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Abstract 
In this paper, we demonstrate the importance of conducting well-thought-out sensitivity analyses for 
handling clustered data (data in which individuals are grouped into higher order units, such as 
students in schools) that arise from cluster randomized controlled trials (RCTs). This is particularly 
relevant given the rise in rigorous impact evaluations that use cluster randomized designs across 
various fields including education, public health and social welfare. Using data from a recently 
completed cluster RCT of a school-based teacher professional development program, we 
demonstrate our use of four commonly applied methods for analyzing clustered data. These 
methods include: (1) Hierarchical Linear Modeling (HLM); (2) Feasible Generalized Least Squares 
(FGLS); (3) Generalized Estimating Equations (GEE); and (4) Ordinary Least Squares (OLS) 
regression with cluster-robust (Huber-White) standard errors. We compare our findings across each 
method, showing how inconsistent results—in terms of both effect sizes and statistical 
significance—emerged across each method and our analytic approach to resolving such 
inconsistencies. 
 
Keywords 
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1. Introduction 
 
Cluster randomized controlled trials1 (RCTs) have become an increasingly popular way to 

evaluate the impact of interventions which are applicable to intact groups of individuals. Common 

examples include schools that are randomly assigned to offer its students an educational intervention.  

Similarly, there are studies in which clinics are randomized to offer a particular treatment to an intact 

group of patients it serves. One notable feature of such trials is that individuals (e.g., students or 

patients) are clustered together in higher level units (e.g., schools or clinics) with the higher level unit 

serving as the unit of randomization. 2 Evaluators who analyze data from clustered RCTs must select 

from a variety of methods that appropriately account for the correlation between study participants 

within the higher level units. Ignoring such correlation, especially when the correlation between 

individuals within clusters is relatively high (as captured by the intra-class correlation coefficient 

(ICC) may lead to erroneous inferences due to downward biased standard errors (Garson, 2012; 

Hox, 2010; Liang and Zeger (1993); Zyzanski, Flocke, & Dickinson, 2004). 

For evaluation analysts, deciding upon which method to use when analyzing clustered data is not 

an exact science. Often, the choice depends upon a combination of factors including analysts’ 

professional judgment and their prior quantitative training. Also, the choice of method is driven by 

the methodological conventions and traditions of the disciplinary field (e.g., public health, education, 

etc.) in which the evaluation is conducted. However, one overarching principal is that analysts are 

entrusted to choose the most appropriate approach among various data analytic methods, prior to 

conducting analyses, based on their prior assessment of the design and data limitations. This prevents 

researchers from selecting, or being suspected of selecting, a particular analytic method to influence 

the results. 

                                                 
1 Cluster randomized trials are also commonly referred to as place-based or group randomized trials (Boruch, 2005, p. 14). 
2 Often, these clustered structures (e.g., students within schools) are also referred to as multi-level, hierarchical or nested 
structures. 
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Yet, when accounting for clustering, analysts often rely only upon one preferred methodological 

approach without considering how and if the results remain consistent across different methods. 

Carrying out analyses using different methods and checking for the consistency in results across 

such methods is one class of a broader set of sensitivity analyses (Thabane et al., 2013) which analysts 

often undertake. We believe that well-thought-out sensitivity analyses to handle clustered data and 

the transparent reporting of such analyses are important, particularly as different methods can and—

as we show in our case—lead to discrepant findings. When conflicting findings emerge across 

different methodological approaches, we believe that evaluation analysts must then proceed to 

understand the conflicting results, plan alternate analyses to reconcile such findings, and carefully 

document those alternative approaches. Finally, analysts should be transparent in communicating 

their analytic decisions to their evaluation audience. 

In this paper, we review our results from a recently completed cluster randomized trial of a 

teacher professional development program. We compare our results across four methods we used to 

account for clustering in our data: (1) Hierarchical Linear Modeling (HLM); (2) Feasible Generalized 

Least Squares (FGLS); (3) Generalized Estimating Equations (GEE); and (4) Ordinary Least Squares 

(OLS) regression with robust clustered (Huber-White) standard errors. Importantly, we show how 

inconsistent results emerged across these different methods and our approach to resolving 

inconsistencies. We present and discuss our work primarily from an applied point of view, forgoing 

technical descriptions of the methods we have employed (with the exception of the statistical model 

we present for our main analytic approach using HLM). We do assume, however, that readers have 

basic familiarity with statistical concepts and the analytic issues that arise due to clustered data.  

We structure the rest of our paper in five sections. In Section 2, we briefly review clustered 

randomized controlled trials and introduce the concept of the intra-cluster correlation coefficient (ICC). 

The ICC is a key quantitative measure capturing the extent to which individuals are correlated within 
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an intact group. We also discuss sensitivity analyses for clustered data, methods for handling 

clustered data and prior empirical studies that have compared methods for clustered data. Next, in 

Section 3, we describe our research design, providing background about our study intervention, the 

site and sample as well as our data and measures. In Section 4, we describe our primary analytic 

method along with our selected alternative methods. Then, in Section 5, we present results from the 

four analytic approaches we used to analyze our data, discussing the inconsistencies that emerged 

across the methods and ways in which we reconciled those inconsistent results. Finally, in Section 6, 

we close with several substantive “lessoned learned” of our work, providing advice to evaluation 

analysts who face the task of analyzing clustered data. 

2. Clustered Randomized Trials and Clustered Data 

A cluster randomized controlled trial (RCT) refers to an experiment in which intact groups of 

individuals are randomly assigned to receive an offer to participate in a treatment or not3. The 

groups that do not receive an offer of the treatment serve as the control group. This is in contrast to 

a standard RCT in which individuals are randomly assigned into a treatment or control group. The 

level at which randomization occurs—whether it be at the group or the individual-level—is 

commonly referred to as the unit of randomization. The cluster is the unit of randomization in 

numerous experimental evaluations of programs in education, public health and criminology 

(Boruch, 2005). Randomizing clusters of individuals not only avoids potential cross contamination 

between control and treatment conditions, but the interventions themselves are often designed to be 

administered to intact groups rather than individuals (Raudenbush, 1997). Finally, there may be 

ethical issues that can be ameliorated by randomizing at the cluster level. For example, in a ground-

breaking study of an incentive-based cash subsidy program in Mexico known as Progresa (now 

Opportunidades), intact communities rather than households were randomly assigned to receive an 
                                                 
3 Here, we assume the most basic design of a randomized experiment with only one treatment and one control 
condition. There are, of course, various randomized designs that have multiple treatment and control conditions. 
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offer of a subsidy or not (Parker & Teruel, 2005). Randomizing households within these relatively 

small and close-knit communities could have created tension between treatment and control group 

households (Parker & Teruel, 2005). Also, randomization could have led to a “perception of 

discretionality” (Parker & Teruel, 2005, p. 208) with respect to which households—despite being 

equally eligible—were selected to receive subsidies or not. 

When analyzing data from cluster RCTs, evaluation analysts often want to understand the 

impact of a program, on average, across individuals’ outcomes even though these individuals are part 

of an existing intact group. For example, in the evaluation of the Progresa program, researchers 

wanted to understand whether children living in communities randomized to receive cash subsidies 

had improved health outcomes versus children in control communities (Gertler, 2004). To 

determine the impact of the program on individuals’ outcomes in a RCT with individual-level 

random assignment, an analyst may apply standard t-tests to compare the means of outcome 

measures collected on individuals assigned into the control condition versus the treatment condition 

or to apply ordinal least squares (OLS) regression to test the estimate effects on the treatment 

condition. However, such a strategy, if applied to a cluster RCT, ignores the fact that individuals are 

members of existing groups and may not be completely independent of each other—a critical 

assumption of standard statistical techniques such as the t-test or OLS regression. Ignoring 

clustering can lead to erroneous inferences (Garson, 2012; Hox, 2010; Liang & Zeger, 1993; 

Zyzanski et al., 2004) due to standard errors that are biased downwards (Clarke, 2008; Steenbergen 

& Jones, 2002) leading to inflated Type I error rates (i.e., stating that there is an effect when there is 

not). Modeling the degree to which individuals are correlated within clusters requires different 

methods, such as the ones we illustrate in this paper. 

The degree to which individuals are interdependent within a cluster can be quantitatively 

measured by the intra-class correlation coefficient (ICC), often denoted by the Greek symbol ρ (rho) 
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(Killip, Mahfoud, & Pearce, 2004). In the most basic case where individuals (e.g., students) are 

clustered into higher level units (e.g. schools), the ICC is calculated as the ratio of the between-

cluster variance on a particular continuous outcome measure of interest (e.g. achievement) to the 

total variance (the between- plus within-cluster variance) of that outcome. The ICC can be expressed 

as: 

22

2

withinbetween

between

σσ
σ

+
       (1) 

where 2
betweenσ represents the between-cluster variance and 2

withinσ is the within-cluster variance. The 

ICC ranges from 0 to 1, with values closer to 1 indicating a higher degree of correlation for a 

particular outcome of interest within an intact group.4 If there is no variability between clusters, the 

ICC would equal 0 ( 0
0

0
2 =

+ withinσ
). This suggests that individuals’ outcomes are independent of 

each other. In other words, all of the variation lies between individuals and there is no correlation 

between individuals within a cluster. On the other hand, in the instance where all individuals are 

homogenous on an outcome so that there is no within-cluster variance, the ICC would equal 1 

(
02

2

+between

between

σ
σ

=1). The ICC can also be interpreted in percentage form. For example, for an ICC that 

equals .35, we can say that 35% of the total variation in a particular outcome lies between clusters, 

while the remaining 65% lies between individuals. 

The clustering of individuals (e.g., clustering of students within schools) increases the 

standard errors of the effect estimates because of the correlation across observations within clusters.   

A non-zero ICC, which measures the degree of such correlations, thus indicates the presence of 

clustering effects and warns researchers against applying the conventionally estimated “incorrect” 

                                                 
4 There are instances in which the ICC can be negative (see Lohr, 2010, p. 175); however, as Lohr (2010) notes, “The 
ICC is rarely negative in naturally occurring clusters (p. 175). 
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variance estimates in inference tests. Without addressing clustering effects, such tests could lead to 

potentially misleading conclusions (Hox, 2010; Schochet, 2008). 

2.1 Sensitivity Analyses for Clustered Data from RCTs 

Sensitivity analyses refer to a set of ancillary analyses that analysts undertake to assess the 

robustness of a study’s findings (Thabane et al., 2013) lending both credibility and rigor to any 

empirical studies. Sensitivity analyses vary in their intent and purpose ranging from alternative ways 

analysts handle missing data to the types of analyses that are the focus of this paper—different 

analytic approaches for clustered (or correlated) data structures. As is typical in conducting large-

scale cluster RCTs in the social sciences, analysts tend to specify sensitivity analyses as part of a 

comprehensive study protocol that includes a detailed discussion of proposed data analytic methods. 

We strongly advise analysts who design such protocols, particularly when it is known that data will 

be clustered (as in a clustered RCT), to develop and articulate a priori a sensible set of sensitivity 

analyses to handle clustered data. This is important not only for the sake of transparency but to 

preserve the scientific and ethical rigor of cluster RCTs.  

2.2 Approaches for Analyzing Clustered Data 

Below, we briefly describe the four different approaches for analyzing clustered data that we 

illustrate in this paper and address some practical tradeoffs between the methods. Then, we discuss 

studies that have examined how results compare across these approaches and address important 

considerations for analyzing clustered data. 

(1) Hierarchical Linear Modeling (HLM): HLM (also known as random coefficient models, 

mixed-level models, or multilevel models) explicitly models clustered data structures by 

specifying how an outcome indicator is explained by explanatory variables at different levels 

that are nested within each other. For example, in the case where students are nested in 

schools, there are two levels (students and schools) and thus analysts would specify a 
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student-level model and a school level model. Importantly, these models allow analysts to 

account for the variances in the outcome that arise from different levels of the clustered 

data; in the school example, HLM allows analysts to appropriately model  variation in the 

outcome that lies between schools (i.e., the between cluster variation). HLM can 

accommodate multiple levels of clustering (e.g., children in classrooms in schools). For a 

thorough overview of HLM, readers should consult Raudenbush and Bryk (2002) and Hox 

(2010). For an important discussion of the limitations of HLM, readers should consult 

Gelman (2006). 

(2) Feasible Generalized Least Squares (FGLS). FGLS is an estimation method that models the 

correlated nature of errors and leads to estimates that can be more efficient5 than standard 

OLS estimates (Cameron & Miller, 2010). FGLS estimates are derived from a multistep 

process in which individual level residuals are obtained by fitting a first stage OLS regression 

model; these residuals are then used to estimate a variance-covariance matrix of the errors. 

This estimated matrix, which is specified so that the errors can be correlated, is then used to 

obtain feasible GLS estimation of model’s regression coefficients. One important practical 

consideration, as Wooldridge (2010) notes, is that properties of the FGLS estimators can be 

poor for finite (i.e., small) samples. For a detailed discussion of FGLS in the context of 

clustered data see Cameron and Miller (2013). 

(3) Generalized Estimating Equations (GEE).  GEE (Liang & Zeger, 1993), an extension of 

general linearized models (Burton, Gurrin, & Sly, 1998), explicitly models the correlated 

nature of the data. Unlike HLM which accounts for clustering via random effects, GEE 

models rely on estimating how the model residuals are correlated within each cluster. These 

residual estimates and the correlation structure of these residuals (which analysts often 

                                                 
5 This assumes that the structure of the errors is correctly specified. 
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specify a priori) are used in an iterative process to arrive at the coefficient estimates (Burton 

et al., 1998). As argued by Hubbard et al. (2010), GEE models versus HLM (or mixed 

models), provide a better “approximation of the truth” (p. 467); in other words, GEE 

models more accurately describe the underlying population parameters of interest. Also, as 

Gelman (2006) notes, though both approaches are similar, models based on HLM allow the 

estimates of parameters to vary across groups (e.g. schools) while GEE models focus on 

estimating parameters that do not vary, but account for clustering. Readers further interested 

in the technical differences between GEE and HLM as well as issues to consider when 

deciding between GEE and HLM should consult Hubbard et al. (2010).  

(4) Ordinary Least Squares (OLS) regression with robust clustered (Huber-White) standard 

errors. To account for the non-independence of observations (and thus correlated errors) 

that can lead to downward biased estimates from OLS regression, analysts can calculate 

robust clustered standard errors for models fit using OLS regression (Cameron & Miller, 

2010; White, 1980, 1982). Robust clustered standard errors, calculated using a sandwich 

variance estimator (Burton et al., 1998), tend to be adjusted upwards, leading to wider 

confidence intervals and decreasing the risk of making Type I errors. In our study, we 

estimated robust standard errors by relaxing the independence assumptions within clusters, 

while still assuming that observations are assumed independent across clusters.   

There are numerous examples of studies, particularly from the medical literature (Thabane et al., 

2013) as well as in political science (Steenbergen & Jones, 2002), comparing results across analytic 

methods for clustered data. For example, from the political science literature, Arceneaux and 

Nickerson (2009) compare results across clustered robust SEs, random effect models, HLM and 

aggregated OLS. Similarly, Zorn (2006) compares GEE with robust standard errors. From the 

medical field, Galbraith, Daniel, and Vissel (2010) use simulated data to illustrate how results can 
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vary across a range of methods, including Linear Mixed Models (i.e., HLM) as well as GEE. Finally, 

Peters, Richards, Bankhead, Ades, and Sterne (2003) compare results across eight methods for 

analyzing data from a cluster RCT of a screening intervention, ranging from completely ignoring 

clustering to both GEE and random effects models.  

Across these studies, there are several important lessons about analyzing clustered data and 

choosing a method for handling clustering.  

(1) There is strong consensus that completely ignoring clustering will lead to erroneous 

inferences even if the degree to which observations are correlated is relatively small (Peters 

et al., 2003).  

(2) Different analytic approaches can, but not necessarily always, lead to different results. Both 

Peters et al. (2003) and Galbraith et al. (2010) demonstrate that different point estimates and 

statistical significance of parameter estimates can arise due to different analytic methods, 

while both Arceneaux and Nickerson (2009) and Zorn (2006) demonstrate relatively 

consistent estimates across methods. Interestingly, though Zorn (2006) finds results under 

GEE and robust standard errors fairly consistent, the unit of clustering matters as well.  

(3) Finally, as Peters et al. (2003) note, the number of clusters as well as the distributional 

assumptions of the data within clusters (i.e., the extent to which data are normally distributed 

or skewed) can influence the overall findings.  

3. Research Design 

3.1 Site and Intervention 

We illustrate our results from analyzing clustered data in the context of a recently completed 

Institute of Education Science (IES) supported cluster RCT of a teacher professional development 

program known as the Pacific Communities with High Performance in Literacy Development 

(Pacific CHILD) (Authors, 2012). This evaluation was conducted across three sites in the Pacific 
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region: Hawaii, American Samoa and the Commonwealth of the Northern Marian Islands (CNMI). 

Pacific CHILD provided fourth and fifth grade English language arts teachers with approximately 

300 hours of professional development over two years, focusing on reading instruction. The year-

round program consisted of off-campus training institutes, on-campus sessions that include one-on-

one coaching and in-class demonstrations, and peer group meetings. This unusually intensive 

program aimed to improve teacher quality in reading instruction, a critical area of concern in the 

region, and to improve students’ reading achievement. The impact analyses and subsequent 

sensitivity analyses we describe in this paper were aimed at evaluating the effect of Pacific CHILD 

on students’ reading comprehension.6 

3.2 Sample and Randomization Scheme 

Our study sample was based on a convenience sample of 45 elementary schools across three 

sites (which, for the purposes of this study, we abbreviate as HI (Hawaii); AS (American Samoa) and 

the CNMI (Commonwealth of the Northern Mariana Islands)). Of the 45 schools, 23 were 

randomly assigned to the treatment condition, and 22 to the control condition. Random assignment 

occurred within strata that were based upon geographical location as well as size. This ensured that 

the resulting allocation of schools in the treatment and control groups was balanced, both in the 

number of schools and key school demographic characteristics. 

The student impact sample consisted of all grade 5 students enrolled in the 45 study schools at 

the time of data collection in the spring of the second year of the intervention7. In total, 3,078 

students and met the impact sample criteria. From this universe, students for whom outcome data 

were collected comprised the data analytic sample. Due to attrition and non-response our final 

                                                 
6 The study also examined the causal impact of Pacific CHILD on teachers’ knowledge and their classroom practices. 
However, for the purposes of this paper, we focus only on our student outcome measure. 
7 Unlike a randomized trial that follows a particular cohort of students over time, in our study, our sample includes all 
grade 5 students who were at the study schools near the end of the second year of the intervention, irrespective of 
whether or how much they had been potentially or actually exposed to the intervention. Thus, the impact study 
measured the intent-to-treat effects of Pacific CHILD as implemented in the field.   
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sample included 3,052 students. Of those students, 1,566 were in treatment schools and 1,486 were 

in control schools. 

3.3 Measures 

3.3.1. Outcome Variable. To assess the impact of the program on student achievement in reading, 

we utilized reading comprehension subtests of two national, norm-referenced tests administered 

annually in the study sites (SAT 10 and TerraNova). To create a common metric across these two 

different tests, we used published norming tables and equipercentile methods (Kolen & Brennan, 

2004). The analysis sample for measuring impacts on achievement in reading consisted of 3,052 

students. 

3.3.2. Covariates. In Table 1, we list the covariates we included in our analysis. We included both 

school- and student-level covariates.  We also controlled for baseline characteristics of schools and 

students, as well as indicator variables for sampling strata. Including these covariates increased the 

study’s statistical power by improving the precision of the impact estimates and helped remove any 

chance differences in the baseline characteristics of treatment and control group schools.  

3.3.3. Baseline comparison of treatment and control groups. To evaluate whether random assignment 

resulted in statistically equivalent groups at baseline, we compared selected school-level baseline 

characteristics of the treatment and control group schools in the impact sample. In Table 2, we 

provide means and standard deviations of these baseline characteristics disaggregated by treatment 

and control group status. We also report the standardized mean differences between the treatment 

and groups along with the p-value for the t-test on the mean differences. We collected school-level 

data from the U.S. Department of Education’s Common Core of Data, enrollment records, and 

student test records to check baseline equivalence. School-level characteristics included school size, 

the student-teacher ratio, the percentage of students eligible for free or reduced-price lunch, student 

race/ethnicity, and student achievement in reading. In Hawai’i, we also compared the proportion of 
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English language learner students (reliable official data on English language learner status were not 

available for American Samoa or the CNMI). Student test records at baseline were available for 

grade 5 students in the CNMI and Hawai‘i and for grade 4 students in American Samoa and Hawai‘i. 

We compared each grade separately. Finally, we compared school level characteristics by averaging 

the characteristics within schools, which served as the unit of random assignment. As shown in 

column 5 of Table 2, the estimated standardized mean differences across all baseline characteristics 

range from -0.38 to 0.12. As shown in column 6 of Table 2, none of these differences were statistical 

significant at the α=.05 level (p-values ranged from .26 to .98). 

 

4. Data Analytic Plan 

4.1 Main estimation method: Hierarchical Linear Modeling (HLM) 

As is typical in conducting data analyses for cluster RCTs in education, we proposed a priori to fit 

a two-level hierarchical linear model (HLM) to our data, in which the first level (students) was nested 

in the second level (schools)8. We also decided to fit our model using data that pooled all individuals 

across all three sites in our study, thus yielding an unbiased estimate of program impact irrespective 

of potential cross-site heterogeneity. 

More formally, we specified a two-level random-intercept model, in which the first level 

(student-level) was nested in the second level (school-level). In particular, for individual student i in 

school j, our hierarchical linear model was specified as the following system of equations 

(Raudenbush & Bryk, 2002):  

 

                                                 
8 In our study, students are also clustered within classrooms. However, we did not account for this level of clustering in 
our analysis because our data did not allow us to match students to their specific classrooms and because the 
intervention is considered a school-based program  For a discussion of the consequences of omitting a level of clustering 
in multilevel models, see Moerbeek (2004) and Van Landeghem, De Fraine, and Van Damme (2005). 
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      Level 1 (individual level)   (2) 

  Level 2 (school level)    (3) 

Substituting equation 2 into equation 1 allows the system of equations to be rewritten in 

reduced-form:  

 ijj

S

s
sjs

Q

q
qijqjij uWXSTATUSY εγβγγ +++++= ∑∑

== 21
10 )(     (4) 

In this model, Yij is our reading comprehension measure for student i in school j; Xqij is the qth 

individual-level covariate for observed baseline characteristics, for q = 1… Q; STATUS is a dummy 

variable indicating whether school j received a randomized offer to participate in Pacific CHILD 

(STATUS = 1) or not (STATUS = 0); and Wsj is the sth school-level covariate, for s = 2… S.  

In addition, 𝛾𝛾0 represents the adjusted mean outcome across control group schools (when 

STATUS = 0). Importantly, 𝛾𝛾1  is the impact estimator of interest, representing the regression-

adjusted mean difference in reading comprehension scores between treatment and control group 

schools. 𝛽𝛽𝑞𝑞 and 𝛾𝛾𝑠𝑠  are estimators for marginal effects of individual- and school-level covariates. 

Note that we constrained the effects of the individual-level covariates, 𝛽𝛽𝑞𝑞  for q = 1… Q, as fixed 

across the school level (Level 2).  

Finally, our model includes two error terms: 𝜀𝜀𝑖𝑖𝑖𝑖 is the residual term specific to student i in 

school j; uj is the residual specific to the jth school. We assume that 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑗𝑗  are independently and 

normally distributed, each with mean 0 and constant variance (𝜎𝜎𝜀𝜀2 and 𝜎𝜎𝑢𝑢2), such that 𝜀𝜀𝑖𝑖𝑖𝑖 | 𝑢𝑢𝑗𝑗  ~ N(0, 

𝜎𝜎𝜀𝜀2) and 𝑢𝑢𝑗𝑗  ~ N(0, 𝜎𝜎𝑢𝑢2). In this random intercept HLM model, the effects of clustering of students 
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Q

q
qijqjij XY εβα ++= ∑

=1

j

S

s
sjsjj uWSTATUS +++= ∑

=2
10 )( γγγα



SENSITIVITY ANALYSES FOR CLUSTERED DATA  15 
 

within schools were explicitly specified, in the form of between-school heterogeneity represented by 

school-specific random intercepts (𝑢𝑢𝑗𝑗).  

In our study, we fit an expanded version of model (4) that incorporated site fixed effects in level 

2 to account for the site-to-site variation in the outcome.9 The reduced form model with the entity-

specific intercepts can be expressed as follows:10    

ijj

S

s
sjs

Q

q
qijqjNMASHIij uWXSTATUSCNMIASHIY εγβγλλλ +++++++= ∑∑

== 21
1 )(  (5)  

where HI, AS and CNMI are dummy variables for Hawai’i, American Samoa and Commonwealth of 

the Northern Mariana Islands respectively; and 𝜆𝜆𝐻𝐻𝐼𝐼, 𝜆𝜆𝐴𝐴𝐴𝐴, and  𝜆𝜆𝑁𝑁𝑁𝑁 are the parameters representing 

the fixed site-specific effects for Hawai’i, American Samoa, and CNMI respectively. We used the 

restricted maximum likelihood estimation (REML)  method to estimate the coefficients and 

covariance parameters. 11   

Alternative estimation methods 

To verify the results from our main estimation of the HLM model, we re-analyzed our data 

using alternate estimation methods to handle clustered data as discussed in Section 2.2.  First, we re-

fit our reduced-form model using the maximum likelihood estimation (MLE) method, instead of 

REML:  MLE is another commonly used estimation method but provides downward-biased 

                                                 
9 We treated site as a fixed effect rather than a random effect given that our study sites, which we purposively selected, 
did not necessarily represent a sample from a larger population of sites. Also, since we purposively selected these sites, 
we did not intend to draw inferences that were generalizable beyond these specific sites.  
10 We also conducted likelihood ratio tests based on statistics we obtained using MLE estimation to test the interaction 
of treatment condition and site effects (i.e., site-specific treatment effects), assuming these effects were fixed. These 
specification tests rejected the site-specific treatment effect assumptions, and we concluded that the fixed site-specific 
slopes (i.e., the interaction terms between the entity indicators and the treatment indicator) did not contribute to the 
estimation of the student outcome once we included fixed site-specific intercepts. 
11 We used the xtmixed command in Stata to estimate these models, specifying either the reml option to fit the REML 
models or the mle option to fit the MLE models. In addition to Stata, there are other software packages that can fit 
hierarchical linear models including SAS, SPSS, HLM and R. For a comprehensive overview of how to use these 
different software packages to fit hierarchical linear models and to understand how results compare across software 
packages, readers should consult West, Welch, and Galecki (2007). 
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estimates for  𝜎𝜎𝑢𝑢2.12   Second,  we used Feasible Generalized Least Squares (FGLS) based on the 

Swamy and Arora ANOVA method which provides an unbiased but inefficient estimator for σu
2. We 

then estimated our models using two methods that account for the interdependence between 

students clustered within schools, but did not explicitly estimate the within-school covariance 

structure: Generalized Estimating Equations (GEE) 13 and Ordinary Least Squares (OLS) with 

robust cluster (Huber-White) standard errors (SE)14. As the primary goal of our study was to 

estimate the coefficient (𝛾𝛾1) on the treatment indicator variable (STATUS), not necessarily the 

random effects variance component, both GEE and OLS with Huber-White SE methods were 

regarded as reasonable alternative approaches for checking the robustness of our main impact 

estimation results.15, 16  

4.2 Weighted Average Approach 

One additional set of analyses involved estimating our models separately for each of the three sites 

and then taking a weighted average of separately estimated site-specific effects. More specially, weights 

(w) were defined as follows: 

    2
1

i
k se

w =        (4) 

                                                 
12 Unlike the MLE, REML takes into account the loss of degrees of freedom that results from estimating the fixed-
effects parameters in estimating the variance components (and provides an unbiased estimate for the variance 
components for balanced data). Consequently, the restricted maximum likelihood method yields more conservative 
(larger) estimates for standard errors for coefficient estimates than the maximum likelihood method. 
13 Generalized estimating equation parameters are estimated by an iterative optimization process, with the working 
covariance as a function of the working correlation matrix (of the dependent variable). The form of this working 
correlation matrix was assumed to be exchangeable. The covariance parameters are treated as nuisance variables in the 
iterative process. Estimates for the covariance based on a generalized estimating equation model are consistent, 
assuming the correlation matrix is correctly specified (Hanley, Negassa, & Forrester, 2003). 
14 As noted earlier, we did not use OLS regression without robust clustered standard errors given the correlation of 
students within schools, a violation of the independence assumption of OLS regression. 
15 See Schochet (2009) for a discussion of various estimation methods used in analyzing data from clustered randomized 
controlled trials. Also, see Cameron and Miller (2010) for a technical discussion of methods to handle clustered data, 
including FGLS and robust-clustered standard errors. 
16 We estimated all models in Stata using the following commands: xtreg with the sa option for the variance estimator (for 
FGLS); xtgee specifying the normal distribution for the dependent variable (for GEE) ; and reg specifying the cluster-
robust option (OLS with robust cluster SEs). 
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where sei is the standard error of the student effect estimate γ1k in entity k. The weighted-average 

estimate, 𝛾𝛾1𝑘𝑘, and its variance, v(𝛾𝛾1), were calculated as:  

    
∑
∑

=

k
k

k
kk

w

w 1

1

γ
γ       (5) 

and 
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kw

v 1)( 1γ       (6) 

This weighted-average approach gives more weight to more precise estimates and less weight to less 

precise estimates.17 The overall effect estimate for the student outcome thus reflected the 

effectiveness of the program measured across the three entities; the averaged effect took into 

account the variation in the impact estimate across entities.18  

5. Results 

In this section, we first present our ICC estimates, showing the extent to which students are 

correlated within schools in our sample. Then we present and discuss our results across our main 

and alternative estimation methods. 

5.1 Intra-cluster Correlation Coefficients  

Given potential heterogeneity across sites, we calculated unconditional ICCs based on an HLM 

model (estimated via REML) without any predictors (i.e., a null model (Hox, 2010)) for each of the 

three entities in our study. The ICCs were .04 for AS, .07 for HI and .06 in the CNMI. Thus, 

approximately 4% to 7% of the variation in student reading comprehension was due to between 

school differences; the rest was due to variation between students within schools. Though certainly 

                                                 
17 This approach is frequently used in meta-analysis to compute weights for combining effects across independent 
samples (Cooper, Hedges, & Valentine, 2009). Our calculations of the weights and standard errors were based on fixed 
effects models, assuming a common effect across entities. We report the results based on the fixed effects models 
because we did not plan to generalize the results beyond the three entities.  
18 We fitted our models by site and calculated the weighted average using Stata.  
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not large (recall that ICCs closer to 1 indicate a higher degree of correlation within clusters), these 

ICCs do suggest that students within schools exhibit some correlation with each other and thus 

warranted the use of data analytic methods to account for clustering.  

5.2 Estimation Results  

In Table 3, we display our results across each of our selected estimation methods, beginning 

with HLM models in the rows (1) and (2) (using REML and MLE, respectively). Rows (3)-(5) 

summarize results for models based on our alternative methods: FGLS, GEE and OLS with cluster-

robust Huber-White SEs, respectively. We report our results both in terms of the estimated 

difference in scale score points as well as effect sizes.19 We first address our initial HLM findings 

using both REML and MLE. 

As shown in row 1 in Table 3, our initial analysis of the impact of the intervention on our 

student outcome (as captured by the estimate of the parameter on STATUS, γ1), based on our 2-

level HLM using REML across all three entities, showed a 2.35 point difference between control and 

treatment group students (effect size=0.064). However, this estimate was not statistically significant 

at the standard .05 level (p=.258). On the other hand, the results of the HLM model using MLE, did 

yield a positive and statistically significant estimate (p=.037, effect size=0.083).  

As shown in row (3) the coefficient estimate on STATUS based on FGLS was consistent in 

terms of its magnitude and statistical significance with the estimate from the model we fit using 

HLM-REML (2.21 versus 2.34 points; p=.33 versus p=.258; effect size=0.060 versus 0.064). 

However, this estimate was inconsistent with the HLM-MLE results, particularly in terms of the 

estimator’s statistical significance (p=.33 versus p=.037). On the other hand, our results using GEE 

and OLS with Huber-White SEs were consistent with the HLM-MLE results, but conflicted with 

the findings under FGLS and HLM-REML (p=.015, effect size=0.088).  
                                                 
19 For Table 3, we computed effect sizes by dividing the estimated difference in the treatment and control group means 
in the student outcome by the standard deviation of the student outcome for the control group.  
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These inconsistencies prompted us to further examine the data and potential factors 

contributing to these results. One additional set of analyses involved estimating our models 

separately for each of the three sites. In doing so, we discovered that the impact estimates varied 

considerably by site as shown in Table 4. Due to this variation across sites, we then pursued an 

alternative approach in consultation with external reviewers: estimating the program impact as a 

weighted average of separately estimated site-specific effects as described in Section 4.3.20  

In Table 5, we report the estimated impacts based on the weighted average approach in terms of 

both scale score points and effect sizes.21 Overall, using this weighted-average approach, we refit our 

HLM-REML model and found a statistically significant difference between the treatment and 

control groups (effect size = 0.244, p = .017). As shown in Table 5, the weighted average approach 

also yielded consistent results across different methodological approaches, both in terms of effect 

size (ranging from 0.208 under FGLS to 0.244 under HLM-REML) and statistical significance 

(p<.001 under HLM-MLE, GEE and OLS with Huber-White SE; p=.017 for HLM-REML; and 

p=.002 under FGLS). While achieving consistent results across methods was not necessarily a 

criterion for selecting this approach, using a weighted average approach did support the robustness 

of our findings. In the end, we were able to confidently conclude that there was a statistically 

significant impact of the intervention on student reading comprehension, which countered our initial 

results we obtained by fitting our models using an unweighted, pooled sample under HLM-REML. 

However, modifying our original analytic approach (HLM-REML using a pooled sample) 

concerned us because it diverged from our original analysis plan and could have been seen as an 

                                                 
20 Although the likelihood ratio test indicated that fixed entity-specific slopes did not make additional contribution to the 
estimation of the student outcome measure once entity-specific intercepts were included in the model, the fixed entity-
specific slope estimate for American Samoa was statistically significant. The fixed entity-specific slopes for the two other 
entities were not statistically significant.  
21 We computed the overall effect size as the weighted mean of the entity-specific effect sizes. For each entity, we 
computed the effect size by dividing the regression-adjusted mean difference in reading comprehension scores between 
the control and treatment groups by the standard deviation of the control group mean. We then computed the overall 
effect size from the mean of the entity effect sizes, applying the same weights used to compute the overall impact 
estimates in the scale score unit. 
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attempt to manipulate the estimation results. To counter such suspicion, we decided to carefully 

document and report our analytic decision process which helped to maintain the face validity of the 

study, despite the divergence from our original data analytic plan. 

6. Lessons Learned and Conclusion 

Our work highlights the importance of verifying the results of cluster RCTs particularly when 

data are clustered and are subject to heterogeneity across sites. Though well-known data analytic 

methods are commonly used when analyzing data from cluster RCTs in education (e.g., HLM); 

however, more often than not, there is not a single “correct” estimation method, and analytic 

decisions depend primarily on the judgment of researchers. It is plausible that these decisions are 

made based solely upon the preferences of the researchers. In this case, thorough sensitivity analyses 

are particularly critical in order to verify the results.  

In addition to the main lesson we learned about the value of verifying our results across 

alternative methods for handling clustered data, we learned several additional lessons: 

1. Methodological Bridging. Often times conducting sensitivity analyses that incorporate different 

methodological approaches requires what we call methodological bridging. Particular methods are 

discipline-specific, so it is important to look broadly at other disciplinary areas to understand 

how they handle similar methodological issues. Not only can methods to handle similar 

issues—such as clustering—differ, but the methodological terminology can vary as well, so it 

is important to build bridges with analysts who are trained in evaluation but are grounded in 

different disciplines ranging from economics, statistics and, more broadly, the social sciences 

(e.g., public health, education and public policy). 

2. Selection of Analytic Methods for Clustering. Based on our review of studies that compare ways to 

handle clustered data as well as our own empirical findings, we conclude that there is no one 

“right” way to handle clustering. Beyond our basic recommendation that analysts should 
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account for clustering when analyzing data from clustered RCTs, we also advise analysts to 

carefully consider the tradeoffs in analyzing clustered data. There are important practical 

considerations (e.g., the number of levels in the data) and distributional assumptions of the 

data. 

3. Weighted Average Approaches. If there are multiple sites in a study, analysts may want to 

consider estimating program effects separately for each site as an exploratory step. In our 

case, this was helpful because it revealed cross-site heterogeneity. If there are differences in 

effects across sites, as we had discovered in our study, one option analysts may want to 

consider is using a weighted average approach as we have described above. 

4. Transparent Reporting of Methods and Results. Finally, and most importantly, we highly 

recommend that analysts clearly develop a priori a plan for analyzing clustered data as part of 

their study protocols, including a description of the alternative approaches they will 

undertake. Also, analysts should clearly document and report their analytic methods and 

findings across methods. Doing so ensures that analysts will carry out their analytic work 

both thoughtfully and responsibly, preserving the overall integrity and rigor of the study. As 

we mentioned, in our study, we were concerned that deviating from our a priori specified 

data analytic plan would impact the face validity of the study; as such, we clearly documented 

the procedures and results of our analytic decisions in order to be fully transparent about 

how we obtained our final impact findings. 

Our paper’s contribution to the extant evaluation literature is to raise the awareness of the 

different methodological approaches to handle clustered data, the need to verify results across 

methods and—importantly—documenting and supplying information on the data analytic decision 

process if results of those sensitivity analyses are inconsistent. In sum, we believe that analysts 

should strive to become much more transparent and rigorous in their use, discussion and reporting 
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of sensitivity analyses for clustered data arising from cluster RCTs. Doing so can greatly enhance the 

credibility and robustness of findings from impact evaluations that rely on cluster RCTs. 
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Tables 
Table 1. Covariates used in an analysis of a clustered randomized controlled trial (RCT) of a teacher 
professional development program. (nstudents=3,052; nschools=45). 

Level/type of covariate Variables 

School (Level 2) 
School performance   Baseline year average scores on reading comprehension subtest of Stanford 10 

Achievement Test (SAT 10)a  
School characteristics  School size (number of students in school) at baselineb  

 Student-to-teacher ratio at baseline  
 Percent free or reduced-price lunch-certified students at baseline  

Student (Level 1) 
Demographics  Gender (binary indicator for female)  

 Special education status (binary indicator) 
a. The baseline year school average was computed based on grade 5 scores for schools in Hawai‘i and the CNMI and grade 4 
scores for schools in American Samoa (where grade 5 scores were not available). For Hawai‘i, TerraNova scores were used to 
estimate equivalent SAT 10 scores, using equipercentile methods. 
b. The number of grades varied by school. The study examined the number of fourth and fifth graders per school, which was 
collected during the recruitment period, as a secondary source of the baseline school size. Estimations based on the fourth and fifth 
grade size yielded the same results as those based on the total school size.  
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Table 2. Selected univariate descriptive statistics (mean and standard deviations) of baseline 
characteristics for schools participating in a clustered randomized controlled trial (RCT) of a teacher 
professional development program. (nstudents=3,052; nschools=45). 
 

Baseline characteristic 

Mean (standard deviation) Standardized 
mean 

differencee 

Test of 
difference 

p-value Overall 
Treatment 

schools 
Control 
schools 

Number of grade 4 students 65.0 64.7 65.3 –0.01 .962 
(40.0) (42.5) (38.2)   

Number of grade 5 students 
 

64.1 64.2 64.0 0.00 .983 
(41.4) (42.5) (38.2)   

Number of grade 4 and grade 5 teachers 6.0 6.0 6.0 0.00 .962 
(3.1) (3.4) (2.9)   

Student-teacher ratio in grades 4 and 5 20.2 20.1 20.3 -0.04 .935 
(4.8) (4.9) (4.9)   

Proportion of students eligible for free or 
reduced-price meals, all grades 

69.0 69.8 68.1 0.06 .842 
(28.7) (28.5) (29.6)   

Mean proportion of students of 
races/ethnicities other than White, all grades 

86.9 87.7 86.1 0.11 .722 
(15.2) (13.9) (16.8)   

Mean proportion of English language learner 
students (Hawai‘i only), all gradesa 

12.8 13.5 12.3 0.12 .764 
(9.7) (8.2) (11.4)   

Mean reading comprehension score (SAT 10 
scale score),b, c grade 4  

609.6 608.9 610.4 -0.07 .829 
(20.5) (21.1) (20.6)   

Mean reading comprehension score (SAT 10 
scale score),b, d grade 5  

636.5 634.4 638.6 -0.38 .260 
(11.0) (11.9) (9.9)   

Number of schools 45 23 22   

Number of schools in Hawai‘i  26 13 13   

Note: Significance tests are based on two-tailed t-tests, accounting for clustering at the school level. 
a. Data on English language learner status were available only for Hawai‘i students.  
b. TerraNova reading comprehension scores from Hawai‘i were converted to estimated Stanford 10 reading comprehension equivalents 
using published norming tables and concordancing method.  
c. At baseline, grade 4 students in American Samoa and Hawai‘i completed standardized assessments. Thirty-five schools (18 treatment 
group schools and 17 control group schools) had grade 4 scores.  
d. At baseline, grade 5 students in the CNMI and Hawai‘i completed standardized assessment. Thirty six schools (18 treatment group 
schools and 18 control group schools) had grade 5 scores. 
e. Calculated as the treatment mean minus the control mean divided by the pooled standard deviation. 
Source: Authors’ analysis based on data from U.S. Department of Education 2010a for American Samoa and the Commonwealth of the 
Northern Mariana Islands, U.S. Department of Education 2010b for Hawai‘i. Figures for students and teachers per school in grades 4 and 
5 are based on enrollment estimates from the American Samoa Department of Education, the Commonwealth of the Northern Mariana 
Islands Public School System, and the Hawai‘i Department of Education. 
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Table 3. Estimated parameters, standard errors and p-values from models fitted using different 
methods to account for clustered data (students nested in schools). (nstudents=3,052; nschools=45). 

 

Model 
Parameter estimate  

(standard error) p-value 
95%  

confidence interval 
Effect 
Size 

Hierarchical linear models (HLM)      

HLM using restricted maximum 
likelihood (REML) 

2.348 
(2.076) 

0.258 -1.72 - 6.42 0.064 

HLM using maximum likelihood 
(MLE) 

3.059* 
(1.465) 

0.037 0.19 - 5.93 0.083 

Alternative estimation methods 
     

Feasible generalized least squares 
(FGLS) with Swamy-Arora method 

2.218 
(2.277) 

0.330 -2.25 - 6.68 0.060 

Generalized estimating equations 
(GEE) with model-based standard 
errors 

3.099* 
(1.445) 

0.032 0.27 - 5.93 0.084 

Ordinary least squares (OLS) with 
cluster-robust Huber-White standard 
errors 

3.232* 
(1.275) 

0.015 0.66 -5.80 0.088 

*Significant at the .05 level (two-tailed test), **significant at the .01 level (two-tailed test). 
Note: The bolded results (REML estimates for the combined sample) represent the initial benchmark results.  The 
models in this table included the following covariates: blocking variables, school-level baseline reading 
comprehension scale score, school size, student-to-teacher ratio, percentage of students eligible for free or reduced-
price lunch, student gender, student special education status, and student race (being white).  The covariates included 
in the models in this table slightly differ from those included in the models in tables 4 and 5 (see footnotes of tables 4 
and 5). The impact estimates based on the combined sample using the same covariates as tables 4 and 5 yield the 
equivalent results with very similar parameter estimates and standard errors (the results are available from authors).     
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Table 4. Estimated parameters and standard errors from models fitted using different methods to 
account for clustered data (students nested in schools) by study site (nstudents=3,052; nschools=45). 

 
  Site 

  American Samoa (AS) 
(nstudents=185)a  

The Commonwealth of the North 
Mariana Islands (CNMI) 

(nstudents=692)a 
 

Hawai’i 
(nstudents=2,175;nschools=26) 

Model 

 Parameter 
estimate  

(standard error) p-value 

 Parameter 
estimate  

(standard error) p-value 

 Parameter 
estimate  

(standard error) p-value 

Hierarchical linear 
models (HLM) 

         

HLM using restricted 
maximum likelihood 
(REML) 

 -3.019 
(6.241) 

0.629  11.529*  
(5.227) 

0.027  5.134 
 (2.617) 

0.050 

HLM using 
maximum likelihood 
(MLE) 

 -2.712  
(4.359) 

0.534  10.970** 
(3.003) 

<0.001  5.711* 
(1.931) 

0.003 

Alternative estimation 
methods 

         

Feasible generalized 
least squares (FGLS) 
with Swamy-Arora 
method 

 -2.712  
(4.469) 

0.544  10.970** 
(3.025) 

<0.001  5.010 
 (2.987) 

0.093 

Generalized 
estimating equations 
(GEE) with model-
based standard errors 

 -6.709  
(4.834) 

0.165  10.172** 
 (3.346) 

0.002  6.489** 
(1.593) 

<0.001 

Ordinary least 
squares (OLS) with 
cluster-robust Huber-
White standard errors 

 -2.712  
(2.953) 

0.358  10.970** 
(2.905) 

<0.001  5.711** 
 (1.339) 

<0.001 

Notes:  For all models (except for the model using GEE), covariates include: blocking variables, school-level baseline reading 
comprehension scale score, school size, student-to-teacher ratio, percentage of students eligible for free and reduced-price lunch,  
student gender, and student special education status.  For the GEE model only, we excluded student-to-teacher ratio and percent 
eligible for free and reduced price lunch. 
*Significant at the .05 level (two-tailed test), **significant at the .01 level (two-tailed test). 
a There are a total of 19 schools within American Samoa and the CNMI. Following Institute of Education Sciences (IES) guidelines, 
the number of schools are combined to prevent disclosure risk. 
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Table 5. Weight-average regression adjusted results from models fitted using different methods to 
account for clustered data (students nested in schools). (nstudents=3,052; nschools=45). 

 
 Weighted-average regression-adjusted means of the SAT10 scale scores 

Weighted 
average 

effect size Model 
Treatment 

schools 
Control 
schools Difference 

Standard 
error p-value 

95%  
confidence interval 

Benchmark models        

Hierarchical linear model (HLM); 
Restricted maximum likelihood 
(REML) 

634.3 629.0 5.3* 2.19 .017 0.96 - 9.55 0.244 

Hierarchical linear model (HLM); 
Maximum likelihood (MLE) 

634.1 628.1 6.0** 1.52 <.001 3.05 - 9.02 0.234 

Alternative estimation methods        

Feasible generalized least squares 
(FGLS) with Swamy-Arora method 

630.5 624.5 6.0** 1.92 .002 2.22 - 9.75 0.208 

Generalized estimating equations 
(GEE) with model-based standard 
error 

636.5 630.4 6.0** 1.38 <.001 3.34 - 8.74 0.216 

Ordinary least squares (OLS) with 
cluster-robust Huber-White standard 
errors 

633.6 628.3 5.3** 1.12 <.001 3.07 - 7.48 0.224 

*Significant at the .05 level (two-tailed test), **significant at the .01 level (two-tailed test). 
Note: The number of observations = 3 entities (3,052 students for the three entities combined). Scores are based on reading comprehension 
assessment data from the Stanford 10 Achievement Test (SAT 10) for American Samoa and the CNMI and the TerraNova for Hawai‘i. TerraNova 
scores were converted to SAT 10–equivalent scores using equipercentile methods (Kolen & Brennan, 2004). For each entity, regression-adjusted 
means were computed at the means of the covariates; effect sizes were calculated by dividing the impact estimate by the standard deviation of the 
control group. Unless otherwise noted, models fit under each estimation method included the following covariates: blocking variables, school-level 
baseline reading comprehension scale score, school size, student-to-teacher ratio, percentage of students eligible for free or reduced-price lunch, 
student gender, and student special education status. For generalized estimating equations, the student-to-teacher ratio and the percentage of 
students eligible for free or reduced-price lunch were excluded, because the model with the full set of covariates failed to converge. The overall 
impacts in scale score and effect size were computed as weighted means of the three single-entity impacts and the three corresponding effect sizes, 
with weights defined as the inverse of the variance of each scale score impact estimates.  
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