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1. INTROBUCTION

Rubber bearings are widely used in engineering applications. They are used as bridge
bearings and as seating pads in concrete construction. High precision elastomeric bearings with
very many layers are used in helicopters 10 replace fournal bearings where the motion is cychic
rather than rotational. A form of rmultilayer elastomeric bearing is used for dock fenders. They
are widely used in Europe to isolate buiidings from ground borne noise and there are recent
applications of hearings to isolate buildings from the effects of earthguakes. The great advantage
of elastomeric bearings is that they have no moving parts, they are not subject to corrosion and

they are reliabie, cheap 10 manufacture and need no maintanence.

Typical brnidge bearings Of acouslic isolation bearings for buildings consist of several layers
of rubber bonded 10 steel plates which retain the rubber from pulging laterally under COMPIEs-
sive load. In the case of seismic protection bearings there may be many thin layers of rubber
vonded to steel plates. The constraint of the metal plates on the deformation of the rubber,
with its almost incompressible character, is such that the resultant system has a very high
compression stiffness while retaining the characteristic low shear stiffness of rubber. Such
seismic tsolation bearings function by decoupling the structure from the horizontal components

of ground motion while simulianeously carrying the vertical load of the building.

It is a characteristic of the design of these bearings that the two phenomena of instability
of the bearing and the reduction of the horizontal stiffness by vertical load, have an important
effect on the design of the bearing. Although the bearings are typically quite short in com-
parison with their plan dimensions the very low shear stiffness introduces the possibility of
buckling under COMPpIEssive load and even if the axial buckling load is not approached, as
should be the case ina well designed base isofation system, the shear stiffness of the element as

a whole is reduced by the application of the compressive load.

The traditional approach 10 the stability analysis of rubber bearings has been to make use
of Haringx's theory {1]. This theory is essentially a modification of the linearized theory of

column buckling that takes into account the influence of shear deformation. This is
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accomplished by introducing Rankine’s simplified kinematic assumption which, as it is well
known. decouples the tateral deflection of a cross section from its angle of rotation by consider-

ing the latter as a new independent variabie.

Within the scope of this one-dimensional approximation, the instability problem is thus
treated as that of a homogencous column with equivalent elastic properties given by the so-
called apparent bending and shear stifiness, Various expressions for these variables, or related
parameters (i.e.,apparent shear modulus, etc.} can be found in the literature {{2].13} and refer-
ences therein). Most of them involve the definition of a shape factor that takes into account the
high confinement of the rubber, which is the key factor in the extremely high values found for
the axial {compressive) stiffness. Probably, the most widely used expressions in design are
those due to Gent and Lindley [4], and Gent and Mainecke [5]. Their analysis within the range

of small deformations should be considered, as pointed out in {2}, as an approximation.

The essential point in Haringx's treatment 18 that it predicts a reduction in the apparent
tateral stiffness due to the presence of an axial load. However, for a given axial load the resul-
tant shear stiffness is found to be a constant independent of the shear displacement as well as
the amount of shear. Thus, for a given axial load the relationship between shear force and
shear displacement is linear.

The theory due to Haringx and experimental measurements show fairly good agreement
for moderate amounts of shear [6).17]. However, further experimental work [71.[8] indicates
that for a fixed axial load the shear load goes through a maximum as the shear deflection is
further increased. The deflection at which this maximum occurs decreases with increasing con-
stant axial load. The nature of this phenomenon, as pointed out in {71, is not clearly undes-
stood.

The purpose of this report s 10 provide an explanation of such phenomenon within the
framework of finite elasticity. Furthermore 2 methodology is developed for the two dimensional

analysis of elastomeric bearings subjected to very general loading an boundary conditions.
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2. STABILITY OF ELASTOMERIC BEARINGS. EXPERIMENTAL RESULTS.

The stability phenomenon 1o be addressed in this report arose in the experimental testing
of a set of seismic isolation bearings which were made for a shaking table test of a base isola-

tion system. The bearings were used in this test with a 80,000 Ib. structural model

The bearings were manufactured by the Andre Rubber Company Ltd. They were of
natural rubber reinforced by steel plates and were made in modules incorporating two 1/4" thick
layers of rubber and three 1/8" steel plates. A complete bearing incorporated 10 such modules.
The modules are epoxied together but the epoxy is not used to transmit the shear forces
petween layers. Instead stee] disks 1/4" are keyed into circular holes in the 1/8" steel plates on
the top of one module and on the top of the one above. The bearings are keyed to the load
cells at the bottom and to the steel frame at the top by the same disks. A typical bearing as
installed is shown in Fig.1.

When the bearings were deflected horizontally to displacements of the order of four to
five inches the horizontal force was observed to decrease with increasing displacement. Experi-
mental force-displacement curves are piotted in Fig. 2 for different values of the axial load.
The experimental procedure applies controtled displacements and measures the corresponding

force. Under dead loading such a behavior would be considered as instability (Fig. 3.

It is important for the design of such seismic isolation bearings 1o ascertain the cause of
this instability. A possibie material instability that is a strain softening of the material was first
explored by testing a single layer of the bearing. A description of the experimental test together
with a discussion of this phenomenon can be found in Appendix I of this report. Another pos-
sible cause of instability was geometrical. It was observed that the end plates were subjected 10
unilateral restraints in the sense that during the testing of the bearings, the end conditions were
such as to preclude the development of tension in the rubber. The end plates were located hor-
izontally by the key disks but were not fixed against the loading piaterns of the testing machine.
Thus flexibility of the end plates of the bearings could m:ot a gap to form when the bearings

were under vertical loads with large horizontal displacements.
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in this report it will be shown that this roll-off at the end plates does produce an impor-
tant reduction in the horizontal stiffness with increased load displacements and can jead to an
eventual instability under constant axial load. The phenomenon will appear in any bearings
which are under unilateral end constraints and may severe in the case of bearings with very
flexibie end plates. The two dimensional finite element formulation developed for the analysis
of this problem in bearings could be used for designe purposes in allowing the end piates to be

properly proportioned.
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3. TWO DIMENSIONAL TREATMENT OF ELASTIC INSTABILITY PROBLEMS.

3.1. Basic considerations.

There are two reasons why the stability of a column subjected to axial and shearing loads
should be considered in a two dimensional setiing.. First, the effect of boundary conditions
enforcing unilateral or partial end restraints, can only be properly considered in a two dimen-
sional analysis. Secondly, in many practical instances, the length of the column is of the same
order of magnitude as its transverse dimensions. In such cases, the assumption of a beam type
of behavior might be questionable. In addition, by placing the two dimensional formulation in
the framework of finite deformation elasticity, the consideration of instability phenomena fol-
lows inherently.

In the stability analysis of multilayer elastomeric bearings, good agreement has been
found between experimental results and those predicted by the one dimensional theory of buck-
ling due to Haringx, which accounts for shear deformation of the column. Therefore, a two
dimensional analysis for this type of column must be consistent with Haringx’s formulation
whenever the assumptions of beam theory are expected to hold.

The resuits contained in Appendix I of this report, show that the equations of equili-
brium in Haringx's treatment, in terms of the axial and shear forces and the bending moment,
correspond to a consistent linearization of the equations of equilibrium of nonlinear elastostat-
ics, whenever the kinematic assumptions of beam theory hold. Thus, with the appropriate two
dimensional constitutive equations the theory of finite elasticity provides with an adequated
framework for the two dimensional analysis of the stability of elasiomeric bearings.

The development of a simple two dimensional constitutive model, consistent with the one
dimensional theory, is the objective of this section. The linearized theory will be considered

first, and the extension to the range of large displacements examined later.



3.2. Constitutive equations.

The main characteristic of a multilayer elastomeric bearing is that of a very low shear
stiffness in comparison with the extremely high value taken by its compressive stiffness.
Within the scope of the one dimensional theory, this type of behavior is modeled by consider-

ing a column with elastic properties given by its apparent compressive, bending and shearing

stiffness.

3,2.1. Linear elasticity.

In the context of three dimensional elasticity, we shall follow a similar approach and,
regarding the bearing as a composite material, model it as a transversally isotropic elastic
material with its axis of symmetry being that perpendicular to the layers of the bearing.

The general constitutive equations for a iransversally isotropic solid depend upon five
independent constants [10]. We shall consider here a simplified version of this mode! given by

o, = hegd, + e (i=j) 3.1

where A,u and G are independent elastic constants to be chosen so that this constitutive model

adequately represents the behavior of the bearing.

The choice of the elastic constants.
Consider the bending problem of a transversally isotropic beam subjected to end loads

contained in the plane perpendicular to the 3.axis. The exact solution of this problem (101

shows that

ocp=op=0n=0n=0 (3.2)

thus, equations {3.1) reduce to

oy = Eepy o= Gep (3.3

where the constants £ = twmlwm. and G are independent. The integration of equations (3.3)

over the cross section of the beam yields the classical formulae of beam theory

M = EIY’ V = GA,B8 (3.4)
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where & and 8 are the bending and shear angles, and M and V the bending moment and shear

force, respectively. Thus, denoting by K, the apparent bending stiffiness of the column {61, a

suitable choice for E is provided by

E= Mw _ (3.5)

in addition, the experimental results contained in Appendix I of this report, show that
when a single unit of the bearing is subjected to a simple shear test, the relationship between
shear deformation and shearing load is linear within a wide range of shear displacement T .
Thus, the constant G in (3.1) can be chosen, either from an experimental test of this type, of

from the data available in the literature [91.

Consistency of the constitutive model

The condition stating the positive definiteness of the strain energy function Wie ), is the
basic restriction that continuum mechanics places on any constitutive model. More precisely,
Wie ) > 0 for any symmetric second rank tensor €;. This condition plays a key role in the
analysis of the elastic stability.

Thus, it is important 10 asSess whether the constitutive model given by equation (3.1}
renders a positive definite strain energy W, particularly for values of G <u which corresponds

to the case of interest for elastomeric bearings.

1

Let us assume then that u > G >0,and let e; = €;; — .wum « be the deviatoric part of

the strain tensor €. Since the strain energy function corresponding to the constitutive mode!
(3.1} is given by

W= hafe)? + ule Ytedite A+ 2Gle htefyte 2

we have the inequality

Wz <~9+.W..t:m§- + Q?qmmw

This experimental results appears 1o confirm the suitability of the Mooney-Riviin material for the modeling
of the rubber layers. :
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Since € and e, can be specified independently, and

T.;Twivc G>0

it foliows that the strain energy W associated with the constitutive model (3.1) is in fact posi-
tive definite.

In conclusion, equation (3.1} provides a constitutive model which is both capable of
representing the global behavior of a multilayered elastomeric bearing and physically consistent.

The extension of this model to the range of large deformations will be examined next.

3.2.2. Extension to the range of large deformations.
The simplest extension of the constitutive model (3.1} to the range of large deformations,

considers a constitutive relationship of the form

Sy =N Eggdyt 2w Ey (I=J) (3.6)
Sy =2G"Ey (I#J)
where Sy and Ey; are the components of the second Piola-Kirchhoff stress tensor § and the

Lagrange tensor E, respectively 1111,1121.

The important point to be noticed however, is that the elastic constants A ‘pland G " do
not necessarily coincide with the constants A, u and G in equation {3.1) corresponding to the
finear theory.

Physically meaningful expressions for these elastic constants can be obtained by consider-

ing again the simple problem of the bending of a beam by applied end forces.

The choice of the elastic coefBicients

A typical element of the beam subjected to end forces and no distributed loads, undergo-
ing large displacements, is represented in Fig.4. We have neglected the warping of the cross

section, and assumed that plane section normal to center line remain plane after the deforma-
tion has taken place.

Let o and 7 be the normai and tangential stresses acling on the deformed cross section.
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The stresses Sy, and S; are reiated to o and 1 by

Sh=o Spp=-—op+r (3.7

where f=v'—y is the shear angle, plotted in Fig.4. The equivalent expressions in terms of the

axial force N and the shear force V are

[suaa =N  [Suda=-pN+V 3.8
4 A
and the components £, and E; of the Lagrange strain tensor E can be approximated by

, i .
Eymu' =y + 507 Ei= 58 (.9)

The proof of equations (3.7) to (3.9) can be found in Appendix Il of this report.
It has already been pointed out that the linear relationship between shear displacement
and applied shear force holds within 2 large range of shear displacements. Thus, it is reasonable

to assume that the relation

V= GAB (3.10)

stiil holds in the range of large deformations.
By equilibrium considerations, the axial force N acting on the cross section of the

deformed beam is given by
N==P— 00 (3.1
where P is the compressive load and Q the transversely applied load at the end of the beam.

Neglecting higher order terms, BN = —8P, and (3.8) reduces to

[ 504 = .MM + Gla,B (3.12)
A 5

which is the counterpart, in the range of large displacements, of the equation

fod=Gag

A
valid for small deformations. Noting that £,~%8, equation (3.12) shows that the coefficient
G in the extended constitutive model (3.6) is, within this first order approximation, given by

G =G+ £ (3.13)

As
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Finally, since

M=-fyoda - —f sS4 (3.14)
A A
the first of equation {3.5) together with (3.9) gives again

M=EIy (3.15)
which shows that the elastic constant E’ can be taken equal to E: i.e:

E = E=K,/I (3.16)

It should be noticed that by equation (3.7}, the value of the stress component 53, can
never coincide with the tangential stress r acting on the deformed cross section uniess the axial
load P = 0, as opposed to the case of small displacements in which ¢ ;= 7. Actually, it can be
shown that S}, gives the tangential stress acting on & plane normal to the deformed center line
which is, therefore, rotated an angle 8 with respect to the deformed cross section. Since 2E4
gives the actual shearing B8 of the section, it follows that G ' can never coincide with G unless

P = 0. The expression for G * given by equation (3.13), is consistent with this observation.

3.3. The two-dimensional formulation.

The two dimensional formulation proposed in this section, amounis 10 solving the equa-
tions of equilibrium of nonlinear elasticity given by (see Appendix i

Div(FS) + p,b=0 (3.17)

where F is the deformation gradient, and b the body forces, together with the constitutive equa-

tions given by (3.6) and the appropriate boundary conditions. Equations (3.13) and (3.16) pro-

vide expressions for the elastic coefficients involved in (3.6) suitable for a global modeling of

the behavior of an elastomeric bearing. Clearly, the resuiting boundary value problem is highly

non linear and must be solved numerically.
All that is needed to complete the formulation is a stability condition which can easily be

implemented in the solution procedure.
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4. SOLUTION PROCEDURE. STABILITY CONDITION.

In this section we present the solution procedure for our two dimensional formulation of
elastic stability problems. The procedure uses instead of equation (3.17) its variational formu-
lation in terms of the principle of virtual work. This form of the equations of equilibrium is the
most convenient both for computational purposes and for the incorporation of the classical sta-
bility condition.

We examine first the case of dead loading. The extension to the case in which part of the

boundary is subjected to unilateral constraints is considered next.

4.1. Solution procedure and stability condition for dead loading.
Let B be the undeformed configuration of the body of interest, x = @ (X) the final posi-
tion of a particle initially located at X in B, and u = x~X the displacement vector. The defor-

mation gradient and Lagrangian strain tensor [11] defined in Appendix II, take then the form

F=1+Vu E- wmqidcif..qn_ @1
In addition, let 8B, the part of 88, the boundary of B, where the tractions t are
prescribed, and 8B, that part of §B where the displacements are prescribed. Denoting by du

an arbitrary admissible variation, the principle of virtual work takes the form
Glasw = fFS. TV Gwar ~ [ pboudv ~ [ tsuas =0 “.2)
B B 3B

The non-linearity of this equatton is not explicit but rather rests on the choice of the con-
stitutive equation

S = S(E) 4.3

For the simple constitutive model proposed in section 3. (eq.(3.6)) the stresses S are a

linear function of the strains E. Nevertheless due to equation (4.1), the dependence of S on

the displacements u is non linear.
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Introducing the total potential energy functional I, the solution of the boundary value

problem posed by equations (4.2) and (4.3) can be characterized by the single equation [1 2)

sMi(u) = !f Nu+ adu) Haemo=0 (4.4)
du

which is simply a restatement of the virtual work equation {4.2) with S given by {4.3).

Stability conditien

The classical stability condition, the energy criterium {1 11,{12], states that a solution
x = ®{X) of equation (4.4) is stable whenever II achieves & minimum at . Thus, stable solu-
tions are characterized by

sa41(x) > 0 4.5)

In terms of the elastic moduli C (the second elasticity tensor) defined by

2
as  a*w(E) (4.6)

=22 =

9f gEGE
where W is the strain energy function, the condition given by equation (4.5) takes the form

{ (Fu Cams Fip+ Sy 851 Bsis 84,1 qv =
B

[ {Casco 8Eas BEco + S °Eu) V> 0 @n
B
in which majuscule and minuscule subindices refer to initial and current configurations, respec-

tively. Yet, 8 more compact expression of condition (4.5) is possible by introducing the (first)

elasticity tensor, defined by

§rw(F) _ 8P
gFeF  oF “.8)

from equation (4.4) condition {(4.5) reduces to

A=

[ aswavav = Ay buig 3y, d4 >0 4.9)
B B .

for arbitrary variations 8u,dv.
it should be noticed that if the tensor C is positive definite, as in the model defined by
equation (3.6), the term containing C in (3.7) is greater than zero since 8E is symmetric. Thus,

an eventual violation of the stability condition can only be due to the term containing the



siresses S, the so-called geometric term.
We show below that the stability condition (4.9) plays an key role in the solution of the

nonlinear problem (4.4) by an iterative linearization procedure.

Solution procedure

In a typical numerical solution, the principle of virtual work is discretized using finite ele-
ment techniques. The resulting nonlinear sysiem is then solved by Newton's method, an itera-
tive linearization process. This approach is equivalent to considering the global non linear prob-
lem as a sequence of linear problems, regardless of the specific technique employed in the
numerical solution. At each intermediate configuration, say x (" = &(X), we obtain an incre-

mental linear displacement u'™ satisfying for arbitrary variations su‘”’ about x”, the linear

problem

Jamgu) veudv =
8

[ pobsutray + [toumas ~ [ ¥S) . Vou'"a¥ (4.10)
8 3 B

obtained from (4.2) and (4.3) by standard linearization techniques [13]. It is well known 12}
from the theory of elasticity, that the solution of (4.10) is possible only when the left hand side
of {(4.10) does not vanish. From equation (4.9) this condition amounts to the requirement of a
stable intermediate configuration x .

Thus, if the final configuration is stabje an algorithm of the form D = x () () will
converge to the solution x = ®{X) provided that at each step the right hand side of (4.10}, the

out-of-balance forces, is small. This condition can always be achieved in practice by applying

the external loads in sufficiently small increments,

4.2.1. Numerical solution.

A numerical solution procedure of the nonlinear problem (4.4) based on an iterative solu-

tion of the linear problem (4.10) can be easily implemented using the finite element method. In
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reference [17] it is shown that the discrete analog of equation (4.10) takes the form

KU =R (4.11)
where K'* is the tangent stiffness matrix, U'™ the vector of nodal displacements and R the
rasidual force vector. The superscript (n} refers to an intermediate configuration. We have
given explicit expressions for these arrays in [17]. The dimension of the linear system of equa-
tions (4.11) is the number of degrees of freedom used in the discretization process times the

spatial dimension of the probliem.

The stability condition (4.9) reduces for this discrete problem to the positive definiteness
of the tangent stiffness matrix F@; If this condition does not hold for arbitrarily small incre-

ments of the external loads we regard the configuration as unstable.

Finally, according to equation (4.7) the tangent stiffness can be written in the form

K. =K o+Kg {4.12)

where K, o, the initial stiffness, is computed from the term containing C in (4.7) and K¢, the
geometric stiffness, from the term containing 8. The explicit expression in matrix notation of
the elastic moduli C for the constitutive model (3.4)is

T.;&t. 0 0 G*
: 0 AiL G 0
[Capcpl = 0 Gl 0

w G* ¢ 0 2+l

where the last two indices position the submatrix and the first two, one of its elements.

(4.13)

As noted before, the matrix C given by (4.13) is positive definite. Therefore, the initial
stiffness matrix K, is always positive definite and any eventual instability must come from the
geometric stiffness K,¢.

It should also be noted that even for a general constitutive model all sources of instability
can be encompassed by this simple formulation.

The numerical solution procedure discussed above, has been implemented in the general
purpose finite element computer program FEAP, listed in Chap. 24 of reference {16]. The prac-

tical implementation doe¢s not differ substantially from that described in [17], except for the



-15-

different form of the constitutive model. In the present context it is more convenient to com-
pute the elasticity tensor A from the relation

Aygr=Caps Fu Fip+ Su 8y
where Cyp is given by (4.14) and S, by (3.6). The explicit expression for the tangent stiffness

matrix follows then at once using standard finite element techniques [1s], f171.

4.2. Extension te the case of unilatera] constraints.

We consider in this section the extension of our previous development to the case in
which unilateral constraints are present. The bearing represented in Fig.5 is taken as the model
problem.

Let 8B, be the part of the boundary 8B subjected to the unilateral restraint condition.
Notice that 8B, is always known in advance, as opposed to the case of a general contact prob-

lem in which 8B, is in general unknown. Fig.6 shows 38, for our model problem.

Tt will also be assumed that the displacements on 9B, are small so that the units vector
normal to this part of the boundary before and after the deformation are approximately equal.
This assumption is reasonable for the deformations observed in multilayer elastomeric bearings.
Thus, the displacements u on the boundary 8 B, satisfy the kinematic conditions

u; 20  fuy=0thenu; =0 ondB, 4.14)

that characterize the geometry of the unilateral constraint. (Fig.6).

In a variational formulation these are the only conditions that need be considered. They
place cn the admissible variations the restrictions

Su; 20 ifou;=0 thendu; =0 ondB, (4.15)

The solution for this type of problems is then characterized as the deformation that

renders a minimum of the total potential energy for all admissible variations du satisfying

{4.15). Due to conditions (4.15) the principle of virtual work (or alternatively, equation (4.4))

takes the form of an inequality rather than an equality; i.e
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s (w) = %&E?&a:é::i >0 (4.16)
We note that even within the limits of the linear theory of elasticity, the problem posed
by equation (4.16) is nonlinear.

If equation (4.16) is consistently linearized a result analogous to that of equation (4.10) is
obtained with the equality sign replaced by an inequality. It can be shown [14] that a solution

for this problem is possible only when condition (4.9) holds.

For computational purposes, however, inequality (4.16) is not the most convenient for-
mulation of the problem with unilateral constraints. It is preferrable instead to include the unk-
nown contact pressures acting on 838, explicitly in the formulation by means of Lagrange mul-

tipiers. Thus, we consider a modified total potential energy functional of the form

=1 ,.m“. A.udS (417
.Wn

where [1 is the regular total potential energy, and the Lagrange multipiers A the unknown con-
tact pressures. The inequality constraints (4.15) no longer need be enforced on the admissible
variations u. They simply satisfy the usual condition of vanishing on 858,

The virtual work expression associated with (4.17) can then be discretized using standard
finite element techniques. The procedure for the terms deriving from I! has already been dis-
cussed in the previous section. A detailed discussion of the finite element discretization for the
terms involving the Lagrange multipiers A can be found in [17] and references therein.

Numerical examples illustrating the formulation presented in this section will be con-

sidered next.
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5. NUMERICAL EXAMPLES.

Two numerical examples are included in this section. The first one illustrates the ability of
the formulation presented in the previous section to reproduce the results of Haringx's theory
when the elastic constant G~ in constitutive model given by (3.6) is chosen according to (3.13),
and the assumptions of beam theory hold. The theoretical justification of this fact can be found
in Appendix II. The second example shows the importance of unilateral constraints in the elas-

tic stability of a short column.

Both examples correspond to a generalized state of plane stress. Therefore, since S33= 0,

the constant A ' in the constitutive model {3.6) is replaced as in the linear theory by

. »

NI 3 G.D
A+ 2u
Except for this substitution, the constitutive mode! (3.6) remains unaitered. In terms of the
. E
generalized Poisson modulus, defined by v = ,..me in a homogeneous extension along axis-1,
1

the elastic constants in (3.6) take the simple form (the subscript "eq” is dropped)

[ ¥ v - .—. * m

P wr F - —E G =G+ — 5.2
-y T 20400 A 6.2

where E is the apparent Young modulus given by (3.16) and G the shear modulus. P and A are

the applied axiai force and effective area, respectively.

The solutions for the numerical examples presented were obtained by a Newton-Ralphson
iteration within each incremental loading step, in accordance with the formulation discussed in
section 4. The capabilities of the general purpose computer program FEAP easily allow for this

type of algorithm.

Example 1.

A slender beam with ratio lﬁmw%wm = 10 and left end clamped, is subjected to an axial and

transversal load applied both on its right end. The constants E and (3 are taken to be: E = 10
and G = 500. The finite element discretization consists of five 9-node isoparametric elements

of equal length, as shown in Fig. 7. The values of the constants A", " and G computed from
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E and G through (5.2), are also included in Fig. 7. For this problem, the value of the buckling
joad predicted by Haringx's theory is P = 194.31

A typical relationship between lateral load and up deflection was found to be linear for a
given value of the axial load, in agreement with Haringx's theory. The values found for the
lateral stiffness as 2 function of the applied axial load are shown in Fig. 8. These computed
resuits are in close agreement with those predicted by Haringx’s theory, for values of the axial

load P as close to the buckling load as P = 720.

Example 2.

length _ 1 g and left end clamped is presented to

As a second example, a beam with ratio ~—
width

iltustrate the effect of unilateral constraints. The right end of the heam is subjected to resultant
axial and lateral loads, and i8 constrained by the condition that no tractions can occur at this
end. This unilateral constraint, discussed in the previous section, is modeled by means of the
contact element described in reference [15]. The finite element mesh and the location of the

contact elements are shown in Fig. 9, together with the values of the different afastic constants.

The computed lateral icad-tip deflection curves for different values of the axial load are
depicted in Fig. 10. These curves are straight lines, with slopes in close agreement with the
values predicted by Haringx's theory, up to the value of the lateral toad for which roll-off of the
right end starts to occur. A progressive reduction of the lateral tangent stiffness is then
observed with further increments of the 1aterai load. The last computed point in the curves of
Fig. 10 corresponds to the value of the lateral load for which the tangent stiffness matrix
becames singular. According to the formulation presented in the previous section, the
configuration of the beam for this value of the axial load should be regarded as unstable. The

lateral tangent stiffness is approximately zero for this value of the axial load.

It should be noted that the reduction in lateral stiffness due to the presence of the unila-

teral constraint becomes more severe with increasing axial load, as illustrated in Fig.10.
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6. CONCLUSIONS

A formulation for the solution of elastic stability problems embedded in the general set-
ting of two-dimensional finite elasticity has been presented, together with two dimensional con-
stitutive equations capable of modeling the typical behavior of multilayer elastomeric bearings.
This constitutive model is an extension to the range of large displacements of the constitutive
equations for a transversally isotropic solid. Physically meaningful expressions for the elastic
constants involved in the model have been derived. It has been shown that the resulting for-
mulation is in agreement with that due to Haringx when the assumptions of beam theory hold.
The numerical examples presented illustrate this conclusion.

In addition, boundary conditions enforcing unilateral end constraint have been discussed.
They play a key role in the elastic stability of the bearing, as illustrated in the numerical exam-
ple presented. This type of boundary condition, rather than a form of material instability,
explains the progressive reduction in lateral stiffness and eventual instability observed in the

experimental testing of seismic isolation bearings.
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Fig.1. Experimental test of an elastomeric bearing.
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APPENDIX I

Material instability. Experimental results

The possibility of an instability phenomenon for certain class of non linear materials when
subjected to a state of simple shear, has been pointed out by Truesdell ([18] and references
therein). This type of instability, material instability in Truesdell’s terminology, is due to the

form of the constitutive equations of the material rather than to the geometry of the problem.

The phenomenon can be illustrated by considering the following generalization of the

strain energy corresponding to the Mooney-Rivlin model

W= Wn (Ligy -3 + (2=p) U3 = = (-3)2 @1
2 2 2y

where u >0, ~/2<B<% and y>0 to ensure the positive definiteness of W.

For this type of material, the generalized shear modulus in a state of simple shear takes

the form {18}

2
p=lol1-X 1.2)
K Y

where x = tana, a being the shearing angle, and o3 the shear stress.

d
A collapse in shear will occur whenever M.: = (. From ([.2) we find the critical value
K
i
IR E
Kerig ™ u :wv

The example shows that the actual occurence of this type of instability is a pessibility that
must be taken into account. The simple experimental test described below, was conducted to
assess wehether the discussed instability phenomenon should be expected in the behavior of &

typical muitilayer elastomeric bearing.
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Experiments} test.

The experimental test was designed to subject a single layer of an elastomeric bearing to
combined state of compression and shear deformation. The type of bearing chosen had been
tested previously at the Earthquaque Engineering Researh Center of the University of Califor-
nia, Berkeley, showing an instability phenomenon of the type described in the introduction of
this report. Thus, if the phenomenon were to be attributabie to a form of material instability, it
would be expected to appear in the course of the test.

The experimental set-up is shown in Fig.L.1 to Fig.1.4. The shear load is controlled by a
universal testing machine, allowing for a high degree of accuracy. The axial load by a hydraulic
jack with an estimate error of 5% to 8%. The disposition of the L.V.D.T. used to control the
axial and shear deformation is also illustrated in the attached figures.

The specimen was subjected to a several axial loads, and shear deformations up to 250%,
a rather high amount of shear.

It should be noted that it is extremely difficult to reproduce experimentaily the conditions
of a homogeneous state of shear deformation. The reason for this is the lack of control in the
normal stresses which are necessary to reproduce the Poynting effect [11]. Thus, the experi-
mental state of deformation is only an approximation of the theoratical state of combined axial
and shear deformation.

The experimental results obtained from the test are plotted in Figs.L.5 to [.8. From them,
the following conclusions can be drawn:

(1) It appears to be no indication of a material instability phenomenon. In fact, as the shear
strain is increased, a completely opposite effect of stiffening can be observed for large
amounts of shear.

(2) Within a large range of shear deformation, the relationship beteween shear ioad and shear

displacement is approximately linear.
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(3} The apparent shear modulus for a single layer is highly insensitive to the value of applied
axial load.

This conclusions show that the hypothesis of material instability, although theoretically
appealing, should be ruled out in the present case. Furthermore, they confirm the usual
assumption of a linear relationship beteween shear load and shear deformation. In the context
of a more elaborate theory, they also seem to suggest the constituive assumption of the

Mooney-Riviin model for the rubber.



*p°1 '3?&

- o L

.

-Sg-



SHEAR DISPLACEMENT (IN)

SHEAR DISPLACEMENT (IN)

0.5

04

C.3

0.2

0.1

w36=-

AXIAL LOAD P#5,000 LBS.
{FAST TEST)

i ! I J i

2 4 6 8 10 12 14
SHEAR FORCE (KIPS)
AXIAL LOAD P: 5,000 LBS.
1 1 } 1 i i
2 4 G 8 10 12 14

SHEAR FORCE (KIPS)

Figs, 1.5. and 1.6, Experimental results.



SHEAR DISPLACEMENT (IN)

SHEAR DISPLACEMENT (IN)

~37-

05
AXI1AL LOAD

P=10,000 LBS.

) 1
2 4 & 8 1 i2 14
SHEAR FORCE (KIPS)
0.5
AXIAL LOAD P=20,000LBS.
4+t
03r
0.2F
O.i |
0 i i i 1 i §
2 4 6 8 10 2 14

Figs. I.7.

SHEAR FORCE (KIPS)

and 1.8. Experimental results,



-38

APPENDIX 11

Finite Elasticity approach to Haringx’s theory.

It will be shown in this appendix, that the equilibrium equations in Haringx’s {reatment
follow from the equations of equilibrium of two-dimensional finite elasticity whenever the
assumptions of beam theory hold. Furthermore, the derivation yields the consistent definition
of the resultant forces acting on an arbitrary deformed cross section, in terms of the different

siress (ensors.

Kinematics.

Consider a beam with cross sectional area A and length L. As in section 4.1, the reference
configuration [0,L1X4 is denoted by B, and by x = &{X) the the final position of a particle
located at X in the undeformed configuration B of the beam.

Neglecting the warping of the section, the basic kinematic assumption is that a section
normal to the center line in the undeformed configuration remains normal to the deformed

center line. With the notation of Fig.IL.1, the coordinate expression for the deformation map is

Xy = .N—n_. EAN_V - N‘%_EEAV\D

X3 = v(Xy) + N%Omeﬁxﬂﬁv Ly
ax;
and the components F; = m,w._‘ of the deformation gradient F are given by
i

1+u'— X A'cosy —sing
M. bl .—\..lkuﬂs.mwﬁﬁ Oom.ﬁ- Amm.Nv

An element of area dA in an undeformed cross section, with unit normal N = (1,0), is
mapped onto the element of area da with unit normal &. If J=det(F) the basic relation

daf = JAAF N (11.3)

shows that the areas are preserved; i.e: da = dA4 and that & = (cosy,siny). Similarly, the unit
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vector L = (0.1) perpendicular to N, is mapped onto the vector 1= FL = (~sing,cosy).

The Lagrangian strain tensor [11] is defined in terms of the deformation gradient F by

E= 3(FF - 1] (1L.4)

The substitution of (I1.2) into (A.4) shows that the component E;; = 0. The same con-
clusion holds in the linear theory when the linearization of equations (IL.1) is assumed. The
exact sofution of the bending problem in the case of small displacements indicates that this con-

clusion is not exactly true, but rather a consequence of the approximate character of (I1.1).

Resultant forces on an srbitrary cross section

Let us denote by P and o the first Piola- Kirchhoff and Cauchy stress tensors, respec-

tively {11]. The force vector acting on the element of area da, with unit normal &, of a

deformed cross seclion is given by

dF = oida = PNdA (1L.5)

where dA and N are the corresponding element of area and unit normal in the undeformed

cross section. The normal force and the tangential force acting on da are then

dF, = i.(oi)da = &.(PN)dd
dF, = i.(ci)da = 1.(PN)dA (11.6)

where 1and L are normal to # and %_ respectively. Therefore, the resultant forces acting on a

deformed cross section of the beam are
N= .m (PN) Add ¥ = h (PR).idd M = - M X,(PN).fidA aLm
From the expressions for Z, a, and 1 it follows that
N = nomecmw:ﬁi + mm:@umﬁu&
V = —siny m P1,dA + cosy .m PydA (11.8)
or equivalently
.mm.:ax = cosy N — sing 'V, .mwu_&a = sinf N + cosgr ¥ (IL.9)

No approximation is involved in equations (I1.6) through (il.9), they are consistent with
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the kinematic assumption expressed by equation (IL.1)

The relationship to first order approximation, between the different stress components is

considered next.

Linearization. Relations connecting siress tensors.

We will assume that the axial displacement u of the center line and its derivative u’ are
small enough t so that the contribution of the terms containing u’ can be neglected. This

assumption is particularly reasonable in the case of multilayer elastomeric bearings.

Let S be the second Piola-Kirchhoff stress tensor defined by

S=F'P =JF 'oF' (11.10)

from equation {[1.2) we find the first order relationship

I - I —¢

and from (I1.8) we obtain the expressions
[Puata=N-wy  [Pudd=yN+V (L12)
A A
fspaa=n fsp=-0—pN+ V¥ (1.13)
A A

We note that (11.12) and (11.13) provide a physical interpretation for the components of
P and S. In particular, if ¢ and 7 are the normal and tangential stresses acting on an element of
area da of the deformed cross section of the beam, equation (I1.13) states that

Su=¢oa Sp=1-{vV—lo (11.14)

in addition, since A.(PA) = &, the expression in (I1.7) for the bending moment reduces to

M= |.‘t,m.mm\wwuu.\u ﬁmm..—Mw
A

In order to obtain an first order estimate of Py recall from linear elasticity, that the exact
solution for bending of a beam with no distributed loads shows that oy = 0. Thus, it is rea-

sonable to assume that the stresses normal to the deformed center line can be neglected. This

1 mare precisely: ::: = cM..WMh _z_ + QMAWMN\ _2 _ is small.
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assumption together with equation (I1.11) yields the first order estimates
on=Wo;, Pp=G'-Wlayp, Sp=2¢—v)e;, (I.16)
Therefore, the term ¢S,; can be neglected in a first order approximation. Equations

(I1.11) and (I1.12) show that

fPoda = [sd4 =V~ (v-p)N a1
A A
If the deformation due to shear can be neglected, ¢ = v’ and equation {I1.17) yields the expres-

sion

V= [ 54
4
However, when the shear deformation is important, as in the case of elastomeric bearings,

this simple relation no longer holds and (11.17) must be used.

The equations of equilibrium

The material form of the equations of equilibrium in finite elasticity [12] is
Div(P) + p,b=10 (11.18)
where p, and b are the density and body forces referred to the undeformed (reference)
configuration. Assuming that no distributed loads exists and zero body forces, the integration
of equations (11.18) through the undeformed cross sectional area together with {11.12} and
(11.15) give the syslem of equalions
[N—y¥V]I=0
[yN+ V] =0 (11.19)
M+ V—-G—¢)N]=0
The same result is obtained if instead of equation (I1.18) its variational formulation, the
principle of virtual work, is used. The expression in terms of the first Piola-Kirchhoff stress

lensor and its dual measure of deformation, the deformation gradient, is particularly convenient

if this approach is followed.

Either by integration of equations {I1.19) or by the principle of virtual work, we find the

expressions
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N—-y¢yV=~—pP V4 ygN=-0
where P is the axial load and V the transversal load applied at the end of the beam. Thus an

equivalent statement of the equilibrium equations (11.16) is

N=-P-y0
V=yP-0 (11.20)
M'+ Pyv'=0

Finally, the two dimensional constitutive model proposed in section 3. of this report, leads

to the classical equations

M = EIy’ Vo GA(v'—¢)
and their substitution into (I1.20) yields the equation of buckling due to Haringx

EldY div
P &1 + P nx; O<x<L {I1.21)

where for simplicity in the notation we have set x = X,
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Fig1.1. Kinematics of the deformation of & beam.






