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Technical Note: Derivation of Earth-Rotation Correction (Sagnac)
and Analysis of the Effect of Receiver Clock Bias

Wang Hu (whu027@ucr.edu) and Jay A. Farrell (farrell@ee.ucr.edu)
Department of Electrical and Computer Engineering

University of California, Riverside, 92521

Abstract—This document derives and analyzes two theoretically equivalent
methods to account for the fact that the ECEF frame rotates between the
time that a signal leaves a satellite ts and the time that it is received at a
receiver tr . The first approach rotates the computed satellite position vector
to a desired frame (see for example Appendix Section C.3 in [1]). The second
approach is the Sagnac correction (see for example page 340 in [2]).

In particular, the report analyzes the effect of uncompensated receiver
clock error on the accuracy of the computed range.

I. NOTATION

Let Er represent the ECEF frame at time tr. Let Es represent the ECEF
frame at time ts. Frame Er is distinct from Es due to the earth rotation
ωie (tr− ts).

Because Er is distinct from Es, the satellite position vector at time ts
in the Er frame, denoted as PEr

s , is distinct from the satellite position
vector at time ts in the Es, denoted as PEs

s . These two position vectors
are related by

PEr
s = REr

Es
PEs

s . (1)

Given that the time-of-transit is tT = R
c , where c is the speed of light,

and the earth rotation vector is ωie = [0,0,ωie]
>, the rotation matrix REr

Es
can be expressed as

REr
Es

=

 cos(ωietT ) sin(ωietT ) 0
−sin(ωietT ) cos(ωietT ) 0

0 0 1

 . (2)

Vectors can only be properly difference when they are in the same
frame. Therefore, a valid definition of the true geometric range is

R = ||PEr
r −PEr

s ||. (3)

Herein, the symbol R denotes a true geometric range. The symbol ρ is
reserved for pseudorange which is geometric range plus a clock bias.

The Sagnac correction states that the geometric range can also be
computed as:

R = ||PEr
r −PEs

s ||+Rcorr(PEs
s ,PEr

r )+ e1 + e2 (4)

where Rcorr(PEs
s ,PEr

r ) = ωie
c (xb− ay) using the coordinate represen-

tations: PEr
r = [a,b,d]T and PEs

s = [x,y,z]T . The symbols e1 and e2
represent small error terms defined subsequently.

II. DERIVATION OF EQUIVALENCE

The true range defined in eqn. (3) can be represented as

R = ||PEr
r −REr

Es
PEs

s ||. (5)

Because both ωie and tT are small, the angle ωie tT is also small.
Applying small angle approximations yields:

REr
Es

=

 1 ωie
R
c 0

−ωie
R
c 1 0

0 0 1

 . (6)

Eqn. (5) can be manipulated as follows:

R = ||PEr
r −REr

Es
PEs

s || (7)

=
PEr

r −REr
Es

PEs
s

||PEr
r −REr

Es
PEs

s ||
· (PEr

r −REr
Es

PEs
s ) (8)

= 1r · (PEr
r −PEs

s +PEs
s −REr

Es
PEs

s ) (9)

= 1s · (PEr
r −PEs

s )+1r · (PEs
s −REr

Es
PEs

s )+ e1 (10)

= ‖PEr
r −PEs

s ‖+1r · (PEs
s −REr

Es
PEs

s )+ e1 (11)

where

1r =
PEr

r −REr
Es

PEs
s

||PEr
r −REr

Es
PEs

s ||
(12)

1s =
PEr

r −PEs
s

||PEr
r −PEs

s ||
(13)

e1 = (1r−1s) · (PEr
r −PEs

s ), (14)

e1 has order of magnitude 10−5 to 10−3.
The Sagnac correction is derived from the second term:

1r · (PEs
s −REr

Es
PEs

s ).

Note that REr
Es

=
(
I− R

c [ωie×]
)
. Therefore,

(PEs
s −REr

Es
PEs

s ) = (I−REr
Es

PEs
s (15)

=

(
R
c
[ωie×PEs

s ]

)
(16)

which simplifies to

1r ·
(

R
c
[ωie×PEs

s ]

)
=

PEr
r −REr

Es
PEs

s

R
· (PEs

s −REr
Es

PEs
s )

a
b
c

−
x+ωie

R
c y

y−ωie
R
c x

0

 ·(R
c
[ωie×PEs

s ]

)
1
Ra

b
c

−
x+ωie

R
c y

y−ωie
R
c x

0

 ·
−y

x
0

 ωie

c

=
ωie

c
(xb−ay)+ e2

=
ωie

c
(xb−ay)+ e2

(17)

where e2 = ωie
c2 (x2 + y2) which has order of magnitude 10−6. This

completes the derivation of eqn. (4) from eqn. (3).
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III. ANALYSIS OF THE EFFECT OF RECEIVER CLOCK BIAS

When the designer chooses to implement the rotation matrix approach
of eqn. (3), instead of the Sagnac correction approach of eqn. (4), the
implementation must compute the signal time-of-transit tT to determine
the angle of rotation. After eqn. (1) this time is defined as tT = R

c . There-
fore, the implementation requires the range R, but only the pseudorange
ρ = R+ ctr is available at the start of the data processing for a given
epoch. This section considers the effect of the receiver clock bias ctr on
the accuracy of the range computed by eqn. (3).

The corrected pseudorange is related to the range by

ρ = R+ c(tr− t̂r)+ c(ts− t̂s)+ Ia +Ta +mp +η (18)

where t̂r represents the available estimate of the receiver clock bias (if
any), ts and t̂s are the satellite clock bias and its estimate computed
from ephemeris data, Ia is ionospheric delay, Ta is tropospheric delay,
mp represents multi-path, and η represents measurement noise. In the
analysis to follow, we will write this as ρ = R+δ , where

δ = c(tr− t̂r)+ c(ts− t̂s)+ Ia +Ta +mp +η .

If the implementation computes the transit time as t̂T = ρ

c , then

t̂T =
ρ

c
=

R+δ

c

= tT +(tr− t̂r)+(ts− t̂s)+
1
c

(
Ia +Ta +mp +η

)
.

of the three error terms on the right, (tr− t̂r) may be at the millisecond
level, while (ts − t̂s) and 1

c
(
Ia + Ta + mp + η

)
are at the tens of

nanosecond level. Therefore, the receiver clock error, which is correctable
through t̂r, is the dominant error. The presentation that follows focuses
only on the receiver clock bias error

tc = (tr− t̂r). (19)

The analysis for the other terms in δ follows an identical approach.
The computed rotation matrix is

R̂Er
Es

=

 1 ωie
ρ

c 0
−ωie

ρ

c 1 0
0 0 1

 (20)

=

 1 ωie
R+ctc

c 0
−ωie

R+ctc
c 1 0

0 0 1

 (21)

=

 1 ωie(tT + tc) 0
−ωie(tT + tc) 1 0

0 0 1

 (22)

= REr
Es
+δR. (23)

where

δR =

 0 ωietc 0
−ωietc 0 0

0 0 0

= tc [ωie×]

The computed range is

R̂ = ‖PEr
r − R̂Er

Es
PEs

s ‖ (24)

=
PEr

r − R̂Er
Es

PEs
s

||PEr
r − R̂Er

Es
PEs

s ||
· (PEr

r − R̂Er
Es

PEs
s ) (25)

= 1̂r · (PEr
r −REr

Es
PEs

s −δRPEs
s ) (26)

= 1r · (PEr
r −REr

Es
PEs

s )− 1̂r ·δRPEs
s + e4 (27)

= R−
(
1̂r · [ωie×PEs

s ]
)
tc + e4 (28)

= R+ e3 + e4 (29)

where

1̂r =
PEr

r − R̂Er
Es

PEs
s

||PEr
r − R̂Er

Es
PEs

s ||
(30)

e3 = −
(
1̂r · [ωie×PEs

s ]
)
tc (31)

e4 =
(
1̂r−1r

)
· (PEr

r −REr
Es

PEs
s ). (32)

The magnitude of the error e3 is less than
(
‖ωie‖‖PEs

s ‖ tc
)

which is
approximately 1400tc.

Fig. 1 shows examples of the biases e3 and e4 as a function of the
uncorrected receiver clock error tc, for various satellites. The figure shows
that the range error e3 causes range errors at the meter level if the clock
error is not properly compensated.

To exemplify how receiver clock bias affects the positioning error,
Figs. 2.a and 2.b show the DGNSS positioning error versus time for two
different algorithms. The algorithm used to produces Fig. 2.a involves
a recursive implementation of nonlinear least squares that estimates
receiver antenna position and clock bias, where the clock bias estimate
is used in eqn. (19) to compensate eqn. (20). Fig. 2.b uses the rotation
matrix of eqn. (20) to rotate the satellite position from Es to Er (i.e.,
tc = tr with t̂r = 0) before estimating the rover position. Fig. 2.c shows
the actual receiver clock bias. Comparing the first two figures shows that
failure to compensate for the receiver clock bias decreases the positioning
accuracy (i.e., increases the position error) in a patern comparable to the
magnitude of receiver clock bias.

Fig. 1: Examples for e3 and e4 versus clock error.
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Fig. 2: The effect of rotation matrix
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