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Abstract

This paper explores the uncertainty aspects of human abduc-
tive reasoning. Echo, a model of abduction based on the The-
ory of Explanatory Coherence (Thagard, 1992a), captures
many aspects of human abductive reasoning, but fails to suf-
ficiently manage the uncertainty in abduction. In particular,
Echo does not handle belief acquisition and dynamic belief
revision, two essential components of human abductive rea-
soning. We propose a modified Echo model (UEcho), in
which we add a learning mechanism for belief acquisition and
a dynamic processing mechanism for belief revision. To
evaluate the model, we report an empirical study in which
base rate learning serves as a lestbed for belief acquisition
and the order effect serves as a testbed for belief revision.

Introduction

People live in an uncertain world. When an event happens,
the meaning or the implication of the event is seldom com-
pletely clear at the very beginning. Uncertainty results in
belief and belief guides decisions and actions (Schmitt,
1992). Therefore, accurately evaluating the nature of a be-
lief is one of the fundamental tasks that people have to face
in both everyday reasoning and scientific discovery.

Abduction, a distinct type of inference from deduction
and induction, is a form of reasoning that infers causes or
explanations from effects (see Fann, 1970 for an introduc-
tion to the theory of abduction). Since in abduction prem-
ises do not guarantee the truth of conclusions due to incom-
plete information, uncertainty and thus belief play an im-
portant role in human abductive reasoning.

The research presented in this paper represents an attempt
to explore the essence of uncertainty in human abductive
reasoning, and to capture it in a modified Echo model.

This paper is organized as the following three parts. First,
some theoretical developments of abduction, uncertainty,
and Echo are reviewed. The conclusion is that although in
general Echo is a good candidate for modeling human ab-
ductive reasoning, in order to handle the uncertainty aspects
of abduction, some modifications are needed. In the second
part, we describe how to modify Echo to perform uncer-
tainty and belief related functions. The model is evaluated
by comparing its performance with empirical data. In the
third part, future research plans are discussed.

Abduction

Abduction is an essential component of many tasks, in-
cluding medical diagnosis (Feltovich, Johnson, Moller, and
Swanson, 1984), scientific discovery (Thagard, 1989), and
discourse comprehension (Kintsch, 1988). The key task of
abduction is to find a best explanation of a set of observa-
tions (Peng & Reggia, 1990; Josephson & Josephson, 1994).

Abduction can be represented in the following general
form:

The surprising fact C is observed,

But if A were true, C would be a matter of course;

Hence, there is a reason 1o suspect that A is true.
Clearly, different from deduction, where the conclusion
necessarily follows from the premises, in abduction the con-
clusion does not follow from the premises with necessity.
That is, given a set of observations, many hypotheses (or
conjunctive hypotheses) can be formed, each of which may
have different degrees of plausibility. In general, how do
we select a best one?

Many researchers (e.g., Josephson & Josephson, 1994;
Thagard, 1992a; Paul, 1993) distinguish two components of
an abductive reasoning process. That is, abduction is a pro-
cess that includes both hypothesis generation (forming a set
of plausible hypotheses) and hypothesis evaluation (choos-
ing a best one). Note that this distinction does not imply
that abduction is a clean 2-stage process. The fact that peo-
ple do not exhaustively generate all possible hypotheses
indicates that the two components can happen simultane-
ously.

Uncertainty

Uncertainty is inevitable at all levels-of humans’ interaction
with their environment. At the lowest level, biological pro-
cesses are never clear-cut and without noise. At the cogni-
tive level, uncertainty results from inadequate information
sources, limited information processing capacity, or ambi-
guities in natural language.

An important aspect of uncertainty research is how to
quantify or measure the uncertainty'”’. One classical ap-

' Non-quantitative approaches to uncertainty will not be dis-
cussed here.
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proach is probability theory in gencral and the Bayesian
approach in particular (see Robert, 1994). In the Bayesian
approach, uncertainty can be represented by a probability,
(P, a number between 0 and 1), interpreted as degree of be-
lief based on all available knowledge. When new evidence
comes, belief is updated or revised based on Bayes' Theo-
rem, which is generally regarded as the normative model of
belief revision. This approach has a sound theoretical foun-
dation and is easy to understand, thus it has been success-
fully applied to a wide range of domains. An alternative
approach to uncertainty management is Dempster-Shafer
(D-S) theory (e.g., Shafer, 1976), which represents the belief
about a proposition as an interval [Bel, PI]. Bel is inter-
preted as the degree of belief (or credibility) and Pl is the
degree of plausibility. The interval between the two repre-
sents ignorance, which can not be represented by probability
theory. Both Bel and Pl are numbers between 0 and 1, and
the two are related in the following way: PI(H)=1-Bel(~H).
That is, the degree of plausibility of H is the complement of
the credibility of not H. Probability theory is claimed to be
a special case of D-S theory, when the [Bel, PI] interval
degenerated into a point, i.e., Bel=PI=P. It has been shown
that D-S theory has its limitations. It is harder to understand
and implement than probability theory. In the meantime, it
assumes that the set of hypotheses is exclusive and exhaus-
tive and requires an independent body of evidence, which is
usually unrealistic.

A number of studies try to identify different types of un-
certainty based on the psychological sources of uncertainty.
For example, Kahneman and Tversky (1982) distinguish
external uncertainty from intermnal uncertainty. External
uncertainty refers to disposition or randomness of external
events, which are something people cannot control. An
example is the outcome of throwing a coin. External un-
certainty can be assessed in either a relative frequency mode
or by subjective judgment of a single event. Internal un-
certainty refers to ignorance, which results from incomplete
knowledge. An example is that one is unsure if Beijing is
the capital of China.

Clearly, human abductive reasoning involves both exter-
nal and internal uncertainty. Therefore, adequately manag-
ing the uncernainty is a critical component of human abduc-
tive reasoning.

Echo

The Theory of Explanatory Coherence (TEC hereafter; Tha-
gard, 1989, 1992a) is claimed to be a theory of abduction.
More precisely, however, it should be called a theory of
hypothesis evaluation since it ignores the hypothesis forma-
tion part of abduction. According to this theory, the best
explanation is the one with the most explanatory coherence
based on all current hypotheses, evidence, and explanatory
relations.

' We do not tackle the problem of imprecision measurement
studied in fuzzy sets theory and possibility theory (see Dubois &
Prade, 1988 for distinctions between imprecision and uncertainty).

’ Although people may sometimes distinguish belief updating
and belief revision (see Wang, 1993), we use them interchangeably
in this paper.

From the perspective of TEC, propositions P and Q co-
here if there is some explanatory relation between them.
More specifically, propositions P and Q cohere if any one of
the following conditions is satisfied:

* P is part of the explanation of Q;

* Qis part of the explanation of P;

e P and Q are together part of the explanation of R; or

e P and Q are analogous in the explanations they respectively

give of some R and S.

There are several underlying principles in TEC that pro-
vide general guidelines for explanatory coherence evalua-
tion. Some important ones include symmetry (if P and Q
cohere, Q and P cohere; if P and Q incohere, Q and P inco-
here), explanation (if P1.,.Pm explain Q, then for each Pi in
P1...Pm, Pi and Q cohere; for each Pi and Pj in P1...Pm, Pi
and Pj cohere; the degree of coherence is inversely propor-
tional to the number of propositions P1...Pm.), data priority
(propositions that describe the results of observations have a
degree of acceptability of their own), competition (if P and
Q both explain a proposition, and if P and Q are not ex-
planatory connected, then P and Q incohere), and accept-
ability (the acceptability of a proposition P in a system S
depends on its coherence with the propositions in S). Con-
strained by these principles and acting as a whole, the sys-
tem tries to pursue the highest explanatory coherence at the
system level rather than at the individual proposition level,

Echo is a connectionist implementation of TEC. In Echo,
propositions (both data and hypotheses) are represented by
nodes. Coherence relations are represented by excitatory
links and incoherence relations are represented by inhibitory
links. Node activation represents the node’s degree of co-
herence with other propositions in the network. The system
updates itself based on parallel constraint satisfaction. Once
the system settles down, the best explanation consists of the
nodes with highest activation values.

Theoretically, Echo satisfies some critical constraints in
abduction. For example, it simultaneously handles several
impontant criteria in hypothesis evaluation, including ex-
planatory breadth (the model prefers a hypothesis that ex-
plains more); simplicity (the model prefers a simpler hy-
pothesis); being explained (the model prefers a hypothesis
which itself is explained); data reliability (the credibility of
an observation also depends on its coherence in the system);
and analogy (analogous hypotheses are coherent). Empiri-
cally, Echo has also acquired much experimental support
(e.g., Thagard, 1989, 1992b).

Something is missing, however. Given the above discus-
sions about abduction and uncertainty, it is clear that Echo
does not have enough power to handle various uncertainty
aspects in abduction. First, Echo does not handle belief
acquisition. Since Echo does not leamn from its experience,
it has no background knowledge necessary to determine the
degree of belief for any given hypothesis and the strength
for any given connection between hypothesis and evidence.
As a result, it assumes that all hypotheses are equally prob-
able and the strengths of all connections are fixed' when

* Although you can vary the strength of a particular explanatory
relation by specifying a number between 0 and 1, the strength is
fixed thereafter.
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they are pre-entered into the system. This is not the case in
human abductive reasoning. People rarely treat all proposed
hypotheses equally and would often assign different prior
beliefs to different hypotheses and connections based upon
previous experiences. Second, Echo does not handle dy-
namic belief revision. Echo assumes that all evidence is
available at the very beginning, therefore, no belief revision
is necessary. This is not a realistic assumption either. Evi-
dence usually does not come all at once. People need to
revise their opinions as more and more information becomes
available. Since Echo does not do belief revision, it misses
this dynamic aspect of abduction.

Modifying Echo to Handle Uncertainty

In this part of the paper, we propose a modified version of
Echo (UEcho, for Uncertainty Echo), designed to handle the
uncertainty aspects in abduction. In particular, we add a
learmning mechanism to handle belief acquisition, and a dy-
namic processing mechanism to handle belief revision. To
evaluate UEcho, we report an empirical study in which the
base rate learning serves as a testbed for belief acquisition
and the order effect serves as a testbed for belief revision.

Before we do that, let us first briefly review some relevant
findings and theories in the base rate learning and the order
effect literature.

Base Rate Learning and Order Effects

Base rate information describes the statistical properties of
the environment in general. It clearly plays an important
role in human reasoning, However, literature about base
rate acquisition and use is controversial. Although for some
researchers, “the genuineness, the robustness, and the gen-
erality of the base-rate fallacy” (Bar-Hillel, 1980, p215)
suggest that human beings are programmed (o systemati-
cally and stubbornly ignore base rate information when
making judgments under uncertainty, others disagree
(Kahneman & Tversky, 1973; for a general discussion on
human heuristics and biases, see Kahneman, Slovic, &
Tversky, 1982). Systematic investigations have been car-
ried out to determine the conditions under which the base
rate fallacy appears or disappears. First, it has been shown
that, in some circumstances, people can automatically and
accurately acquire and use base rate and frequency informa-
tion (Hasher & Zacks, 1979, 1984; Medin & Edelson,
1988). Second, it has also been argued that people do not
ignore the base rate. Rather, they may simply misaggregate
the relevant information (Edwards, 1968). Third, the base
rate fallacy disappears when information is presented to
subjects in frequency format instead of single-event prob-
ability format (Gigerenzer & Hoffrage, 1995; Cosmides &
Tooby, 1996). Finally, from an ecological point of view,
natural sampling theory (Kleiter, 1993) claims that there is a
condition in which it is rational to neglect base rate infor-
mation since the base rate actually does not enter into the
estimated Bayesian probability. This condition is called
“natural sampling” which refers to the situation where the
structure of the environment is sequentially learmed through
experience. Ecologically this is the most natural way people
acquire frequency information.

Another closely related phenomenon is the order effect.
Given that people naturally acquire information sequen-
tially, should the order of information presentation result in
a difference in the final result? In other words, will it be
possible that people prefer hypothesis HI when given evi-
dence A first and evidence B second, and prefer hypothesis
H2 when given evidence B first and evidence A second?
Indeed, this kind of order effect is a fairly robust finding in
the human reasoning and judgment literature (see Hogarth
& Einhorn, 1992; Schlottmann & Anderson, 1995, for re-
views). Hogarth and Einhorn (1992) analyzed the various
features of tasks in which order effects occur (or do not oc-
cur) and proposed a belief-adjustment model of belief revi-
sion. The main assumption of the model is that people use
an anchoring and adjustment heuristic — people adjust a
current belief (the anchor) on the basis of how strongly new
information confirms or disconfirms this belief. Therefore,
according to this model, people do not consider all available
information each time they need to revise their opinion;
instead, they adjust their current belief in the direction of the
new information. The order effect results from the differ-
ential weighting of the new information. More specifically,
the adjustment for negative evidence is bigger when the
current anchor is large than when it is small; and the ad-
justment for the positive evidence is bigger when the anchor
is small than when it is large. Therefore, the step-by-step
evaluation of beliefs for mixed positive and negative evi-
dence produces a recency effect: the final evaluation of be-
lief is mainly determined by the last evidence item. How-
ever, the step-by-step evaluation of beliefs for consistent
evidence (all positive or all negative) produces a primacy
effect.

Given the above overview, how can Echo be modified to
do belief acquisition and belief revision? In particular, how
can Echo be modified to model base rate learning and the
order effect? We address these issues in the following two
sections.

Belief Acquisition

Ideally, the weights of the connections between evidence
nodes and hypothesis nodes in Echo should reflect the
summarized probability of co-occurrence. However, in
Echo, the weights are fixed according to two paramelters,
EXCITATORY_WEIGHT (EW) and INHIBITORY_WEIGHT
(IW). To learn from experience the weights between node
pairs must be modified based on learning experience, so that
their magnitude can be tuned to the statistical structure of
the environment and reflect the corresponding probability of
co-occurrence. One central issue is to select an appropriate
weight-updating rule.

Our choice for weight updating is the Rescorla-Wagner
(R-W) rule. This choice is made based on the following
considerations. First, numerous studies have shown that the
R-W rule is good at learning from experience and has been
successfully applied to a wide range of domains from be-
havioral specification to connectionist modeling (see Gluck
& Bower, 1988; also see Miller, Barnet, & Grahame, 1995
for a review). Although it has been shown that the R-W
rule has its limitations, such as its incapacity of handling
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complex non-linear problems (see Barto, 1990), we choose
it because 1) it demonstrates that a learning mechanism can
be added to Echo; and 2) it is adequate to deal with the sim-
ple learning task used in this research. Second, on the sur-
face it seems that Echo and the R-W rule are not computible
in the sense that Echo emphasizes symmetry and the R-W
rule is directional. We argue that a directional learning rule
is appropriate since 1) it is a natural mapping to the causal
relations we are modeling; and 2) Even in Echo symmetry is
not absolute: it is the hypothesis nodes “cause” the evidence
nodes but not vice versa.

The application of the R-W rule in UEcho is illustrated in
Figure 1 (where F and H are hypotheses, and R and ID are
evidence that can be either positive or negative).

The system runs in the following manner. Given an epi-
sode, after it settles down, UEcho evaluates its current belief
(0 to 1) about a hypothesis based on its activation (-1 to 1)
according to a logistic function. After that, UEcho receives
the actual truth-values of the hypotheses and calculates the
desired weight changes based on the R-W rule. Finally,
UEcho updates its connection weights. The weights are
bounded by [IW, EW]. The relative position of the final
connection weights in the whole possible range (from EW
to IW) will reflect the probability of co-occurrence,

(EW - w,) ifAw 20

{
(w, = IW) otherwise

Figure 1: Belief Acquisition in UEcho

Belief Revision

Echo in its original format is operating in an End-of-
Sequence (EoS) mode. In other words, the system runs it-
self after all the necessary hypotheses and evidence are
given. In order for UEcho to model order effects, we modi-
fied Echo to operate in a Step-by-Step (SbS) mode. That is,
when some new evidence is available, UEcho needs to in-
corporate the new evidence and continue updating itself.
Furthermore, in order to account for the full range of order
effects, UEcho somehow needs to encode the presentation
order of the evidence and distinguish evidence based on
their different presentation positions,

How does UEcho distinguish two evidence items that do
not come into play at the same time? Since in Echo every
evidence item is associated with a Special Evidence Unit
(SEU, which has a fixed activation value of 1), a simple
decay mechanism is natural and sufficient to denote the dif-
ferent presentation time. That is, while the most recent evi-

dence is given a full connection (designated by
DATA_EXCITATION or DE) to the SEU, earlier evidence is
given a connection to SEU with a decayed weight. The rate
of decay depends upon both d, a new parameter, and the
time interval since the evidence was presented. In current
implementation, DE decays exponentially, that is, given the
time interval since the evidence was presented is b, DE is
determined by:
DE,,=DE,xd*

When d is equal to 1, UEcho will operate similarly as in the
original EoS manner. When d is equal to 0, UEcho will
completely ignore previous evidence and act in a
memoryless manner.

An Empirical Study

Zhang, Johnson, and Wang (1996) have reported part of the
experimental work discussed here. Though new results
have been obtained, the experimental paradigm is the same.
For completeness, we briefly introduce the experimental
task (for details, see Zhang, Johnson, & Wang, 1996), then
report the combined results.

The experiment was implemented on the CIC (Combat
Information Center) simulator developed by Towne (1995).
The task is to decide whether a contact, which is seen on the
ship’s radar area, is friendly or hostile. To make the deci-
sion, subjects need to collect relevant evidence, such as
speed, altitude, route, and verbal (radio) identification.

Training Evaluation (subjects)
_P{‘_;_Fb_ / Base-Route-1D (10)
_ > '|4{. '|‘ 1:1
# (S0 trials) \

7 i e Base-ID-Route (10)
R_ID_( _h _—,—# Base-Route-1D (10)
+ + e 21
y o ¥ § |05uias \ o

y 4 8 Base-ID-Route (10)
R ID ¥ b i3 / Base-Route-1D (10)
Y 21 | (75 trials) \

+ s 8 4 Base-1D-Route (10)

+ | 4

Figure 2: The design and procedure used in the experiment.

The experimental design is illustrated in Figure 2. Two
factors are controlled in a 3x2 between-subjects design. The
first factor is friendly-to-hostile base rates, which can be
1:1, 2:1, or 1:2. The second factor is the order in which
evidence was presented in the questionnaire, either R- fol-
lowed by ID+, or ID+ followed by R-. In the text and dia-
grams, R+ and R- correspond to on or off a commercial air
route, and ID+ and ID- correspond to the response given to
a radio request for identification (either response or no re-
sponse claiming to be a commercial plane).

The experiment proceeds in two stages. First, subjects
acquire background belief information by natural sampling.
More specifically, subjects perform the task in many trials.
In each trial, subjects see a different contact. They collect
route (which is either R+ or R-) and identification (which is
either ID+ or ID-) information about the contact then decide
whether they think the contact is friendly or hostile. They
then receive feedback about the true identity of the contact,
which ends the trial and immediately begins the next trial.
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After they finish all the training trials, they enter the second
stage. In this stage, they fill out a questionnaire that pres-
ents some evidence sequentially about a contact and re-
quires belief evaluation after each new piece of evidence is
revealed. The same design and procedure were used (0 lest
the UEcho model.

Results and Discussion

The results are reported separately for belief acquisition
(training) and belief revision (questionnaire). However,
empirical results are combined together with the UEcho
modeling results for easy comparison.

Training Performance The binary decisions of all training
trials by each subject were transformed into conditional
probabilities, which were then averaged across the 20 sub-
jects in each base rate group. The results are shown in Fig-
ure 3, together with the corresponding Bayesian values (cal-
culated from training trial distributions) and UEcho training
results.

UEcho

D Experiment

- Bayesian

p(F)

p(FIR-) ﬁ

p(FlID+)
p(FlID-)

p(FIR+)

p(FIR-10-) I;{ |

pFIR+1D-)

[]
A(FIR-ID*) ;

p(FIR+ID+)

Figure 3: Training performance for 1:1, 2:1, and 1:2 con-
ditions (top-down).

Statistics show that subjects can correctly acquire most of
the probabilities. In addition, UEcho does reasonably well
capturing the statistical structure in the training trials. One
obvious deviation of UEcho from both the Bayesian values
and the empirical results is UEcho’s relatively extreme
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views under the R+ID+ condition, where UEcho suggests
p(F)=1, and the R-ID- condition, where UEcho suggests
p(F)=0. Lack of noise in the input may be one of the rea-
sons for this.

I —— Route-ID —&— ID-Route |

100 = 1000 = 1080 5

90 = ) = o) -

so4 Exp 80 80 -

70 4 T4 - o - M70 -

60 60 - 60 =

0% - - e 5() =

40 = 40 =2 40 -

30 L LOE =
203 i) = 20+

10+ 10 = 10 4

0 t T

base datum 1 datrwn 2 base  darum 1 datum 2 base datum 1 darum 2

104 10M) = 100 =

203 UEcho A5 20

80 - B0) = 80
T = 70 =

_____ i T
S04 - - = 0 =
40 = e 40 =
30 A0 < R SR

20+ 204 20 =
104 105 10
(i}

base damaum 1 darum 2 base  daturn 1 datum 2 base  damum 1 datum 2
Figure 4: Belief evaluation results for 1:1, 2:1, and 1:2 con-
ditions (left-right). The dashed lines indicate the Bayesian

values of the base rate and final belief.

Belief Evaluation The results of belief evaluations after the
training phase are shown in Figure 4. First, both subjects
and UEcho show fairly accurate base rate judgments, which
suggests that they can correctly assess and report the base
rate information as long as the information is presented in
the natural sampling manner. Second, despite accurate base
rate information, fish-tail figures suggest that the order ef-
fect occurs under all conditions. More specifically, both
UEcho and the experiment show a recency effect: the final
decision is more determined by the direction of the last evi-
dence item.

Conclusions and Future Plans

Abduction is a distinct type of hypothetical reasoning which
infers something may-be. The empirical work here shows
that human abductive reasoning indeed involves uncertainty
and thus requires belief operations. Echo, a proposed model
of abduction, accounts for many aspects of human abductive
reasoning, but does not incorporate uncertainty manage-
ment, We described a modified version of Echo (UEcho),
which has the potential to handle the uncertainty aspects of
abduction. It was shown that UEcho does a fairly good job
modeling belief acquisition and dynamic belief revision,
two critical components in human abductive reasoning.

As far as managing uncertainty in abduction is concerned,
UEcho has advantages and disadvantages. On the one hand,
the learning and dynamic mechanisms in UEcho allow it to
adapt to its environment and learn from its experience. This
is preferable compared to some other uncertainty manage-
ment models, such as Bayesian belief networks and graphi-
cal belief networks, which usually do not learn. The adap-
tive and parallel satisfaction nature of UEcho also makes it
capable of modeling human heuristics and biases, thus it is
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more preferable than normative models. On the other hand,
it has been mentioned that Echo, and also UEcho, can only
perform hypothesis evaluation and selection but not hy-
pothesis formation, which makes it incomplete as an abduc-
tion model. It would be interesting to see how a complex
hypothesis can be formed by merging several strongly con-
nected simple hypotheses. Moreover, at present, UEcho
does not handle higher-order uncertainty nor the distinction
between belief and plausibility in the D-S theory sense.
These disadvantages suggest that further investigations are
needed.
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