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Abstract

The longitudinal component of radially polarized electric field in the focal region has at-
tracted particular attention in the laser optics due to its several special characteristics,
namely, the directional characteristic on propagation axis, strong intensity and small focal
size when tightly focused with high-numerical-aperture optical system, which find applica-
tions such as particle acceleration, molecule microscopy, material processing, and particle
trapping. It has been proposed and experimentally demonstrated that paraboloidal reflec-
tor creates smaller focal size compared with lens.
Comparatively little attention has been paid to its microwave version since, in microwave
regime, the directional property in focal region has not been the main interest. Only very
recently, after the introduction of planar slot antenna which can generate microwaves with
focusing for near field scanning, the longitudinal component of radially polarized microwave
with the slot antenna has been experimentally investigated. However, the focusing of radi-
ally polarized microwave with paraboloidal reflector is much more versatile in applications
as in the optical regime.
The experimental observation of this longitudinal component is newly performed in this
work with a configuration of two-paraboloidal-mirror system. This longitudinal field of
microwave and the two-mirror system can also be exploited in some applications such as
microwave scanning, microwave acceleration in free space, and creating Bessel-like beam
which can be used in high resolution tomography, micro-manipulation in optical regime
and long range communication in microwave regime. Two applications, microwave particle
acceleration and quasi Bessel beam, are investigated in this work.
A new method of ultratight focusing acceleration is proposed and a more precise analysis
of quasi Bessel beam with variable cone angles is demonstrated.
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Part I

Longitudinal field of radially
polarized microwave in focal region

of parabolic reflector
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Chapter 1

Introduction

1) In optical regime, the properties of the radially polarized beam in focal region have
attracted attentions for a long time. When the radially polarized beam is focused, the lon-
gitudinal electric fields arise in the focal area due to the vector nature of the focused beam.
It is quite different from the linearly polarized beam case where there is no longitudinal
components in the focal area.
These longitudinal components contribute to reduce the focal spot size [1]. These two
properties i.e., longitudinal components near focal area and the small focal size of the radi-
ally polarized beams can be used for various applications, e.g., electron acceleration[2] [3],
molecule microscopy[4], high density optical data storage [5], material processing[6], and
particle trapping[7]

2) In microwave range, focusing is also desired for many applications such as wireless
power transmission, remote sensing and medical therapy of microwave hyperthermia by
heating. In general, the usual conventional methods to get focusing are dielectric lenses,
parabolic reflectors, phased-arrays antennas in waveguide or microstrip. However, polariza-
tion of the waves and the directional components in the focal region have not been regarded
as important since the main interest has been mostly in the energy concentration and
transfer. With the recently introduced leaky-wave lens antenna[8], the radial polarization
of microwave and the longitudinal component in the focal region attracted attention and
several observations using annularly slotted leaky-wave lens antennas have been reported
[9], [10], [11].

3) Brief history of studies on longitudinal components
We review briefly the studies on longitudinal field in chronological order. The first experi-
ments on the intensity and the phase of focused microwaves were carried out in 1956-1958
[12, 13, 14, 15] and the first measurement of the longitudinal and transverse electric fields in
focal area was done with linearly polarized microwaves using a double convex polystyrene
lens in 1961[16]. The strong transverse component and zero longitudinal component in the
focal area on propagation axis were observed, and the strong longitudinal component in
certain regions in the neighborhood of the focus was also observed.
After the advent of laser, it was suggested that the longitudinal field in the focal region of
the radially polarized laser beam may be used for particle acceleration[17].
Later it was shown theoretically [1] and experimentally [18] that the smaller spot size and a

2



CHAPTER 1. INTRODUCTION 3

strong longitudinal component are achieved by focusing an annular shaped radially polar-
ized light beam with a high aperture lens. It was also demonstrated theoretically [4][19] and
experimentally [20] that by using parabolic reflector instead of lens the smaller spot sizes,
and strong and well localized longitudinal components of electric field can be produced,
which might be applied in near-field scanning and optical microscopy.
Recently it is experimentally shown that the longitudinal field of a radially polarized ter-
ahertz beam has a smaller spot size as compared with the transverse field of a linearly
polarized beam that is focused under the same conditions [21].

As for the microwave regime, the interest in the fields in the focal region has recently
arisen for microwave imaging, sensing, and heating. The measurements of the longitudinal
and the transverse components have been reported in 2012 and 2014 showing longitudinal
component for radially polarized microwave[11], [9], [10]. However, They are the results
of measurements using planar-slot antennas, not parabolic reflector. To the best of my
knowledge, there have been no reports on the measurement of longitudinal component of
radially polarized microwave in the focal region of parabolic mirror comparable to the optical
counterpart in the literature.

4) Goal of this research
The objectives of this work are the measurement of longitudinal component of radially
polarized microwave in the focal region of parabolic mirror of high NA and investigation on
its applications to particle acceleration and generation of quasi Bessel beam.

4) Contents
Chapter two contains the theoretical investigation on the field in focal region. Most of
the researches done in this direction are about the optical regime (laser beam). Since
light and microwaves are all electromagnetic waves and their difference resides only in the
different frequency ranges, there are no fundamental differences in theoretical description
between them. Therefore, all the theoretical considerations for the laser beam near the focal
region will be applied here. In chapter three, the experimental observations of longitudinal
components are reported. Chapters thereafter describe the applications. Chapter four shows
the vacuum particle acceleration through longitudinal field of microwaves and parabolic
mirror system. A new method of ultratight focusing acceleration with parabolic mirror
system is proposed. Chapter five contains the new analysis on quasi Bessel beam with the
same experimental set-up adopted in this work.



Chapter 2

Theoretical description

2.1 Introduction

The focusing can be realized with waves illuminated in the form of a beam. Accordingly,
all the theoretical descriptions of the fields in focal region start with the analysis of this
propagating beam which has a paraxial shape. There are three main methods to describe
the fields in the focal region mathematically. 1) The integral representation method which
was introduced by Richards and Wolf[22] is based on the angular spectrum representation of
plane wave in the diffraction theory. This method is applied in the image optics by Quabis
et al. [1], Youngworth and Brown [23], [4]and Kozawa and Sato [24] . 2) The other one
is the vector potential approach which was introduced by Lax, Louisell and McKnight.[25]
and simplified by Davis[26] based on non-paraxial correction of the paraxial solution. It
has been adopted by Agrawal and Pattanayak [27], Salamin [28], Varin, Piche and Porras.
[29]. 3) The third one is the complex source-point model where a wave source is assumed
to be located at an imaginary distance along the propagation axis. It was introduced by
Deschamps[30] and applied to non-paraxial beam by Couture and Belanger [31], April [32].

The first one has a merit in its vector treatment and geometrical easiness to handle,
but also a demerit because the integrals have to be solved numerically. The second one
has a merit in its complete compliance with Maxwell’s equations, but has a demerit due
to its infinite series which has to be analytically truncated to some degree of accuracy[32].
The third one has a merit in its closed form, but a demerit due to its scalar treatment.
The first one (method of angular spectrum representation) is convenient for the optical
investigation of focal region due to its appropriateness to the geometric structure of the
optical system, while the second and the third approaches are suitable when the beam is
used for the particle acceleration in the paraxial limit.
In this work, we apply the first method since the primary goal is the observation of fields
in focal region.
Theories on fields in focal region has been developed with wave optics. In wave optics,
focusing is one of the diffraction phenomena of electromagnetic waves. Sommerfeld defined
the term diffraction as ”any deviation of light rays from rectilinear paths which cannot be
interpreted as reflection or refraction.”[33, p179]
Diffraction in the sense of the deviation from rectlinear propagation ( ray optics) was first
discovered by Grimaldi and theoretical development based on wave theory was done by
Huygens in seventeenth century.

4



CHAPTER 2. THEORETICAL DESCRIPTION 5

2.2 Spherical wave representation

According to Huygens’ principle, every point on a wavefront gives rise to a secondary
spherical wavelets and the wavefront at any later instant is the envelope of these secondary
wavelets. Later in nineteenth century Fresnel supplemented Huygens’ construction with
mutual interference of secondary wavelets based on Young’s interference theory. This is
called Huygens-Fresnel principle. Early works on imaging in focal plane were done by
Airy, Lommel, Struve and Schwartzschild in 19th century. All these works were based on
Huygens-Fresnel principle, i.e., spherical wave representations of the focused field [34].

According to the Huygens-Fresnel principle, the light disturbance at observation point
P is the superposition ( integration ) of the combination of first and secondary wavelets as
follows [35];

U(P ) =
Aeikr0

r0

∫ ∫
S

eiks

s
K(ϕ)dS (2.1)

where r0 is radius of first wavefront, s is the distance from a certain point of disturbance
on the first wavefront to point P , A is the amplitude at unit distance from the source,
K(ϕ) is an inclination (obliquity) factor which describes the variation with direction of
the amplitude of the secondary waves, and ϕ is a diffraction angle between normal at first
wavelet and the direction to P , all as shown in Fig. 2.1.

Figure 2.1: Huygens-Fresnel principle

2.3 Angular spectrum representation

2.3.1 Debye integral (superposition of plane waves)

Debye [36] introduced an integral formula using the approximation about the distances of
sources which results in the superposition of the plane waves[35, pp. 485]. Debye integral
expresses the field in the focal region as a superposition of plane waves of different direc-
tions of propagation inside the cone formed by the focal point and the edge of the aperture
(Debye approximation).
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Figure 2.2: Debye approximation

Referring to Fig.2.2, we assume the angle θ is very small and hence we can rewrite
Equation (2.1) neglecting obliquity factor as follows,

U(P ) = − i
λ

Ae−ikf

f

∫ ∫
S

eiks

s
dS

= − i
λ

∫ ∫
S

Ae−ikf

f

eiks

s
dS

= − i
λ

∫ ∫
S

Aeik(s−f)

sf
dS

(2.2)

To find the value of s−f in Equation (2.2), we apply the cosine rule with approximation
R << d and d ∼ f ,

s = (d2 +R2 − 2dR cos(ϕ))1/2

= d(1 +
R2

d2
− 2R

d
cos(ϕ))1/2

∼ d(1 +
1

2

R2

d2
− 1

2

2R

d
cos(ϕ))

∼ d(1− R

d
cos(ϕ))

= d−R cos(ϕ)

(2.3)

or
s− f = −R cos(ϕ) = −q ·R (2.4)

By substituting Equation (2.4) to the numerator, the approximation d ∼ f to the
denominator and the solid angle expression f2dΩ to the element dS of Equation (2.2), we
get,

U(p) = − i
λ
A

∫ ∫
Ω
e−ikq·RdΩ (2.5)

where q is a unit vector of d and R is the vector expression of R. This is the Debye
integral which expresses the field as a superposition of plane waves of different directions of
propagation.
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2.3.2 Angular spectrum representation

Born and Wolf generalized it using angular spectrum method in the form [37, p.639],∫
f(α) exp(ik · r)dα (2.6)

where exp(ik · r) is the kernel of the integral denoting plane wave and f(α) is spectrum
of directional spatial angle of wave vector k which might be closely linked with arbitrary
function by means of Fourier integral and hence the whole expression is the angular spec-
trum of plane wave. In this case, the superposition of plane waves is expressed in Fourier
transform which is called angular spectrum representation.

For a monochromatic plane wave traveling in the arbitrary direction k which is expressed
as A exp(ik · r − iωt), time-independent part F (r) ≡ F (x, y, z) may be represented in the
Fourier integral representation with respect to the variables x and y,

F (r) =

∞∫∫
−∞

f(kx, ky, z) exp[i(kxx+ kyy)]dkxdky (2.7)

The angular representation part is the Fourier transform.

f(kx, ky, z) =

∞∫∫
−∞

F (x, y, z) exp[−i(kxx+ kyy)]dxdy (2.8)

The angular representation also satisfies the Helmholtz equation and can be solved.
The merit of using Fourier integral expression is that we can solve the wave propagation

problem exploiting this relation.
Assume that we know the incident field F (x, y, 0) on the plane transverse to the propagation
z-direction at z = 0, and our goal is to find the field F (x, y, z) on the plane at location z.

First we construct angular spectrum with respect to x and y as in Equation (2.8). Then
assuming that f satisfies the Helmholtz equation as F does, we find the solution,

d2

dz2
f(kx, ky, z) + k2

zf(kx, ky, z) = 0 (2.9)

f(kx, ky, z) = f(kx, ky, 0) exp(ikzz) (2.10)

Then we get

F (x, y, z) =

∞∫∫
−∞

f(kx, ky, z) exp[i(kxx+ kyy)]dkxdky

=

∞∫∫
−∞

f(kx, ky, 0) exp(ikzz) exp[i(kxx+ kyy)]dkxdky

(2.11)
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To make the angular spectrum part physically more distinct, the concepts of spatial
frequency and direction cosines may be introduced. We assume that the ~k vector of a plane
wave has magnitude 2π/λ and direction cosines (α, β, γ).

~k =
2π

λ
(αx̂+ βŷ + γẑ) (2.12)

Such a plane wave has a complex representation of the form,

p(x, y, z) = exp(i~k · ~r) = exp(i
2π

λ
(αx+ βy + γz)) (2.13)

where ~r = xx̂+ yŷ + zẑ.
The relation between direction cosines is α2 + β2 + γ2 = 1. We define spatial frequency

as fx = α/λ, fy = β/λ and fz = γ/λ. Then the angular spectrum at z = 0 becomes,

f(fx, fy, 0) =

∞∫∫
−∞

F (x, y, 0)exp[i2π(fxx+ fyy)] dx dy (2.14)

In 1959, Wolf [38] derived the time independent component of wave in the form

e(P ) = − ik
2π

∫ ∫
Ω
A(s)eiks·rdΩ (2.15)

where A(s) is angular spectrum.

2.4 Angular spectrum representation in focal region

2.4.1 focal region of lens

Richards and Wolf analyzed linearly polarized beams in focal area of objective lens using
angular spectrum method [22, Appendix]
Leutenegger et al. introduced the method of fast calculation of focal field of objective lens
using Debye diffraction integral [39]. Youngworth and Brown described 1 the electric fields
of radially polarized beam together with azimuthal polarized beam near focal region of
aplanatic lens [23].

They started with Equation (2.15) and tried to find the field amplitude factor A and
scalar product s · r as follows (we adopted similar diagram and notations).

The electric field at point P near focus in focal region is,

e(P ) = − ik
2π

∫ ∫
Ω
A1e

iks·rdΩ (2.16)

which has been rewritten from Equation (2.15) with different subscript for convenience.
As is shown in Fig.2.3, the collimated, incident field is assumed to have a planar phase

front at plane 0 ( entrance pupil) and is converged as a spherical wave at focal sphere

1The different derivation based on Complex Source Point method was done by A. April [40]
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by aplanatic lens. The unit vector g0 oriented perpendicular to the optical axis may be
expressed by Cartesian components in cylindrical coordinates;

g0 = cosφ̂i + sinφĵ (2.17)

where φ denotes the azimuthal angle with respect to the x-axis.

Figure 2.3: geometry of focusing

The electric field in region 0 may be expressed with its radial and azimuthal components;

e0 = I0[e(0)
r g0 + e

(0)
φ (g0 × k̂)] (2.18)

where I0 denotes the relative amplitude of the field, which is assumed to vary radially
but keeps cylindrical symmetry.

From Fig. 2.3, we can see that the vector field amplitude in image field A1 may be related
to the object space electric field I0(θ) through apodization factor cos1/2(θ) as follows,

A1 = f1cos
1/2(θ)I0(θ)[e0

rg1 + e0
φ(g1 × s1)] (2.19)

where g1 is radial unit vector after refraction perpendicular to ŝ1, the direction of ray
propagation.

Using polar angle θ, we can express g1 as,

g1 = cosθ(cosφ̂i + sinφĵ) + sinθk̂ (2.20)

As for the scalar product in equation (2.15), the spatial vector in image space can be
expressed in cylindrical coordinates as r = (ρs, φs, zs) , while the unit vector of ray propa-
gation in image space ŝ1 = (sinθ, φs, cosθ).
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Accordingly, the dot product part is,

ŝ1 · r = (sin θ, φs, cos θ) · (ρp, φp, zp)
= sin θρp + φsφp + zp cos θ

= sin θρp + ρsφsρpφp cos(φs − φp) + cos θzs

= zp cos θ + ρp sin θ cos(φs − φp)
(2.21)

where all parameters with subscription p are parameters of observation point P.
For radially polarized illumination, azimuthal component e0

φ is zero in Equation (2.18),(2.19)
Putting all the things into Equation (2.16), we get,

e(P ) = − ik
2π

∫ ∫
Ω
A1e

iks·rdΩ

= − ik
2π

∫ ∫
Ω
f1 cos1/2(θ)I0(θ)e0

r(zp cos θ + ρpsinθ cos(φs − φp))dΩ

(2.22)

We can rewrite in Cartesian components as follows,

ep =

 epx
epy
epz

 =
−iA
π

∫ α

0

∫ 2π

0
sin θ cos1/2 θI0(θ)exp(ik(zp cos θ+ρp sin θ cos(φ−φp)))

 cos θ cosφ
cos θ sinφ

sin θ

 dφdθ
(2.23)

From Equation (2.23), it is clear that the longitudinal component along propagating
z-axis is;

epz =
−iA
π

∫ α

0

∫ 2π

0
sin2 θ cos1/2 θI0(θ)exp(ik(zp cos θ + ρp sin θ cos(φ− φp)dφdθ (2.24)

To construct the azimuthal and radial components, we use the Cartesian-to-cylindrical-
coordinate transformations;

epφ = epy cosφp − epx sinφp (2.25)

epρ = epx cosφp + epy sinφp (2.26)

For radially polarized waves, the azimuthal component is zero everywhere in image
space. We get the radial component by putting (2.23) into (2.26);
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epρ =
−iA
π

∫ α

0

∫ 2π

0
sin θ cos1/2 θI0(θ) exp(ik(zp cos θ + ρp sin θ cos(φ− φp)))

× (cos θ cosφ cosφp − cos θ sinφ sinφp)dφdθ

=
−iA
π

∫ α

0

∫ 2π

0
sin θ cos1/2 θI0(θ) exp(ik(zp cos θ + ρp sin θ cos(φ− φp)))

× cos θ(cosφ cosφp − sinφ sinφp)dφdθ

=
−iA
π

∫ α

0

∫ 2π

0
sin θ cos1/2 θI0(θ)exp(ik(zp cos θ + ρp sin θ cos(φ− φp)))

× cos θ cos(φ− φp)dφdθ (2.27)

By using Bessel identity;∫ 2π

0
cos(nφ)exp(ikρp sin θ cosφ)dφ = 2πinJn(ρp sin θ) (2.28)

where Jn(ρp sin θ) denotes a Bessel function of the first kind of order n,
we get;

epz = 2iA

∫ α

0
sin2 θ cos1/2 θI0(θ)J0(kρp sin θ)exp(ikzp cos θ)dθ (2.29)

epρ = A

∫ α

0
sin(2θ) cos1/2 θI0(θ)J1(kρp sin θ)exp(ikzp cos θ)dθ (2.30)

2.4.2 Focal region of parabolic mirror

The early work on the focusing of parabolic mirrors was published by Ignatovsky in 1920.
The focusing of a parabolic mirror has been extensively studied in microwaves mostly with
a partially truncated mirror[41],[42]. and later with arbitrary openings [43],[44]. The work
of numerical calculations for fields in the focal area has also been done [45],[46],[47].

However, all investigations concerned the linearly polarized waves. The complete deriva-
tion for radially polarized beam focused by parabolic mirror has been done by Lieb and
Meixner [4].

We follow Lieb and Meixner in deriving the fields in focal area of parabolic mirror.
There are three main differences between objective lens and parabolic mirror for radially
polarized beams i.e., apodization factor, phase jump and direction change of propagation.

1) apodization
Due to the energy conservation principle, which implies that energy flowing through dif-
ferential surface perpendicular to ray must be constant on its path to focus, for parabolic
mirror, the power density of incident field increases towards the focal region depending on
the ratio of distance from surface of mirror to focus (r) to focal length (f) and this ratio
(r/f) may be expressed after some mathematical work

2

1 + cosα
(2.31)
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while, for objective lens, it is
cos1/2 α (2.32)

2) positive sign of ex, ey
x-component and y-component (equivalent to eρ) experience the phase jump ( inverted di-
rection of rotation in the XY plane ) on the mirror surface which leads to sign change. The
z component has no phase jump since z component arises from the reflection of components
parallel to the plane of incidence (p-polarized) only.

3) inverted direction of propagation
The beam reflects on the mirror surface and hence the direction on propagation is inverted.
Thus, the exponential has negative sign (negative z direction).

Applying these three points to equation (2.29), (2.30), we get;

Ez = −ikfI0,r (2.33a)

Ea = 0 (2.33b)

Er = kfI1,r (2.33c)

where Ez, Ea, and Er are longitudinal, azimuthal, and radial components respectively, and

Io,r =

∫ α1

α0

I0(θ)
2sin2θ

1 + cosθ
J0(krp sin θ sin θp)exp(−ikrp cos θ cos θp) dθ (2.34a)

I1,r =

∫ α1

α0

I0(θ)
sin 2θ

1 + cosθ
J1(krp sin θ sin θp)exp(−ikrp cos θ cos θp) dθ (2.34b)

I0(θ) is incident field to the paraboloidal mirror. In general the incident beam is assumed
as a Bessel-Gauss beam with the field distribution as;

I0(θ) = Nexp(
−r2(θ)

ω2
0

)J1(
2r(θ)

ω0
) (2.35)

The comparison of longitudinal components with different parameters are described in
[48], [49].

2.5 Measurement of fields in focal region

2.5.1 Measurement of laser fields

In the literature, there are several reports of the measurement of longitudinal component of
laser using different methods. However, the measurement of the longitudinal electric field of
radially polarized laser beam is not easy because of its non-propagating property. For exam-
ple, it cannot be observed by any photodetector, because the magnetic field vanishes near
the beam axis. Therefore, experimental observation and measurement of the longitudinal
component is confined to indirect methods such as the use of knife-edge scanning method
through photodiode detection (lens) (2001) [50], (2003)[18], the use of photoluminescence
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molecules where the fluorescence of single molecules with fixed absorption dipole orientation
are used as probes for the local field distribution (lens) (2001) [51] , the use of metal tips, the
use of optical Kerr shutter method (lens) (2004) [52], the use of scanning near-field optical
microscope (NSOM) with the aluminum coated fiber-tip as a probe (lens)(2005) [53], the
use of nano-particle scattering where a subresolution point scatterer is placed in the focal
region and through this the form of the field scattered back through the objective lens is
examined (lens) (2003) [54], and the use of the quantum-well heterostructure photodetector
where the amount of the electric field energy densities of the longitudinal and radial com-
ponents are separately determined by using a semiconductor nanostructure. [55] . All these
reports used the near field techniques to get the indirect observations and all their results
show the strong longitudinal field component.
Recently, the observation of the longitudinal component of polarization was done by using
conventional photoresist to record the intensity shape of the focal spot of radially polarized
light (lens) (2007). [56].

As for the focusing of parabolic reflector, The measurement of longitudinal component
of radially polarized beam in the focal region of parabolic mirror was reported by using
gold tip at the focus as a probe (parabolic mirror) (2003) [57] , and recently by using
photoluminescence molecules (2008)[20]

2.5.2 Measurement of microwave

As for the microwave regime, recently the measurements of the fields radially polarized
waves in the focal area were reported using slot antennas which generate microwaves and
focuses at the same time [11], [9], [10]. However, the slot antennas are equivalent to the
lenses in optical devices. Here, we are interested in the fields in the focal region of the
parabolic mirror.

2.6 Radially polarized waves

The radially polarized wave has the electric field in the radial direction with respect to
propagation axis while magnetic field is aligned in an azimuthal orientation. It can be well
described in cylindrical coordinates and its snapshot on the transverse plane has a doughnut-
shape. The paraxial expression may be Bessel-Gaussian beam. The radially polarized beam
in the free space is the analog of the TM01 mode with the circular wave guide. It has a
special character on a propagation axis (z-axis). When focused, the on-axis electric field has
only the longitudinal component without the radial and azimuthal components, and there
is no magnetic field on axis[58]. Magnetic field is azimuthally polarized around the axis. It
is convenient to apply the vectorial method for proper description of the electric fields [28].

2.7 Properties of longitudinal field in focal region

2.7.1 Properties of focusing

Our understanding on focusing of electromagnetic waves is basically the superposition of
plane waves at the focus where the transverse components of the electric field constructively
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interfere. The radially polarized waves thus create a longitudinal field along the propagation
axis, while the linearly polarized waves create only transverse field.

In general, the electromagnetic plane waves have two main forces, i.e., 1) the electric
force in the transverse direction (energy density) which does not propagate, and 2) radiation
pressure force (Poynting vector) in the propagating direction (power density) which does
propagate. In the focal region, both undergo the vectorial superposition resulting in gradient
force for the former and absorption/scattering forces for the latter.

2.7.2 Properties of longitudinal field in focal region

Since the longitudinal electric component in focal region is the result of the superposition
of the vectorial electric field of the plane waves [59], it has the following properties.

2.7.2.1 longitudinal field is oscillating, but non-propagating field

The longitudinal component of electric field in the focal region is purely the result of the
vectorial properties of the static field and hence it is generally accepted that the longitudinal
fields in the focal region do not propagate (i.e., static). They just form a reservoir of electric
energy density. Thus, similar to a standing wave, there is no net momentum associated with
the photons in the focus of a longitudinal mode [51].

As for the case of two-mirror system with transmitting and receiving antennas which
will be described in Chapter 3, from the view point of the reciprocal principle of antenna,
field in focal region is the reappearance of what happened at the transmitting antenna. At
the transmitting antenna, we can assume that the radiation point source (current) oscillates
along the element of the monopole antenna. This point reappears at the focal area as the
focal point and this point oscillates along the same distance as the length of the element of
monopole antenna with its own field distribution in the focal area.

As we will see later in Chapter 5 (quasi Bessel beam), the plane waves passing an
axicon generate line focus instead of point focus. These successive focusing are referred to
as propagation of Bessel beam and this propagation has superluminal velocity due to the
geometric structure.

Also in the usual case of a point focus, the region near the focus is filled with the
superposition of the transverse component of plane waves passing nearby with different
magnitudes depending on the distance from the k vector. This phenomena occur succes-
sively according to the propagation of waves and hence this successive superposition may
be called propagation. However, when we restrict our observation to the point focus, the
field at the focus does not propagate.

2.7.2.2 Zero Poynting vector on focal axis

Right on the beam axis, there is no magnetic field and hence the Poynting vector is zero
[60], [61], [7], and [62].

The intensity of Poynting vector is the time averaged one;

< S >z= Re[(
1

µ0
E ×B∗)z]/2 = Re[ErB

∗
ϕ]/2µ0 (2.36)
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Since Bϕ = 1
c (k̂z ×Er),

< S >z = Re[ErB
∗
ϕ]/2µ0

= Re[|Er|2]/2cµ0

=
1

2

√
ε0

µ0
Re[kf

∫ α1

α0

I0(θ)
sin(2θ)

1 + cos(θ)
J1(krp sin θ sin θp)e

−ikrp cos θ cos θpdθ]

(2.37)

We applied Equation (2.33c) and (2.34b) in the last line of Equation (2.37).
The Poynting vector near the focus for a radially polarized beam focused by the parabolic

mirror is simulated in Fig. 2.4, which shows the Poynting vector is zero on the beam axis.
It is peculiar phenomena when compared with linear or circular polarized waves.

Figure 2.4: Poynting vector in the focal region of radially polarized beam

2.7.2.3 gradient force

Since the electric field intensity distribution in the focal area is inhomogeneous, the dis-
tribution creates the gradient force. This force generates the ponderomotive force which
will be discussed in detail in Chapter 4. This force can also be exploited for the particle
acceleration and the trapping of spherical particle [63].

2.8 Numerical simulations

The assumed initial Bessel-Gaussian beam based on Equation (2.35) is simulated compared
with Gaussian beam in Fig. (2.5)

Figure 2.5: Gaussian beam and Bessel-Gaussian beam
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The longitudinal and radial components in the focal region are simulated based on
Equation (2.33) on focal plane (XY plane) by setting θp = π/2 in Fig. (2.6).

Figure 2.6: simulation on XY plane

The simulation on XZ plane by setting θp = 0 is shown in Fig. (2.7).

Figure 2.7: simulation on XZ plane



Chapter 3

Experiment

3.1 Experimental set-up

The goal of the experiment is the observation of the longitudinal component of the electric
fields of the radially polarized microwaves in a focal region of parabolic reflector with high
numerical aperture(NA). As already mentioned, for the optical regime, direct observation
of longitudinal electric field of radially polarized beam in focal region is not easy due to its
peculiar property that longitudinal fields do not propagate but oscillate along the optical
axis while magnetic field vanishes in the region. The experimental observation of its spatial
distribution was first reported in the literature in 2004 using a Kerr medium [64]. However,
for the observation of longitudinal field of radially polarized microwave, it is enough simply
to use a monopole antenna which is positioned in the direction of electric field.

3.1.1 Generating radially polarized microwaves

The first step to carry out the measurement is to create the radially polarized microwaves.
There might be several ways to create radially polarized waves, e.g., using monopole antenna
with wave guide of conical horn or cylinder. Here we chose the method of using transmitting
monopole antenna with or without a circular ground plane positioned at focus of parabolic
reflector along the optical axis.

The diagrams and photographs of the experimental set-up are shown in Fig.3.1 and Fig.
3.2.

17
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(a) system without ground plane (b) system with ground plane

Figure 3.1: Diagram of experimental set-up

(a) photograph of mirrors (b) whole system

Figure 3.2: photographs of experimental set-up

The element (wire) of monopole antenna is the inner conductor of the coaxial feed line
with length 4 mm ( diameter 0.5 mm ) protruded from the feed line (diameter of outer
conductor 2.1 mm) (Fig. 3.3(a)). Diameter of circular disk (ground plane) is 25.4 mm (Fig.
3.3(b)). The radiation from the monopole antenna without ground plane is half wavelength
wave and that from monopole antenna at the center of circular plane is quarter wavelength
wave.
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(a) monopole without ground plane (b) monopole with ground plane

Figure 3.3: monopole wire and ground plane

The time-averaged radiated power density (s(θ)) of the azimuthal symmetric monopole
antenna without plane is given by [65, equation (3.2.14)],

s(θ) = |Eθ|2/(2η) = (η/2)|Hφ|2 =
η|I(0)|2f(θ)

32π2r2 sin2(kh)
(3.1)

where

f(θ) ≡ [cos(kh cos θ)− cos(kh)]2 + [sin(kh cos θ)− cos θ sin(kh)]2

sin2 θ
(3.2)

The radiation pattern plotted with Equation (3.1) for frequency 19 GHz, wire length 4
mm, assuming I(0) to be unity, is shown in Fig. 3.4(a). As for the monopole antenna at
the center of circular ground plane, we adopt the simulation of Zivkovic et al.[66] for the
case where the radius of plane equals to wavelength as shown in Fig. 3.4(b).

(a) Radiation pattern of monopole without
plane

(b) Radiation pattern of monopole with plane

Figure 3.4: radiation pattern of monopole antenna

The waves generated by the monopole antenna are reflected by the parabolic mirror (
diameter 100 mm, focal length 19 mm ) with a hole (diameter 30 mm) at the center (Fig .
3.5). The numerical aperture is NA = n sin(π/2) = 1.
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(a) parabolic mirror (b) Diagram of parabolic mirror

Figure 3.5: Parabolic reflector

The monopole antenna is positioned at the focus of the mirror along the optic axis.
The reflected waves form the radially polarized microwaves in the direction of z axis of the
antenna as shown in Fig. 3.6(a). These waves have a shape of doughnut with amplitude
distribution corresponding to the radiation gain of the antenna. This doughnut shape is
confirmed by the measurement of the field in the radial direction along the diameter of the
vertical plane in front of the reflection mirror as shown in Fig.3.6(b).

(a) radial polarization (b) observed doughnut-shape

Figure 3.6: radial polarization

Three-dimensional geometry of a paraboloidal reflector system is shown in Fig. (5.8).

Figure 3.7: geometry of parabolic mirror

There are two most commonly used methods in analyzing radiation characteristics of
the reflectors, i.e., current distribution method in which the current density is integrated
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over the surface of the reflector, and aperture distribution method in which field reflected
from the paraboloid is first found and then integrated over the surface of the aperture plane
perpendicular to z-axis assuming equivalent sources are formed over the aperture plane
[67]. We apply the aperture distribution method here. On the focal plane, electric field of
illuminating beam is,

E = C
√
Gf (θ′ , φ′)

exp(−jkr′(1 + cos θ
′
))

r′ êr (3.3)

where C is
√

ηPt

2π , η is impedance of free space 376.7Ω, Pt is total power and Gf (θ
′
, φ

′
) is a

gain function.

If we assume the gain function as Bessel-Gaussian function, then electric field on focal
plane is given by,

E = C1

√
exp(

−r2

w2
0

)J1(
2r

w0
)
exp(−jkr′(1 + cos θ

′
))

r′ êr (3.4)

For the system of monopole antenna without ground plane and reflection mirror, the
gain function G in the form of the directivity (d(θ)) in the far field is[65],

d(θ) =
f(θ)

Cin(2kh)− sin2(kh)
(3.5)

where h is the length of the monopole wire, θ is polar angle in spherical coordinates,
f(θ) is found by Equation (3.2), and

Cin(z) =

∫ 2

0
(1− cos t)dt/t (3.6)

The system is assumed to be azimuthal symmetric.
For electrically short monopole wires (kh << 1), the directive gain is reduced to[65,

equation (3.2.20)]

d(θ) =
3

2
sin2(θ) (3.7)

Applying Equation (3.7), the electric field on the aperture plane becomes

E =

√
ηPt
2π

3

2
sin2(θ))

exp(−jkr′(1 + cos θ
′
))

r′ êr (3.8)

3.1.2 Data taking

In the receiver side, another parabolic reflector is used which is aligned on the optical axis
of the transmitting mirror at the distance of 0.3 m. The probe monopole antenna without
plane is set at the focus in the axial direction.

The data is taken through the vector network analyzer HP8720C which sweeps the
frequency range 50MHz to 20GHz with maximum power 20 dBm (0.1 watt). The probe an-
tenna sweeps the finite range of approximately 20x20mm by automatic translation stations
with stepper motors which were assembled in the laboratory with three linear translation
stations for 3D direction (XYZ). The probe antenna moves a preset distance (1 mm) for
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5 seconds and stay still for 1 second and at this moment the network analyzer takes data
automatically controlled by the Labview program in the computer.

(a) auto translation station (b) whole system of automatic data taking

Figure 3.8: automatic data taking system

3.2 Results

The results of observations are as follows;
The magnitudes of the intensity are not to scale. There are almost no differences between
the observations with monopole antenna without plane and monopole antenna with circu-
lar plane except for the magnitudes of the measurements which are ignored here because
magnitudes vary in every measurement. This unstable figure is considered as the result of
the settings (e.g., alignment), efficiency of reflection of mirrors and environmental situations
which are not exactly the same each time.

3.2.1 Longitudinal component

3.2.1.1 On focal plane (XY plane)

The longitudinal component on the focal plane (XY plane) is shown in Fig.3.9.
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(a) contour (b) surf
(c) X-line including maximum
point

(d) Y-line including maximum
point

(e) spot size (above half
maximum)

Figure 3.9: longitudinal component on XY plane

Fig. 3.9(a) is contour plot of the power intensity of longitudinal field component on
the focal plane and (b) is its surf plot. They illustrate that the longitudinal component
is the strongest at the center of the focal plane. (c) is 2D plot of intensity along the line
in x direction passing the point of the maximum value. Half maximum is shown by red
line. (d) is 2D plot of intensity along the line passing the point of the maximum value in
y direction. (e) shows the spot size ( area covering all points with the magnitude above
half maximum. The diameter of the spot size is approximately two thirds of wavelength. It
is two times larger than the theoretical prediction. The difference arises from the physical
setup problems e.g., actual alignment of the system. The center of the spot size also does
not coincide with the center of graph coordinates due to the alignment problem between
two mirrors.

3.2.1.2 On YZ plane

The longitudinal field on the plane made by the propagation z axis and y axis is shown in
Fig. 3.10.

The horizontal length along z axis of the half maximum is approximately one wavelength.
The vertical length is approximately a half wavelength. The difference of the heights of the
half maximum areas between the results of XY plane and XZ plane may be attributed to
the difference of alignment.
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(a) contour (b) surf
(c) Z-line including maximum
point

(d) Y-line including maximum
point

(e) spot size (above half
maximum)

Figure 3.10: longitudinal component on YZ plane

3.2.2 Radial component

It is not easy to measure the radial component since the direction of the probe antenna
should be radially oriented. The measurement was done by scanning the focal plane with
the probe antenna fixed in the direction of x axis. Fig. (3.11) shows its results. The fact
that there are two bright regions in symmetric locations implies that they are two diagonal
points of a ring with the center at z axis. Bright areas nearby are created by the x-directional
components of radial fields on the spots in those areas. We can assume that there is a ring
of radial component which agrees with the simulation.

(a) radial field on X axis con-
tour

(b) radial field on X axis surf
(c) radial field on X axis (half
maximum)

Figure 3.11: radial component on X axis
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3.2.3 Comparison

The comparison of relative magnitude between longitudinal and radial fields is shown in
Fig. 3.12.

Fig. 3.12(a) illustrates the comparison of relative magnitudes between longitudinal com-
ponent and radial component for the sweeping range of frequency is 0.4GHz to 20GHz with
the probe antenna positioned at the focus along the z axis for the longitudinal component
and along x axis for the radial component. Fig. 3.12(b) shows the comparison of the mag-
nitudes between longitudinal component and radial component along x axis. They show
that the longitudinal component has the magnitude more than ten times higher than that
of radial component.

(a) comparison on monitor graph (b) comparison of magnitude

Figure 3.12: comparison of magnitude

3.2.4 Conclusion

We summarize the results of observation as follows,

• The longitudinal components of electric field of radially polarized microwave (around
19 GHz) are measured at focal area of high NA parabolic mirror

• The observed components approximately agree with theoretical predictions

• Intensities of longitudinal components are more than ten times stronger than those of
radial components

• The spot size is about a half wavelength wide and one wavelength long
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Chapter 4

Particle acceleration

4.1 Introduction

The particle acceleration through laser beams has been investigated for decades. Shimoda
[68] first suggested to use optical maser for accelerator in 1962 and Scully[69] investigated
the possible application of the longitudinal component of laser beam for laser linac in
1990. Most conventional accelerators employing microwaves with cavities requires enormous
amount of cost and size, and have been confronted with the restrictions in energy level due
to the breakdown ( in order of 10 to 50 MV/m)[70],[71],[72]. After the advent of laser,
the acceleration through laser beams has attracted great interests due to their capabilities
to realize high power density. The power of the laser pulses with femtoseconds duration
time reaches terawatts even though input energy is only several millijoules. It has been
achieved to generate maximum intensity 1022W/cm2 by focusing a terawatts level laser
beam to a focal spot size of 0.8µm with an f/0.6 off-axis paraboloid in the free space [73],
[74]. However, the progress has not been straightforward due to the difficulties arising
from Lawson-Woodward theorem ( phase matching ), collimation, and also the near-by
material breakdown. Lots of proposals have been made theoretically and demonstrated
experimentally.

Among them, direct acceleration of electrons in vacuum by focusing ultra-intense radi-
ally polarized laser beam has received particular attention because[75] ,
1) since this scheme operates in the infinite vacuum, there is no breakdown problems and
hence no limit on the laser field intensity that may be used,
2) this scheme can take advantage of the strong longitudinal electric field component at the
beam center,
3) the off-axis radial electric and azimuthal magnetic field components help confine electrons
to the vicinity of the beam axis[76],
4)the acceleration is linear and hence radiative energy losses will be low [29].

The usual acceleration pattern with the longitudinal field is the acceleration by pondero-
motive force. However, if the accelerating field in the focal region has ultra-relativistic laser
intensities, i.e., the normalization factor a0 > 1, the particles are accelerated by sub-cycle
pattern to get energy gain in the level of GeV [29].

27
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Meanwhile, little attention has been given to the microwave acceleration in free space
because of its incapability in providing high power intensity compared with laser. However,
the big physical scale of microwave due to the low frequency may provide special features.

Here, we are interested in free space microwave acceleration through the strong longi-
tudinal electric field created by radially polarized microwave which is tightly focused by
parabolic mirror.

4.2 Lawson-Woodward theorem

4.2.1 Lawson-Woodward theorem

In conceiving the accelerator of particle through electromagnetic field, it is necessary to pay
a special attention to the Lawson-Woodward theorem. The theorem states that the net
energy gain of an electron interacting with an electromagnetic field in vacuum is zero under
conditions as follows;
(1) the laser field is in vacuum with no walls or boundaries present,
(2) the electron is highly relativistic (v ∼= c) along the acceleration path, which implies that
the particle is moving in straight line with constant velocity,
(3) no static electric or magnetic fields are present,
(4) the region of interaction is infinite,
(5) ponderomotive effects (nonlinear forces, e.g., the v×B force) are neglected [77],[78],[79],[80],[81].

We follow the reference [77] in deducing the theorem.
The plane wave with x polarization propagating in the z direction in free space is,

E = E0 cos(ωt− ω

c
z + φ)x̂

B =
1

c
E0 cos(ωt− ω

c
z + φ)ŷ

(4.1)

The Helmholtz equation for wave in vacuum is,

∇2E + (
ω

c
)2E = 0 (4.2)

Fourier expression of z-component of electric field is given by,

E(z) =
1

2π

∫
dkx

∫
dkyẼz(kx, ky)exp[i(kxx+ kyy + kzz − ωt)] (4.3)

where Ẽz(kx, ky) is Fourier amplitude and k2
z = (ω

2

c2
− k2

x − k2
y) vacuum dispersion relation.

Since electromagnetic fields in vacuum satisfy

∇ ·E = 0 (4.4)

Fourier amplitude Ẽz is
Ẽz = −(kxẼx + kyẼy)/kz (4.5)

and Ẽy can be assumed to be zero resulting in Ẽz = −(kx/kz)Ẽx.
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The total energy gain is

E =

∫ ∞
−∞

dzEz (4.6)

By putting Equation (4.3) into Equation (4.6), we get

E =

∫ ∞
−∞

dz
1

2π

∫
dkx

∫
dkyẼz(kx, ky)exp[i(kxx+ kyy + kzz − ωt)] (4.7)

For a highly relativistic electron (v ∼= c, t = z/c) moving along the z axis, x = y = 0,

kxx+ kyy + kzz − ωt = kzz − ωz/c
= z(kz − ω/c)

(4.8)

and by using integral table for exponential over infinity,

δ(x− y) =
1

2π

∫ ∞
−∞

dk exp ik(x− y) (4.9)

we get,

∫ ∞
−∞

dzEz =

∫ ∞
−∞

dz
1

2π

∫
dkx

∫
dkyẼz(kx, ky)exp[i(kxx+ kyy + kzz − ωt)]

=

∫
dkx

∫
dkyẼz(kx, ky)

1

2π

∫ ∞
−∞

dz exp[iz(kzz − ω/c)]

=

∫
dkx

∫
dkyẼz(kx, ky)δ(kz − ω/c)

(4.10)

To make the equation clearer, we introduce a change of variables; kx = k⊥ cosφ and
ky = k⊥ sinφ, where

∫
dkx

∫
dky =

∫
dφ
∫
dk⊥k⊥ and δ(kz − ω/c) = (kz/k⊥)δ(k⊥) and we

get, ∫ ∞
−∞

dzEz = −
∫
dφ

∫
dk⊥(k⊥ cosφ)Ẽx(k⊥ cosφ, k⊥ sinφ)δ(k⊥) (4.11)

When we assume k⊥ → 0 to get the non-zero delta function, k⊥Ẽx → 0 and the result
of Equation (4.11) is zero, which means there is no energy gain.

4.2.2 Schemes evading Lawson-Woodward theorem

A major difficulty in using laser fields in vacuum to accelerate particles is the discrepancy of
the phase velocities between particle and the accelerating beam. Furthermore, if the beam
is focused, the phase velocity of the longitudinal field is superluminal due to the geometrical
feature. For example, a certain calculation in paraxial limit is given by [82],

Vphase = c

[
1− (λ0/ρ0)2

π2(1 + z2/z2
R)

]−1

(4.12)

where zR is Rayleigh length.
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Therefore, the particle can not catch up the velocity of the beam and slips behind.
If the particle interacts over an infinite region ( condition four ) i.e., a distance much

large compared to the slippage distance, the accelerating and decelerating regions cancel,
resulting in zero net energy gain. This is the main point of the Lawson-Woodward theorem.

To evade the application of the Lawson-Woodward theorem, a lot of attempts have been
made to conceive the situations which do not satisfy at least one of the above five conditions.

One way is adding medium in the path of the beam to reduce the beam velocity and
hence the slippage such as inverse Cherenkov acceleration [83],[84]. Plasma wakefield accel-
eration [85], [86] is also based on the use of medium. However, these methods invoke another
problems such as material breakdown or wave-breaking regime limitations[87]. Therefore,
direct acceleration in vacuum is preferable.
The other way to evade the critical cancellation is a method using gradient electric field
where gradual energy gain is possible as the remaining effect of cancelation. Another way
may be a method reducing the interaction region such that the electron can get out of the
interaction region after gaining energy from the accelerating phase before the decelerating
phase begins. The former is ponderomotive acceleration and the latter includes sub-cycle
acceleration and one-kick acceleration as illustrated in Fig.4.1.

Figure 4.1: different models of vacuum acceleration
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4.3 Ponderomotive acceleration

4.3.1 Non-relativistic ponderomotive force

The ponderomotive force occurs in spatially varying high frequency electric fields. The lon-
gitudinal field of focused radially polarized electromagnetic waves is gradient in magnitude
and hence provides the acceleration of particle based on ponderomotive force.
Consider a charged particle in a high frequency electric field with an amplitude that varies
smoothly in space, E(x, t) = E0(x) cos(ωt). The particle will oscillate sinusoidally. If field
is stronger to the right and weaker to the left, then there appears a difference in magnitudes
between forward push by the strong field and backward push by the weaker field, which
produces a net result of displacement to the weaker field. This displacement continues in
succeeding cycles as an acceleration away from the region of strong field. The average force
over time is called ponderomotive force.

We first consider the case where the particle moves non-relativistically.
Referring to Fig.(4.2), a particle with initial velocity v0 starts to interact with the

accelerating phase of the wave at an arbitrary position a and becomes accelerated by gaining
energy E1 while moving over the distance `1. The phase changes into deceleration when
the particle arrives at the point b where the slope of the gradient of the longitudinal field
is S. Now, the particle experiences the decelerating phase which is getting weaker due
to the sharp slope while still moving in the same direction or backward over `2 until the
phase changes into acceleration again after the full cycle of oscillation losing the energy
E2. The net energy gain will be the difference between the values of two energy exchanges
Egain = E1−E2. This can happen at any position if the slope S of the gradient of the field
where the particles meets phase change is negative with respect to the motion direction.
This will repeat until the particle escape from the range of longitudinal field completely.
This is the basic mechanism of the non-relativistic ponderomotive acceleration.

Figure 4.2: mechanism of energy gain

Mathematical expression of ponderomeotive force is

Fp = − q2

4mω2

d

dx
(E2

0) (4.13)

We can derive it starting from the force equation [88],[89, section 30],[90],

F = mẍ = qE = qE0(x) cosωt (4.14)
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To make the situation clearer, we decompose x into two components i.e., a slowly varying
component (net result of displacement toward the weaker field) x0 which is the spatial time
average over short time 2π/ω so x0 = x̄ and called the oscillation center, and a rapidly
oscillating component x1. Therefore, x = x0 + x1. The time average of x1 is zero since the
oscillating values are cancelled in time averaging.

Assuming E0(x) is infinitely differentiable, we make a Taylor expansion of E0(x) about
the oscillation center x0 to the first order term,

E0(x) =E0(x0) +
dE0

dx
(x− x0)

=E0 +
dE0

dx
x1

(4.15)

where we exploited E0(x0) = E0 and x = x0 +x1, and dE0
dx is to be evaluated at x0. The

force equation becomes,

m(ẍ0 + ẍ1) = q

(
E0 + x1

dE0

dx

)
cosωt (4.16)

By averaging Equation (4.16) over time, we get ponderomotive force,

mẍ0 = q
dE0

dx
|x0x1 cosωt (4.17)

From Equation (4.16) and by using approximation noting ẍ1 >> ẍ0 due to high fre-
quency of ẍ1 and E0 >> (dE0/dx)x1 as seen from the order of Taylor expansion, we get,

mẍ1 = qE0 cosωt (4.18)

By solving Equation (4.18) through integrating, we get,

x1 = − qE0

mω2
cosωt (4.19)

Inserting this solution in Equation (4.17) and performing time average, we get,

ẍ0 = − q2E0

2m2ω2

dE0

dx
(4.20)

Finally, we get the ponderomotive force Fp = mẍ0 by using Equation (4.20) and by
exploiting d

dx(E2
0) = E0

2
dE0
dx ,

Fp = mẍ0 = − q2

4m2ω2

d

dx
(E2

0) (4.21)

Equation (4.21) shows that the ponderomotive force is directly proportional to gradient
of electric field intensity and inversely proportional to square of frequency. It is of interest
to note that q2 in Equation (4.21) implies that there is no difference between positive and
negative charges.

The drawback of the ponderomotive acceleration is in its weak magnitude. The value

of q2

4mω2 for frequency 10 GHz is 1.7795× 10−30.
The ponderomotive energy including oscillation energy is given by

Ep =
q2

4m2ω2
(E2

0) (4.22)
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4.3.2 Non-relativistic dynamics

For the particle with slow initial velocity v0, the non-relativistic velocity vz of the particle
when it arrives at z is

v2
z = v2

0 + 2

∫ `

0
a(z)dz (4.23)

where ` is the distance the particle moves in the accelerating field a(z).
The time elapsed during the whole passage is

4t =

∫ z

0

dz

v(z)
(4.24)

If the particle reaches the weaker part of the field before the phase of the longitudinal
field changes into the deceleration i.e., the time 4t is equal to or shorter than half the
period of the field, the accelerated particle will escape from region of strong field with the
velocity vf ,

4t ≤ T

2
=

1

2f
(4.25)

f ≤ 1

24t
(4.26)

where f is the frequency and T the period of the field.
Then, upper-limit frequency will be

f =
1

24t
=

1

2
∫ `

0
dz
v(z)

=
1

2
∫ `

0
dz√

v20+2
∫ `
0

q
m

1
2
E(z)dz

=
1

2
∫ `

0
dz√

v20+ qE`
m

=

√
v2

0 + qE`
m

2`

(4.27)

or

` =
qE

4mf2
(4.28)

The ratio g of interaction length ` to wavelength of incident wave is given by

g =
`

λ
=

qE

4mλf2
=

qE

4mcf
(4.29)

Equation (4.29) shows g is dependent on inverse of frequency which suggests the dif-
ference between microwave-driven acceleration and laser-driven acceleration. Assuming the
electric field is the same for both cases, g is greater for microwave acceleration than for laser
acceleration in several orders of magnitude.
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4.3.3 Relativistic laser ponderomotive force

Conventionally, a normalized amplitude of the electric field of the laser a0, which is also
called dimensionless field amplitude parameter [91]) and introduced in [92], is used to make
a distinction between relativistic and nonrelativistic regimes, where

a0 =
qE

mcω
(4.30)

The nonrelativistic regime corresponds to the case a� 1 and the relativistic regime to
a0 ≥ 1.

a0 is almost the same quantity as g. However, g is derived here from the comparison
between the time interval of moving particle and the period of the phase where wavelength
is only the reference value, while a0 is derived from the ratio of velocity of particle to that
of the wave. Therefore, the main point for g is the spatial size of the longitudinal electric
field and its gradient instead of the velocity of the wave.

The relativistic ponderomotive force has been derived by some authors[93], [94],[95]
as[96] in a little different forms. One of them is [94],

dp

dt
= − q2

γmc2
∇|Â⊥|2 (4.31)

where the overbar denotes the slowly varying quantity in time and

γ =

√
1 +

1

m2c2

[
|P|2 + 2

∣∣∣q
c
Â⊥

∣∣∣2] (4.32)

where the term involving vector potential represents the contribution of the jitter mo-
tion of the electron to the transverse momentum.

4.3.4 Microwave-driven free space acceleration

The particle accelerators create the beams of accelerated particles. Therefore, particle-
acceleration and beam-collimation are the basic function of accelerators. For vacuum laser
acceleration (direct laser acceleration), two difficulties should be overcome i.e., the velocity
mismatch between particles and laser beam which causes zero net energy gain as mentioned
above, and particle scattering due to transverse electric fields which obstructs to form a
beam.

When longitudinal field of tightly focused radially polarized laser beam is used, radial
component and longitudinal component are separated spatially and radial component pro-
vides the ponderomotive force in the transverse direction causing the particles trapped near
the z axis, and hence difficulties coming from transverse scattering may be avoided. In this
case, only the velocity mismatch becomes the main issue. The phase velocity of laser beam
along the beam path in the focal area is superluminal. If we consider that the electron
gains energy from the wave while moving in the same direction of the wave propagation, we
should admit that the electron can not catch up with this speed and hence slips experienc-
ing acceleration and deceleration phases of the laser beam, which results in no energy gain.
Most of the previous efforts to accelerate particles with lasers in free space concentrated in
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solving this phase-match problem e.g., by way of limiting the length of interaction between
laser and particle as mentioned in subsection 4.2.2.

4.3.4.1 Models of accelerator using two-mirror system

Two-mirror system of this work with a monopole antenna on one side and longitudinal
electric field on the other side can be used for particle accelerator in different configurations
as shown in Fig. 4.3.

(model 1) (model 2)

(model 3) (model 4)

Figure 4.3: different models of two-mirror system accelerator

Since the oscillation of longitudinal field is symmetric along the z axis, there is no
preferred or fixed direction between forward and backward on the z axis for the particle
acceleration. However, if the particle has initial velocity, then resulting acceleration has the
same direction as the initial one.

Referring to the Fig. 4.3, in model (1), particles are led through a tube and injected
towards the hole of the receiving mirror for acceleration by the longitudinal field. Model (2)
shows that particles are injected through the tunnel inside the leading tube and monopole
antenna. The diameter (d) of the tunnel is much smaller than the wavelength (d << λ).
Particles propagate through the center hole of the receiving mirror after being accelerated
by the longitudinal field in the focal area of the receiving mirror. In model (3), incident
field comes from the side of the system and is reflected by the plane mirror towards the
focusing mirror. Particles are injected through the center hole of the focusing mirror and
propagate through the center hole of the plane after being accelerated. Model (4) shows
ultratight focusing acceleration where illuminating beam angle is greater than π/2. Model
(4) presents an interesting phenomena and hence will be investigated in detail in section
4.6.
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4.3.4.2 Comparison of ponderomotive forces

For the comparison of magnitudes of the ponderomotive forces between those of microwave
and laser beam, we assume that the total input energy is the same for both cases, say 1
joule. By assuming pulse duration time as 1 femtosecond for laser and 1 nanosecond for
microwave which are presently achievable (interestingly they are proportional to period (T)
of the waves), frequencies (f) 1 GHz for microwave and 1 PHz for laser, and the lengths of
spatial power distribution (gradient) the wavelength (λ) respectively as shown in Fig. 3.10,
we get the ponderomotive force from Equation (4.21)

Fp =
q2

4m2ω2
∇(E2

0)

=
q2

4m2(2πf)2

1

λ

2η0J

T

= A
1

f2

1

λ

1

T

= A
1

f2

f2

c

= A/c

(4.33)

where c is speed of light and

A =
q22η0J

4m2(2π)2
(4.34)

Equation (4.33) says that the ponderomotive forces in the above parameters are independent
of the wave frequencies.

In other words, there are no differences in ponderomotive forces among laser and mi-
crowave for the assumptions mentioned above.

Dimensionless amplitude parameter

It is of interest to investigate the dimensionless field amplitude parameter a0 of Equation
(4.30) in microwave case compared with in laser case. In microwave regime, power intensity
1022W/cm2 is not achievable. However, the relativistic dimensionless normalized value of
amplitude a0 ≥ 1 is achievable since a0 is inverse proportional to frequency.

We rewrite Equation (4.30),

E2 = a2
0

m2c2ω2

q2
(4.35)

The power intensity is given by,

I =
E2

2η0

=
1

2η0

(
a0mcω

q

)2 (4.36)
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where η0 is vacuum impedance with value 120πΩ.

The power is given by [97]
P = Iρ2

0π exp(1)/2 (4.37)

By putting Equation (4.35), (4.36) and (4.37) together, we get,

P =
ρ2

0π exp(1)m2c2ω2

4q2η0
a2

0 (4.38)

From Equation (4.38), we see that the power is proportional to the square of frequency,
which means that much higher power is needed to get the same value of normalized param-
eter a0 for laser than for microwave.

Since frequency is lower in general microwave case than in general laser case by six
orders of magnitude, the power intensity needed for the same value of a0 can be much lower
in microwave case by the same orders of magnitude.

For example, for a0 = 1, the necessary power intensity is 1.5×109W/cm2 for microwave
of frequency 10 GHz, while 1.4 × 1018W/cm2 for laser of frequency 0.3 PHz. The electric
field equivalent to 1.5 × 109W/cm2 is 1.07 × 108V/m. The current achievement of High
Power Microwave (HPM) is in the level of GW [98], [99]. The possibility of the relativistic
level of a0 with microwave will lead to much more versatile vacuum accelerator.

Scaling analysis

As shown in Fig. 4.7, the ratio of longitudinal electric field on z-axis to wavelength is
independent of frequencies. The only difference between microwave regime and laser regime
is the scale. In microwave case, the wave length is much larger than that of laser and the
physical interaction length is much longer.

Quantity of accelerated particles

Given a homogenous moving particle density, the numbers of the accelerated particles are
proportional to the volume of the interaction space. This volume depends on the cross
section and the length of the longitudinal component with accelerating phase. Both are
larger in microwave case than in laser case by approximately five orders of magnitude,
which means that larger number of particles can be accelerated per unit time in microwave
acceleration than in laser acceleration. This implies that the microwave accelerator can
provide higher luminosity L, which is crucial in collider physics.

dR

dt
= L · σp (4.39)

where dR/dt is the number of events per second and σp the cross section.

Collimation and stability

The collimation and the stability of the on-axis trajectory is one of the major concerns for
the particle accelerator. When longitudinal field of tightly focused radially polarized laser
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beam is used, radial component and longitudinal component are separated spatially and
the radial component, which surrounds the longitudinal component like a ring, provides the
ponderomotive force in the transverse direction causing the particles trapped near the z axis,
and hence this transverse ponderomotive force helps in solving transverse scattering prob-
lem. The depth ( the length in the z direction) of longitudinal component is approximately
proportional to the wavelength and the longer the depth is, the stronger the collimation
and the stability would be. Accordingly, the microwave accelerator will be superior to the
laser accelerator in this context.

Versatility of manipulation

However, the intensity of radial component is approximately ten times smaller than the
intensity of longitudinal component. Therefore, we cannot rely completely on the transverse
ponderomotive force and we might need additional field to collimate the particle beam. In
this case, the practical manipulation of the system can be much easier in microwave case
than in laser case due to the scale of cross section. For example, alignment of the system
with the centimeter level focal spot size will be much easier than with the micrometer level
spot size.

4.3.4.3 Radiation

In linear acceleration, the power radiated is given by [100],

P =
2

3

e2

m2c3

(
dE

dx

)2

(4.40)

which shows the dependence only on the external forces.
The ratio of power radiated to power supplied by the external sources is,

P

dE/dt
=

2

3

e2

m2c3

1

v

dE

dx
→ 2

3

(e2/mc2

mc2

dE

dx
(4.41)

which shows that the radiation loss in an electron linear accelerator will be negligible
unless the gain in energy is of the order 2× 1014 MeV/m while typical energy gains are less
than that [100]. There is no difference between microwave accelerator and laser accelerator
in this respect.

4.4 Reaction range and relativistic dynamics

In considering relativistic regime of acceleration, it is necessary to make clear the reaction
zone between particle and field, and also necessary to review the relativistic dynamics of
particle.

The most ideal scheme of the vacuum acceleration is that the particle is pushed by
the accelerating phase of the beam and gains the energy sufficient enough to get out of
the interaction region before the deceleration phase begins. In this case, since the particle
has no time to experience the oscillation caused by the beam waves, the consideration of
relativistic dynamics is enough to treat the case.
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1) The definition of the interaction region in focal area is somewhat ambiguous since
the electric field intensity has the gradient form.

Hartemann et al.[91] assumed the beam waist at focus (w0) of Gaussian beam to be
the interaction area of transverse component of field and formulated the linearly polarized
beam power needed for the particle to escape the area.

For the focused radially polarized beam, electric field in focal region is longitudinal and
hence the interaction zone should be defined in the axial direction. In the non-paraxial
limit, the spot size of the longitudinal field on XZ plane may be a reasonable candidate but
not compulsory. The side slope of the magnitude curve on z axis is steep and any point on
the sharp slope may provide the range of the interaction in context of acceleration.

We assume full width of half maximum (FWHM) of the intensity distribution curve on
the z-axis as the dominant interaction region for convenience.

2) To describe the relativistic dynamics of particle in electromagnetic field, we start with
the conventional Lorentz force equation,

F =
dp

dt
= q(E + v×B) (4.42)

and momentum

p = γmv (4.43)

We define the symbols m, q and v as particle’s rest mass, charge, and velocity, respec-
tively, c is the light velocity in vacuum, β = v/c, and γ = (1− β2)−1/2.

The time rate of the energy transfer from the field to the particle is the power transferred,

P =
dE
dt

= qE · dz
dt

= qE · v (4.44)

where

E = γmc2 (4.45)

Accordingly,
dγ

dt
=

q

mc2
E · v (4.46)

which implies the energy transfer.
Another important quantity for particle trajectory is the acceleration. We can derive

it from Equation (4.42) by expressing its left-hand side in terms of v instead of p using
Equation (4.43)

dr

dt
= v (4.47)

The acceleration is
dv

dt
=

q

γmc
[E + v×B− v

c2
(E · v)] (4.48)

If there is no magnetic field (B = 0) and the particle is injected at r = 0 in the direction
of z, then,
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dz

dt
= vz (4.49)

dvz
dt

=
q

γ3m
Ez(r = 0) (4.50)

4.5 Sub-cycle acceleration

The key idea of the sub-cycle acceleration is as follows. If velocity of particle is relativistic,
the length of slippage will occur very slowly and particle can propagate an appreciable
distance longer than Rayleigh length in paraxial limit in accelerating phase of beam. If the
magnitude of field is ultrahigh, then particle will keep gaining energy from beam.

Varin et al.[101] defined the on-axis longitudinal electric field as

Ez = Re[Ẽz exp(jωt)

=
E0√

1 +
(
z−zf
z0

)2
sin

(
ωt− kz + arctan

(
z − zf
z0

)
− φ0

)
(4.51)

where φ0 is the field initial phase, and simulated Equations (4.49), (4.50) with various power
intensity.

Their numerical simulations have revealed that, when the laser intensity is low (1014W/cm2

or lower) and electron initial energy is low, the electron energy gain is very low, while, with
high power intensity 1022W/cm2 or ultra-high initial energy, high energy gain is achieved
over one-half cycle of interaction length.

Several other authors also have reported the results of simulations with various power
densities of a0 > 1 [102], [103], [104] .

For the case where a2
0 < 1, the regime of particle dynamics is non-relativistic which

belongs to the ponderomeotive acceleration model, while for a2
0 > 1 particle dynamics is

relativistic and sub-cycle acceleration occurs[82].
This idea has been experimentally demonstrated for the electrons which are initially at

rest in gas in 2013[82] and for the electrons which are pre-accelerated in 2016[87] in the
schemes as shown in Fig. 4.4.

Varin et al. Carbajo et al.

Figure 4.4: schemes of sub-cycle acceleration experiments
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However, both of them have just showed the proof of principle with the tiny result of
energy gain 23 keV (with a0 = 1.7, intensity 7.2 × 1017W/cm2) in [82] and 12 keV (with
a0 = 5, intensity 5.36× 1019W/cm2) in [87].

4.6 Ultratight focusing acceleration

4.6.1 Definition of ultra-tight focusing

Ultratight focusing of radially polarized waves through parabolic mirror may provide a good
circumstance for reducing the interaction region between particle and the longitudinal elec-
tric field since the length of the spot size along the z direction can be reduced by optimizing
the range of incident beam integral angle to the focus as shown in what follows.

We define ’ultratight focusing’ as the focusing with the highest integral angle which
exceeds 900 and the lowest angle which reaches around 100 as shown in Fig. 4.5.

Figure 4.5: Ultra-tight focusing

4.6.2 Dependence of axial length on subtending angle range

By applying the Equation (2.33a) and (2.34a), the longitudinal field is,

Ez = −ikf
∫ α1

α0

I0(θ)
2sin2θ

1 + cosθ
J0(krp sin θ sin θp)exp(−ikrp cos θ cos θp) dθ (4.52)

The longitudinal field along z-axis is given by

Ez = −ikf
∫ α1

α0

I0(θ)
2sin2θ

1 + cosθ
exp(−ikrp cos θ) dθ (4.53)

since θp = 0 on z-axis.
By applying Equation (3.3) with constant C = 1 and gain function Gf = (3/2) sin2 θ

′

and assuming radiation angle from antenna to transmitting parabolic mirror θ
′

is the same
as the illumination angle to focus from receiving parabolic mirror θ due to the structural
symmetry, we get,
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I0(θ) =

√
(3/2) sin2 θ

exp(−jk(r
′
(1 + cos θ) + rr))

r′ + rr

=

√
(3/2) sin2 θ

exp(−jk((f/cos2(θ))(1 + cos θ) + rr))

2f/(1 + cosθ) + rr

(4.54)

where rr is distance between two parabolic mirrors and [67, p.897]

r
′

=
2f

1 + cos θ
=

f

cos2(θ/2)
(4.55)

Therefore, the longitudinal component along z-axis is given by,

Ez = −ikf
∫ α1

α0

√
(3/2) sin2 θ

exp(−jk((f/cos2(θ))(1 + cos θ) + rr))

2f/(1 + cosθ) + rr

2sin2θ

1 + cosθ
exp(−ikrp cos θ) dθ

(4.56)
By applying Equation (4.56), the axial lengths of spot size (FWHM) of longitudinal

field intensity along z-axis according to different range of subtending angles are illustrated
by numerical simulation in Fig 4.6.
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(a)

(b)

Figure 4.6: different lengths of spot size depending on range of integral angle

In Fig. 4.6, the range of integral angle varies from 100 − 700 to 100 − 1600. The length
of spot size in z direction varies from 1.341λ to 0.471λ. This ratio of length to wavelength
is independent of the frequency as shown in Fig. 4.7
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Figure 4.7: Lengths of different frequencies

If we let the solid angle (here in 2D since azimuthal symmetry is assumed) subtend the
range from 10 to 1800 , the ratio R of axial length to wavelength λ changes as shown in Fig.
4.8.

Figure 4.8: Ratio R vs subtending angle

The change of the Ratio R occurs from 45 degrees and forms a hyperbola-like curved
line with maximum value 2.9770 at 45 degrees and minimum value 0.471 at 180 degrees.
The half of λ appears at 142 degrees.

Below 45 degrees, focusing is so weak that the magnitude of longitudinal component is
much smaller than that of radial component as shown in Fig. 4.9. and axial length exceeds
the scope of graph (3λ).



CHAPTER 4. PARTICLE ACCELERATION 45

Figure 4.9: fields of weak focusing

This interesting subtending-angle-dependent-R phenomena are ascribed to the last ex-
ponential part of Equation (4.56), i.e., exp(−ikrp cos θ). The simulation only with this part
(without other parts associated with the magnitude of field distribution) shows the same
phenomena (Fig. 4.10).

Figure 4.10: relation only with basic terms

Compared with Fig. 4.8, Fig. 4.10 shows the similar curve with slightly reduced values.

It is different from the spot size on the focal plane (XY plane).
For the spot size on the focal plane, which has no exponential part due to θp = π/2

in Equation (2.33), there are only ignorable differences in diameters of spot sizes between
different subtending angles (e.g., 0.46795λ for subtending angle range 0− 80 degrees, while
0.42255λ for 0− 142 degrees).
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4.6.3 Uncertainty-principle-like relation

The product of ratio R of axial lengths to wavelength and subtending angles Ω are not a
fixed constant rather a varying value approximately between minimum 70 and maximum
135 as shown in Fig. 4.11.

Figure 4.11: Uncertainty-like relation of product of ratio R and subtending angle Ω

The product of the ratio R and subtending angles Ω produced by basic (exponential)
part is shown in Fig. 4.12.

Figure 4.12: Uncertainty based on basic part

The values of the product may be expressed,

4R4Ω ≥ 70 (4.57)

In radian scale approximately,

4R4Ω ≥
2

5
π (4.58)

This interesting phenomena based on exp(−ikrp cos θ) looks like the uncertainty char-
acteristic of wave functions ψ(x) = exp(−ikx) such as the uncertainty principle of Fourier
transform of Gaussian wavepacket
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σxσk =
1

2
(4.59)

However, R represents the full width of half maximum (FWHM) of the intensity of the
longitudinal component calculated by Equation (4.56) and hence the relation between the
ratio and the subtending angles in the sense of uncertainty principle is not straightforward
and needs more rigorous analysis in the future work.

As for the direction of the longitudinal component, it may be explained as follows.
When range of subtending angle is, for example, 100 − 1420 degrees, waves coming with
angle 100 − 900 create the longitudinal component propagating in the forward direction
and waves coming with angle 900 − 1420 create the longitudinal component propagating in
the backward direction. By superposing both longitudinal components, some portions are
canceled which also leads to the reduction of the length of the spot size.
The length of the spot size of the longitudinal component along the propagation axis is the
region of interaction.
If the length reduces to around the half of the wavelength where the integral range is
100 − 1420 as shown in Fig. 4.8, then one kick acceleration can occur as explained in the
following subsections.

4.6.4 Acceleration through ultratight focusing

In ultratight focusing, the accelerating phase of the beam will dominate half the spot size
for half the period of the wave first and then decelerating phase will take over for another
half period. If the particle in accelerating phase escapes the region before decelerating phase
comes, then the particle will keep the energy gain.

4.6.5 Threshold values

Consider that a particle with velocity v0 positioned at the center of the axial spot size with
axial length of half wavelength is pushed by the accelerating phase of the field and escapes
the interaction region by moving over the half length of the spot size (a quarter wavelength)
during the time interval of half period.
The final velocity is

vf = v0 + vad (4.60)

where vad is the velocity added through acceleration. We make an approximation of the
average velocity by

vav = v0 + (1/2)vad (4.61)

The particle should get out of a quarter of wavelength (half the axial spot size) with
average velocity within a half period.

1

4
λ = vav

T

2
= vav

1

2f
(4.62)

which means vav = c/2. The minimum energy gain is
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Egain = mc2(γf − 1)−mc2(γi − 1) = mc2(γf − γi) (4.63)

where γi = 1/
√

1− (v0/c)2 and γf = 1/
√

1− (vav/c)2 = 1/
√

1− ((v0 + (1/2)vad)/c)2.
By equating this energy gain with energy transfer

E = qEL (4.64)

where L is interaction length, the electric field corresponding to this energy gain through
the distance (1/4)λ is

E =
E

(1/4)qλ
(4.65)

The crucial point here is the phase, not the magnitude and hence, in case of pulsed
beam, the wavelength and the period are decided by the carrier wave, while magnitude is
decided by the pulse.

1) If the initial velocity of the particle is (1/4)c, then from Equation (4.61), (4.62), the
minimum average velocity is vav = c/2 and, from Equation (4.63), minimum energy gain is

Egain = mc2(γf − γi)

= mc2(
2√
3
− 4√

15
)

= 0.1219mc2

= 9.9836× 10−15

∼ 1× 10−14

(4.66)

This energy gain is equivalent to 60 KeV. From Equation (4.65), the necessary electric
field for the wave of frequency 10GHz is 8.3 MV/m which is achievable. In this case, this is
the threshold electric field.

2) However, if the particle is initially at rest (v0 = 0), then the final velocity should
be c since average of added velocity should be c/2 (vad/2 = c/2) and hence acceleration
is not realizable. But, If the approximation of average velocity is different from the above
assumption, the result would be also different.

3) If the initial velocity of the particle is equal to or greater than c/2, then since vad > 0,
average velocity is

vav = v0 + (1/2)vad = c/2 + (1/2)vad > c/2 (4.67)

which means average velocity is always greater than initial velocity

vav > v0 (4.68)

and hence
γf > γi (4.69)

Accordingly energy gain is always greater than zero
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Egain = mc2(γf − γi) > 0 (4.70)

which means that there is no threshold magnitude of electric field and all the input energy
will be transferred to the particle.

This ultratight focusing acceleration occurs for any subtending angles insofar as the
needed average velocity of particle is greater than c/2.
The relation between energy gain and ratio (R) of axial length to wavelength is illustrated
in Fig. 4.13.

Figure 4.13: Relation between energy gain and R

4.6.6 Superluminal phase velocity and synchronization

It is well known that the phase velocity of the waves in the focal region is superluminal
and hence synchronization between velocity of particle and phase velocity of the waves is
crucial in particle acceleration through laser. However, in the ultratight focusing acceler-
ation scheme, the slippage is considered intrinsic and the scheme is focused only on the
temporal factor during which the particle gets out of the interaction region while it faces
the accelerating phase of the waves.

4.6.7 Comparison

It is of interest to compare the energy gain through this ultratight focusing acceleration
with that through some recently developed acceleration schemes.

Among them, plasma wakefield accelerator, dielectric laser accelerator and direct (vac-
uum) laser accelerator attract a lot of attention. The common goal is the achievement of
extremely high accelerating gradient. Since they adopt fundamentally different schemes
and ultratight focusing acceleration can be categorized into vacuum acceleration, the com-
parison will be done with other scheme of vacuum acceleration i.e., sub-cycle accelerator.
In sub-cycle acceleration scheme, the particle gets energy of the level GeV from the beam
if the particle is relativistic and the field intensity is ultrahigh.

For convenience, we divide the cases into two categories i.e., relativistic regime and
nonrelativistic regime.
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4.6.7.1 Relativistic regime

In relativistic regime, the velocity of the particle is close to c. Therefore, for the comparison,
we consider the energy gain of ultratight focusing acceleration where the initial velocity of
particle is greater than c/2, which includes the relativistic velocity.
The field intensity of input energy Ei with pulse duration time of a period T at focal spot
size of which diameter is half a wavelength is given by,

I =
Ei

Tπ(λ/4)2
=
E2

2η0
(4.71)

and the electric field is,

E =

√
2η0

Eif
π(λ/4)2

(4.72)

The energy gain of the particle moving through electric field at focal region for distance
λ/4 is

Eg = qE`

= qE
1

4
λ

= q

√
2η0

Eif
π(λ/4)2

1

4
λ

' 15.5q
√
Eif

(4.73)

which means that energy gain is dependent on input energy and wave frequency.
Fig. 4.14 shows the relation of energy gain vs input energy and frequency.

(a) (b)

Figure 4.14: energy gain vs input energy and frequency

In Fig. 4.14(a), maximum frequency of the accelerating wave is 10GHz and maximum
energy gain is 1.5MeV. In Fig. 4.14(b), maximum frequency is 1PHz and maximum energy
gain is 0.49GeV. Maximum input energy is 1J for both cases.
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In sub-cycle acceleration scheme using relativistic electron and ultrahigh intensities, it
is illustrated[29] that for carrier wavelength λ = 0.8µm (frequency f = 0.375PHz), pulse
duration time T = 2.67fs, beam waist at focus ρ = 10µm and intensity I = 1022W/cm2,
energy gain is GeV level for optimized carrier phase. We assume the input laser energy here
is 0.8J (E = 104ITπρ2).

If the same input energy and frequency are used in ultratight focusing acceleration, the
energy gain will be 0.027GeV (15.5

√
Eif), which shows that the energy gain is lower than

that of sub-cycle acceleration by 2 or higher orders of magnitude.
However, in sub-cycle acceleration, there is only small energy gain with weak field inten-

sity below threshold, while, in ultratight focusing acceleration, any considerably high field
intensity gives rise to greater energy gain.

For example, for input energy Ei = 1mJ and wavelength λ = 1.8µm, energy gain in
sub-cycle acceleration scheme is around 23keV [82], while energy gain in ultratight focusing
acceleration system is 63keV (15.5

√
10−3(c/(1.8× 10−6))).

4.6.7.2 Non-relativistic regime

In sub-cycle acceleration scheme, the velocity of the particle should be relativistic and non-
relativistic particle can get the energy gain only through ponderomotive force. However, in
ultratight focusing acceleration regime, the particle can get energy gain if the initial velocity
is non-zero and field is high enough to create the average velocity greater than c/2.

For example, for the case where initial velocity is 0.39c, wavelength 800nm (frequency
0.375PHz), pulse repetition rate 3kHz, average power 2.4W, peak power 90GW, and beam
waist 1.2µm, in sub-cycle regime, the experimental report shows the energy gain is 12KeV
[87], and the electric field is assumed to be 3.9× 1012 V/m.

E =
√

2η × 90× 109/(π × (1.2× 10−6)2)

= 3.8730× 1012
(4.74)

In ultratight focusing acceleration, with the same initial velocity and frequency, mini-
mum energy gain is,

E = mc2(γf − γi)

= mc2(
1√

1− ((c/2)/c)2
− 1√

1− (0.39c/c)2

= mc2(
2√
3
− 1.086)

= 5.6270× 10−15

(4.75)

which is equivalent to 35keV. Minimum electric field needed is 1.76× 1011V/m

E =
E

qλ/4

= 1.76× 1011

(4.76)
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4.6.7.3 Summary

The characteristics of ultratight focusing acceleration scheme compared with sub-cycle ac-
celeration scheme are as follows.

In sub-cycle acceleration scheme, relativistic particle and ultrahigh field intensity of laser
are always necessary. However, in ultratight focusing acceleration scheme,

• if initial velocity of particle is non-zero, then input energy greater than threshold
value, that exceeds the value needed to create average velocity which is equal to or
greater than c/2, is transferred to the particle

• if initial velocity is equal to or greater than c/2, then all the input energy is transferred
to the particle

• not only laser but also microwave can create appreciable acceleration since only the
ratios are critical in this scheme i.e., the ratio of z-axial spot size to wavelength
as interaction region and half the period as interaction time duration regardless of
frequencies.

• there are no relativistic limitations

• only in the theoretical extreme case, ultratight focusing scheme is inferior to sub-cycle
scheme

4.6.8 Geometric structure

This extra large range of integral angle can be provided only by the deep parabolic reflector
which has a focal point deep inside the aperture. Here, we have to be careful not to have
breakdown. The diagram of parabolic mirror for subtending angle 140 degrees is shown in
Fig. 4.15.

Figure 4.15: Diagram of parabolic mirror for subtending angle 140 degrees

4.7 Conclusion

The differences between direct microwave acceleration and direct laser acceleration resides
in the differences of their scale and power intensity.
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In the nonrelativistic ponderomotive acceleration scheme, the difference of magnitude
of power intensity may be canceled by the difference of frequencies and hence there is
no fundamental differences between microwave and laser regimes. However, the longer
interaction range and the longer period of the microwave may provide easier manipulation
of physical structure. Additionally, the larger scale of the area of longitudinal component
may provide the greater number of accelerated particles than in laser case, which can be
exploited for enhancement of number of events in collision physics.
The big disadvantage of the ponderomotive acceleration is its low energy transfer. Therefore,
the nonrelativistic ponderomotive acceleration is not useful except for any special case where
the physical size matters.

In relativistic acceleration of sub-cycle mode, the threshold power intensity correspond-
ing to the normalized parameter a0 > 1 which is 1020W/cm2 [29] can not be achieved with
microwaves.

However, in microwave regime, the relativistic normalized parameter a0 which is greater
than unity can be achieved with much lower power than in laser case and this lower power
of microwave is achievable.
The most interesting feature of parabolic mirror arises when illuminating beam is ultra-
tightly focused. When parabolic reflector is illuminated by radially polarized beam with
the ultratight-focusing angle (i.e., when the highest integral angle exceeds π/2), the axial
length of focal spot size can reduce to half a wavelength and one-kick acceleration with much
lower power intensity is expected. The threshold quantity is minimum average velocity of
the particle which is equal to or greater than c/2. If initial velocity of particle is non-zero,
then there is energy gain with input energy greater than threshold. If initial velocity is
greater than c/2, then any input energy will be transferred to the energy gain.



Chapter 5

Quasi Bessel beam

5.1 Introduction

The structure used in this work can be employed to generate the radially polarized quasi
Bessel beam. The original Bessel beam includes the axis symmetric propagation-independent
Bessel function and hence is diffraction-free and self-reproducing. The non-diffraction prop-
erty comes from this propagation-independent character of Bessel function and the self-
healing effect is understood through the symmetric character of the beam or through the
Babinet’s principle[105].
However, the ideal Bessel beam requires infinite energy and hence is physically not real-
izable. The approximate beam of Bessel is only realizable with certain kinds of circularly
symmetric apertures which truncate the beam for finite widths. This apertures cause the
diffraction of the beam which is, however, much smaller than in the ordinary case. This
diffraction resistant beam is termed as ’quasi Bessel beam’, ’localized beam’ or ’Bessel-
Gauss beam’. We will describe the possible interesting applications of the parabolic open
cavity structure to create the quasi Bessel beam after short introduction of Bessel beam
and quasi Bessel beam.

5.2 Bessel beam

5.2.1 Origin

As mentioned above, a Bessel beam is a field whose amplitude is described by a Bessel
function of the first kind [106]. Accordingly, the Bessel beam can be produced by the
cylindrically symmetric field.

Bessel beam ( practically quasi Bessel beam) has received an increasing interest due
to its non-diffracting ( practically nearly diffracting ) character. Particularly, ultrashort-
pulsed Bessel beam is often referred to as ”needle beams” [107]. Quasi Bessel beams can be
useful in various applications due to its nondiffracting character. Some of these applications
are optical tweezers [108], optical microscopy [109], [110], [111], high-resolution optical
coherence tomography [112] and laser micromachining [113], [114].

The non-diffracting property of the zeroth order Bessel beam as a solution of the
Helmholtz equation was first realized by Durnin in 1987 [115].

54
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The scalar wave equation is

(∇2 − 1

c2

∂2

∂t2
)E(r, t) = 0 (5.1)

Its spatial part is the Helmholtz equation

(∇2 + k2)E(r) = 0 (5.2)

In cylindrical coordinates (ρ, φ, z), the Helmloltz equation becomes

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
+ k2)E(ρ, z) (5.3)

We assume scalar fields propagating into the source-free region z ≥ 0. One of the exact
solution is plane wave solution which is transverse-independent,

E(ρ, z) = E0exp(−ik0z) (5.4)

where ρ =
√
x2 + y2, E0 is constant and k0 constant wave vector. Another solution is

produced by decomposing the wave vector into directional components,

E(ρ, z) = exp(−iβz)
∫ 2π

0
A(φ)exp(iαρ)dφ

= exp(−iβz)
∫ 2π

0
A(φ)exp[iα(x cosφ+ y sinφ)]dφ

(5.5)

where α = kρ =
√
k2 − β2, β = kz, k

2 = α2 + β2.
Since x = ρ cosϑ and y = ρ sinϑ where ϑ = π/2 − φ, and hence x cosφ + y sinφ =

ρ(cosϑ cosφ+ sinϑ sinφ) = ρ cos(φ− ϑ),
by using the identity with n = 0,∫ 2π

0
cosnφexp(ic cos(φ− ϑ))dφ = 2πinJn(c) cosnϑ (5.6)

where Jn(c) is the n-th order Bessel function of the first kind, and using the axial symmetry
for A(φ),

Equation (5.5) becomes

E(ρ, z) = A0exp(−iβz)
∫ 2π

0
exp[iαρ cos(φ− ϑ)]

dφ

2π

= A0exp(−iβz)J0(αρ)

(5.7)

where k2 = α2 + β2 = (ω/c)2, α = kρ, β = kz
Including the temporal part, the complete solution is

E(ρ, z, t) = A0exp(−iβz − ωt)J0(αρ) (5.8)

This is a Bessel beam solution.
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5.2.2 Non-diffracting property

When β is real, the time averaged intensity distribution is the same for z = 0 and z > 0,

I(ρ, z > 0) = 1/2|E(ρ, z)|2

= I(ρ, z = 0)
(5.9)

which implies that the fields are non-diffracting.
From Equation (5.4), (5.9), we can see that the intensities of plane wave and the Bessel

beam are constant while propagating, since, when absolute squared, the exponential phase
part including t and z disappears and the only contribution comes from the squared Bessel
part J2

0 . Those equations only tell the field intensity profile of transverse components.
We understand these waves require infinite energy to keep the intensity unchanged while
traveling.

5.2.3 Self-healing property

The reconstructing ability of a non-diffracting beam when disturbed by an obstacle is called
’self-healing’ or ’self-reconstructing’ property. This phenomenon is explained with Barbi-
net’s principle [105] which says that the sum of the wave transmitted through a screen plus
the wave transmitted through the complementary screen is the same as if no screen were
present. This property of Bessel beam finds the application in high resolution large depth
tomography (Section 5.6.2)

5.3 Quasi Bessel beam

When we look into the properties of the Bessel function of ideal Bessel beam, it is clear that
the Bessel function provides the transverse intensity distribution of the field which has the
structure of infinite number of rings. The intensity attenuates starting from the maxima at
the central core on the propagating axis. However, the power is equally distributed across
the whole transverse structure[116], [117], which implies that the ideal Bessel beams , as
already mentioned above, require infinite power just like plane waves and hence cannot be
realizable.

For the actual realization of the Bessel beam, we need to create such a beam over a
finite area truncated by a finite aperture. Durnin used the Rayleigh-Sommerfeld Green’s
function to find the Bessel beam with a finite area which is well known in diffraction theory
under the assumption that the wavelength is small compared with the size of the aperture
and the propagation angles are not too steep[115].

Several ways to create the quasi Bessel beam have been proposed and realized. The most
commonly practiced tool is an axicon lens as shown in Fig. 5.1, which was first proposed
by Herman and Wiggins [118].
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Figure 5.1: Diagram of axicon generating quasi Bessel beam

The quasi Bessel beam created by axicon lens is only an approximation to the Bessel
beam over a limited propagation range L in Fig. 5.1.

The mathematical analysis of the quasi Bessel beam generated by an axicon is usually
derived from the Fresnel diffraction integral which gives only a good approximation in the
area close to the beam axis.

The incident beam can have several types. Gori et al. suggested to use Gaussian
envelope to truncate the infinite transverse expansion of the Bessel beam and called it as
Bessel-Gauss beam [119].

For the propagating plane waves, the scalar paraxial Helmholtz equation is commonly
used

(∇2
⊥ + 2jk

∂

∂z
)ψ = 0 (5.10)

One of the solutions is Gaussian beam,

ψ(ρ, z) = ψ0exp(−ρ2/w2
0) (5.11)

It is reasonable to use the Gauss beam to truncate the propagating Bessel beam (Bessel-
Gauss beam) which is also a solution of equation (5.10),

Let us assume the circularly symmetric disturbance of a monochromatic wave across the
plane at z = 0,

ψ(ρ, 0) = A0exp(−ρ2/w2
0)J0(αρ) (5.12)

where A0 is initial amplitude, ρ radial distance on the plane, w0 beam waist, J0 zero order
Bessel function of the first kind and α radial component of wave vector. The exponential
part is the Gaussian term and the other part is the Bessel function part. The Equation (5.12)
shows only the transverse field profile and gives no information how this profile changes at
a propagation of a certain distance.

The other type of the incident beam can be Laguerre-Gaussian beam. Since Laguerre-
Gaussian beam has the orbital angular momentum which is conserved, the created beam is
high order Bessel-like beam, which has hollow center [120],[121].

The radial polarization of the incident beam is naturally compatible with azimuthal
symmetry of the Bessel beam.

The electric field derived from transverse component of wave vector is longitudinal which
can be exploited for the particle acceleration [122],[123]. The transverse component of the
Bessel-like beam created by the axicon has been investigated by [124].



CHAPTER 5. QUASI BESSEL BEAM 58

The fundamental character of the quasi Bessel beam is based on the causticality of the
beams in a broader sense.

5.4 Superluminality

The phase velocity of the quasi Bessel beam is superluminal due to the geometric relation
between wavevector propagation and the propagation of the wave plane on the axis as
in the case of beam focus. The phase velocity can be expressed as c/ cosα. The signal
velocity looks like also superluminal, violating the special relativity [125]. However, the
signal velocity is subluminal [126], [127] as vs ∼ c cosα/(1 + sinα) [128]. The superluminal
phase velocity affects the acceleration design due to the phase matching problem between
beams and the particle.

5.5 Causticality - general anlysis

In optics, the caustic is a curve or surface to which each of the light rays is tangent. The term
”caustic” originates from the diminutive form of the Greek word for ”burning iron”[129].

Recently, it has been suggested to generalize the concept of the caustic to include broader
form of crossing of two or more rays at each point in space with non-diffracting property
[130]. Non-diffracting beams such as Airy beam or Bessel-like beam belong to the caustic.
Bessel-like beams can be interpreted as the limiting case of a caustical beam with a narrow
angular spectrum, radial symmetry and infinite curvature [130].

If we generalize the concept of ”caustic” still more, any kind of focusing can be catego-
rized into the caustic.

In other words, optical focus of electromagnetic waves, Bessel beam and Airy beam may
all belong to the same category i.e., focus. Focus appears where the waves are collected into
and cross at a point. The focusing is limited at a point for a point focus, extended along a
line for line focus, extended along a curve for a Airy beam. The quasi Bessel beam can also
be considered as a line focus because an axicon concentrates the radially polarized beam
in a finite length of distance which may be called line focus [118]. As for line focus. quasi
Bessel beam may be referred to as a temporal line focus while focus of cylindrical wave as
a spatial line focus. The cone of Cherenkov radiation may be another example of temporal
line focus. X-waves [131] are special superpositions of Bessel beams.

Mathieu beams[132] and parabolic (Weber) beams[133] are other type of Bessel beams
with different transverse structures and hence expressed in different coordinates i.e., Math-
ieu beam in elliptical coordinates and Weber beam in parabolic coordinates.

Temporal line caustic beams have the non-diffractive and self-healing properties. Addi-
tionally, temporal curved line caustic beams have acceleration property.
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(a) Bessel beam (b) Airy beam

(c) Cherenkov radiation
(d) point focus

(e) line focus of off-focus il-
lumination

Figure 5.2: types of caustic phenomena

Recently hybrids between non-accelerating (Bessel beam) and accelerating (Airy beam)
optical waves which have arbitrary trajectories in free space and share diffraction-resisting
and self-healing properties are proposed [134].

Some authors consider the non-diffracting beams as the superpositions of multiples of
plane waves, all having the same axial wavevector and put them mathematically into a
Whittaker integral [135, section 3 by M. Mazilu and K. Dholakia]

u(x, y, z) = exp(−ikzz)
∫ 2π

0
dφg(φ)exp(−kt(x cos(φ) + y sin(φ))) (5.13)

where u(x, y, z) is plane wave solution of the scalar Helmholtz equation, kz axial wavevec-
tor component, kt the transversal wavevector, φ the angle of the plane wave around the
propagation axis z and the complex function g(φ) the phases and amplitude of the different
plane waves.

Complex function g(φ) represents the vaious kind of non-diffracting beams. For the
zeroth order Bessel beam, g(φ) = 1, for higher order Bessel beam, g(φ) = exp(ilφ =
cos(lφ) + i sin(lφ), for higher order Mathieu beam, g(φ) = C(l, q, φ) + iS(l, q, φ),



CHAPTER 5. QUASI BESSEL BEAM 60

Classically, in the focus, electromagnetic waves just pass by without any interaction
between them. All the phenomena of focus appear through the interaction with material
positioned at the focus.

All the caustics are the results of the ways of illumination. They reflect all the charac-
teristics of the source waves.

5.6 Applications

The applicability of quasi Bessel beam is ever increasing. Some have been just mentioned
item-wise in section 5.2.1 . A detailed discussion of the applications is beyond the scope
of this work but may be found elsewhere [135, section 3] . We will just mention the main
applications briefly to the extent that one can see why the quasi-Bessel beam attracts
interests.

5.6.1 Microscopy with self-reconstructing beams

The self-healing property of Bessel beam, which provides the recovery of its initial intensity
profile after being obscured by a single obstacle, has been exploited in optical microscopy
to get a simultaneous increase of image quality and penetration depth in dense media [109].

5.6.2 High resolution large depth tomography

The length of Bessel beam created by an axicon provides a large depth range without losing
high lateral resolution in tomography[112].

5.6.3 Micro-manipulation

A technique for optical manipulation (alignment, building stacks) of micron-sized particles,
including biological samples, using a zeroth-order Bessel light beam has been demonstrated
[108].

5.6.4 Micro-processing

The Bessel beam possesses both a micron-sized focal spot and a deep focal depth and is
suitable for laser micro-fabrication. A small crossing angle Bessel beam can drill a deep
hole with a small threshold fluence. A through-hole with a diameter smaller than 10µm can
be made on a stainless steel sheet 20µm thick by using a Bessel beam with a large crossing
angle[114].

5.6.5 Particle acceleration

The acceleration based on Bessel beam was introduced by [123] through using the inverse
Cherenkov effect. The Cherenkov effect denotes that a particle traveling through a medium
of refractive index n will emit a cone of light if its velocity is greater than c/n, c being speed
of light. The inverse Cherenkov effect is its converse, namely, a cone of radially polarized
laser beam directed on a particle by an axial prism such as an axicon can accelerate the
particle. Here, the cone of radially polarized beam creates the quasi Bessel beam on the
axis. The principle of inverse Cerenkov accelerator was demonstrated over a few keV. The
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disadvantage of this accelerator is that particles collide with the medium gases resulting in
material breakdown [87]. Recently a different model of the Bessel accelerator is proposed
[136]. A Bessel beam is truncated by a set of annular slits, which makes several regions of
strong and weak fields alternatively in its travelling path. Particles get strong acceleration
while passing the strong field region and get weak deceleration while passing the weak field
region, resulting strong net acceleration.

5.6.6 Long range communication

Free-space optics for data transmission has the potential to produce a very high capacity,
secure, and robust communication method [137],[138]. Gaussian beams suffer from diffrac-
tion and atmospheric turbulence effects. A non-diffracting self-healing Bessel beam could
potentially mitigate these problems [139].

5.7 Quasi Bessel beam with parabolic mirror

5.7.1 Configuration

Three possible different configurations for generation of quasi Bessel beam using radially
polarized beams are shown in Fig. 5.3.

The spherical waves radiated by the monopole antenna are transformed into collimated
and radially polarized plane waves by the reflection of the mirror 1. These radially polarized
plane waves may create the quasi Bessel beam through reflection by another mirrors such
as an axicon mirror or two (primary and secondary) parabolic mirrors.

Referring to Fig.5.3, in (a), the secondary mirror is put at the confocal position with
the primary mirror, which creates only a plane wave beam, in (b), an axicon reflector is
used instead of the primary parabolic mirror, which creates a quasi Bessel beam, and in
(c), the secondary mirror is positioned such that there is a small gap between the focuses
of primary and secondary mirrors, which creates the quasi Bessel beam explained below.
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(a)

(b)

(c)

Figure 5.3: Schematics of Bessel beam

In Fig. 5.3(a), the waves reflected from the mirror 3 (secondary mirror) propagate
through the center hole of mirror 2 (primary mirror) as a beam while spreading by diffrac-
tion. The fields free center line of the radially polarized beam will disappear due to the
diffraction, but the interference and the superposition between diffracting waves on the axial
line would be very tiny. In (b), the quasi Bessel beam is created by axicon mirror and this
kind of quasi Bessel beam has been investigated in great details by several authors [140],
[141]

The configuration of (c) produces an interesting feature to create quasi Bessel beam.
The quasi Bessel beam is generated by the illumination of point source of waves at the
on-axis position near focus of a parabolic mirror (secondary mirror). The focusing with
near-focus source of reflector antenna is an axial defocusing problem in aberration issue
[142] and was studied with respect to the field magnitude at the focus [143] using aperture
theory and method of moment[144], and quasi Bessel beam with the similar configuration
has been recently investigated with an arbitrary point source using aperture distribution
and Fresnel diffraction integral[145].

The source point in the present work is the focal point of primary parabolic mirror.
In this case, the focusing of the primary mirror is not necessarily highly tight. It can be

optimized for the given purpose.
The secondary mirror provides position-dependent conic angle which displays an in-

teresting feature of this configuration. Generation of quasi Bessel beam using gradually
varying conic angle has been recently studied with axicon lens [146], [147].
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In Fig. 5.3(c), The change of conic angle according to the position is not linear due to
the geometry of the parabolic mirror resulting the existence of a point (turning point) on
the surface of secondary mirror where the reflected beam creates a maximum conic angle
which affects the size of the central lobe of the beam.

5.7.2 Incident waves

The illuminating waves coming through the source point in this work has several special
characteristics. First, it is spherical waves, not plane waves, since they are waves which
dispersed from the focus of the primary mirror. Second, the waves are radially polarized by
the mechanism of the radiation of monopole of the mirror 1. Third, the waves are created
by the radiation of monopole and thus the gain from the directivity of the radiation pattern
is transferred to the illuminating waves. It has a doughnut shape ( like first order Bessel
beam ) and electric fields are directed in the radial direction. As for the frequency range, the
waves used in the configuration here belong to microwaves. The microwave Bessel beam has
already been studied by [148], [149], [150], [151] and [150]. . The characteristics mentioned
above should be taken into account in the further consideration.

We investigate model (c) in detail beginning from the analysis with the geometric con-
sideration.

5.7.3 Geometric analysis

The schematic of the system with parabolic mirror and geometric points to be considered
are shown in Fig. 5.4. From the optical geometry, we get,

a = c tan(θ1) = (c+ s) tan(θ2) =(c+ s+ g) tan(θ3) = (c+ s+ g + d) tan(θ4) (5.14)

θ1 =ϕ1 + θ2 (5.15)

θ2 =ϕ2 + θ3 (5.16)

θ3 =ϕ2 + θ4 (5.17)

θ4 = θ3 − ϕ2 = θ3 − (θ2 − θ3) = 2θ3 − θ2 (5.18)
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Figure 5.4: Schematics of spherical off focus illumination

Equation of parabola is

z =
1

4f
x2 (5.19)

From the coordinates of the point Q in the Fig. (5.4), b = f − c = z0 =
x20
4f = a2

4f ,
Therefore,

θ1 = arctan
(a
c

)
= arctan

(
a

f − a2

4f

)
(5.20)

θ2 = arctan

(
a

c+ s

)
= arctan

(
a

f − a2

4f + s

)
(5.21)

θ3 = arctan

(
a

c+ s+ g

)
= arctan

(
a

f − a2

4f + s+ g

)
(5.22)

θ4 =2θ3 − θ2 = 2 arctan

(
a

f − a2

4f + s+ g

)
− arctan

(
a

f − a2

4f + s

)
(5.23)

L =
a

tan(θ4)
=

a

2 arctan( a

f−a2

4f
+s+g

)− arctan( a

f−a2

4f
+s

)
(5.24)

The equation of the tangential line passing a point (x0, z0) is

z = (
−x0

2f
)x− 1

4f
x2

0 (5.25)

and the equation of the line perpendicular to the tangential line (Equation (5.25)) at
the point (x0, z0) is
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z =
2f

x0
x+ (

1

4f
x2

0 + 2f) (5.26)

The equation of the line of reflected wave is

z = x cot(θ4) +
x2

0

4f
− x0 cot(θ4) (5.27)

This perpendicular line crosses z axis at G i.e., (0, 1
4f x

2
0 + 2f). Since z coordinate of

this point is a2

4f + 2f = f + s + g, hence g is g = a2

4f + f − s. Putting this value of g into
Equation (5.22), (5.23), we obtain,

θ3 = arctan

(
a

2f

)
(5.28)

θ4 = 2 arctan

(
a

2f

)
− arctan

(
a

f − a2

4f + s

)
(5.29)

and the distance L is

L =
a

tan(θ4)
=

a

2 arctan
(
a
2f

)
− arctan

(
a

f−a2

4f
+s

) (5.30)

We can express a, θ4 and L in θ2 as follows;
From Equation (5.14),

a = (f − a2

4f
+ s) tan(θ2) (5.31)

or in quadratic expression,

tan(θ2)

4f
a2 + a− (f + s) tan(θ2) = 0 (5.32)

The practical solution, which is expressed through θ2 is

a =
2f(−1 +

√
1 + (1 + s

f ) tan2(θ2)

tan(θ2)
(5.33)

By substituting Equation (5.33) into (5.29), (5.30), we get,

θ4 = 2 arctan

−1 +
√

1 + (1 + s
f ) tan2 θ2

tan θ2
− θ2

 (5.34)

L =


2f(−1+

√
1+(1+ s

f
) tan2(θ2))

tan(θ2)

tan

(
2 arctan

(
−1+

√
1+(1+ s

f
) tan2(θ2)

tan(θ2)

)
− θ2

)
 (5.35)
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The relations of the conic angle θ4, the radius of diffraction aperture a and the propa-
gation distance L from T to G with the incident angle θ2 for focal lengths of primary and
secondary mirrors fp = 19mm, fs = 0.5 × fp respectively and the spatial gap between
focuses s = 0.1× fs are illustrated in Fig. 5.5.

Figure 5.5: relations of cone angle (θ4), aperture height and propagation distance vs incident
beam angle (θ2)

5.7.4 Propagation

5.7.4.1 Meaning of propagation of quasi Bessel beam

Ideal Bessel beam propagates with fixed transverse intensity profile without change in mag-
nitude. Regarding the quasi Bessel beam, since it is only the phenomena of superposition
of the spherical waves with a certain conic angle between the wave vectors k, it is just
created at each point of superposition and does not propagate. However, the expression
’propagation’ is commonly used in the literature. In this case, it is understood that the
quasi Bessel beam is continuously created by the propagating waves. The distance of prop-
agation is nothing but the spatial range along the axis in which the quasi Bessel beam
is created. The interesting thing here is that the incident beams which lead to the quasi
Bessel beams are propagating carrying the energy and thus do also the quasi Bessel beam
for the distance of creation. This might be equivalent to the propagation of quasi Bessel
beam itself. The magnitude of the quasi Bessel beam depends on that of each spherical
wave (source wave) which creates the quasi Bessel beam. Since the spherical waves disperse
and decrease in strength as it propagates, so does the quasi Bessel beam. The property of
nearly non-diffraction of quasi Bessel beam only means that the size of the center lobe is
constant insofar as cone angle does not change.

5.7.4.2 Position-dependent cone angle

When quasi Bessel beam is generated by an axicon, the conic angle is fixed at a certain
value corresponding to the angle of axicon.

However, the conic angles of quasi Bessel beam created by the parabolic mirror in this
work vary with the positions in the propagation range due to the geometry of the parabolic
mirror. The conic angle at a certain position also varies depending on the size of the spatial
gap between focuses of primary and secondary mirrors.
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Since conic angle affects the range of the quasi Bessel beam which extends from the
mirror and also the transverse intensity profile, the location, the length and the size of the
core lobe (spot size) of the quasi Bessel beam can be optimized for the given purpose by
adjusting the conic angle through change of the spatial gap between two focuses.

This special feature of parabolic mirror is illustrated in Fig. 5.6.

Figure 5.6: Position-dependent conic angle and associated parameters

Fig.5.6 is the simulation for the system with focal length f = 0.019m, the size of gap
between focus and wave point source s = 0.3f .
Fig.5.6(a) shows the relation between conic angle vs angle of the incident waves. The conic
angle increases in the beginning as incident angle increases, but it is not linear. there is a
maximum and thus a turning point.
(b) illustrates relation between propagation distance and associated incident angle.
(c) shows relation between conic angle and associated propagation distance. The conic an-
gle first increases and then slowly decreases after arriving maximum.
(d) shows relation between transverse component of wave vector k determined by the conic
angle kρ = k sin θ and the propagation distance. kρ first increases but later decreases .
(e) illustrates the relation between radius of spot size ( first lobe of Bessel function) calcu-
lated by ∆ρ ∼ 2.4/(kρ × ρ) for ρ = 1 and the propagation distance. The radius of the spot
size is maximum at the point where quasi Bessel beam begins and reduces rapidly until it
gets the almost stable-looking size.
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Figure 5.7: diagram of changing cone angle

Fig. 5.7 is the self explanatory diagram illustrating geometric optics of the system.
The turning point occurs from purely geometric reason.
We are interested in the field at P1 where the main reflected beam (beam 1) crosses

the z axis. The secondary beam (beam 2) actually passes the point P2 on the axis. But,
according to the Huygens wavelet theory, each reflecting point on the surface of the mirror
can be assumed to be secondary wave source. The beam 2 also affects P1 with the amplitude
of cos(θ) of field magnitude. From the geometry of the system as shown in this figure, we
get,

θ5 = arctan(a2/L5) (5.36)

L5 =L1 + (L3− L4) (5.37)

θ =θ6 − θ5 (5.38)

r1 =a1 csc(θ4) (5.39)

R =a2 csc(θ5) (5.40)

Total field amplitude at P1 can be calculated by the Huygens-Fresnel principle integrat-
ing over the height of the reflection aperture of the mirror from the z axis [152, p.52].

A(ρ, z) =
1

iλ

∫ a1

a0
ρA(ρ, 0)

exp(ikR)

R
cos θdρ (5.41)

where, in cylindrical coordinates, ρ is radial distance from axis on the plane passing the
reflection point and perpendicular to z-axis, R distance from reflection point on the surface
of mirror to observation point, θ the angle between the ray path and the direction to the
observation point at the reflection point on the surface of mirror. The fraction 1

iλ comes
from the fact that the wave motion from the aperture of the mirror to the observation
point takes place by virtue of the time-rate-of-change of the field (d exp i(kx− ωt)/dt) at
reflection point. The directivity pattern cos θ is the obliquity factor. The Huygens-Fresnel
principle expresses just the superposition integral of diverging spherical waves originating
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from secondary sources on the surface of the mirror at the observation point located at the
distance R.

A(ρ, 0) is the field amplitudes of secondary sources located at each on the mirror surface.

5.7.4.3 Incompatibility of aperture distribution method

The two commonly used method for reflectors are the aperture distribution and the current
distribution methods[67] . The aperture method is the technique where the field reflected
by the surface of the paraboloid is first found over an aperture plane which is normal to
the optical axis mostly at the focus (focal plane) and the field distribution on the aperture
plane is assumed as an equivalent source of the radiation.

Figure 5.8: aperture

The current distribution method is the technique where the physical optics approxima-
tion of the current density induced by incident field is formulated over the surface of the
reflector which is then integrated over the whole surface.

The aperture method has the advantage in that the integration is much easier than in
the current method. According to the aperture distribution method, the electric field at
the aperture plane (Eap) passing through the focal point is given by [67, p.903]

Eap = êrC1

√
Gf (θ′ , φ′)

exp(−jkr′(1 + cos θ
′
))

r′
= âxExa + âyEya (5.42)

where Exa and Eya represent the x- and y-components of the reflected field over the
aperture. Referring to Fig. 5.8, θ

′
is the angle between optical axis (z axis) and ray

illuminating to the mirror surface at the focus, r
′

the distance of the illuminating ray, φ
′

azimuthal angle of the reflecting point, êr a unit vector depicting the polarization of the
reflected field at the reflection point on the surface, âx, ây unit vector of x and y component
of êr on the aperture plane respectively, Gf (θ

′
, φ

′
) a gain function of the fields radiated

from the point source placed at the focal point of the reflector given by radiation intensity
U(θ

′
, φ

′
) equation from total radiation power Pt,

U(θ
′
, φ

′
) =

Pt
4π
Gf (θ

′
, φ

′
) (5.43)

and C1 the constant given by

C1 = (
µ

ε
)1/4(

Pt
2π

)1/2 (5.44)

In the numerator of the fraction, total distance from the source point to the aperture
is well represented (r

′
+ r = R

′
(1 + cos θ

′
)) while in denominator, since the field from the
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reflector to the aperture plane is assumed a plane wave, only the the distance from the
source to the reflection point r

′
is considered.

However, when the source is positioned not at the focus, rather at off-focus, the reflected
field is a spherical wave, not a plane wave. Accordingly, we have to consider the whole
distance from the source to the aperture also in the denominator.

5.7.4.4 Incompatibility of Fresnel approximation

In case of the Bessel-Gaussian beam generated by the axicon, the amplitude is within the
Gaussian envelope and the created beam starts from the axicon aperture with the fixed
cone angle, and we can express it as

A(ρ, 0) = exp(−ρ2/w2
0)J0(kρρ) (5.45)

where w0 is Gaussian beam waist, J0 the zero order Bessel function of the first kind, and
kρ the transverse component of wave vector

kρ = k sin(θ) (5.46)

In this case, the whole spatial range of the quasi Bessel beam is equivalent to the
propagation of the quasi Bessel beam created at the origin. Accordingly, for the analysis of
the propagation of quasi Bessel beam, it is common to use the Fresnel diffraction integral
which is the result of Fresnel approximation on the distance part based on the paraxial
character of the beam instead of using the exact formula (5.41).

Figure 5.9: incident and diffracted planes

Referring to Fig. 5.9, in Fresnel approximation, first, we replace obliquity factor cos θ
in Equation (5.41) with z/R. By assuming R ∼ z in paraxial limit, we neglect the obliquity
factor and replace R in the denominator with z. For the numerator, we can not do the same
thing because k of light is too large. Therefore, we make an approximation only by taking
terms to quadratic one in binomial expansion of distance R between a pair points on the
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incident and diffracted planes in Cartesian coordinates (x1, y1, 0) and (x2, y2, z), and their
cylindrical coordinates, ρ, θ and r, ϕ respectively and we get [153],

A(x2, y2, z) =
1

iλz

∫ ∞
−∞

∫ ∞
−∞

A(x1, y1, 0)exp(ikR)dx1dy1 (5.47)

where

R =[(x2 − x1)2 + (y2 − y1)2 + z2]1/2

=z +
r2 + ρ2

2z
− 2rρ cos(θ − ϕ)

2z

(5.48)

By taking into account that incident amplitude A(x1, y1, 0) is circularly symmetric, we
get in cylindrical coordinates,

A(r, z) = exp

(
ikz +

ikr2

2z

)(
k

iz

)∫ ∞
0

ρA(ρ, 0)J0

(
kρr

z

)
exp

(
ikρ2

2z

)
dρ (5.49)

where J0 is the zero order Bessel function of the first kind.
However, there are some reasons that the Fresnel approximation is not appropriate to

this on-axis-off-focus structure of parabolic mirror.
First, the reflected beam spreads greatly unless the point source of waves locate very

near the focus. Second, the surface of the mirror has curvature and the obliquity angle θ
at each point varies according to the curvature of the mirror surface which has nothing to
do with position on z-axis. Consequently, cos θ can not be simply replaced with z/R and
expansion of R does not yield correct value. Another reason is that the conic angle made
by the reflected waves is not constant. It is z-position-dependent such that the amplitude
of Bessel beam has to be calculated at each point with different conic angle. Bessel beam
with varying conic angle has been studied recently [147], [146]. But, they all concern the
beams generated by axicons.

Furthermore, for the summation of the magnitude of each beams at the point P1, we
have to take into consideration;

1) The incident waves travelling from the source point are the waves which spread after
focusing of the primary parabolic mirror. The magnitude spectrum on the reflecting surface
of the secondary mirror carries the same field distribution gain generated by the monopole
antenna.

2)The magnitude contribution of each reflected wave to the point P1 in Fig. 5.7 depends
on the obliquity factor (cos θ)of each point on the surface of the secondary mirror, which
relies on the parabolic curvature on that point as mentioned above.

These all special situations lead us to the conclusion that the Fresnel diffraction integral
is not appropriate to this parabolic mirror case.

5.7.4.5 Application of Huygens-Fresnel principle without approximation

Therefore, we have to solve this problem by applying the equation of Huygens-Fresnel prin-
ciple exactly, without relying on any method of approximation, through putting Equations
from (5.36) to (5.40) into Equation (5.41), which means we have to calculate numerically.

The radial component of k vector is,
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kρ = k sin(θ4) (5.50)

The numerical simulation is shown in Fig. 5.10. as a succession of quasi Bessel beam
patterns at increasing distance of gap from the focus.

Figure 5.10: (1) frequency=100 GHz, focal length (fl)=0.19 m, gap=0.0001 × fl

(2) frequency=100 GHz, focal length (fl)=0.19 m, gap=0.001 × fl

(3) frequency=100 GHz, focal length (fl)=0.19 m, gap=0.01 × fl
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(4) frequency=100 GHz, focal length (fl)=0.19 m, gap=0.05 × fl

(5) frequency=100 GHz, focal length (fl)=0.19 m, gap=0.1 × fl

(6) frequency=100 GHz, focal length (fl)=0.19 m, gap=1 × fl
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(7) frequency=100 GHz, focal length (fl)=0.19 m, gap=5 × fl

(8) frequency=100 GHz, focal length (fl)=0.19 m, gap=10 × fl

(9) frequency=100 GHz, focal length (fl)=0.19 m, gap=12 × fl

The first figures of each pair are geometric diagrams showing the locations and the
lengths of the quasi Bessel beams associated with the positions of the source points. The
second figures of each pair are surf simulations of the quasi Bessel beams. The third parts
of each pair show the relations between kρ, radius of spot size (first lobe), conic angle and
intensity on the z-axis vs propagation distance.

The gap between the focus and the source increases from 0.0001fl to 12fl where fl is
focal length. For shorter gap, the quasi Bessel beam is created at the longer distance from
the mirror with a longer beam length, while, for longer gap, everything is in the opposite.
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The spot size starts with comparatively bigger width for the shorter gap and reduces as the
beam propagates. The intensity on the axis is greater at the nearer position.

It is of interest to note that, for the quasi Bessel beam created near the mirror due to
the long gap, the broad width of the lobe at the starting position reduces and the position
of maximum intensity on the axis moves to the middle of the propagation.

This interesting phenomena is due to the non-linear variation of the conic angle.
As already mentioned, it is interesting to note that the change of cone angle according to

the linearly increasing incident angle is not linear and has a turning point. This phenomenon
is purely due to the geometry of the parabolic mirror. The exact position where this
phenomena happen is illustrated in Fig. 5.11 which shows turning point. This point depends
on the length of the gap between focuses.

Figure 5.11: Maximum conic angle

This might be exploited for some given purposes. By applying the laser instead of
microwaves, the more precise and comparatively long distance of the beam can be exploited
for the particle acceleration.

5.7.4.6 Multiple point sources - line transmission antenna

So far we have seen quasi Bessel beam illuminated by one point source. If the illuminating
source is a combination of multiple point sources on the z-axis, there should be a superpo-
sition of the quasi Bessel beams created by each point sources. A line antenna is assumed
as a collection of a large number of infinitesimal dipoles, namely, Hertzian dipoles. The
fields radiated from a line antenna is the superposition of fields from a large number of
infinitesimal Hertzian dipoles in the line antenna. For convenience, we consider a simple
structure which consists of a parabolic reflector and a line of point sources. The position
of the quasi Bessel beams and the total field intensities are calculated by the superposition
which is shown in Fig. 5.12.
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Figure 5.12: Multiple points source - antenna

5.8 Conclusion

Two-parabolic-mirror system in this work finds an application of generating quasi Bessel
beam of varying cone angles with off-focus illumination. The crucial point of quasi Bessel
beam with varying cone angle is that it can concentrate the field intensity on the finite axial
length at arbitrary position through optimizing the gap distance of source from focus. It
may provide versatility in various Bessel beam applications.
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