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Abstract

Whether estimating the size of a crowd or rating a restaurant on a five-star scale, humans

frequently navigate between subjective sensory experiences and shared formal systems.

Here we ask how people manage this in the case of estimating number. We present

participants with arrays of dots and ask them to report how many dots there are. Our

results produce two novel findings. First, people’s estimates are best fit by a bilinear

function in log space, rather than the traditional power law described in previous

literature. Second, we find that people’s estimates do not have a stable coefficient of

variation at higher magnitudes, and that the likely cause of this is a “drift” in people’s

estimate calibration over many trials which has not previously been identified. Building on

these results, we present a model of the mapping function from subjective numerosity to

symbolic number which relies primarily on a constrained set of previous estimates and

familiar numerosities, rather than the robust internal scale used in existing models. Our

model is able to generate an accurate mapping with limited data and reproduce notable

aspects of estimation seen in our experimental results. This suggests that human number

estimation, and perhaps other domains in which we must navigate between subjective

representations and formal systems, is governed by a relatively simple decision process that

primarily seeks to maintain consistency with previous estimates.

Keywords: numerosity; number; estimation; sampling; Bayesian modeling
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Ongoing dynamic calibration produces unstable number estimates

Human reasoning and planning frequently involves mapping between internal

states and formal systems: We can compare the weights of two rocks using just our

subjective sense of weight, but to provide an estimate of one rock’s weight in kilograms

requires translating that subjective sense onto a formal metric scale. This task of

expressing perceptual states in objective, standard systems is commonplace, from making

time estimates to evaluating prices, yet it requires the unique ability to describe our

internal representations of the world using abstract systems like number and value. What

information do we use to accomplish this, and are such mappings stable? More broadly,

how do humans map from subjective internal states to formal systems? In this paper, we

approach this question using people’s ability to estimate number.

Based on a quick glance at a display of many objects, humans can estimate the

number of objects present using basic visual cues even when there is insufficient time to

explicitly count them. Imagine, for example, the task of guessing how many people are in a

large room. As you look around, you can get a rough sense of the number of people present

based on the density of the crowd and the size of the room, and can do so faster than you

could count each person individually. Past work suggests that it takes around 300ms per

item to count individual items while estimation happens much faster (Simon & Vaishnavi,

1996). To estimate the size of a crowd requires that we convert the visual signals we receive

from the world to an internal representation of magnitude, which can then be translated to

a rough numerical estimate. How do humans accomplish this mapping from visual

information to an estimated quantity based on limited signals from the environment?

A large body of research has examined the representations that support our

internal sense of number and that form the basis of numerical reasoning tasks like

estimation (for a recent review see Leibovich et al. (2017)). The predominant view in this

literature is that people have an internal “Approximate” or “Analog” Number System

(ANS) which allows for rough discrimination of numerical quantities across sensory
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modalities (Brannon, 2006; Brannon & Terrace, 1998; Dehaene, 1997; Gallistel, 1990;

Starkey et al., 1990). This system has been documented in a variety of animal species

(Feigenson et al., 2004) and emerges in humans early in infancy (Xu & Spelke, 2000),

though the role that it ultimately plays in the development of numerical reasoning remains

controversial (Carey & Barner, 2019; Nieder, 2020). A distinct but related view is that,

rather than being inferred from perceptual stimuli, number is available as a primary feature

of perception. Compatible with this, numerical estimates are subject to visual adaptation

effects, much like other visual properties such as color and motion (Burr & Ross, 2008).

However, competing accounts emphasize that perceptual features of a quantity, such as

size, area, and density, are highly correlated with number and that people struggle to infer

number independent of these cues (Leibovich et al., 2017). This has led some to argue that

our ability to estimate number stems from a more abstract “Generalized Magnitude

System” without any internal number representation, or that insofar as we have an internal

representation of number, it is assembled from our underlying sense of continuous

magnitudes (Gebuis & Reynvoet, 2012; Leibovich et al., 2017; Lourenco & Longo, 2011;

Walsh, 2003). Such a system, and the related question of whether humans and other

animals selectively represent number via a system like the ANS, remains an area of active

research (Clarke & Beck, 2021; Opstal & Verguts, 2013; Yates et al., 2012).

The present work is agnostic regarding the format of our internal representations of

number. Whether humans have an internal sense that is number specific (e.g., the ANS) or

assemble their sense of number from continuous magnitudes that simply correlate with

number, the task of estimation requires mapping such inputs to formal representations

such as number words and written numerals. In this way, it belongs to a broader class of

problem, namely that of navigating between subjective, internal representations and

quantitative external systems (Stevens, 1956). Influential work in psychophysics has shown

that the mapping process from representations to external systems can be formally

separated from the earlier mapping from stimulus to representation (N. H. Anderson, 1974;
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Attneave, 1962; Birnbaum, 1974; Shepard, 1981; Treisman, 1964); for a review, see

Gescheider (1988). In this vein, we consider it separately from questions about the

underlying representational character of number information. Further, results using a range

of psychophysical tasks such as estimating tone loudness and line length suggest that the

mapping functions from various internal representations to external scales or categories are

often agnostic across sensory domains (Collins & Gescheider, 1989; Zwislocki, 1983); we

therefore expect results in this literature to inform questions about number estimation.

Critically, prior psychophysical investigations into how people map from internal

representations to external systems have largely emphasized the limitations of this process

(Miller, 1956; Shiffrin & Nosofsky, 1994). For example, in absolute judgment tasks, people

are shown stimuli that vary along a single psychological dimension (e.g., tone loudness) and

asked to provide the correct ordinal labels for the stimuli (e.g., 1-11) over many repeated

presentations. In these tasks, people are typically only accurate for a handful of categories

(exhibiting constrained information transmission from stimulus to response: Baird et al.

(1970) and McGill (1954)), even when they can easily differentiate members of the category.

Further, their responses show characteristic dependencies on the previous stimulus (Garner,

1953; Holland & Lockhead, 1968) so that in some cases, a participant’s response in a given

trial is well predicted by the stimulus and response in the previous trial (Mori, 1989).

Researchers have offered a number of accounts for these effects, but the dependency on

previous trials is difficult to explain in models that specify a fixed internal scale (Stewart

et al., 2005). In contrast, Laming (1984) demonstrated that people’s behavior in absolute

judgment tasks can largely be explained by a model that has a highly limited internal scale

and instead relies exclusively on a coarse relationship between current and previous stimuli

to calibrate responses; despite the constraints on this model, subsequent work has shown

support for such “comparison-based” or “relative” accounts of the mapping from internal

scales to external judgments (Stewart & Brown, 2004; Stewart et al., 2002, 2005).

In contrast to categories of auditory tones or line lengths, people’s estimates of
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number do not show the same limitations in the mapping from internal representation to

external values. Extensive prior experience with number categories allows people to map

internal representations to a large (theoretically infinite) range of correct responses. In line

with this difference, existing models of estimation have largely assumed a robust internal

scale which forms the basis of the mapping from subjective representations to external

values (Izard & Dehaene, 2008). This assumption builds on earlier psychophysical results

as well; for example, Laming (1984) notes that the “relative” model of absolute judgment

tasks above may not extend to domains such as color where people amass rich prior

knowledge. Further, in magnitude estimation tasks, in which participants identify line

lengths or tone loudness as described above, but are allowed to assign arbitrary numbers to

each stimulus rather than identify its ordinal category (e.g., “tell me a number that seems

as big as the line seems long” (Collins & Gescheider, 1989)), responses often reflect an

accurate ordinal ranking of the stimuli (Collins & Gescheider, 1989; Zwislocki, 1983).

These findings have been interpreted as suggesting that number is mapped to a stable

underlying scale that is recruited for other psychometric judgments (Baird et al., 1970;

Collins & Gescheider, 1989).

In line with the idea that number estimation relies on a relatively stable internal

scale, research on human numerical estimation has demonstrated several robust features of

people’s mapping from subjective magnitude representations to symbolic number. First,

when estimating quantities outside the subitizing range, people tend to underestimate

(Kaufman et al., 1949). This relationship follows a power law (Indow & Ida, 1977), where

the magnitude of people’s errors is roughly proportional to the quantity being estimated.

This error pattern is thought to produce a stable coefficient of variation (CoV) in

estimates (Gallistel, 1990; Shepard et al., 1975) (though see also Testolin and McClelland

(2021)). Second, the accuracy of people’s estimates (i.e., the amount they underestimate,

or in some cases overestimate) varies considerably across individuals (Krueger, 1982).

Together, these findings suggest that people’s mapping from internal quantity
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representations to formal numbers is often systematically miscalibrated within individuals

and exhibits reliable variability from person to person.

Perhaps the most comprehensive attempt to characterize the “interface between

the system of verbal numerals and the non-verbal analog representations of numerosity” is

presented by Izard and Dehaene (2008). They found that giving participants a reference

array and telling them it had a magnitude which was either equal to, above, or below the

true number calibrated all subsequent estimates, suggesting that the mapping from

numerical representations to formal estimates is flexible and “globally” responsive to new

information. Building on these results, they proposed a model of the mapping whereby

people deploy a “response grid” overlaid on the mental number line, which is itself a

Gaussian distribution of activation around the perceived magnitude. On this model,

activations for a given stimulus produce corresponding activation of segments of the

response grid, which is then used to provide a verbal estimate. Individual differences in

estimation and calibration of participants via reference arrays amount to a “stretching or

compression” of the response grid (Izard & Dehaene, 2008). This internal scale has an

intuitive notion of numerical distance built in, allowing for rich numerical inference based

on a given stimulus. Indeed, the model described in Izard and Dehaene (2008) predicts the

robust empirical features of number estimation described previously and replicated in their

own results: a) that participants have power law underestimation behavior over the range

of estimates, b) that the degree of underestimation can be fit to individuals based on

idiosyncratic stretching or compression of their response grids, and c) that estimates

display scalar variability over increasing magnitudes, i.e., the degree of variability in

estimates increases in proportion to the magnitude of the stimulus being estimated (we use

scalar variability and constant CoV interchangeably in what follows).

Subsequent work aimed at uncovering the mechanisms of the “interface” described

by Izard and Dehaene (2008) has largely focused on the role that associative learning and

structural analogy each play in supporting the mapping from magnitude to number. Under



DYNAMIC CALIBRATION IN NUMBER ESTIMATES 8

an “associative mapping” account, the process of mapping approximate magnitude

representations to verbal number is one of learning to align a given number word to its

corresponding magnitude representation (Lipton & Spelke, 2005; Nieder, 2020). However,

proponents of a “structure mapping” view have noted that structural similarity between

monotonic internal magnitude representations and the ordinal structure of the number line

might allow for a mapping of magnitude to symbolic number which instead draws on

notions of equivalent ordering and distance across the two systems without needing to map

every number to a corresponding magnitude (Carey, 2009). Evidence from studies of

estimation in young children supports the use of an associative mapping for small numbers

(LeCorre & Carey, 2007), while the re-calibration results in Izard and Dehaene (2008) and

similar work by others (Lyons et al., 2012) call into question the notion of a strong

association between number and quantity for larger magnitudes. Indeed Sullivan and

Barner (2013) suggest that humans use both structure and associative mappings to support

estimation, though critically, they find little evidence that children or adults have

associative mappings beyond magnitudes of about 12; further, they find that

developmental improvements in estimation are better explained by improvements in

structural analogy than improvements in accuracy or scope of associative mappings.

The results from Sullivan and Barner (2013) suggest that humans associate

numbers with quantities in the world through some combination of associative and

structure mappings (for a recent review, see Carey and Barner (2019)), and therefore that

models like Izard and Dehaene (2008), which posit only a single mapping function, may not

be adequate. Nevertheless, the “response grid” model in Izard and Dehaene (2008)

provides one of the only formal accounts of how large number estimates are affected by

calibration. It therefore offers the best existing model of how structure mapping—and thus

most estimates—might work. The model also makes several concrete predictions about the

form and stability of people’s estimate functions that have not been robustly tested in

previous studies, and which are important to understanding the mechanisms that support
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estimation. In particular, it predicts that estimates should obey a power law for large

magnitudes, and that estimates should exhibit scalar variability or a constant CoV. As we

describe below, data regarding these predictions suggest an alternative model of estimation

that not only explains calibration effects, compatible with structure mapping, but can also

accommodate effects attributable to associative mapping.

In the present study, we tested the power law estimate function and stable CoV

predicted by Izard and Dehaene (2008) to better characterize the relationship between

associative and structure mappings over a large magnitude range. Our results contain two

key findings. First, we show that individual estimates are better fit by a log-bilinear

function rather than a power law, which may in turn capture the relationship between

precise associative mappings of lower magnitudes and more flexible structure mappings for

larger numbers. Second, we find that people display dynamic variability in their mapping

from magnitude representations to verbal estimates over many trials. This produces an

increasing coefficient of variation at higher magnitudes. We hypothesize that this latter

mapping variability stems from an ongoing attempt to maintain calibration consistency

with previous estimates. We argue that these findings are not easily incorporated into the

“response grid” model of Izard and Dehaene (2008) and present an alternative model that

produces numerical estimates based not on a stable internal calibration but on samples

from prior trials and familiar magnitudes. This model is consistent with a large body of

psychophysics work indicating that people’s judgments of magnitude and categorizations of

continuous stimuli are heavily influenced by the context of previous trials and show little

evidence of having a stable internal scale (Laming, 1984; Stewart et al., 2006; Stewart

et al., 2002, 2005). Despite the challenge of not having a reliable underlying scale, the

model is able to reproduce key characteristics of human number estimation consistent with

our experimental results. Altogether, our findings suggest that human number estimation,

and other domains in which we must navigate between subjective representations and

formal systems, is governed by a relatively simple decision process that seeks to maintain
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consistency with previous judgments and prior experience with the relevant system. In this

way, our results suggest that the process of mapping from internal representations to

external systems may rely on computationally limited, domain-general processes even in

settings where we have a great deal of calibrated experience.

Experiment

In this experiment, participants estimated number in dot arrays over many

repeated trials that captured a large magnitude range; we investigate the form and

stability of people’s estimate calibrations across trials.

Participants

Participants were 24 undergraduate psychology students at the University of

California, San Diego who received course credit for their participation. Informed consent

was obtained from all participants in accordance with the Institutional Review Board’s

approved protocol.

Procedure

In each trial, participants were shown a series of dot arrays on a white background

like those in Figure 1. The array of dots was presented for 250ms, and then subjects were

prompted to type in their guess as to how many dots were in the array. Subjects were then

asked to type in a second guess about the number of dots in the array. Our experimental

results use the first of the two guesses. Participants performed 300 estimation trials over

the course of the experiment and did not receive feedback on their estimates at any point.1

1 The code for this experiment, as well as all data, analyses, and modeling code, are available at:

https://github.com/erik-brockbank/estimation_drift.



DYNAMIC CALIBRATION IN NUMBER ESTIMATES 11

Stimuli

The number of dots shown on each trial was sampled from a geometric distribution

with a mean of 50, truncated at the low end so that displays had at least two dots. All the

dots in an array were the same size (radius of 10 pixels), presented in red on a white

background. The configuration of dots was randomly generated by drawing locations from

a uniform distribution over the full display area (1024x768 pixels) with the constraint that

the dots did not overlap. The range of stimuli did not control for changes in perceptual

features that correlate with number, such as stimulus density, display luminance, or convex

hull, since the impact of these non-numerical dimensions on underlying number

representations is somewhat orthogonal to the question of how people generate number

estimates on the basis of their internal representations. Figure 1 shows an example trial

along with one representative subject’s data from all 300 trials.

Results

The “response grid” estimation model in Izard and Dehaene (2008) makes four

predictions about the overall character of people’s number estimates: (1) estimates should

follow a power law over increasing numbers; (2) estimate calibration across participants

should reveal large individual differences due to idiosyncratic “stretching” of the response

grid; (3) individual estimate calibration should be fairly stable over time (so long as

participants don’t receive feedback on their estimates); and (4) estimates should have a

static coefficient of variation. Here we examine each of these predictions in turn.

Bilinear estimate function

Previous work on number estimation has proposed that people’s estimates can be

described by a power law, where a numerical estimate y based on the presented number x

can be approximated by y = αxβ. Individual fits for α and β reflect a participant’s overall

accuracy: Their tendency to underestimate can be described by a stable β < 1 (see for
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example Izard and Dehaene (2008)). This power law produces a relationship that is linear

in log space, i.e., log(y) = log(α) + βlog(x). Figure 2 shows individual estimate data for

each of the 24 experimental participants plotted on log coordinates. It’s clear that

participant estimates do not appear perfectly linear in log-log coordinates. We propose

that the mapping function is not described by a linear relationship between log magnitude

and log estimates, but bends such that small numbers are mapped more or less veridically

onto number words, while large numbers show a systematic deviation from the identity

line. Consider a bilinear function that is accurate up to some critical number C, and then

deviates from the identity line with some log slope of S. This produces an estimate

function of the following form:

log(y) =


log(x) for x ≤ C

S(log(x) − log(C)) + log(C) for x > C

(1)

The bilinear estimate function defined above produces parameter estimates that

match the coarse patterns observed for individual estimates in Figure 2. Cutoff values (fit

in log space across participants) averaged 1.175 (sd = 0.34), or around 15 in linear

coordinates. Notably, this cutoff is well above the subitizing range explored in prior

literature and typically described as about 5 (Kaufman et al., 1949; Mandler & Shebo,

1982), suggesting that the bilinear model characterizes estimation patterns beyond simply

differentiating subitizing from power-law like estimates. Fitted linear slope estimates

(above the threshold) averaged -0.25 (sd = 0.11), or around 0.56 in linear coordinates,

reflecting the general pattern of under-estimation shown robustly in previous literature

(Izard & Dehaene, 2008; Kaufman et al., 1949; Krueger, 1982).

Critically, the bilinear estimate function can account for data of individual subjects

better than a simple line in log space with an intercept α and a slope β. Figure 2 shows

best-fitting linear and bilinear curves for each participant on log-log coordinates. Averaged

across participant fits, the bilinear model has a substantially lower Bayesian Information
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Criterion (BIC) than the fitted power law function (bilinear: mean BIC = -402.03; power

law: mean BIC = -346.24). In addition, across individuals, the BIC for the bilinear

function was lower than the BIC for the power law function for 19 out of the 24

participants (in each case using k = 2 parameters and n = 300 estimates per person).

To ensure that the bilinear fit is not a result of factors specific to this experiment,

we ran a similar model comparison using the data from Experiment 1 of Izard and Dehaene

(2008). In that experiment, five participants completed five sessions of 600 trials each for a

total of 3,000 estimates with stimuli in the range [1, 100]. Though this represents a lower

range of number estimates than in our experiment, the distribution of individual responses

is similar to the bilinear pattern exhibited in our data. Indeed, a model comparison with

the estimate data reported in Izard and Dehaene (2008) shows that the bilinear function

has a lower BIC than the power law function for all five of the participants (bilinear: mean

BIC = -5217.1; power law: mean BIC = -4694.9; individual differences in BIC: subject

‘ML’ = 267.5; ‘PQ’ = 798.4; ‘AL’ = 83.7; ‘DC’ = 1102.5; ‘BF’ = 359.1).

Stable individual differences

Previous work which has assumed that estimate functions follow a power law has

measured individual variability in accuracy using the fitted exponents of the power law

mapping described previously (Krueger, 1982). However, given the finding that individual

calibration can be described by a log bilinear function, this predicts that individual

variability in estimate accuracy can instead be measured in the bilinear slopes fit to each

individual’s estimates at higher magnitudes. Large individual differences in bilinear

estimate functions implies that there is a great deal of variability between subjects in their

bilinear slopes and little variability within subjects over time. We evaluate this by

separately estimating slopes for each participant from two distinct sets of trials, then

calculating the pairwise correlation in these slope estimates across the two sets. In other

words, for two sets of slopes A and B, where Ai is participant i’s slope estimate from one
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set of trials and Bi is participant i’s slope estimate from the other set of trials, we calculate

the pairwise correlation of A1 and B1, A2 and B2, etc. If subjects show a great deal of

variability in their individual slopes and little change over time (i.e., large individual

differences), then this correlation will be high, since A and B will each have high variance

and high pairwise similarity. In contrast, if subjects are inconsistent in their own

calibrations (leading to low pairwise similarity) or there is little variability between

subjects (i.e., little variance in the slopes in A and B), this correlation will be low.

In this vein, we assess the individual variability in shape of the bilinear mapping

via a modular split-half analysis. We divide the 300 trials into odd trials (1, 3, 5, ..., 299),

and even trials (2, 4, 6, ..., 300) and determine the pairwise correlation between each

participant’s slope S (see Equation 1 above) estimated for each of the two halves. For any

given participant, the slopes for these two split halves should be highly similar; whatever is

true of their estimate calibration across even trials should be equally true in odd trials.

Therefore, the correlation between these halves depends mostly on the variability in each

set of slopes. If participants have a large amount of individual variability in their

estimates, then the split-half correlation between participant slopes from the two sets of

trials should be high; on the other hand, a low split-half correlation would reflect little

stable variability between participants. Modular split-half correlations for the bilinear

slopes were very high (r = 0.96; t(22)= 15.6, p < 0.001), revealing large, stable individual

differences in estimate calibrations. Thus, individual differences persist under the bilinear

model, not just the traditional power law estimation model. While prior work has mostly

argued for the source of this individual variability in the acuity of people’s magnitude

representations (Gallistel & Gelman, 1992; Whalen et al., 1999), we show in the subsequent

section that this may also stem from variability in people’s mapping from magnitude

representations to verbal estimates over time.



DYNAMIC CALIBRATION IN NUMBER ESTIMATES 15

Within-subject calibration “drift”

The “response grid” model of estimation proposed by Izard and Dehaene (2008)

predicts that human estimate calibration should be stable over time in the absence of

feedback. They find that individual estimates are calibrated by feedback (both accurate

and misleading) and that this calibration persists across many subsequent trials. To test

the stability of the mapping function over time, we revise our earlier modular split-half

analysis in favor of a blocked split-half analysis. In a blocked split-half analysis, we divide

each participant’s estimates into their first and second half of the experiment rather than

even and odd trials. As with our modular split-half analysis, the blocked split-half

correlation of subject estimate slopes was highly significant (r = 0.79; t(22)= 6.13, p <

0.001), indicating that people are very consistent in their idiosyncratic magnitude to

number mappings. However, the blocked split-half correlation above is notably lower than

the modular split-half correlation discussed previously—this difference is highly significant

using the Fisher r-to-z transform (z = -2.58, p = 0.0098). The difference between modular

and blocked split-half correlations provides a coarse indication that the slope of the

magnitude-number mapping function is not stable within individuals over the experimental

session; if the bilinear slopes we estimate for each participant’s mapping function were

stable over time, the best-fitting slopes in the first and second half of the experiment

should not depart meaningfully from each other. Their correlations should therefore be

similar to those estimated over the full range of the experiment on alternating trials.

To more precisely measure the change in estimate calibration over time indicated

by our split-half results, we generalize the blocked split-half analysis to blocked split-nths

for n = 30. For a split-30th analysis, we divide our 300 trials into 30 subsets (rather than

the two used for split-half), each one comprising 10 trials. For example, the fifth blocked

split-30th subset will contain trials 41-50. This gives us a more fine-grained view of the

change in estimate slopes over time. As in our blocked split-half analysis, we estimate the

bilinear slopes for each of these trial subsets and compare them across participants. Figure
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3a shows the correlations between calibration slopes across each of the 30 trial blocks. Trial

blocks which are close to each other have a higher correlation than blocks which are

farther, i.e., block 1 is more like block 2 than block 10. This suggests that the blocked

split-half results described above reveal a broader pattern of decreasing reliability of

estimate calibration over time: People’s estimates drift in their calibration.

Though the overall pattern of drift can be seen in Figure 3a, we wish to quantify

how much people’s calibrations vary over the experiment. The blocked split-30th

correlation between, e.g., block 1 and block 2 (the bottom-most red square in Figure 3a)

measures the correlation of slopes estimated from two adjacent periods of time in the

session which are on average separated by 10 trials. The same is true for the correlation

between blocks 2 and 3, 3 and 4, etc. In general, if we calculate the correlation between

subset i and subset i + k from a blocked split-30th analysis, those subsets are separated by

a trial distance of 300 ∗ k/30 trials. If slopes are drifting over the course of the experiment,

we would expect the correlation of slope estimates to decrease with k—the separation

between blocked subsets. This predicted decrease in slope correlations over increasing trial

distance summarizes the pattern seen in Figure 3a: Trials in blocks 1 and 2, 2 and 3, and 3

and 4 (k = 1, average trial distance = 10) have a higher slope correlation than trials in

blocks 1 and 10, 2 and 12, 3 and 13, etc. (k = 10, average trial distance = 100).

Figure 3b shows the correlation in bilinear slope estimates across trial distances

between the blocks of trials shown in 3a. This correlation over trial distances is plotted in

red. As a point of comparison, we calculate this same correlation after shuffling each

participant’s trial index, shown in green in Figure 3b; this represents an expectation about

the stability of individual calibration slopes when we do not consider the time course of the

experiment. While the shuffled correlation of estimate slopes remains stable, the blocked

split-30th correlations decrease steadily over greater trial distances. The fact that the

blocked split correlations remain fairly high even at a trial distance of 300 (hovering around

0.6 in Figure 3b) is likely a result of stable individual variability in estimate calibrations in
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combination with people maintaining reasonably calibrated estimates throughout the task.

However, despite the overall stability of estimate calibration across individuals, a linear

regression on the correlations in the blocked split-30ths as a function of trial distance is

significantly negative (95% confidence interval on the slope: (-0.0015, -0.0013); t(433) =

-24.95, p < 0.001). Meanwhile, the slope of the shuffled trial order correlations shown in

green in Figure 3b is not significantly different from zero. This provides a robust

confirmation that participant estimate calibrations drift over the course of the experiment.

It is worth noting here that we describe participants’ estimate calibration as a “drift” not

in the directional sense of, e.g., drift-diffusion models (Ratcliff & McKoon, 2008), but

instead as a random walk constrained by each participant’s overall calibration tendency

and their most recent estimates. These results are not predicted by the response grid model

of Izard and Dehaene (2008); rather than a stable mapping from magnitude to number, we

find evidence of a dynamic variability in people’s estimate calibrations over time.

Increasing coefficient of variation at higher magnitudes

Prior work in number estimation has proposed that people have an idiosyncratic

but stable Weber fraction which represents variability in their internal number

representations (Gallistel & Gelman, 1992; Whalen et al., 1999). However, the subsequent

mapping from these internal representations to verbal estimates is assumed to be noise-free,

leading to a constant coefficient of variation in their estimates. In other words, the

variability of their estimates scales with the magnitude of the estimates as a result of Weber

noise in the underlying number representations (though see recent findings in Testolin and

McClelland (2021)). However, in the previous section we describe evidence that the

bilinear slope of individual estimates may wobble across many trials, causing participants’

estimate calibrations to “drift” over time. This drift will naturally introduce variability in

estimates above and beyond that produced by Weber noise, since it causes variability in

the mapping from number representations to estimates (rather than just variability in the
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number representations themselves). Further, this drift in the logarithmic slope of an

individual’s bilinear mapping will affect estimates at larger magnitudes more than smaller

magnitudes, because the wobbling slope of the bilinear mapping introduces greater

variability farther along the number line. As a consequence, the calibration drift described

previously predicts that the coefficient of variation for participants’ estimates will increase

over increasing magnitudes. Some evidence of this can be seen in individual estimate data

in Figure 2. When viewing estimates in log coordinates, a constant CoV amounts to a

consistent variability at all (log) magnitudes (i.e., variance that increases in proportion to

magnitude should be constant for multiplicative increases in magnitude). However, it’s

clear in Figure 2 that subjects appear to have increasing variance in their estimates at

larger magnitudes, even when viewed in log coordinates. This suggests that CoV may be

increasing for these participants, as predicted by the slow drift in estimate calibrations.

To test whether participants have an increasing coefficient of variation, we fit

bilinear curves to their estimates as before; now, in addition, we fit a linear parameter to

the variance of their log estimates to determine how much this variance is increasing as a

function of log magnitude. Concretely, our previous bilinear estimate functions were fit

using a normal distribution around the true log magnitude to determine the likelihood of

each participant’s log estimates. With a constant CoV, the standard deviation of this log

normal distribution should be a fixed value which reflects the coefficient of variation.

However, if CoV is increasing, then a linear function fit to the standard deviation of the log

normal as a function of (log) magnitude should have a positive slope (if CoV is not

increasing, this function will have a slope of zero). We fit slope and intercept parameters to

the standard deviation of log estimate distributions for each participant.2 Figure 4 shows

the distribution of fitted slopes, which represent the increase in standard deviation as a

function of log magnitude. The distribution of slope parameters is significantly greater

than zero (t(23) = 5.54, p <0.001; 95% confidence interval for the slope mean is [0.17,

0.38]); as log magnitude increases, the best-fitting standard deviation for the distribution
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of log estimates increases as well, suggesting that participants have an increasing CoV.

This pattern is predicted by an estimate process which involves ongoing updating of

individual estimate calibrations—which would have a larger impact on the variability of

larger estimates—but is not consistent with participants having a stable coefficient of

variation (Izard & Dehaene, 2008).

Discussion

In this experiment, we sought to characterize the form and stability of the mapping

function between representations of number and formal estimates. In particular, we tested

the claim of Izard and Dehaene (2008) that this mapping function should respect a power

law that varies across individuals, with a constant coefficient of variation that reflects a

stable mapping from noisy internal magnitude representations. We presented participants

with a large range of magnitudes and analyzed their estimates over the course of many

trials. Results from this experiment provide two novel ways of thinking about how people

map from perceptions of number to verbal number estimates.

First, the overall shape of people’s estimates is best described by a bilinear

mapping in logarithmic space from presented number to estimate. In this formulation,

most people are highly accurate at estimates up to a threshold, after which their estimates

depart from the identity line, most often underestimating. Critically, this shift in behavior

for larger numbers does not simply reflect random responding, or a complete lack of

systematicity. Instead, our results show that although participants are not always accurate

at high magnitudes, they are nevertheless uniquely calibrated. Even over a distance of 300

trials, estimates exhibited far greater variability between participants than within. This log

bilinear fit differs from the power law described in previous literature (Izard & Dehaene,

2008), but is notably consistent with results suggesting that people combine associative

2 This new fit did not substantially change the bilinear parameters previously fit to participant estimates,

though the addition of the slope parameter increased overall log likelihood of the fits.
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mappings at lower magnitudes with more flexible structure mappings at higher magnitudes

(Sullivan & Barner, 2013). The best fitting cutoff values for each participant, which

averaged 14.9 in linear coordinates, may in part reflect the point at which they no longer

rely on associative mappings and therefore generate less accurate estimates.

One alternative account of these results is that the fitted cutoff values do not

reflect a transition from associative to structural mapping, but subitizing instead

(Kaufman et al., 1949; Mandler & Shebo, 1982). On this view, the bilinear model simply

reflects the role of subitizing at lower numbers. However, the average cutoff value of

approximately 15 in our data is substantially higher than the typical subitizing limit of

around 5. The accuracy of the bilinear function below the cutoff is therefore unlikely to

merely reflect the increased accuracy of subitizing.3 A second possible account of the data

is that the cutoff values, rather than representing something like the transition from

associative to structure mappings, are primarily a function of exposure time to the stimuli.

Prior work has shown that estimation error can in part be explained by the amount of time

participants have to foveate a number array (Cheyette & Piantadosi, 2019). However, the

finding in these results is that participants who are given longer exposure (up to 3s) on

some stimuli show less underestimation and lower Weber fractions in their responses. Such

an effect ought to improve estimate calibration and reduce variance across the full range of

numbers, rather than being restricted to some particular cutoff point, as we find.

The second contribution of the current results is to show that numerical

estimation—in particular, the slope of the bilinear fit for larger magnitude estimates—is

3 A further distinction between the regime below our cutoff of around 15 and subitizing is that subitizing is

typically considered to be a matter of precision rather than calibration for low number estimates. Our data

show subitizing—or zero-variance estimation—below about 6, but in the range of 6 to 15, while there is

variance in estimates (in contrast to subitizing), there is no systematic miscalibration. Thus we believe

that the calibrated regime below 15 is a different phenomenon than subitizing itself. Indeed, Kaufman

et al. (1949) showed calibration up to about 15, but only identified the subitizing range as below 6, because

that is the range to which zero-variance, high-confidence estimates were restricted.



DYNAMIC CALIBRATION IN NUMBER ESTIMATES 21

subject to a slow “drift” over many trials (despite the relative stability noted previously).

While the mapping of magnitudes to numbers may be consistent across a range of

magnitudes at any point in time, these data suggest that it changes over time. This change

in calibration slope over many trials, which is exaggerated at higher magnitudes, explains

the variability in estimates above and beyond what would be expected by Weber noise in

internal number representations. This in turn explains the observed increase of the

coefficient of variation for larger magnitudes, an effect not accounted for by existing

models. Why might previous results have failed to detect this increase in coefficient of

variation? Given that an individual’s slow drift in estimate calibration is best detected

across many trials and a large range of estimates, previous studies may have lacked a

sufficient number of trials at large magnitudes to detect such effects (see e.g., Frank et al.

(2008), Frank et al. (2012), and Gallistel (1990), Gordon (2004)). More recent work by

Testolin and McClelland (2021) has also called into question the notion of a stable CoV.

After re-analyzing data from several well-known experiments on number perception and

estimation, the authors find evidence of a decreasing CoV for estimates between 10 and 80

first reported in Revkin et al. (2008). This pattern contrasts with our results showing an

increasing CoV for larger estimates, but this may also be due to the lower range of

numbers estimated in Revkin et al. (2008). Future research should incorporate larger

estimate ranges and total estimates to better quantify this effect.

Broadly, our results suggests that people not only have uncertainty in their

subjective representations of number, but also a dynamic uncertainty in their mapping

from these representations to formal number. One possible explanation of this dynamic

uncertainty is that when estimating, people seek to maintain consistency with previous

estimates, which could produce the sort of wandering calibration slopes seen in our data.

Such an account might in theory apply to a range of settings where we regularly map from

internal, subjective representations to formal systems. Indeed, this finding integrates

number estimation with other domains of psychophysics where such effects have been
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observed (Garner, 1953; Holland & Lockhead, 1968; Stewart et al., 2002). In the next

section, we test this theory with a model of the mapping process from magnitude to formal

number in which numerical estimates are generated with a goal of maintaining consistency

with prior estimates. This approach builds on previous models in psychophysics which

aimed to provide accounts of similar dependencies exhibited across multiple judgments

(Laming, 1984; Stewart et al., 2005). We show that this model, with a limited set of

cognitively plausible assumptions about people’s numerical reasoning process, achieves an

accurate mapping and produces characteristic patterns of bilinear estimation, individual

variability, and calibration drift.

Modeling Number Estimation

The experimental results described previously suggest that central features of

human number estimation are unaccounted for by existing models, namely the log-bilinear

shape of the estimate function and the “slow drift” in estimate calibration. The latter

reflects dynamic variability in the mapping from internal magnitude representations to

verbal estimates which produces an increasing coefficient of variation at higher magnitudes.

The “response grid” model of Izard and Dehaene (2008), which proposes a direct mapping

between internal magnitude activation and verbal number estimates, does not readily

incorporate these findings. While revisions to the response grid might allow for

auto-correlated stretching and compression of the grid over successive trials to produce a

drift similar to what participants exhibit, there is no principled way to produce the

log-bilinear estimate function seen in our empirical results; nothing about the response grid

formulation suggests that participants should be highly accurate up to a threshold of

around 15 and then show power-law like estimates for greater magnitudes.

The response grid model also requires that people’s internal magnitude

representations offer a distance metric which can be mapped onto numerical distance for

estimation, i.e., different magnitude representations have a psychophysical “distance”
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which has a rough correspondence to differences in number. While this is likely defensible

in the case of number estimation (Sullivan & Barner, 2014a), we cannot assume that any

scale for which we have an internal representation will have the property of intuitive

distance, nor that such distances will map cleanly onto the formal system (Laming, 1984):

Consider, e.g., willingness-to-pay or how much you enjoyed a restaurant mapped onto a

five-star review scale. Therefore, in the interest of generality, we seek a solution to number

estimation which might plausibly inform the broader problem of navigating between

psychophysical and formal scales.

To better account for our experimental data and to provide a more generalized

solution to the problem of mapping internal states onto formal systems, we propose a

model of number estimation that does not rely on a stable internal scale that corresponds

to the external one. Instead, our model uses paired magnitude-number associations drawn

from past experience to determine the most likely estimate on a given trial. At a high level,

the model generates an estimate for a given magnitude by sampling previous trials, as well

as more familiar magnitude-number mappings drawn from prior experience. A series of

ordinal comparisons between the trial magnitude and the sampled magnitudes gives the

model a set of parallel ordinal constraints on the corresponding number value for the

current stimulus (i.e., if its magnitude is larger than the previous trial’s magnitude, then

its number estimate should also be larger). These ordinal comparisons, combined with a

prior that reflects more experience with low numbers than high numbers, forms the basis

for the model’s estimate function.

Critically, estimates generated in this fashion don’t rely on a stable or long-term

internal scale, but instead are the result of ongoing calibration using items sampled from

memory. This approach is broadly consistent with earlier work which has shown that rich

commonsense inferences can be made using only simple operations performed over limited

samples (Bonawitz et al., 2014; Stewart et al., 2006; Vul et al., 2014). Further, the model’s

estimate process does not require a notion of psychophysical distance which somehow maps
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onto numerical distance, since its estimates are based on simple ordinal comparisons with

previous experience; its accuracy then depends on the availability of relevant samples

which allow it to calculate an estimate. The use of immediate context to support estimates

rather than an absolute internal scale connects this model to prior work in psychophysics

(Laming, 1984; Stewart et al., 2002, 2005), reflecting its generalizability beyond number

estimation. In particular, it is similar to models of categorization which rely on the

difference between the current and previous stimulus to make a decision (Stewart & Brown,

2004; Stewart et al., 2002, 2005). However, the current model differs from this prior work in

a number of ways, including the combination of previous trials with familiar examples and

the mapping onto a large integer range rather than a small number of ordinal categories.

Despite the considerable challenges in producing estimates with such a simple

process, we show that this model is able to achieve a reasonably accurate mapping based

on a limited set of data. Critically, we further show that the model’s structure allows for a

simple characterization of bilinear estimate patterns, individual variability, and calibration

drift. Our model therefore suggests that many signature aspects of human number

estimation may be explained by such an ongoing estimate calibration process. More

broadly, we argue that human number estimation, as well as other settings in which we

must map from subjective internal scales to formal external ones, are best described by this

sort of simple reasoning process over limited samples.

Model Description

Representing magnitudes

Figure 5 provides an overview of the model’s estimation process. First, presented

with a number η (e.g., the sample stimulus shown in Figure 1), the model generates an

internal magnitude representation m from a distribution p(m) ∝ N (log(η), σ) for that trial

stimulus.4 The absolute value of this magnitude representation is assumed to have no

bearing on the numerical estimate that the model will produce but allows us to formalize
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the ordinal comparison between magnitudes. While the exact nature of this representation

is a subject of active research (Carey & Barner, 2019; Cheyette & Piantadosi, 2020;

Leibovich et al., 2017) we remain agnostic about the details of how magnitudes are

represented, and our model is neutral with respect to differences between previous accounts.

A natural question is how fine grained this magnitude representation is. If the

representation were such that it could distinguish any two numbers with 100% accuracy,

the model would have a much easier task than if magnitudes of 50 were indistinguishable

from 500. Prior work has suggested that the Weber fraction for people’s number

representations (the ability to distinguish between two distinct numbers relative to their

magnitudes) remains constant as magnitude increases, though it can vary substantially

across individuals (Whalen et al., 1999). This leads to a stable coefficient of variation in

magnitude representations (distinct from the coefficient of variation in estimates described

previously). Consistent with Whalen et al. (1999), and other similar findings (e.g.,

members of the Pirahã tribe have a fairly stable coefficient of variation in their magnitude

representations even without words for larger numbers (Frank et al., 2008; Frank et al.,

2012; Gordon, 2004)), we set the magnitude representations in our model to have a

cognitively plausible, stable CoV of 0.24.5 This means that our model uses a noisy

magnitude representation consistent with previous research on human number reasoning.

Calculating the estimate

The model’s task is then to select a reasonable number estimate y for this

magnitude m (here, we use the range [1, 1000] to match our experimental results). To

calculate this, it relies on a set of sampled magnitude and number tuples {µi, γi} ∈ µ, γ.

4 The assumption throughout this paper that magnitude distributions have variance which is constant in

log space comes from prior work suggesting that people’s internal magnitude representations are likely to

be on a log scale (Izard & Dehaene, 2008). Increasing or decreasing this variance corresponds to more or

less “noise” in peoples’ approximate number sense (Piantadosi, 2016).

5 This corresponds to a standard deviation of the log10 Gaussian magnitude representation equal to 0.1.
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The vectors of magnitude µ and number γ are comprised of previous trial estimates as well

as well-known mappings, and thus combine two different sources of information that might

support number estimation. Though the sources of these mappings vary, the model has a

unified process for generating an estimate given this information. The model uses Bayesian

inference to select an estimate y sampled from the posterior distribution p(y | m, µ, γ).

Following Bayes rule, p(y | m, µ, γ) ∝ p(m | y, µ, γ)p(y). Below we outline the process for

calculating each of these terms.

The prior p(y) is described by a power law distribution p(y) ∝ y−α. We set α = 1,

thus favoring lower numbers overall. This reflects the fact that people have a great deal of

experience with small numbers and relatively little experience with large numbers and

closely describes the need probability function (J. R. Anderson & Schooler, 1991) for sets of

increasing magnitude based on their frequency of occurrence in the natural world

(Cheyette & Piantadosi, 2020; Dehaene & Mehler, 1992; Piantadosi, 2016). People may

therefore be more likely to sample lower numbers as candidate estimates, all else equal.

For the likelihood p(m | y, µ, γ), the model assembles a stepwise likelihood

distribution defined over candidate y values based on the likelihoods of sample estimates.

To illustrate, p(m | y, µ, γ) = ∏n
j=1 p(m | y, µj, γj) for each sample estimate with magnitude

µj and number value γj. The likelihood for each sample p(m | y, µj, γj) has the form:

p(m | y, µj, γj) =


p(m < µj) for all y < γj

p(m ≥ µj) for all y ≥ γj

(2)

Since magnitudes m and µj are drawn from Gaussian distributions centered at y

and γj respectively, we can derive the probability of sampling a value less than 0 from a

normal distribution centered at m − µj as Φ(m−µj√
2σ2 ). While this might seem to violate the

earlier constraint that the model only knows the ordinal ranking of magnitudes and not

anything about their distance, suitably small σ in log space will make this probability

p(m < µj) close to 1 or 0 for almost any two estimate magnitudes, rendering this effectively
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a binary ordinal judgment. By taking the product of sample likelihoods p(m | y, µj, γj) in

this fashion, the model can assemble a reasonable stepwise approximation to the overall

likelihood p(m | y, µ, γ) (see Figure 5, step 2). This stepwise distribution is then scaled

towards lower numbers by the prior p(y) to produce the posterior p(y | m, µ, γ) defined

above (Figure 5, step 3). Finally, to generate a number estimate y from the posterior

p(y | m, µ, γ), the model raises the posterior distribution to an exponent δ whereby

sampling from the posterior approximates the maximum a posteriori (MAP) estimate

(Sanborn & Beierholm, 2016).

Sampling previous estimates

The model calculates a likelihood over y above by sampling from previous

estimates and familiar magnitude-number mappings to get sample magnitude and number

tuples {µj, γj} ∈ µ, γ. The model has free parameters for the number of samples n that it

takes in each trial and k for the probability that a given sample comes from a well-known

magnitude to number pairing (with probability 1 − k the model instead samples from the

set of previous trial estimates). A sample {µj, γj} can then be defined as follows:

{µj, γj} =


Memory(α) with probability k

Trials(α) with probability 1 − k

(3)

In the function above, Memory(α) is a function that returns magnitude, number

tuples {µj, γj} from familiar mappings, and Trials(α) is a function that returns magnitude,

number tuples {µj, γj} from previous trial estimates.

The familiar mappings between magnitude and number are described by a power

law distribution over numbers in the range [1, 1000] (this was chosen to match our

experiment but is not central to the model). In other words, Memory(α) returns a sampled

number estimate y and a corresponding magnitude m that is close to the true value of the

sampled estimate y: p(y) ∝ y−α and p(m) ∝ N (log(y), σ). These m and y values returned
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by Memory(α) form the sample tuple {µj, γj}. The power law distribution used for these

samples has a slope α that strongly favors sampling lower numbers (α = 4).

Intuitively, the use of familiar mappings as a source of information during

estimation is consistent with the idea that people have a pretty good sense of what 10 or

20 items looks like. The large slope of the power law distribution from which familiar

mappings are sampled reflects the fact that people are far more likely to have an

associative mapping to smaller numbers (Sullivan & Barner, 2013), due perhaps to their

greater frequency (Piantadosi, 2016), the use of subitizing for especially low numbers

(Carey & Barner, 2019; Feigenson et al., 2004), or simply their greater information content

(Cheyette & Piantadosi, 2020).

The previous trial estimates, like the well-known mappings, are sampled from a

power law distribution, in this case over the n previous trial indices. Trials(α) samples a

“lag” value L where p(L) ∝ L−α, which dictates the previous estimate index from which to

sample an estimate (therefore L will be defined over the range [1, n]). The sampled lag

yields a tuple of an estimated number y = yt−L and its corresponding magnitude m = mt−L

for the current trial index t. We use α = 1 for the previous trial estimates, which favors the

immediately preceding estimates but retains some dependency on earlier estimates; the

model is most likely to sample the preceding trial, then the one before that, etc. As with

the familiar mappings, previous trial estimates are sampled without replacement from the

power law distribution over previous estimate indices.

The use of previous estimates to support calibration reflects the idea that people

might rely in part on previous estimates in order to make an estimate in the current trial

that feels “coherent,” i.e., calibrated similarly to previous estimates. The power law

function from which previous estimates are sampled is consistent with the fact that insofar

as people may be calibrating their current estimate in part based on what they said

previously, this would be most likely for the immediately preceding trials. Here, the model

does not have any knowledge of whether the magnitude corresponding to the sampled
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estimate reflects an accurate mapping. Instead, it simply has access to the magnitude

representation m that corresponded to a particular estimate y. Where this estimate

happened to be accurate, the model will benefit from such a well-calibrated sample, but if

it was inaccurate, this may support the sort of miscalibrations described in Izard and

Dehaene (2008). The combination of samples from previous trials and familiar number

mappings accords with work in psychophysics arguing that for highly familiar domains like

color, people may exhibit more ‘absolute’ categorization, while in less familiar domains

people show a great deal of sensitivity to local context (Laming, 1984). Here, number

estimation presents a sort of hybrid, with lower number estimation more likely to rely on

some amount of absolute judgment (samples from memory), while estimation of higher

numbers may rely more on local context (preceding trials).

Summary

The sampling process described previously yields a set of length n where each

element is a {magnitude, number} tuple {µj, γj} which is either a noisy but accurate

associative mapping from “familiar magnitudes” or the magnitude and corresponding

estimate from a previous trial, with the relative proportions of familiar mappings and

previous trials in a set of samples determined by k. The model’s sampled estimates allow it

to compute a stepwise likelihood function over possible estimates y for the stimulus

magnitude m as a product of the likelihoods of each sampled estimate via the process

described above. This likelihood is then scaled by the prior and normalized to generate a

posterior distribution over number values which the model samples to produce an estimate.

On this account, if the sample parameter n (dictating the number of samples that

will inform each estimate) is large, the model draws on a richer set of previous experiences

for its estimation; when the probability of sampling from a known mapping k is also large,

the model has a more reliable set of guideposts mapping from magnitude to number which

it uses to make a novel estimation. If k is small, the model relies primarily on previous
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estimates it has made to calibrate its mapping from magnitudes to estimates. Given this,

the proposed model will be trivially successful for a suitably large n and k and will be

hopelessly inaccurate with sufficiently low n and k. Thus, we begin by asking whether the

model can achieve human-like performance with a cognitively plausible number of samples.

Model Results

Using the procedure described above to generate estimates for each trial, we tested

our model with the 300 trials from each of the 24 participants in our experiment. We begin

by identifying values of n and k that allow for reasonably accurate estimates. Next, we

evaluate how well the model produces the characteristic features of human estimation

described in our experimental results. Throughout the remainder of this section,

comparison of the model to human performance is done using the participant data from

the previous experiment. We use the average of participants’ two estimates in each trial,

which provides a less noisy set of responses and therefore a more conservative bar for

model accuracy. In what follows, we evaluate our model with four central claims:

Claim 1: The model produces an accurate mapping from magnitude to number

even with relatively few samples.

Claim 2: The model produces human-like bilinear estimation patterns and

underestimation.

Claim 3: The model produces variability that is similar to human individual

differences in estimate calibration.

Claim 4: The model produces human-like drift in estimate calibration.

Accurate estimates with few samples (Claim 1)

Although the model is greatly hindered by making only ordinal magnitude

comparisons on each trial, it achieves reasonable performance with a limited number of

samples. We hold the probability that a sample comes from a familiar mapping constant at

k = 1.0 to see how the model performs under idealized conditions and evaluate model
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performance for varying numbers of samples n. Figure 6 (top) shows model performance

alongside the same estimates for three sample participants. With n = 20 samples drawn

from familiar number mappings, the model produces a reasonably accurate function from

internal magnitude to number. Model estimates cluster around the identity line at lower

numbers and don’t deviate substantially more than people do at higher magnitudes.

To quantitatively compare human and model estimates, we plot model estimate

mean squared error (MSE) for increasing values of n samples alongside human MSE from

the estimates in our experiment data. Figure 6 (bottom) shows MSE of human estimates

compared to model estimates for increasing numbers of samples. The model reliably

surpasses overall human accuracy at 15–20 samples. This finding is robust to alternative

values of k: With k = 0.5, the model drops below human MSE at a similar n to k = 1.0.

Thus, reasonable estimate performance by the model doesn’t hinge on idealized learning

conditions. This result is compatible with prior research showing that adults may have on

the order of 15 strong associative mappings, i.e., numbers for which they have direct and

accurate mappings from magnitude to number (Sullivan & Barner, 2013). We therefore

find support for Claim 1, that under reasonable parameter values, the model is able to

attain an overall accuracy that is comparable to humans and resembles in broad strokes

the character of human estimation.

Bilinear estimation with human-like underestimation (Claim 2)

Underestimation at larger magnitudes is perhaps the most salient and

well-documented feature of human number estimates. In our experimental data, this was

characterized as a log-bilinear estimation function and was shown to have a better fit than

a simple power law mapping. One possible account of the underestimation pattern is that if

people are more likely to encounter lower numbers in everyday experience, they will likely

be more calibrated in estimating lower numbers; therefore, when encountering a higher

number than they are used to seeing, participants might fall towards more familiar (but still
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plausible) numbers in their estimates, thus producing a general pattern of underestimation.

Such a tendency might even be considered rational, given the power law governing “need

probability” of increasing integers (Cheyette & Piantadosi, 2020; Piantadosi, 2016).

Consistent with this, the model’s prior on lower numbers and the power law sampling of

familiar mappings at lower values together produce a bias towards lower estimate values.

To compare model bilinear estimation fits to the full set of participant data, we

plot model cutoff and bilinear slope parameters alongside the fitted parameters for our 24

experimental subjects (model settings remain at n = 20 samples, k = 0.5 probability of

estimates from familiar mappings). Figure 7a shows the aggregate set of human estimates

with a single cutoff and slope parameter alongside cutoff and slope values for a matched set

of model estimates. These fits are nearly indistinguishable, reflecting the overall trend of

the model to underestimate similarly to humans. Figure 7b shows the distributions of

cutoff and slope parameter values fit to individual subjects, with the average model cutoff

and slope values when simulating individual participants shown in red. The average model

fit is well within the range of human estimates, particularly for the fitted slope. Finally,

Figure 7c presents the same data in finer detail: Human cutoff and slope estimates are

plotted together with average model cutoff and slope values. This comparison shows that

the model occupies a position comparable to human estimates in fitted “cutoff-slope”

space. Broadly, Figure 7 reflects Claim 2 outlined above: The model is able to capture the

human patterns of bilinear fit and underestimation at higher magnitudes.

Human-like individual differences (Claim 3)

In our experimental data, we found large individual differences in estimate

calibration at higher magnitudes, which we described as varying bilinear slopes fit to the

estimates. In line with this, we consider here how a model of the mapping from subjective

magnitudes to verbal estimates might capture variability across participants. The model as

we’ve described it so far has free parameters for the number of samples n that participants
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use to assemble an estimate and the probability k that each sample comes from familiar

number mappings or previous estimate trials. These mappings are sampled anew at every

trial, though the distribution over familiar mappings and previous trials heavily constrains

this re-sampling. We modify this baseline model in favor of an individual differences model

that uses a fixed and limited set of familiar mappings across all trials. We vary this fixed

set across the model’s participant simulations to capture individual variability in the range

of numbers for which participants have a strong recognizable mapping. To generate each

subject’s estimates, the model samples exclusively from this subject’s fixed set of mappings

rather than sampling each time over the full range of possible mappings.6

Formally, recall that an individual’s associative mappings are expressed as vectors

µ, γ, where individual magnitude to number mappings sampled for a given estimate are

expressed as {magnitude, number} tuples {µj, γj} ∈ µ, γ. For each set of 300 subject

estimates generated by the model, we now populate the vectors µ, γ once with I unique

magnitude to number mappings (these are sampled with the same Memory(α) function

that generated familiar mappings for each trial in the baseline model, using the same α).

This set is then fixed for all the subject’s trials; each individual estimate draws samples

{µj, γj} from this constrained set of memories. To illustrate, if I = 10, a given subject’s set

of mappings is most likely to include numbers in the range 1–10 and highly unlikely to

contain, e.g., 230. However, the set of larger numbers that do get sampled for each subject

will likely vary across subjects. For each estimate trial, samples from among the set of

mappings I are drawn from the same power law distribution that initially generated I,

with the probabilities initially assigned to each number y normalized across the set of

mappings in I. The baseline model can be seen as a special case of this general model in

which I is equal to 1,000, or the full range of numbers that our model considers when

6 Though the associative mapping concept is useful within the domain of number estimation, these stable

mappings might simply be thought of as “memories” or reliable associations in other problems that involve

mapping from subjective internal representations to formal systems.
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producing estimates.7

Within this framework, the free parameter I gives us a knob with which to tune

individual variability.8 High values of I will be closer to the baseline model conditions,

where participants have very similar distributions from which they sample associative

mappings for each estimate. However, low values of I will create more idiosyncratic

distributions of associative mappings across subjects, thereby changing the mappings that

each subject is likely to draw on for a given estimate. We define a low variability model

with I = 1,000 associative mappings (i.e., one for every possible number estimate) and a

high variability model with I = 10 mappings (we set n = 20 and k = 0.5 as above to

maintain continuity). We are interested first in whether the low value of I in the high

variability model has the desired effect of increasing the variability of bilinear slopes

estimated across individual “subject” simulations by the model. Second, we want to know

whether this high variability model produces individual differences in actual estimates

comparable to what is seen in participant data from our experiment.

We find that the high variability model produces large variability in fitted slopes

and that the corresponding estimates are similar to human individual differences. In Figure

8a, we plot the distribution of slopes for the high and low variability models, with the

average human slope indicated by a dashed line. The high variability model has a notably

larger distribution of fitted slopes than the low variability model, though both models have

large mass around the slopes best fit to participants. How then does the variability of

estimates for the high variability model compare to human participants? In Figure 8b, we

plot the (modular) split-half correlation of fitted slopes for human estimates from our

7 In fact there is a slight difference between the baseline model and the individual variability model with I

= 1,000 because the baseline model will re-sample the magnitude value associated with a given number for

each estimate, whereas the individual variability model keeps everything about these mappings fixed from

the outset.

8 There are a number of ways we might have implemented individual differences in this model; the current

approach simply suggests that people have different prior experiences and thus different stable associations.
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experiment alongside the high and low variability model, as well as the baseline model fits.

Recall that in our experimental data, we used this same measure to assess the degree of

individual variability in participant estimates. The low variability and baseline models are

comparable in their split-half correlations, as expected, while the high variability model

attains a split-half correlation similar to humans. This suggests that by giving the model a

sampled set of familiar associative mappings which is stable across estimates but varies

between participant simulations (maintaining all other parameters as before), we’re able to

produce a variability of estimate calibrations that is close to the individual differences

between human subjects in our experiment. In line with Claim 3, our model offers a simple

account by which we might explain the large individual variability in human estimates.

Human “drift” across many trials (Claim 4)

In our experimental data, we show that estimate calibration exhibits a slow drift as

bilinear calibration slopes wobble over the course of many trials. We hypothesized that this

drift is a result of continual updating of the mapping from magnitude to formal number as

more data is encountered. Our model formalizes this prediction through its ongoing

dependence on previous estimates. Here we show that, as with bilinear underestimation

and individual variability, the model’s estimate calibration drifts similarly to humans,

providing evidence that human drift is explained by an effort to maintain consistency with

one’s previous estimates.

In order to estimate a number for a perceived magnitude, our model relies on a

combination of familiar magnitude to number mappings and previous trial estimates.

While the familiar mappings are fairly stable (particularly in the individual variability

model considered above), the mappings from previous estimates are inherently dynamic.

The model’s k parameter determines the proportion of samples on a given trial that come

from these more stable mappings. When this number is low, the model’s estimates will be

more dynamic and its auto-correlation higher as a result of relying more heavily on
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previous estimates. We therefore expect that so long as the model’s k value allows for

sufficient dependence on previous estimates, it should “drift” as human calibration does.

Our measure of model estimate drift was calculated using the same process as in

our experimental results. Model estimates were divided into bins of 10 consecutive trials,

creating 30 such bins for each model “participant” over the 300 total trials. We then

calculate a best-fitting log bilinear cutoff and slope parameter for the estimates in each bin

using maximum likelihood estimation. The pairwise correlations between each participant’s

slopes in different trial blocks are aggregated by the average “trial distance” between blocks

and the drift in estimate calibration described in our experiment results is revealed by the

decrease in this slope correlation at greater and greater trial distances.

A notable feature of our empirical results was that despite the slow drift in

estimate calibration, pairwise slope correlations were very high at low trial distances (0.8 –

0.9) and remained high even at trial distances approaching 300 (> 0.5). We hypothesized

that this was due to the high individual variability in slope estimates, as well as people

remaining fairly well-calibrated across more distant trials. We are therefore interested in

the degree to which our model can capture these additional empirical features of the

human estimate data as well. To explore this, we calculate the estimate drift for both the

baseline model and the high variability model described previously. The degree to which

the baseline model estimates drift provides an indication of how much the reliance on

previous estimates by itself produces a slow drift in estimate calibration; then, the

inclusion of the individual variability model provides an indication of how much individual

variability of the sort we explored in the previous section contributes to the high overall

slope correlations at both short and long trial distances. For continuity with previous

results, both models use n = 20 samples for each estimate and a probability k = 0.5 that

each sample in a given estimate draws on familiar mappings. As above, the individual

variability model, which was able to simulate human individual differences by reducing the

number of unique familiar mappings for each subject, samples from I = 10 stable memories
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for each participant run of the model.

Figure 9 shows the drift in slope correlation over trial distance for participant and

model data. The human data reflects the pattern first illustrated in our experimental

results: At low trial distances, human estimates have a high correlation of fitted slopes,

reflecting the stability of individual estimate calibration at close blocks of trials as well as

the individual variability of fitted slopes across subjects. However, as trial distance

increases, the correlation of fitted slopes decreases, reflecting the fact that human estimate

calibration seems to be subject to an ongoing updating process throughout the task which

makes more distant trial blocks less similarly calibrated. The baseline model data in Figure

9 shows a qualitatively similar pattern, with the correlation between fitted slopes in more

adjacent blocks of trials decreasing gradually as trial distance increases (i.e., correlation is

higher for more adjacent compared to less adjacent blocks of trials). This illustrates that

the model, even in its most basic architecture, produces a drift in estimate calibration over

time. At the outset, the model has a much lower correlation of slope estimates than

humans due to lower “individual differences” for the model across simulated participants

compared to human estimates. Nothing about the baseline model changes between

“participant” estimate simulations, thus reducing the individual variability that can

contribute to a correlation coefficient compared to 24 different human participants.

In Figure 9, the individual variability model has a gradual decrease in correlation

of fitted slopes at greater trial distances (i.e., a drift in calibration). However, the

individual variability model also has a much higher auto-correlation of slopes at the outset

and maintains a higher correlation over increasing distances. This is consistent with the

idea that the drift in human estimate calibration is a function of both ongoing updating of

the estimate function over time, in combination with large individual differences in overall

calibration. The individual variability model provides a reasonable approximation of this,

though it does not reach a slope correlation as high as human estimates.

Given the success of the high variability model in capturing individual differences
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in estimate calibration in the previous section, we might have expected it to exhibit slope

correlations more similar to humans in the current analysis. However, while the previous

section examined only split-half slope correlations, the current analysis is based on

split-30th correlations and is therefore a more sensitive measure of individual differences.

Second, the high variability model simulates individual differences by allowing for an

idiosyncratic set of familiar mappings that each participant uses. In the previous section,

we showed that this simple modification can produce variability in overall estimate

calibration that is similar to humans. However, it is unlikely that this is the only source of

individual variability in human estimate calibration. Other sources of stable individual

variability not captured by our model might further increase the correlation of human

estimate slopes. Therefore, it is perhaps not surprising that the subtle measure of estimate

calibration over time shown in Figure 9 does not have a slope correlation as large as human

estimates for a given trial distance, even with our high variability model.

Importantly, our model provides a plausible account of how calibration drift might

arise in humans. Our model seeks to maintain a dynamic “coherence” in its estimates by

continually updating the mapping from magnitude to number estimates based on the

magnitudes of previous trials and the corresponding estimates produced. This process, in

combination with variability across model runs, produces drift in estimate calibration that

is similar to the pattern seen in humans. If people are also updating their mapping from

magnitude to number based on new data they receive and trying to maintain some ongoing

coherence with their most recent estimates, then our model offers a proof of concept that

this process could explain the drift seen in human estimation.

General Discussion

We investigated the process by which people translate between perceptions of

magnitude and formal representations of number when making numerical estimates. In

particular, we asked what sort of mapping best explains people’s ability to calibrate their
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estimates and how that mapping might work. Our experimental results produce two novel

findings. First, we show that participants’ individual estimate functions are best modeled

as a bilinear function in log space rather than as a simple log linear function, contrary to

previous proposals (Kaufman et al., 1949; Krueger, 1982). Under this formulation, people

are highly accurate up to a unique threshold, after which their estimates exhibit a

sublinear relationship with numerical magnitude. Second, we show that the slope of this

bilinear function varies not only across individuals (as shown in previous findings) but

within individuals over many trials, suggesting that people’s estimate function is subject to

an ongoing updating process that may incorporate information from previous estimates.

Recent research addressing how people learn to map magnitude representations to

symbolic number estimates has made a distinction between associative mappings, in which

magnitude representations correspond to unique number values, and structure mappings, in

which number values are assembled through more relative notions of distance and ordering

of magnitude representations (Sullivan & Barner, 2013). Indeed, evidence suggests that

people use a combination of both associative and structure mappings, with associative

mappings mostly detected for smaller integers and developmental changes in estimation

accuracy corresponding to improved structure mapping (Sullivan & Barner, 2013, 2014a,

2014b). Our experimental results bear on this existing work in two ways. First, the finding

that people’s estimates are best described with a log-bilinear function has an obvious

isomorphism to the use of associative and structure mappings in estimation. Future work

should explore the relationship between associative mappings and the “cutoff” found in our

bilinear model, and further between structure mapping of higher magnitudes and the

idiosyncratic bilinear slopes fit to individual estimates. Second, the finding that people

show a dynamic uncertainty in the mapping from magnitude representations to number

estimates, which causes a “drift” in their estimate calibrations, offers a refinement of our

understanding of structure mappings. The proposed explanation for this drift, that people

are continually updating their mapping function to be consistent with prior estimates, is
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consistent with the structure mapping account, but suggests that such structure mapping

is not a static process but is instead a dynamic one.

Our empirical results are not easily accommodated by existing models of the

mapping from internal representations to formal estimates. We therefore offer a

computational model of the process by which people might accomplish this mapping from

internal magnitude representations to symbolic number. In the tradition of “decision by

sampling” models of Stewart et al. (2006) and earlier psychophysical models of absolute

judgment for novel stimuli (Laming, 1984; Stewart et al., 2005), our model assumes only

that people have the ability to sample the magnitudes and corresponding number values

from a limited set of prior estimates and “familiar mappings.” Despite these constraints,

our model is able to generate estimates with human-like levels of calibration using only

ordinal comparisons between an observed magnitude and the sampled estimates.

We evaluate the model by its ability to reproduce the characteristic patterns of

human mappings from internal magnitude to number described in our experimental results.

First, we show that the model achieves human-level performance with a limited number of

samples (15–20), which by itself was not a given since the model has a highly limited set of

operations and knowledge to compute an estimate. Next, we show that model estimates,

under reasonable conditions of the free parameters, are characterized by a log-log bilinear

fit which strongly resembles the bilinear character of human estimates discovered in our

experiment. We then show that a simple extension of the model produces individual

variability which is comparable to the individual differences present in human estimates.

Finally, we show that the calibration of the model’s estimates is subject to a drift over the

course of many trials which is similar to the pattern of human estimate calibration. With

this latter result, we offer a candidate explanation for the source of human calibration drift,

namely a reliance on sampled prior estimates to coordinate the current estimate, which

produces a high correlation in estimate calibration between nearby estimates that decreases

over large trial distances.
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While the model offers several novel results, there are a number of ways in which

future work might further validate it. First, the results presented here are based on human

estimates for numbers drawn from a geometric distribution that extends the range of

numbers used in prior work but that nonetheless favors smaller numbers. Since the model

relies on previous estimates to inform its current decision, the model’s behavior may be

dependent to some extent on the underlying stimulus distribution, along with the

exponential distribution from which familiar mappings are sampled. In the current work,

these distributions were chosen to reflect the probability of encountering and needing

particular number representations (Piantadosi, 2016). However, prior work in

psychophysics has shown that people’s mapping functions may indeed be malleable given

different distributions of stimuli (Haubensak, 1992). In this vein, future work might explore

the sensitivity of the model to much larger magnitudes or to stimulus distributions that

differ from the one used in the current experiment.

Additionally, as noted above, support for the model comes primarily from its

ability to capture a wide range of empirical phenomena in number estimation—including

the novel “drift” in calibration observed over many trials—along with its generalizability to

broader psychophysical domains. There are a number of robust behaviors exhibited in prior

psychophysical work which the model might account for (for a review, see Stewart et al.

(2005)). In particular, sequential effects of assimilation and contrast, whereby people’s

responses are pulled closer to the preceding trial magnitude and away from more distant

trials, have been exhibited across a range of psychophysical judgments (Garner, 1953;

Holland & Lockhead, 1968; Ward & Lockhead, 1970). These effects are difficult to account

for in models that rely on stable internal scales, but can emerge somewhat naturally from

models in which responses are calibrated based on previous trials (Stewart et al., 2002,

2005). Whether this and other classic psychophysical effects can be produced by our model

is difficult to say because of its reliance on both previous estimates and familiar mappings,

but the model’s tendency to sample immediately preceding trials for comparison (similar to
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the weighting of differences in Stewart et al. (2005)) might in principle yield assimilation

and other effects. Recent work has explored the distinct role of stimulus and response in

assimilation of facial expression perception (Hsu & Wu, 2020); given the parameterization

of stimuli (familiar mappings) and prior responses (earlier trials) in our model, similar

investigations offer a potential avenue of future work.

Finally, though the model captures a range of behavioral phenomena in estimation,

its parameters were not fit to our empirical data, limiting the ability to do precise model

comparison. The decision not to fit model parameters was both practically and

theoretically motivated. In contrast to existing computational models which describe

estimation at the level of aggregate behavior (Izard & Dehaene, 2008), our model offers a

process account of individual trial-level responses based on samples from memory of

familiar mapping and previous trials. Fitting the model to individual trial/subject data

would therefore require estimating the specific bundle of historic, and transient, exemplars

available to an individual subject on a given trial, which is not currently possible. Instead,

we show that this process produces effects which are broadly consistent with observed

behavior in estimation (similar to related sample-based models, e.g., Stewart et al. (2006)).

At a theoretical level, we are not aware of other similar process accounts for comparison,

thus limiting the value of precise model parameter estimation even if it were possible.

The current results have significant implications for the study of numerical

reasoning, as well as for broader questions about the nature of how people reason about

systems and scales in the world using internally calibrated representations. First, we show

that people display measurable uncertainty not just in their magnitude representations but

in the way they express these representations as number estimates over time; our

experimental results quantify the variability in people’s mapping from representation to

number. Further, we provide novel evidence that this mapping is best described by a

function that is bilinear in log space, rather than a simple power law. It is tempting to

conclude based on these results that estimation is governed by two distinct processes, one
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which allows for accurate estimates up to a threshold and then a second which produces

error-prone estimates above the threshold. However, our modeling results indicate that this

need not be the case. We show that a unified process of selecting estimates via ordinal

comparison to a set of sampled magnitude-number pairs is able to account for robust

features of human estimation, including the bilinear estimate function and “slow drift”

described in our experimental results. Critically, while previous attempts to model the

process by which people estimate number have emphasized a (somewhat) stable internal

mapping from magnitude to verbal number (Izard & Dehaene, 2008), our modeling results

suggest that this may not be necessary. Instead, we show that the ability to calibrate the

present magnitude via ordinal comparison to samples drawn from memory is sufficient to

generate accurate and distinctly “human” estimate patterns. This opens the door to future

work aimed at understanding the degree to which children’s estimation patterns, or other

forms of numerical reasoning altogether, might be described by this model.

In addition to offering a unified account of the process by which people generate

estimates from subjective representations of magnitude, our model raises a number of

questions about the development of this mapping and the individual differences seen in

estimate calibration. Our modeling results suggest that overall estimate accuracy, and

individual differences in calibration, can be approximated through differences in the

number and range of “familiar” magnitude to number mappings that people have,

particularly for larger numbers. This suggests the intriguing possibility that estimation

ability among children and the putative relationship between estimation and more general

numerical reasoning (Halberda & Feigenson, 2008) might be improved, or individual

differences among adults lessened, through mere learning of a broader range of associative

mappings of the sort our model relies on.

More broadly, the current results tie number estimation into the general challenges

people face when mapping between subjective, internal scales and the systems we use to

communicate about them. The task of navigating between internal representations of our
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everyday experience and formal systems is a part of intuitive reasoning across a range of

domains. We regularly make estimates based on fairly concrete representations, e.g.,

whether we will be able to carry a heavy suitcase to the car or how long it will take to go

grocery shopping, as well as more abstract estimates, such as whether the price of concert

tickets exceeds how much we expect to value the experience. By recruiting domain-general

processes such as sampling relevant “memories” and basic comparison between the current

stimulus and those memories, the model outlined here attempts to solve this more general

problem with an approach that is not restricted to number estimation. In doing so, we

offer a bridge between work in psychophysics which has emphasized the extent to which

mapping from internal representations to external systems can be done without a robust

internal scale (Laming, 1984; Stewart et al., 2002, 2005) and prior work in number

estimation, which has largely assumed a stable scale with an intuitive notion of

psychological distance as the basis for numerical reasoning (Izard & Dehaene, 2008).

Laming (1984) observed that a model which assumes a limited internal scale could

successfully capture a range of behavioral phenomena when categorizing stimuli like

auditory tones or line lengths, but might be unable to account for behavior in domains like

color (and presumably number), where people have a great deal of prior experience. By

incorporating both previous trials and more familiar mappings into our model’s estimate

process, we offer an account of how prior knowledge and consistency with earlier responses

might come together in a domain like number to produce calibrated responses that

nonetheless “drift” over time. In this way, we hope our model provides a more generalized

view of people’s ability to navigate the range of external scales we use every day based on

differing amounts of prior knowledge and experience.

Finally, a number of previous results have suggested that complex human

judgments of various kinds can be performed via simple cognitive operations over sampled

data from memory or the world around us (Bonawitz et al., 2014; Stewart et al., 2006; Vul

et al., 2014). By showing that number estimation—and the more general problem of
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mapping psychophysical representations to analog formal scales—can be solved using a

similar approach, we provide further evidence that the ability to sample and compare (i.e.,

“decision by sampling” (Stewart et al., 2006)) constitutes a core component of our

algorithmic toolbox and a critical feature of domain-general human intelligence.
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Figure 1

(Top) Participants saw 300 trials in which an array of n dots was briefly presented and

participants made a guess as to the number of dots shown. (Bottom) A representative

subject’s data over all 300 trials with number presented on the x-axis and number reported

on the y-axis (both log scale).
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Figure 2

Individual subject estimation data (red points) along with best fitting linear (blue) and

bilinear (green) mapping functions in log space. Some of our conclusions may be seen in

the raw data alone: (1) systematic mis-estimation occurs for larger, but not smaller,

numbers, (2) participants show individual differences in their estimation biases, and (3)

estimate variability in log space increases with magnitude.
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(a) Correlation in trial slopes across blocks of 10 trials for all participants. Calibration “drift” is

reflected in the high correlation in blocks close to each other (near the diagonal) and lower

correlation between more distant trial blocks (further from the diagonal).

(b) Correlation in trial slopes by trial distance for distances between trial blocks shown above

(red), compared to the same correlation when trials are shuffled (green).

Figure 3

Decreasing correlation in trial slopes over more distant trial blocks (a) and over time

compared to the high correlation across all distances when trial order is shuffled for each

participant (b).
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Figure 4

Distribution of slope parameters for the standard deviation of the (log) normal distribution

used to determine each participant’s estimate likelihoods. Slopes greater than zero represent

an increase in variability of log estimates as a function of log magnitude, i.e., an increasing

coefficient of variation. The red line indicates the expected average of 0 and the black line

indicates the mean of the fitted slopes, with 95% CI indicated by the dashed black lines.
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Figure 5

An overview of the estimation model. (1) a new trial t has an approximate magnitude mt.

(2) an ordinal comparison between mt and magnitudes from sampled estimates (shown here

for trial t − 1 and t − 2) produces a likelihood function over possible number estimates for

mt. The product of these individual sample likelihoods forms the general likelihood function.

(3) combining the likelihood with a prior favoring lower numbers, the estimate for trial t is

drawn from a posterior distribution over number estimates shown in green at far left.
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Figure 6

(Top) Model performance plotted alongside participant estimates for three sample

participants. Using only n = 20 samples and a probability k = 1.0 that each sample is

drawn from a familiar number mapping, the model achieves reasonable performance

qualitatively. (Bottom) Mean Squared Error (MSE) of model estimates plotted alongside

human estimates for comparison. With a probability k = 1.0 that a given sample comes

from a reliable benchmark, the model is equivalent to human performance after only around

15 samples.
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(a) Model bilinear estimation alongside human results for all experiment runs reflect aggregate

similarity.

(b) Distribution of bilinear parameter fits across participants. Average model bilinear parameter

values are shown in red.

(c) Bilinear slope and cutoff values across participants with fitted cutoff on x, and slope on y.

Average model bilinear parameter values are shown in blue with error in either direction.

Figure 7

Three views of how our model captures the bilinear shape of human estimates.
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(a) Fitted bilinear slope values across “participant” estimations for the high and low individual

variability models. Average human slopes indicated by the dashed line.

(b) A split-half correlation indicates that the high variability model has individual variability in

estimate slopes closer to human levels, compared with the low variability and baseline models

(error bars represent 95% CI for subject data, SE of 10 model runs).

Figure 8

Comparison of individual variability models to subject data. The high variability model,

which is meant to capture human estimate patterns, samples from 10 familiar mappings

while the low variability version represents a null comparison which samples familiar

mappings during each trial from the full number range.
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Figure 9

Comparison of estimate calibration “drift” for human subjects and model versions. Both

model versions have the same qualitative pattern as human subjects (i.e., smoothly

decreasing autocorrelation over greater trial distances). The high individual variability

model is closer to human patterns of drift, though neither model’s autocorrelation decreases

as steeply as the empirical data. Ribbons reflect SEM of human subject data and SD of

multiple model runs, respectively.
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