic profiles from each of the models

and reanalysis datasets are plotted in Figure 3. As can be seen here, DNV GL

WRF model ran at 20km resolution (b), which captures the dynamical wind field

at this resolution, and then statistically downscaled to 4km resolution (c). VR-185

CESM uses a relatively smooth topography by comparison, due to its slightly

lower spatial resolution of 14km (a). MERRA2, CFSR, and NARR (d-f) all

have much more poorly refined topography, with a poor representation of the

coastal ranges that are important for shaping the wind field. Note that these

differences also imply that each model has a different altitude for the wind farms190

and sounding stations used in this study.

3. Model comparison and wind resources characterization

3.1. Methodology

The wind speed at each wind farm location was determined using nearest

grid point values to each wind farm site. To obtain 80m wind vectors for this195

9

http://weather.uwyo.edu/upperair/sounding.html


Figure 3: Topographical representation of California and surrounding regions from model (top

row) and reanalysis (bottom row) datasets.

study, vertical interpolation was performed on 3-hourly VR-CESM, 3-hourly

MERRA-2, 6-hourly CFSR, and 3-hourly NARR products from 1980 to 2000.

As mentioned above, 80m wind output is available directly from the DNV GL

Virtual Met data product used in this study, so values are extracted directly

from the output from 1980 to 2000. Vertical interpolation of VR-CESM data200

uses the 3D wind field on hybrid surfaces and 10m-altitude wind speed, which

is computed from similarity theory. For VR-CESM data, the interpolation pro-

cedure is as follows: (1) the CAM5 hybrid coordinates are first converted to

pressure coordinates within the column being analyzed, (2) the height of each

pressure surface above ground level (AGL) is computed by subtracting the sur-205

face geopotential height from the geopotential height of the model level, (3) two

model levels that bound the desired interpolation altitude are selected or, if the

interpolation altitude is below the lowest model level, the lowest model level

and 10m wind speed field are used, and (4) logarithmic interpolation is applied
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to obtain the wind speed at the desired interpolation altitude. Specifically, the210

interpolation was performed by fitting a log equation with the two levels bound-

ing the altitude to be calculated, then interpolating the wind at desired altitude

[33]. Vertically interpolated wind speeds from MERRA-2, CFSR, NARR, and

sounding observations were all obtained a similar procedure, and were calcu-

lated at three hub heights (50m, 80m, and 140m). Further, wind speed at 80m215

was logarithmically interpolated for all three sounding profile locations, and

compared with interpolated 80m wind speed at each sounding locations from

all five model/reanalysis datasets.

The wind field enters into the maximum potential wind power P (W ) via the

expression P = 1
2ρAU

3, where ρ is air density (kg/m3), A is the cross section220

area of the turbine rotor (m2), and U is wind speed at hub height (m/s). Given

the cubic relationship between wind speed and wind energy potential, even a

small change in wind speeds can lead to a substantial change to wind energy

production. The energy contribution of wind turbines to the electric power

system is then computed as the total amount of usable energy supplied by the225

turbine per year [34]. The capacity factor (CF) is often thus defined as actual

power output divided by the maximum wind power output that can be generated

through the system. This wind speed and CF relationship is not continuous,

since there is a discontinuous minimum and maximum wind speed required to

begin and cease wind power production (the latter to avoid damage to the wind230

turbine under extreme wind conditions), and this is represented with different

power curves associated with each of the wind farm sites. For this study, the

calculated CF at each wind farm site is based on different characteristic power

curves specific to each site (see the data in brief accompanying this paper), and

do not include electrical losses during the power generation process.235

3.2. 80m wind speed climatology

The remainder of the text focuses on the NC domain and SC domains. Fig-

ure 4 depicts the 80m wind speed fields (vertically interpolated values except for

Virtual Met) from each of the datasets in the NC domain. Wind fields shown are
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Figure 4: Seasonal average of interpolated 80m wind speed from each datasets for historical

time period 1980-2000 in northern California domain.
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seasonal mean values for all March-April-May (MAM), June-July-August (JJA),240

September-October-November (SON), December-January-February (DJF) sea-

sons between historical time period 1980-2000. Because of Virtual Met’s high

spatial resolution (4km), more topographic features are apparent in the wind

field, whereas the MERRA-2, CFSR, and NARR wind fields are blockier due

to their relatively coarse resolution. Comparing VR-CESM to Virtual Met, the245

overall pattern is very similar, although VR-CESM exhibits lower mean wind

speeds overall. This difference will be further assessed as part of the wind farm

site comparisons in section 3.2. Figure 5 depicts mean winds for the SC domain.

Again, the patterns remain similar between VR-CESM and Virtual Met, but

with a reduced wind magnitude.250

Quantitatively, the VR-CESM and Virtual Met product outputs are highly

correlated (∼ 0.69), which suggests that the underlying physical mechanisms

responsible for determining wind speed are similar between these two products.

The slow wind speeds in VR-CESM are likely a consequence of excessive diffu-

sion in the lowest model levels, and further hypothesized to be connected to a255

boundary layer parameterization in CESM that is not tuned for the high res-

olutions employed in this study (we anticipate addressing this issue in future

work). To better match the wind speeds predicted in the virtual met product,

we applied a multiplier of 1.30 to the VR-CESM results to produce a bias-

corrected VR-CESM (BC VR-CESM) prediction. The value of this multiplier260

is determined by the mean wind speed difference between VR-CESM and the

Virtual Met. As can be seen in Figure 4 and Figure 5, the wind magnitudes are

more comparable to Virtual Met, the latter still produces more spatial varia-

tion as compared to BC VR-CESM. This difference in spatial variation can be

attributed to the representation of topography in the model – as apparent in265

Figure 3, Virtual Met captures the rough rolling terrain of this region, whereas

VR-CESM represents the coastal ranges as a single “mound.” As a result,

Virtual Met captures a detailed pattern of wind speed variation, whereas VR-

CESM only captures a large-scale downslope winds off of this range. In Figure 8

we observe that the histograms of wind speed from BC VR-CESM are closer to270
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Figure 5: Seasonal average of interpolated 80m wind speed from each datasets for historical

time period 1980-2000 in southern California domain.

WRF 20km, although the futher downscaled Virtual Met results exhibit much

higher frequencies over the highest wind speed bins at all locations except San

Gorgonio. For wind speed fields at the other two analyzed hub heights (50m

and 140m), please refer to the data in brief. In general, higher altitudes tend to

produce larger wind speeds, although the patterns remain quite similar.275

Monthly climatological mean wind speeds at each wind farm site are depicted

in Figure 6. As observed in Figures 4 and 5, Virtual Met tends to produce the

highest overall wind speeds. Whereas VR-CESM exhibits a lower wind speed

magnitude than Virtual Met, both datasets produce similar spatial patterns
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that are distinctly different than the other three reanalysis datasets. In par-280

ticular, the coarser resolution reanalysis data tends to exhibit a weak seasonal

cycle. Computing the correlation across monthly mean wind speeds between

each dataset with Virtual Met, VR-CESM has the highest correlation (on av-

erage ∼0.87 over all five wind farm sites), followed by MERRA-2 (∼0.55), and

CFSR (∼0.37). NARR (∼0.17) exhibited the weakest correlation. To further285

quantify the spatial correlations between datasets, the centered Pearson pattern

correlation (Table 2) was calculated for seasonal mean 80m wind speeds from

all the datasets, with the domains masked to only include California, matching

the domain from Virtual Met. As observed in Table 2, VR-CESM produces the

highest pattern correlation (∼0.69) with Virtual Met, followed by MERRA-2290

(∼0.58). Therefore, both temporal and spatial correlation comparisons suggest

VR-CESM produces the most similar wind speed climatology (both temporally

and spatially) to Virtual Met, followed by MERRA-2. NARR produces the low-

est correlation in space and time – in fact, discrepancies in the spatial structure

of NARR’s wind climatology are likely indicative of potentially significant errors295

in its representation of wind speeds [David Pierce, personal communication]. At

several sites (particularly San Gorgonio), the seasonality from the three reanal-

ysis datasets is distinctly different from both VR-CESM and Virtual Met. This

is again likely a direct result of the resolution discrepancy between the mod-

els and reanalysis – for instance, the San Gorgonio wind farm site sits along a300

narrow pass (∼3km) between mountains, which is not resolved in the reanalysis

datasets.

The frequencies of instantaneous 80m wind speeds from each dataset in Fig-

ure 7. Wind speeds in almost all locations appear to follow a Weibull distribu-

tion, as is typical for wind speeds where the velocity in each coordinate direction305

is normally distributed [5, 35]. However, the Virtual Met data diverges from the

Weibull distribution at several locations, which may be indicative of physical

processes that are uniquely captured by this product at high spatial resolution.

Specifically, Virtual Met produces higher wind speeds at a higher frequency than

other datasets in many cases, leading to a greater spread among the wind speed310
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Table 2: Averaged Pearson pattern correlations between each pair of datasets as obtained

from the seasonal mean 80m wind speed from 1980 to 2000.

VR-CESM

Virtual Met 0.69

MERRA-2 0.61 0.58

CFSR 0.45 0.53 0.58

NARR 0.45 0.52 0.51 0.77

Model name VR-CESM Virtual Met MERRA-2 CFSR NARR

Figure 6: Monthly mean 80m wind speed (color-coded lines on left) and mean CF (blue lines

on right) at each wind farm site from all datasets during historical time period 1980-2000.
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bins. Frequencies from BC VR-CESM are closer to Virtual Met compared to

VR-CESM due to increased wind speed, although there remains a mismatch in

the shape of the distribution. The behavior of the Virtual Met data might be re-

lated to the analogous method used on WRF model, and further investigation is

needed to analyze its impact on the hub-height wind speed. Unfortunately, the315

authors are presently unaware of any publicly available hub-height wind speed

datasets that would allow direct validation of these results against observations.

3.3. 10m wind speed climatology

The performance of VR-CESM is now assessed against the 10m hourly In-

tegrated Surface Database (ISD). Although ISD incorporates hundreds of ob-320

servation stations across California, many of these stations do not provide con-

sistent observations over the relevant historical time period (1980-2000). In

order to maximize the number of available stations each year, and ensure sure

each year has complete data coverage, validation metrics (Table 3) were cal-

culated separately for each year between 1980 and 2000. Also, to avoid issues325

with near-surface coastal flow, only inland observation stations were selected for

comparison. After imposing these restrictions, an average of 100 inland stations

were used from each year.

Table 3 provides the averaged seasonal bias and root-mean-square error

(RMSE) at 10m altitude from our five datasets against ISD observations from330

1980 to 2000. Here, a negative (positive) bias indicates that the wind speed

is lower (higher) than observations. As observed previously, VR-CESM tends

to produce lower wind speeds than observation, whereas the Virtual Met pro-

duces overall higher wind speeds. MERRA-2 and Virtual Met exhibit similar

differences, as MERRA-2 provides the boundary conditions for the WRF model;335

nonetheless, Virtual Met does produce higher mean wind speeds than MERRA-

2, likely due to a positive wind bias that appears fairly consistently in the WRF

model [36, 37]. Note that the values listed for Virtual Met in table 3 are de-

pendent upon the specific WRF model configuration and initialization used in

Virtual Met. Further investigation is required to understand biases in the WRF340
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Figure 7: Frequencies for instantaneous 80m wind speeds from all datasets at each wind farm

location for the historical time period 1980-2000 by season. The bin width is 1m/s and covers

the range from 0m/s to 21m/s.
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Figure 8: Frequencies for instantaneous 80m wind speed from bias-corrected VR-CESM (BC

VR-CESM) and 20km WRF compared to VR-CESM and Virtual Met at each wind farm

location for the historical time period 1980-2000. The bin width is 1m/s and covers the range

from 0m/s to 21m/s.
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Table 3: Bias and RMSE for 10m wind speed from all five datasets to inland ISD observational

stations from 1980 to 2000. Bias and RMSE both have units of m/s.

Model name Stats MAM JJA SON DJF Annual average bias

VR-CESM Bias -0.80 -0.52 -0.32 -0.16 -0.45

RMSE 1.23 1.06 0.88 0.85

BC VR-CESM Bias -0.04 0.21 0.28 0.52 0.24

RMSE 1.10 1.10 1.00 1.17

Virtual Met Bias 0.02 -0.03 0.40 0.56 0.24

RMSE 0.97 1.02 0.94 1.02

MERRA-2 Bias -0.14 -0.13 0.23 0.52 0.12

RMSE 0.87 0.92 0.78 0.91

CFSR Bias -0.48 -0.50 -0.14 0.23 -0.22

RMSE 1.11 1.11 0.83 0.88

NARR Bias 0.11 0.16 0.52 0.67 0.37

RMSE 1.34 1.17 1.25 1.49

model. CFSR exhibits lower wind speeds for most of the year except the DJF

season, whereas NARR produces higher wind speeds in all seasons. For MAM

and JJA seasons, Virtual Met is very close to observations – namely, it shows a

relatively small bias, whereas VR-CESM has strong negative biases in both sea-

sons. In SON and DJF seasons, VR-CESM is closer to observations compared345

to Virtual Met, particularly during the DJF season (and closer to observations

than all other datasets). As VR-CESM also obtains 10m wind using the lowest

model level wind plus similarity theory, the biases in 10m wind have the po-

tential to be conveyed to higher elevations during the calculation. So this 10m

wind speed comparison with observation also provides us some insight into the350

possible biases for wind speed at 80m.

3.4. Comparison with soundings

Hub-height wind data in California is often produced through private invest-

ment and hence a closely guarded trade secret confidential to project owners.

Consequently, for validation of our modeled hub-height wind speed data against355
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observation, our assessment is limited to a select number of vertical sounding

sites across California (listed in Section 2) for comparison of higher level wind

speeds, and all of the three soundings are located near the coast (denoted by “X”

in Figure 1) with complex local topographies. The coarse resolution of these

models requires them to average inland and offshore wind speeds, leading to360

skewed results. Also, the sounding observations are only measured twice daily.

Both these factors take into account when doing interpolation to calculate 80m

wind from sounding observations, and from model and reanalysis dataset at

these sounding locations. In comparison, the three lower resolutions reanalysis

datasets all project higher than observation wind speeds. At the OAK site, wind365

speed projected from VR-CESM is the closest (bias = 0.95m/s) to observations

in terms of wind magnitude , though Virtual Met captures monthly variation

better (correlation = 0.62). However, at VBG and NKX, none of the model

datasets could be said to capture the values and seasonal variation particularly

well, even though VR-CESM and Virtual Met are the closest among all.370

3.5. Comparison between VR-CESM and Virtual Met

To further investigate the difference in wind field between VR-CESM and

Virtual Met, the Virtual Met product was regridded to the VR-CESM grid and

the difference taken. Figure 9 shows 1980-2000 seasonly mean wind speed differ-

ence from Virtual Met minus VR-CESM, with positive values indicates Virtual375

Met has higher wind speeds than VR-CESM. The difference is not spatially

uniform – in particular, when comparing Figure 9 alongside Figure 3, Virtual

Met projected higher wind speed over higher altitudes, and lower wind speed

at lower altitudes. The five wind farm sites all sit at relatively high topography

regions, and consequently Virtual Met projects higher values at all five locations380

from Figure 9, consistent with Figure 6.

4. Future Projection

We now turn our attention to future projections of wind energy from VR-

CESM mid-century simulation under the RCP8.5 “business as usual” scenario.
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Figure 9: Comparison between DNV GL Virtual Met 4km and VR-CESM (Virtual Met minus

VR-CESM) of interpolated 80m wind speed between 1980-2000 for northern, southern, and

whole states of California domains.

In this section, seasonal wind power changes are first quantified from the mid-385

century projection, then understood in terms of the synoptic-scale meteorolog-

ical shifts associated with these changes at each wind farm site.

4.1. Projected changes

Figure 10 compares the seasonal 80m wind speed change between mid-

century and historical time periods (2030-2050 minus 1980-2000). These results390

indicate the SON, DJF, and MAM seasons exhibit decreases in wind speed for

all seasons across most areas except for parts of the Central Valley (CV). How-

ever, JJA winds were projected to increase in magnitude throughout most of

California, particularly through the SC domain.

Comparing historical and future simulations, the seasonal pattern of CF395

and wind speed at each site was similar, with overall higher wind speeds during

summer months, and lower wind speeds during winter months (Figure 11). All

wind farm sites exhibit a net increase in both wind speed and CF during summer

months (JJA), and decrease during winter months (DJF). Annual wind energy
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Figure 10: Comparison of VR-CESM seasonal averaged 80m wind speed between historical

1980-2000 and mid-century 2030-2050 (mid-century minus historical) for NC, SC, and Cali-

fornia domains.

production decreases at all sites except Altamont Pass (Table 4). Consistent400

with Figure 11, JJA at all wind farm sites is associated with an increase in CF,

while SON and DJF seasons lead to a decrease in CF. The SON CF decrease is

consistent with results from [38], which analyzed possible future trends at the

Tehachapi wind farm site (denoted as · in Figure 1), and projected a significant

decrease in wind speed throughout mid-century Fall months, and little change405

in Spring-Summer.

An increase in the frequency of lower wind speeds during SON and DJF

seasons is indicative of the decreasing trend in wind speed through these two

seasons. A decrease in the frequency of lower wind speeds during JJA, and

increased frequency of higher wind speeds, is indicative of the increasing trend410

in wind speed during this season. Figure 12 depicts the differences in frequency

between seasonal 80m wind speeds over the historical and mid-century periods

from VR-CESM. The bold lines in Figure 12 correspond to the seasons with

significant CF changes from Table 4.
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Figure 11: Comparison of 80m wind speed and capacity factor between historical and mid-

century at each wind farm site.

Table 4: Seasonal and annual capacity factor changes (mid-century CF minus historical CF,

divided by historical CF, and written as a percentage) at each wind farm site under mid-

century 2030-2050 compared to historical 1980-2000. Boldface indicates a percent change

above the 95% significance level.

wind farm MAM JJA SON DJF annual

Shiloh + 0.2% + 0.4% - 7.7% - 5.8% - 3.2%

Altamont Pass + 4.2% + 7.5% - 4.5% - 0.9% + 1.6%

Alta - 5.1% + 8.3% - 13.3% - 7.3% - 4.4%

San Gorgonio - 2.4% + 9.7% - 10.9% - 16.9% - 5.1%

Ocotillo + 1.6% + 5.6% - 2.0% - 9.0% - 1.0%
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Figure 12: Differences in frequencies between mid-century 2030-2050 and historical 1980-2000

(mid-century minus historical) for seasonal averaged 80m wind speed from VR-CESM at each

wind farm location. Bold lines correspond to significant changes from Table 4.
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4.2. Synoptic-scale drivers415

In meteorology, synoptic-scale fields are associated with horizontal scales on

the order of 1000km or more. Mean meteorological fields have been analyzed

for seasons with significant CF changes to identify the synoptic-scale drivers

that could influence the historical and mid-century wind climatology (JJA in

Figure 13, SON in Figure 14, DJF in Figure 15). In particular, our analysis420

focuses on the 700hPa geopotential height field, which is defined as the height

of 700hPa isobar surfaces above mean sea level, as well as surface pressure,

surface temperature, and hub height wind speed at 80m overlaid with wind

direction at the same height. The 700hPa geopotential height field was analyzed

as it is reflective of the general circulation, with wind flow at this level largely425

geostrophic and hence following constant geopotential contours. The surface

pressure field also impacts local wind speeds, and is closely associated with

surface temperature changes. Synoptic-scale fields during the MAM season

were not investigated, as there was no significant CF change detected over this

period (see Table 4).430

Through JJA (Figure 13), the 700hPa geopotential height field features an

off-shore trough and geopotential height contour lines perpendicular to coast.

This pattern is indicative of a typical summertime marine air penetration condi-

tion [39, 40, 41] and is driven by the off-shore trough modifying the geopotential

height contour lines to be perpendicular to the coastline, allowing cool and moist435

marine air to penetrate inland. The location of the off-shore trough is directly

responsible for driving marine air through the San Francisco Bay Delta. Relative

to the historical period, the magnitude of the 700hPa geopotential height field

under the mid-century increases (as a direct consequence of low-level warming).

However, this increase is less pronounced over the Northern Pacific, which drives440

a weakening of the typically northerly wind pattern that traces the coastline in

Northern California, and an increase in the on-shore flow pattern driven by the

general circulation. This in turn leads to an increase in wind speeds through

the San Francisco Delta region (Shiloh and Altamont Pass in NC domain). A

shift in this synoptic-scale pattern also drives increased ventilation in the SC445
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Figure 13: Seasonal mean 700hPa geopotential height, surface pressure, surface temperature,

and 80m wind fields on historical 1980-2000 (top row), and the corresponding anomaly fields

on mid-century 2030-2050 (bottom row) during JJA season. Anomaly values (bottom row)

were calculated from subtracting mean historical fields (top row) from mean mid-century

fields.

domain.

Surface pressure in JJA is also observed to increase more rapidly at higher

altitudes – consequently the surface pressure in the Mojave desert increases

more rapidly than the Central Valley, and leads to a weaker pressure gradient

between the CV and Mojave. A similar observation was made by [42] to explain450

a projected decrease in Santa Ana wind events in this region during the Fall

season. Although this is a potential driver for wind speed decrease at Alta

in SC, the impact of a reduced pressure gradient is counterbalanced by the

changes to the large-scale geopotential height field, which enhances westerly

wind throughout California.455

Across both time periods, SON wind speeds are generally reduced in com-

parison to JJA, partly due to the decrease in land-sea temperature contrast, and

associated reduction to marine air penetration. Comparing the 700hPa gepo-

tential height field between historical and mid-century during SON, the entirety
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Figure 14: Seasonal mean 700hPa geopotential height, surface pressure, surface temperature,

and 80m wind fields on historical 1980-2000 (top row), and the corresponding anomaly fields

on mid-century 2030-2050 (bottom row) during SON season.

of the California coast is under the influence of the weakening of wind flow par-460

allel to the coast, driven by the negative geopotential anomaly south of Alaska,

and accompanied by a positive geopotential height anomaly over the continent.

Through the SC domain, a weakening pressure gradient drives a decrease in the

wind speed at Alta and San Gorgonio. This observation is in agreement with the

observations of [38], and leads to a projected 10-15% power potential decrease465

during Fall season in mid-century in the immediate vicinity of Tehachapi.

Through DJF (Figure 15), increased geopotential height over the sub-tropical

western Pacific and the North American continent lead to a weaker northerly

flow parallel to the coast and a reduced on-shore flow. Further, with surface

pressure decreases in the CV, the surface-level pressure gradient between the470

CV and the Mojave desert decreases, which would in turn be expected to drive

lower wind speeds at the Alta wind farm site. The surface pressure gradient

also decreases between the inland and the adjacent ocean near San Gorgonio

wind farm site, which further enhances the wind speed decrease.
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Figure 15: Seasonal mean 700hPa geopotential height, surface pressure, surface temperature,

and 80m wind fields on historical 1980-2000 (top row), and the corresponding anomaly fields

on mid-century 2030-2050 (bottom row) during DJF season.

The seasonal meteorological patterns under the mid-century RCP8.5 sce-475

nario provide further evidence that future changes of wind energy in California

will be influenced by both the synoptic-scale and local changes. Overall, the syn-

optic analysis suggests that the climate through mid-century will be conducive

to higher wind speed across the whole state of California during JJA (5-10% at

four of the five sites examined), and lower during SON (particularly at Alta and480

San Gorgonio which each exhibited a > 10% decrease) and DJF (with a 17%

decrease at San Gorgonio). The changes to the surface pressure gradient be-

tween the Central Valley and the Mojave Desert appears robust across seasons

and is a primary driver of wind speed decreases in the SC domain. To ensure

the synoptic-scale climatology of VR-CESM was not an outlier, synoptic-scale485

geopotential height fields were also examined across CMIP5 models over the

same time period and similar trends were observed. Ensemble runs with VR-

CESM could potentially add confidence to this study, and are a topic for future

exploration once the identified biases in VR-CESM are addressed. Besides the
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mid-century time frame (2030-2050) that was studied in this paper, another490

VR-CESM simulation over the end-of-century time frame (2080-2100) was also

conducted using the same model configuration. Wind speed change at each wind

farm site from the end-of-century run had the same sign as the mid-century run,

and relatively greater magnitude. The results from the end-of-century run adds

confidence to our current analysis. However, due to the end-of-century time495

frame is outside the typical lifetime of a wind farm (∼20-25 years), the analysis

from end-of-century was not included in this paper.

5. Discussion and Conclusions

The goal of this paper is twofold: First, to validate and assess the per-

formance of VR-CESM as a tool for modeling near-surface wind speeds and,500

second, to leverage VR-CESM to assess the drivers of future wind speed change

in California. The main conclusions of this paper follow.

The capacity of the VR-CESM variable-resolution global climate model-

ing system was assessed at correctly representing the historical character of

wind field in California (1980-2000) against a high-resolution WRF statistically-505

downscaled wind data product, multiple reanalysis products, and publicly avail-

able observational data. Our results suggest that although VR-CESM generally

exhibited a bias towards slower wind speeds inland, the monthly climatology

and spatial pattern associated with the wind field was approximately consistent

with observations. Although the wind climatology was greatly improved over510

coarse resolution reanalysis products, we believe that the local model resolution

(14km) is still too coarse for regions of rapid topographic variation. Nonetheless,

rough agreement between simulated and observed wind fields led us to conclude

that VR-CESM is correctly representing the key regional and synoptic-scale

processes that are relevant for wind speed forecasts. Further work is needed to515

determine the source of the slow bias in near-surface wind speeds from CESM.

Second, this study aimed to project and understand hub-height wind speed

changes at each wind farm site, using a VR-CESM mid-century (2030-2050)
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simulation under RCP8.5. To better understand the regional and synoptic-scale

drivers that are responsible for these changes, our analysis targeted the meteo-520

rological patterns associated with large-scale shifts in wind character. The five

major wind farm sites considered in this study spanned California. At almost

all wind farm sites, significant seasonal changes were observed in the capacity

factor, with an increase in summertime (JJA) resources and a decrease in fall

(SON) and winter (DJF) under RCP8.5 at all five sites (Table 4). Synoptic-scale525

and localized drivers behind season wind energy change were also identified, and

suggested climate change may favor synoptic patterns that lead to higher wind

speed during JJA, and lower wind speed during SON and DJF.

Overall, this study improves the characterization of uncertainty around the

magnitude and variability in space and time of Californias wind resources in the530

near future, and also enhances our understanding of the physical mechanisms

related to the trends in wind resource variability.

There are many climatological factors that impact on the wind energy in

California, including correlations of wind speed with climate modes such as

El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and535

North Atlantic Oscillation (NAO). Because of the long temporal frequency of

these climate modes, there is some difficulty in disentangling how these climate

modes have historically impacted wind resources. In this context, ensemble

simulations with VR-CESM may be valuable at modeling these connections.

Future work could also address alternative statistical strategies for identifying540

change in wind fields: for instance, the use of a clustering method to analyze

and group relevant wind patterns in California. Such a method could be used

to investigate the potential historical and future trends from different wind

patterns. Possible future study will also focus on analyzing the capacity of

models to capture, and the climate change impact on intense and extreme winds.545
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