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Powerful, scalable and resource-efficient meta-analysis of rare 
variant associations in large whole-genome sequencing studies

A full list of authors and affiliations appears at the end of the article.

Abstract

Meta-analysis of whole-genome/exome sequencing (WGS/WES) studies provides an attractive 

solution to the problem of collecting large sample sizes for discovering rare variants associated 

with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to 

biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare 

variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for 

relatedness and population structure, can analyze both quantitative and dichotomous traits, and 

boosts the power of rare variant tests by incorporating multiple variant functional annotations. 

Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies 

of the Trans-Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR 

performs rare variant meta-analysis at scale and produces results comparable to using pooled 

data. Additionally, we identified several conditionally significant rare variant associations with 

lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through 

meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.

Ongoing large-scale whole-genome/exome sequencing (WGS/WES) studies, such as the 

Trans-Omics for Precision Medicine (TOPMed) Program of the National Heart, Lung and 

Blood Institute (NHLBI)1, the Genome Sequencing Program (GSP) of the National Human 

Genome Research Institute, and UK Biobank WES Program2,3, provide valuable insights 

into the genetic contributions of rare variants (minor allele frequency (MAF) < 1%) to many 

complex diseases and traits4–7. Because single-variant analyses are typically underpowered 

to identify rare variant associations8, variant set tests have been proposed to jointly analyze 
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the effects of multiple rare variants to improve power9–13. In addition, pooling rare variants 

across multiple studies can boost association analysis power14. As such, meta-analysis of 

data from multiple WGS/WES studies provides a natural and cost-effective solution to 

augment sample size15.

Compared to the joint analysis of pooled individual-level data, meta-analysis requires each 

participating study to share only summary statistics, which have much smaller file sizes 

than the individual-level data, and which protect the data privacy of study participants and 

reduce the challenges and the burden in sharing and integrating large subject-level data. 

Summary statistics are also increasingly available in public repositories, such as the GWAS 

catalog16, based on which single-variant meta-analysis for GWAS can be readily performed. 

Compared to meta-analysis of each variant individually in GWAS, meta-analysis of rare 

variants in sequencing studies focuses on variant sets as analysis units to mitigate limited 

power of single-variant analysis. The statistical power of meta-analysis is (under plausible 

conditions) asymptotically equivalent to that of pooled analysis17–19, making meta-analysis 

an essential tool for analyzing rare variant associations in large-scale WGS/WES studies, 

especially when individual-level data across studies cannot be shared.

Several methods are currently used for meta-analysis of rare variants in genetic association 

studies, including MetaSKAT, RareMetal and SMMAT19–24. MetaSKAT allows for linear 

and logistic models for continuous and binary traits, respectively, while RareMetal allows 

for linear mixed models. Neither MetaSKAT nor RareMetal provide logistic mixed models 

for binary traits25, but SMMAT does provide logistic mixed models24. However, SMMAT 

requires pre-specifying variant sets at the study design stage and stores the summary 

statistics of those pre-specified variant sets. Furthermore, these existing rare variant meta-

analysis methods do not allow the incorporation of multiple variant functional annotations. 

The STAAR method26 boosts the power of rare variant association tests by incorporating 

multiple variant functional annotations and using ACAT27 to combine the P values of 

the rare variant association test statistics calculated using different functional annotations 

as the weights. However, STAAR requires individual-level data and is not applicable for 

meta-analysis of studies through summary statistics.

For meta-analysis of common variants in GWAS, the only summary statistics needed are 

the individual variant test statistics and their variances, for each study. Meta-analysis of 

rare variants also requires storing the covariances of individual variant test statistics, which 

can be costly. Existing methods require O M2  storage for a participating study summary 

statistics, where M is the total number of rare variants in a genetic region, a capacity which 

is not scalable for large cohort and biobank WGS/WES studies. For example, RareMetal 

would require more than 50 terabytes to store summary statistics of 250 million variants for 

the 30,000 individuals in TOPMed’s current WGS data.

To address these issues, we propose Meta-analysis of variant-Set Test for Association 

using Annotation infoRmation (MetaSTAAR), a general framework for rare variant meta-

analysis of large-scale WGS studies and biobanks with hundreds of millions of rare variants 

across the genome, by (1) compactly storing study-specific variant summary statistics and 

(2) dynamically incorporating multiple variant functional annotations. MetaSTAAR also 
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accounts for relatedness and population structure for both quantitative and dichotomous 

traits through fitting null Generalized Linear Mixed Models (GLMMs) using ancestry PCs 

and sparse genetic relatedness matrices (GRMs)26,28.

By calculating and storing a new form of storage-efficient rare variant summary statistics 

within each study, including sparse weighted linkage disequilibrium (LD) matrices and 

low-rank matrices capturing the effects of covariates in the null GLMM, MetaSTAAR is 

computationally scalable and resource-efficient for rare variant meta-analysis of large-scale 

WGS data, requiring approximately O M  for storage of summary statistics. MetaSTAAR 

can be applied to any rare variant analysis unit, including gene-centric analysis by grouping 

variants into functional categories for each gene and genetic region analysis using sliding 

windows26. MetaSTAAR also enables approximate conditional analysis to, for example, 

identify rare variant association signals independent of known variants.

In the present study, we performed extensive simulation studies to demonstrate that 

MetaSTAAR maintains accurate type I error rates and achieves greater power by 

incorporating relevant functional annotations for both quantitative and dichotomous 

phenotypes. We applied MetaSTAAR to perform WGS rare Single Nucleotide Variant 

(SNV) meta-analysis of 30,138 ancestrally diverse participants from 14 studies of four 

quantitative lipid traits from the NHLBI TOPMed consortium: circulating low-density 

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides 

(TG), and total cholesterol (TC) levels. We show that MetaSTAAR is computationally 

scalable and resource-efficient for large-scale WGS rare variant meta-analysis, requiring 

over 100x less storage and computation time than existing methods such as MetaSKAT, 

RareMetal and SMMAT, all of which cannot currently handle large cohorts and biobanks 

with WGS data. Furthermore, MetaSTAAR provides comparable rare variant results to those 

using pooled data, and identifies several conditionally significant rare variant associations 

with lipids, after adjusting for known lipid-associated common variants. We also performed 

meta-analysis of the TOPMed lipid traits data and UK Biobank WES data (with ~200,000 

samples) demonstrating that MetaSTAAR is scalable to large biobanks and cohorts.

Results

Overview of the methods

There are two main steps in the MetaSTAAR framework: (i) preparing variant summary 

statistics of each study using MetaSTAARWorker, and (ii) testing for associations between 

each variant set and phenotypes via meta-analysis using MetaSTAAR by combining the 

variant summary statistics across studies and incorporating multiple variant functional 

annotations26 (Figure 1).

The first step, implemented in MetaSTAARWorker, generates and efficiently stores 

variant summary statistics for each study, including individual variant score statistics and 

their variance-covariance matrices, using sparse weighted LD matrices as well as low-

rank matrices to capture the covariate effects. Specifically, for each participating study, 

MetaSTAARWorker first fits null GLMMs, accounting for relatedness and population 

structure24,29 using linear and logistic mixed models for (respectively) quantitative and 
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dichotomous traits. It uses a sparse GRM and allows for study-specific covariates 

(for example, ancestral principal components) when fitting the null GLMM to ensure 

computational efficiency while also preserving accuracy28. MetaSTAARWorker then 

calculates individual variant score statistics and their estimated variances for all polymorphic 

variants in the study, which can be used to perform single-variant meta-analysis30.

For meta-analysis of rare variants, one of the most time-consuming and resource-intensive 

components is generating and storing the variance-covariance matrices of individual variant 

score statistics by accounting for the LD structure among rare variants and covariate 

effects, such as ancestral principal components. To address this issue, MetaSTAARWorker 

decomposes the variance-covariance matrix of individual rare variant score statistics as the 

difference between the sparse weighted LD matrix and the cross product of a low-rank 

dense matrix, which captures the covariate effects (Methods). The weighted LD matrix is 

defined as the cross-product of the genotype matrix weighted by the inverse phenotypic 

variance-covariance matrix, which is the inverse variance-covariance matrix of phenotype 

for quantitative traits and the inverse variance-covariance matrix of the working vector 

of phenotype for dichotomous traits (Methods). By using the sparse genetic relatedness 

matrix, the inverse phenotypic variance-covariance matrix is sparse. Furthermore, given that 

the genotype matrix is also sparse for rare variants, the weighted LD matrix is sparse. 

Therefore, MetaSTAARWorker stores the weighted LD matrix in a sparse matrix format by 

taking advantage of sparse genotype dosages of rare variants and sparse GRM, and stores 

the low-rank dense projection matrix along with the individual variant summary statistics 

(Methods).

By storing these two matrices separately, MetaSTAARWorker only requires approximate 

O M  storage, which indicates that the storage, in practice, is approximately linear 

in sample size (Supplementary Figure 1). Compared with existing methods, such as 

MetaSKAT, RareMetal (RareMetalWorker) and SMMAT, which require O M2  storage19–21, 

MetaSTAARWorker can efficiently reduce the rare variant summary statistics storage, while 

still being able to reconstruct the variance-covariance matrix of rare variants. This efficient 

sparse matrix-based approach for efficiently storing rare variant summary statistics makes 

our approach feasible in rare variant meta-analysis of large-scale cohort and biobank WGS 

studies.

After collecting the rare variant summary statistics from each participating study, 

MetaSTAAR combines study-specific rare variant summary statistics into a merged variant 

list for any user-specified variant set. MetaSTAAR then uses the rare variant summary 

statistics from each study to calculate the aggregated score statistics and their variance-

covariance matrices that correspond to all rare variants in the merged variant list. Since 

the vast majority of rare variants sequenced across the genome are extremely rare variants, 

a considerable number of rare variants are study-specific for WGS/WES meta-analysis 

(Supplementary Table 1). As such, if a genetic variant is monomorphic in a study, 

MetaSTAAR will set the variant score statistic and the corresponding row and column 

in the variance-covariance matrix to 0 for that study19–21. For a given variant set, the 

variance-covariance matrix of the score statistics is calculated using the sparse weighted LD 

matrix and the low-rank matrix of the covariate effects (Methods). With the aggregated score 
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statistics and the efficiently stored variance-covariance matrices, MetaSTAAR performs rare 

variant meta-analysis in large cohort and biobank WGS studies by incorporating multiple 

functional annotations in the weighting scheme using the STAAR framework. It then outputs 

the meta-analysis STAAR-O (MetaSTAAR-O) P value for the variant set26. In addition, 

MetaSTAAR permits rare variant association signals conditional on a set of known variants 

(Methods). It provides rare variant analysis results nearly identical to those from a pooled 

analysis.

Application to the TOPMed lipids WGS data

We applied MetaSTAAR to identify rare variant associations with four quantitative lipid 

traits (LDL-C, HDL-C, TG and TC) by meta-analysis of 14 study cohorts in the TOPMed 

Freeze 5 WGS data, which consists of 30,138 individuals (Supplementary Note). The 

sample sizes of the 14 studies range from 49 to 7,596 individuals. LDL-C and TC were 

adjusted for the usage of lipid-lowering medication27 (Methods), and DNA samples from 

whole blood were sequenced at >30x target coverage. Sample- and variant-level quality 

control were performed separately for each participating study1,27.

Race/ethnicity was defined using a combination of self-reported race/ethnicity from 

participant questionnaires and study recruitment information (Supplementary Note)31. Of 

the 30,138 multi-ethnic related samples, 8,114 (26.9%) were Black or African American 

individuals, 17,928 (59.5%) were White, 675 (2.2%) were Asian American, 2,318 (7.7%) 

were Hispanic/Latino American and 1,103 (3.7%) were Samoans. Among these samples, 

6,690 (22.2%) had first-degree relatedness, 938 (3.1%) had second-degree relatedness and 

769 (2.6%) had third-degree relatedness. There were 255 million single-nucleotide variants 

(SNVs) observed overall, consisting of 6.3 million (2.5%) common variants (MAF > 5%), 

4.9 million (1.9%) low-frequency variants (1% ≤ MAF ≤ 5%) and 244 million rare variants 

(MAF < 1%). The study-specific demographics, summaries of lipid levels and variant 

number distributions are given in Supplementary Table 1.

Computational and storage cost of MetaSTAARWorker

The key features of MetaSTAAR compared to other rare variant meta-analysis methods 

are presented in Table 1. They demonstrate that MetaSTAAR is the only rare variant 

meta-analysis method currently scalable for large WGS studies, which incorporates multiple 

variant functional annotations and accounts for relatedness and population structure for both 

quantitative and dichotomous traits.

We first evaluated the computational performance of MetaSTAARWorker, including 

runtime and resource requirements. For each study, we first applied inverse rank normal 

transformation to phenotypes, adjusted for age, age2, sex, race/ethnicity and the first ten 

ancestral principal components, and controlled for relatedness using heteroskedastic linear 

mixed models with sparse GRMs plus ancestry-specific residual variance components 

(Methods). We then used MetaSTAARWorker to generate and store the score statistics and 

variances of all variants, and sparse weighted LD matrices of variants whose MAFs are 

below a user-specified threshold (Supplementary Table 2). MetaSTAARWorker required 300 

CPU hours using a 2.10 GHz computing core with 12 GB memory on average to generate 
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the rare variant summary statistics for each TOPMed study and each trait. These calculations 

can be done in parallel. Each trait required 590 GB on average to store the rare variant 

summary statistics of all 14 cohorts (Supplementary Table 2).

We then considered multiple subsets of individuals from the TOPMed Freeze 5 WGS 

data with lipids and compared the computational performances of MetaSTAARWorker and 

the existing method RareMetalWorker. RareMetalWorker does not support heteroskedastic 

linear mixed models, which allow different residual variances in different subgroups of a 

given study. Therefore, we used a linear model to appropriately compare the two methods. 

MetaSTAARWorker requires hundreds of times less storage and computation time than 

RareMetalWorker (Table 2). In addition, the ratio of both storage space and computation 

time between RareMetalWorker and MetaSTAARWorker increases as the sample size 

increases, due to the difference in computation complexity and storage of the two methods 

(Table 1 and Supplementary Table 3). The estimated storage of RareMetalWorker is more 

than 50 terabytes for rare variant summary statistics of WGS data with 30,000 individuals. 

Hence, RareMetalWorker would require more than 2 petabytes to store the summary 

statistics of WGS data with 200,000 individuals.

To demonstrate the scalability of MetaSTAARWorker for biobank-size data, we also 

generated and stored the summary statistics of the four lipid traits using UK Biobank WES 

data with 190,476 related samples (Methods). MetaSTAARWorker required 300 CPU hours 

using a 2.10 GHz computing core with 12 GB memory on average to generate the rare 

variant summary statistics for each trait. Each trait required 2.68 GB on average to store the 

rare variant summary statistics (Supplementary Table 4).

Gene-centric meta-analysis of rare variants of TOPMed data

We applied MetaSTAAR-O to perform gene-centric meta-analysis of coding, promoter, and 

enhancer rare variants of genes with lipid traits in TOPMed. Rare variants (combined MAF 

< 1%) from five functional categories (masks) of each gene were aggregated, separately, and 

analyzed for each of the four lipid traits, including (i) putative loss-of-function (i.e., stop 

gain, stop loss and splice) rare variants, (ii) missense rare variants, (iii) synonymous rare 

variants, (iv) promoter rare variants overlapping Cap Analysis of Gene Expression (CAGE) 

sites32, and (v) enhancer rare variants overlapping CAGE sites33,34, where each mask was 

defined in Methods. We incorporated 10 annotation principal components (aPCs) including 

1 liver-specific aPC26,35, CADD36, LINSIGHT37, FATHMM-XF38 and MetaSVM39 (for 

missense rare variants only) along with the two MAF weights8 in MetaSTAAR-O. 

Overall, the distributions of MetaSTAAR-O P values were well-calibrated for all four lipid 

phenotypes (Extended Data Figure 1). At a Bonferroni-corrected significance threshold of 

α = 0.05/ 20, 000 × 5 = 5.00 × 10−7, accounting for five different masks across protein-coding 

genes, MetaSTAAR-O identified 53 genome-wide significant associations with four lipid 

phenotypes using unconditional meta-analysis (Supplementary Table 5 and Extended Data 

Figure 2). After conditioning on known lipids-associated variants16,35, 40 out of the 53 

associations remained significant at the Bonferroni-corrected threshold of α = 5.00 × 10−7

(Table 3).
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We then compared the rare variant meta-analysis results of the 14 cohorts obtained from 

MetaSTAAR-O with the results from the joint analysis of pooled data using STAAR-O. 

All conditionally significant findings using STAAR-O analysis of the pooled data were 

detected by MetaSTAAR-O (Table 3). Furthermore, the log10-transformed P values from 

MetaSTAAR-O and STAAR-O unconditional and conditional pooled analysis were highly 

concordant (Pearson r2 > 0.99) among significant and suggestive significant masks defined 

by various levels of unconditional P value thresholds (α = 2.5 × 10−6, 10−5, 10−4, 10−3) for each 

lipid phenotype (Supplementary Table 6, Extended Data Figure 3).

The computation time required for MetaSTAAR-O to perform WGS rare variant meta-

analysis, including gene-centric analysis of three coding and two noncoding masks, on 

30,138 related samples from 14 study cohorts using the TOPMed data was 500 CPU hours 

using a 2.10 GHz computing core with 12 GB memory on average for each lipid trait, which 

is also comparable to the pooled analysis.

Rare variant meta-analysis of TOPMed and UK Biobank data

We applied MetaSTAAR to meta-analyze the TOPMed data and UK Biobank WES data 

using the rare variant summary statistics generated by MetaSTAARWorker, with three 

coding masks (putative loss-of-function rare variants, missense rare variants, synonymous 

rare variants) for protein-coding genes (Methods) annotated using FAVOR26.

Among the 31 conditionally significant coding masks detected by MetaSTAAR-O using 

14 study cohorts in TOPMed Freeze 5 WGS data, 21 were replicated at the Bonferroni-

corrected threshold of α = 5.00 × 10−7 in conditional analysis using the UK Biobank WES 

data, and using meta-analysis of the two studies 20 of these 21 associations were at least one 

order of magnitude more significant than the TOPMed-only meta-analysis (Supplementary 

Table 7, Methods). Performing rare variant gene-centric meta-analysis of three coding masks 

using MetaSTAAR required 300 CPU hours using a 2.10 GHz computing core with 12 GB 

memory on average for each lipid trait.

Simulation studies

We performed simulation studies to evaluate the type I error rate and power of MetaSTAAR 

in a variety of configurations. We considered five participating studies in the meta-analysis, 

each with a sample size of 10,000. Quantitative and dichotomous phenotypes were generated 

by following the steps described in Data simulation (Supplementary Note). For each study, 

genotypes were generated by simulating 20,000 sequences for 20 megabase (Mb) to mimic 

the LD structure of an African American population using the calibration coalescent model 

(COSI)40. We randomly selected 2-kilobase (kb) regions from the 20-Mb region as variant 

sets for testing in simulation studies.

Type I error rate simulations

For rare variant meta-analyses of both quantitative and dichotomous traits, we performed 

109 simulations using MetaSTAAR and evaluated the empirical type I error rates for the 

meta-analyses of burden9–11, SKAT12, ACAT-V13 and STAAR-O26 tests at α = 10−5, 10−6, 10−7

(Supplementary Table 8). The results show that these four tests from MetaSTAAR provided 
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good control of the type I error rates for both continuous and dichotomous traits at all 

evaluated α levels.

Empirical power simulations

We then examined the empirical power of MetaSTAAR-O in a variety of configurations 

and compared it with existing methods. MAF and ten annotations were incorporated, of 

which five were informative and the other five were non-informative. Power was evaluated 

as the proportions of P values less than α = 10−7 based on 104 simulations. We considered 

different proportions of causal variants (an average of 5, 15 and 35%) in the signal region 

and allowed the causality of variants to be dependent on different sets of five annotations 

through a logistic model (Supplementary Note). The results show that across different 

proportions of effect size directions MetaSTAAR-O, when incorporating annotations, had 

more power to detect signal regions than use of the burden, SKAT, and ACAT-V tests 

implemented in MetaSTAAR (Extended Data Figure 4, Supplementary Figures 2–4). Our 

simulations indicate that MetaSTAAR-O has notably better power than existing rare variant 

meta-analysis methods, through its incorporation of multiple relevant annotations, and that 

MetaSTAAR’s power advantage is robust to the presence of subsets of non-informative 

annotations.

Discussion

In this study, we propose MetaSTAAR as a computationally-scalable and resource-efficient 

framework to perform rare variant association meta-analysis of large WGS/WES studies 

incorporating multiple variant functional annotations and accounting for population structure 

and relatedness for both quantitative and dichotomous traits.

We first highlighted MetaSTAARWorker, the preliminary step of MetaSTAAR that generates 

and efficiently stores rare variant summary statistics, including variant score statistics and 

their variance-covariance matrices, for each participating study. Existing methods, such 

as MetaSKAT, RareMetal and SMMAT, store the full variance-covariance matrix of rare 

variants and require O M2  storage, which is not scalable for large-scale WGS/WES studies. 

In contrast, MetaSTAARWorker stores the sparse weighted LD matrix and low-rank matrix 

that captures the covariate effects separately, and hence only requires approximately O M
storage without information loss. The computational complexity of generating summary 

statistics using MetaSTAARWorker is also substantially improved by taking advantage of 

sparse matrix computation (Table 2, Supplementary Tables 3 and 9). MetaSTAARWorker 

was benchmarked to improve both computation speed and storage requirements by more 

than 100-fold, using the 30,138 samples of the TOPMed lipids WGS data. With our 

method’s linear growth with sample size, we expect a more than 700x gain for a sample 

size of 200,000 whole genomes, meaning that MetaSTAARWorker can facilitate large-scale 

WGS rare variant association meta-analysis.

The second feature of the MetaSTAAR framework is how it dynamically uses multiple 

functional annotations, improving power over existing rare variant meta-analysis methods. 

MetaSTAAR also provides conditional analysis to identify novel rare variant association 

signals independent of known variants. Our gene-centric meta-analyses of WGS rare 
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variants using MetaSTAAR-O, using TOPMed Freeze 5 data from 14 study cohorts, 

identified 40 conditionally-significant associations with lipid traits. These associations 

included NPC1L1 missense rare variants and LDL-C; CD36, APOC3, SCARB1 missense 

rare variants and HDL-C; and NPC1L1 missense rare variants and TC, that were missed 

by meta-analytic burden, SKAT and ACAT-V tests that did not incorporate functional 

annotations (Supplementary Table 5).

The third feature of MetaSTAAR is how it can analyze variant sets in the genome without 

pre-defining them. MetaSTAAR generates and stores the rare variant summary statistics 

for all variants only once, and using them can perform meta-analysis of any variant set. 

This is particularly useful for WGS rare variant meta-analysis, especially for the noncoding 

genome, as it remains challenging to functionally interpret noncoding rare variants. Users 

may therefore want to define their own masks of interest after study-specific rare variant 

summary statistics are publicly released41. For example, in addition to the two noncoding 

masks defined in gene-centric analysis (promoters and enhancers of individual genes), 

another practical strategy to analyze noncoding rare variant associations is using sliding 

windows with fixed length42 or dynamic windows with flexible locations and sizes43. 

MetaSTAAR could be adapted for such analysis.

As demonstrated through our TOPMed meta-analysis, for detecting rare variant association 

signals the MetaSTAAR framework delivers almost identical statistical power to joint 

analysis of pooled individual-level WGS data. This is achieved while bypassing 

cumbersome data sharing and harmonization across studies. In addition, MetaSTAAR 

generates phenotype-independent sparse weighted LD matrices for unrelated samples, hence 

further saving computational resources in phenome-wide association studies (Methods).

Overall, the proposed MetaSTAAR framework is fast, scalable, highly resource-efficient, 

and provides competitive levels of power for meta-analysis of large WGS/WES studies and 

biobanks. It is of particular appeal for analysis of datasets with hundreds of millions of 

variants measured on millions of multi-ethnic whole genomes, now being rapidly generated 

in studies, including TOPMed1, GSP, UK Biobank2,3, All of Us44, and the Million Veteran 

Program45.

Methods

Ethics statement

This study relied on analyses of genetic data from TOPMed cohorts. The study has 

been approved by the TOPMed Publications Committee, TOPMed Lipids Working Group 

and all the participating cohorts, including Framingham Heart Study (phs000974.v1.p1), 

Old Order Amish (phs000956.v1.p1), Jackson Heart Study (phs000964.v1.p1), Multi-

Ethnic Study of Atherosclerosis (phs001416.v1.p1), Atherosclerosis Risk in Communities 

Study (phs001211), Cleveland Family Study (phs000954), Cardiovascular Health Study 

(phs001368), Diabetes Heart Study (phs001412), Genetic Study of Atherosclerosis Risk 

(phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), Genetics of 

Lipid Lowering Drugs and Diet Network (phs001359), San Antonio Family Heart Study 

(phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972), and 
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Women’s Health Initiative (phs001237), where the accession numbers are provided in 

parenthesis. The use of human genetics data from TOPMed cohorts was approved by the 

Harvard T.H. Chan School of Public Health IRB (IRB13–0353).

Key steps of MetaSTAAR

(1) Pre-fitting step by fitting null models using MetaSTAAR. Each participating study fits 

a generalized linear mixed model to account for population structure and relatedness using 

ancestry PCs and a sparse GRM, which can be calculated using standard approaches28. 

(2) Efficient generation and storage of summary statistics using MetaSTAARWorker. 

MetaSTAARWorker constructs “sparse weighted LD matrices” by taking advantage of 

sparse genotype dosages of rare variants and sparse GRM. By using “sparse weighted 

LD matrices”, MetaSTAARWorker significantly overcomes the computation and resource 

limitation of rare variant meta-analysis of large-scale WGS data, and its storage and 

computation time are tens to hundreds of times smaller than existing methods19,21,24 (Table 

2 and Supplementary Table 9). (3) Rare variant meta-analysis using summary statistics by 

incorporating multi-faceted variant functional annotations using MetaSTAAR. MetaSTAAR 

allows for the incorporation of multiple variant functional annotations as weights in 

calculating rare variant meta-analysis test statistics using summary statistics, to increase 

the power of rare variant association tests. In contrast, existing methods do not allow for 

the incorporation of multiple variant functional annotations and may therefore be subject to 

power loss19,21,24. Although STAAR26 incorporates multiple variant functional annotations 

in rare variant association tests, it requires individual level data. Specifically, for a set of 

variant functional annotations, e.g., annotation PCs26, MetaSTAAR calculates meta-analysis 

rare variant association test statistics using summary statistics weighted by each functional 

annotation and combines the resulting annotation-weight-specific rare variant meta-analysis 

P values using ACAT27, thereby providing a robust and powerful rare variant meta-analysis 

test.

Notation and model

Suppose there are K participating studies in the meta-analysis. For the kth study, 

suppose there are nk subjects with Mk total variants sequenced in a given variant 

set. Let Y k = Y 1, k, …, Y nk, k
T denote a continuous or dichotomous trait vector with mean 

μk = μ1, k, …, μnk, k
T; Xk denote the nk × qk design matrix of covariates, such as age, gender, 

(study-specific) ancestral principal components; and Gk denote the nk × Mk genotype 

matrix of the Mk genetic variants in the variant set. We let ek = e1, k, …, e nk, k
T denote the 

trait residuals adjusting for covariates, population stratification and relatedness, which is 

generated as follows.

When the data consist of unrelated samples, we consider the following null Generalized 

Linear Model (GLM)

g μk = 1nkα0, k + Xkαk, (1)
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where g μ = μ for a continuous normally distributed trait, g μ = logit μ  for a dichotomous 

trait, α0, k is an intercept, 1nk is a column vector of 1’s with length nk, αk = α1, k, …, αqk, k
T is a 

vector of regression coefficients for Xk. We calculate

Σk = Rk, (2)

with Rk = ϕkInk for linear models, where ϕk is an estimator of the residual variance ϕk, 

Ink is the identity matrix of dimension nk × nk; and Rk = diag 1/ μi, k 1 − μi, k  for logistic 

models, where μi, k is the fitted value for individual i under the null model (1), and obtain 

ek = Y k − μk /ϕk.

When the data consist of related samples, we consider the following null Generalized Linear 

Mixed Models (GLMMs)24,29,46

g μk = 1nkα0, k + Xkαk + bk, (3)

where the random effects bk account for relatedness and remaining population structure 

unaccounted by ancestral PCs. We assume that bk = b1, k, …, bnk, k
T ∼ N 0, θkΦk  with variance 

component θk and a family relatedness matrix Φk. If pedigree information is available, Φk is 

a pedigree-based kinship matrix which is sparse by nature. However, in practice, pedigree 

information is often unavailable or incomplete. In this case, Φk can be estimated using 

a sparse genetic relatedness matrix, which was justified in previous studies28,47,48. The 

remaining variables are defined in the same way as those in the GLM (1). We calculate

Σk = Rk + θ kΦk, (4)

with Rk = ϕkInk for linear mixed models; and Rk = diag 1/ μi, k 1 − μi, k  for logistic mixed 

models, where μi, k is the fitted value for individual i under the null model (3), and obtain 

ek = Y k − μk /ϕk. Note that we allow for heteroskedastic models with group-specific residual 

variance components in both linear models and linear mixed models for quantitative traits.

Rare variant summary statistics stored by MetaSTAARWorker

We describe the rare variant summary statistics that are stored by MetaSTAARWorker, 

including individual variant score statistics Uk, sparse weighted LD matrices Gk
TΣk

−1Gk and 

low-rank matrices Λk that account for covariate effects, as defined below.

For the kth study, let Gk denote the genotype matrix of rare variants below a user-specified 

MAF threshold, and Σk is defined by (2) and (4) for GLM and GLMM, respectively. 

MetaSTAARWorker computes and shares a vector of score statistics Uk = Gk
Tek, a sparse 

weighted LD matrix Gk
TΣk

−1Gk, and a matrix Λk = Gk
TΣk

−1Xk Xk
TΣk

−1Xk
−1/2

 which captures the 

covariate effects. In WGS/WES data, more than 97% of the variants have MAF < 0.01 

and around 46% of variants are singletons1, hence the genotype matrix Gk is highly sparse. 

As the sparse weighted LD matrix Gk
TΣk

−1Gk is calculated with Gk in sparse format, its 

storage cost is benchmarked to be approximately O Mk . Λk has the same number of 
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rows as Uk and the same number of columns as Xk, which implies that Λk is a low-rank 

matrix and can be stored efficiently as O Mk . Hence the variance-covariance matrix of Uk

can be calculated by Cov Uk = Gk
TΣk

−1Gk − ΛkΛk
T and shared efficiently as O Mk . Note that 

MetaSKAT, RareMetalWorker and SMMAT directly store the variance-covariance Cov Uk

with dimension Mk × Mk in the dense matrix format. Hence the storage cost of these methods 

is O Mk
2 . The MAF threshold can be specified based on the relative sample size between 

studies to ensure that all rare variants in the pooled analysis are included in the meta-

analysis. Additionally, for unrelated samples (Σk = ϕkInk), the sparse weighted LD matrix 

reduces to Gk
TΣk

−1Gk = ϕk
−1Gk

TGk which is phenotype-independent (up to a scaling constant 

ϕk
−1

). Thus, MetaSTAARWorker could further save computation resources in phenome-wide 

association studies by only storing Gk
TGk under this setting.

To store and share the variance-covariance information of all rare variants across the 

genome, we computed the sparse weighted LD matrix for each consecutive region of 500 

kb in length. In each region, any non-zero value in the 500-kb banded window (defined by 

a parallelogram with a side length of 500 kb) was stored (Figure 1b). The 500-kb banded 

windows guarantee the LD information of rare variants whose distances within 500 kb could 

be recovered. In practice, users can determine the bandwidth of the sparse weighted LD 

matrices to be shared.

Meta-analysis of rare variant association tests

We are interested in testing the association between rare variants in a variant set and 

phenotype via meta-analysis. For a given variant set, let M be the total number of 

rare variants, defined by the combined MAF in the meta-analysis of all K studies. In 

WGS/WES rare variant meta-analysis, some variants may often be observed in only a 

subset of studies but not in others (Supplementary Table 1). As such, for the kth study, let 

Uk = Uk, 1 , …, Uk, M
T
 denote the extended vector of Uk = Uk, 1, …, Uk, Mk

T, where Uk, i = Uki

if variant i is observed in the kth study and Uk, i = 0 otherwise. Let Λk = Λk, 1 , …, Λk, M
T

denote the extended matrix of Λk = Λk, 1, …, Λk, Mk
T, where Λk, i = Λk, i if variant i is observed 

in the kth study and Λk, i = 0 otherwise. Let Gk
TΣk

−1Gk = σ i , j M × M denote the extend matrix 

of Gk
TΣk

−1Gk = σij Mk × Mk, where σ i , j = σij if both variant i and variant j are observed in kth 

study and σ i , j = 0 otherwise. Note that a variant is removed from the meta-analysis if it 

fails the quality control in any of the studies. We denote U = ∑k = 1
K Uk = U 1 , …, U M

T
 and 

hence Cov U = ∑k = 1
K Cov Uk = ∑k = 1

K Gk
TΣk

−1Gk − ΛkΛk
T
. For meta-analysis of burden test using 

MetaSTAAR, the test statistic is given by

QBurden−MS = ∑
j = 1

M
w j U j

2

,

where w j  is the weight defined as a function of the combined minor allele frequency, for 

the jth variant8,26. QBurden−MS asymptotically follows a chi-square distribution with 1 degree 
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of freedom under the null hypothesis, and its P value can be obtained analytically while 

accounting for LD between variants8,24.

For meta-analysis of SKAT using MetaSTAAR, the test statistic is given by

QSKAT−MS = ∑
j = 1

M
w j

2 U j
2 .

QSKAT−MS asymptotically follows a mixture of chi-square distributions under the null 

hypothesis, and its P value can be obtained analytically while accounting for LD between 

variants8,24.

For meta-analysis of ACAT-V using MetaSTAAR, the test statistic is given by

QACAT−V − MS = w2MAF 1 − MAF tan 0.5 − p 0 π + ∑
j = 1

M′

w j
2 MAF j 1 − MAF j tan 0.5 − p j π ,

where M ′ is the number of variants with the combined cumulative minor allele count 

(cMAC) greater than 10, MAF j  is the combined minor allele frequency of individual variant 

j in meta-analysis, and p j  is the association P value of variant j corresponding the individual 

variant score statistics U j  for those variants with combined cMAC > 10. p 0  is the burden 

test P value of extremely rare variants with combined cMAC ≤ 10 and w2MAF 1 − MAF
is the average of the weights w j

2 MAF j 1 − MAF j  among the extremely rare variants with 

combined cMAC ≤ 10. QACAT−V − MS can be well approximated by a Cauchy distribution under 

the null hypothesis, and its P value can be obtained analytically while accounting for LD 

between variants13.

Given a collection of L annotations, let Ajl denote the lth annotation for the jth variant. We 

define the MetaSTAAR-O test statistic as

TMetaSTAAR−O = 1
3 A ∑

a1, a2 ∈ A
TMetaSTAAR−B a1, a2 + TMetaSTAAR−S a1, a2 + TMetaSTAAR−A a1, a2

= 1
3 A ∑

a1, a2 ∈ A
∑

l = 0

L tan 0.5 − pBurden−MS, l, a1, a2 π
L + 1 +

tan 0.5 − pSKAT−MS, l, a1, a2 π
L + 1 +

tan 0.5 − pACAT−V − MS, l, a1, a2 π
L + 1 ,

where pBurden−MS, l, a1, a2 , pSKAT−MS, l, a1, a2 , and pACAT−V − MS, l, a1, a2  are the P values of

QBurden−MS, l, a1, a2 = ∑
j = 1

M
π j , lw j , a1, a2 U j

2

,

QSKAT−MS, l, a1, a2 = ∑
j = 1

M
π j , lw j , a1, a2

2 U j
2 ,
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QACAT−V − MS, l, a1, a2 = π ⋅ lw a1, a2
2 MAF 1 − MAF tan 0.5 − p 0 , l π

+ ∑
j = 1

M′

π j , lwj, a1, a2
2 MAF j 1 − MAF j tan 0.5 − p j π ,

respectively, and their calculations use the study-specific rare variant summary statistics: 

the score statistics Uk, the sparse weighted LD matrix Gk
TΣk

−1Gk and the low-rank matrix 

Λk that accounts for covariate effects. Here π j , l = rank A j , l
m , where m is the number of 

variants across the whole genome, w j , a1, a2 = Beta MAF j ; a1, a2  with a1, a2 = 1, 25  or 1, 1 , 

and π ⋅ lw a1, a2
2 MAF 1 − MAF  is the average of the weights π j , lw j , a1, a2

2 MAF j 1 − MAF j  among 

the extremely rare variants with combined cMAC ≤ 10. The P value of TMetaSTAAR−O can be 

calculated by

pMetaSTAAR−O = 1
2 − arctan TMetaSTAAR−O

π .

MetaSTAAR-O is an omnibus test that has a robust power with respect to the sparsity of 

causal variants and the directionality of effects of causal variants in a variant set, as well as 

variant multi-facet functions and MAFs.

Conditional meta-analysis using MetaSTAAR

We implemented conditional analysis in MetaSTAAR to perform meta-analysis of rare 

variant association tests adjusting for a given list of known variants49. MetaSTAARWorker 

generates the score statistics vector of the known variants and the variance-covariance matrix 

between rare variants in the variant set and known variants. Note that the known variants 

are not subject to the MAF threshold. Following the notations before, let Gk
c  denote the 

nk × M c  genotype matrix of M c  known variants to be adjusted for in conditional analysis. 

The score statistics vector and the corresponding variance-covariance matrix of these 

adjusted variants are given by Uk
c = Gk

c Tek and Cov Uk
c = Gk

c TPkGk
c , respectively, where 

Pk = Σk
−1 − Σk

−1Xk Xk
TΣk

−1Xk
−1

Xk
TΣk

−1
. The covariance matrix between rare variants in the variant 

set and adjusted variants is given by Cov Uk, Uk
c = Gk

TPkGk
c . MetaSTAAR additionally 

requires these three components to perform conditional analysis from each study, i.e. Uk
c , 

Cov Uk
c , and Cov Uk, Uk

c , which can be stored in MetaSTAARWorker.

To perform conditional meta-analysis of rare variant association tests, we calculate the 

adjusted score statistics vector

Uadj = U − ∑
k = 1

K
Cov Uk, Uk

c ∑
k = 1

K
Cov Uk

c
−1

∑
k = 1

K
Uk

c ,

and hence
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Cov Uadj = Cov U − ∑
k = 1

K
Cov Uk, Uk

c ∑
k = 1

K
Cov Uk

c
−1

∑
k = 1

K
Cov Uk, Uk

c
T

,

where Uk, Cov Uk
c

, and Cov Uk, Uk
c

 are the extended vector and matrix of Uk
c , Cov Uk

c , 

and Cov Uk, Uk
c  are defined in the same way as discussed before. The test statistics of 

conditional analysis of each test in MetaSTAAR are calculated in the same way as discussed 

before, with Uadj and Cov Uadj  instead of U and Cov U .

Lipid Traits

Conventionally measured plasma lipids, including total cholesterol, LDL-C, HDL-C, and 

triglycerides, were included for analysis. LDL-C was either calculated by the Friedewald 

equation when triglycerides were <400 mg/dl or directly measured. Given the average effect 

of statins, when statins were present, total cholesterol was adjusted by dividing by 0.8 

and LDL-C by dividing by 0.7. Triglycerides were natural log transformed for analysis. 

Phenotypes were harmonized by each cohort and deposited into the dbGaP TOPMed 

Exchange Area (https://www.ncbi.nlm.nih.gov/gap).

Meta-analysis of lipid traits in the TOPMed WGS data

The TOPMed WGS data consist of multi-ethnic related samples1. Race/ethnicity was 

defined using a combination of self-reported race/ethnicity from participant questionnaires 

and study recruitment information (Supplementary Note)31. We applied MetaSTAAR to 

perform rare variant meta-analysis of four quantitative lipid traits (LDL-C, HDL-C, TG 

and TC) using 14 study cohorts from the TOPMed Freeze 5 WGS data. LDL-C and TC 

were adjusted for the presence of medications as before27. For each study, we first fit a 

linear regression model adjusting for age, age2, sex for each race/ethnicity-specific group. In 

addition, for Old Order Amish (OOA), we also adjusted for APOB p.R3527Q in LDL-C and 

TC analyses and adjusted for APOC3 p.R19Ter in TG and HDL-C analyses27.

We performed rank-based inverse normal transformation of the residuals and rescaled these 

residuals by the standard deviation of the original phenotype within each race/ethnicity-

specific group. We then fit a heteroskedastic linear mixed model (HLMM) for the rank 

normalized residuals, adjusting for 10 ancestral principal components, ethnicity group 

indicators, and a variance component for empirically derived sparse kinship matrix plus 

separate ancestry-specific residual variance components to account for population structure 

and relatedness. The output of HLMM was then used to generate rare variant summary 

statistics by MetaSTAARWorker (Supplementary Table 2).

We next applied MetaSTAAR-O to perform rare variant meta-analysis based on the rare 

variant summary statistics of the 14 study cohorts, including gene-centric analysis using 

five variant functional categories (putative loss-of-function rare variants, missense rare 

variants, synonymous rare variants, promoter rare variants and enhancer rare variants) for 

each protein-coding gene. The WGS rare variant meta-analysis was performed using the 

R package MetaSTAAR (version 0.9.6, https://github.com/xihaoli/MetaSTAAR). The WGS 
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rare variant pooled analysis was performed using the R package STAAR (version 0.9.6, 

https://github.com/xihaoli/STAAR).

Meta-analysis of lipid traits in TOPMed and UK Biobank data

For TOPMed lipids data consisting of 30,138 samples, we generated the rare variant 

summary statistics using MetaSTAARWorker but treated all samples as one study cohort.

We downloaded VCF format files for WES data of 200,643 UK Biobank participants3. 

Quality control measures were performed in the following steps2. We first removed the 

variants with Hardy-Weinberg Equilibrium P < 1 × 10−15. Second, any SNV genotype with 

read depth less than seven reads (DP < 7) and indel genotype with DP < 15 was changed to a 

no-call. Third, any heterozygous genotype was changed to a no-call if any of the conditions 

are satisfied: (1) genotype quality < 20; (2) allele balance < 0.15 for SNV and allele balance 

< 0.20 for indel; (3) binomial test on allelic balance using allelic depth P < 1 × 10−3. We 

finally excluded the variants with more than 10% missing genotypes.

We harmonized four lipid traits (LDL-C, HDL-C, TG and TC) of the UK Biobank WES 

data. TC was adjusted by dividing the value by 0.8 among individuals reporting lipid 

lowering medication use or statin use at any time point. For LDL-C, we excluded individuals 

with LDL-C < 10 mg/dl or TG > 400 mg/ml. LDL-C was then adjusted by dividing the value 

by 0.7 among individuals reporting lipid lowering medication use or statin use at any time 

point. TG levels were natural logarithm transformed. A total of 185,712, 175,109, 190,262, 

and 190,415 individuals had data on LDL-C, HDL-C, TG, and TC, respectively.

We fit a linear mixed model adjusting for age, age2, sex, and the first 10 ancestral principal 

components. Residuals were then rank-based inverse-normal transformed and multiplied by 

the standard deviation. We next fit a linear mixed model (LMM) for the rank normalized 

residuals, adjusting for age, age2, sex, and the 10 ancestral principal components, and 

a variance component for an empirically-derived sparse kinship matrix to account for 

population structure and relatedness. The output of LMM was then used to generate rare 

variant summary statistics, including score statistics and sparse weighted LD matrices, by 

MetaSTAARWorker.

We performed meta-analysis based on the rare variant summary statistics of the TOPMed 

data and the UK Biobank WES data, including gene-centric meta-analysis using three 

variant functional categories (putative loss-of-function rare variants, missense rare variants 

and synonymous rare variants) for each protein-coding gene using MetaSTAAR. We 

incorporated the two MAF weights8 and MetaSVM39 (for missense rare variants only) 

as annotations in MetaSTAAR-O. We additionally performed rare variant set gene-centric 

analysis of the three coding masks based on the rare variant summary statistics of the UK 

Biobank WES data. The rare variant meta-analysis was performed using the R package 

MetaSTAAR (version 0.9.6).

Genome build

All genome coordinates are given in NCBI GRCh38/UCSC hg38.
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Statistics and reproducibility

No statistical method was used to predetermine sample size. The meta-analysis consists of 

fourteen study cohorts of TOPMed Freeze 5 and had 30,138 samples with lipid traits. The 

UK Biobank whole-exome sequencing data had 190,476 samples with lipid traits. We did 

not use any study design that required randomization or blinding.

Extended Data

Extended Data Fig. 1 |. Quantile-quantile plots for gene-centric unconditional meta-analysis of 
lipid traits LDL-C, HDL-C, TG and TC using TOPMed WGS data (n = 30,138).
MetaSTAAR-O is a two-sided test. Different symbols represent the MetaSTAAR-O P 
values of different functional categories of individual genes (putative loss-of-function, 
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missense, synonymous, promoter and enhancer). The promoter and enhancer of a gene 

are the promoter and the GeneHancer region that overlap with CAGE sites for a given 

gene, respectively (Methods). Four lipid traits were analyzed using MetaSTAAR-O: LDL-

C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, 

triglycerides; and TC, total cholesterol.

Extended Data Fig. 2 |. Manhattan plots for gene-centric unconditional meta-analysis of lipid 
traits LDL-C, HDL-C, TG and TC using TOPMed WGS data (n = 30,138).
The horizontal line indicates the genome-wide MetaSTAAR-O P value threshold of 

5.00 × 10−7. The significant threshold is defined by multiple comparisons using the 

Bonferroni correction (0.05/ 20, 000 × 5 = 5.00 × 10−7). MetaSTAAR-O is a two-sided test. 

Different symbols represent the MetaSTAAR-O P values of different functional categories of 

individual genes (putative loss-of-function, missense, synonymous, promoter and enhancer). 

The promoter and enhancer of a gene are the promoter and the GeneHancer region that 

overlap with CAGE sites for a given gene, respectively (Methods). Four lipid traits were 

analyzed using MetaSTAAR-O: LDL-C, low-density lipoprotein cholesterol; HDL-C, high-

density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol.
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Extended Data Fig. 3 |. Scatterplots comparing gene-centric unconditional meta-analysis P 
values from MetaSTAAR-O with STAAR-O from the joint analysis of pooled individual-level 
data (STAAR-O-Pooled) of lipid traits LDL-C, HDL-C, TG and TC using TOPMed WGS data 
(n = 30,138).
Each dot represents a functional category of a gene with x-axis label being the −log10 P
of STAAR-O-Pooled and y-axis label being the −log10 P  of MetaSTAAR-O (n = 30,138). 

The horizontal and vertical lines indicate the genome-wide P value threshold of 5.00 × 10−7. 

The significant threshold is defined by multiple comparisons using the Bonferroni correction 

(0.05/ 20, 000 × 5 = 5.00 × 10−7). Both MetaSTAAR and STAAR are two-sided tests. LDL-

C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, 

triglycerides; TC, total cholesterol.
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Extended Data Fig. 4 |. Scatterplot of P values comparing MetaSTAAR-O to Burden-MS, SKAT-
MS and ACAT-V-MS (MS is short for MetaSTAAR) for quantitative and dichotomous traits 
when 15% of rare variants are causal variants.
In each simulation replicate, a 2-kb region was randomly selected as the signal region. 

Within each signal region, variants were randomly generated to be causal based on a 

multiple logistic model and on average there were 15% causal variants in the signal region. 

The effect sizes of causal variants were βj = c0 log10MAF j . For quantitative traits, c0 = 0.07; 

for dichotomous traits, c0 = 0.11. All causal variants had positive effect sizes. Power was 

estimated as the proportion of the P values less than α = 10−7 based on 104 replicates. 

Burden-MS, SKAT-MS, ACAT-V-MS and MetaSTAAR-O are two-sided tests. Five studies 

were included in meta-analysis, each with a sample size of 10,000.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

This paper used the TOPMed Freeze 5 WGS data and lipids phenotype data. Genotype 

and phenotype data are both available in database of Genotypes and Phenotypes. 

The TOPMed WGS data were from the following fourteen study cohorts (accession 

numbers provided in parentheses): Framingham Heart Study (phs000974.v1.p1); Old 

Order Amish (phs000956.v1.p1); Jackson Heart Study (phs000964.v1.p1); and Multi-

Ethnic Study of Atherosclerosis (phs001416.v1.p1); Atherosclerosis Risk in Communities 

Study (phs001211); Cleveland Family Study (phs000954); Cardiovascular Health Study 

(phs001368); Diabetes Heart Study (phs001412); Genetic Study of Atherosclerosis Risk 

(phs001218); Genetic Epidemiology Network of Arteriopathy (phs001345); Genetics of 

Lipid Lowering Drugs and Diet Network (phs001359); San Antonio Family Heart Study 

(phs001215); Genome-wide Association Study of Adiposity in Samoans (phs000972) and 

Women’s Health Initiative (phs001237). The sample sizes, ancestry and phenotype summary 

statistics of these cohorts are given in Supplementary Table 1. The UK Biobank analyses 

were conducted using the UK Biobank resource under application 52008.

The functional annotation data are publicly available and were downloaded 

from the following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/

download); ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/

latest/user-guide/download); LINSIGHT (https://github.com/CshlSiepelLab/LINSIGHT); 

FATHMM-XF (http://fathmm.biocompute.org.uk/fathmm-xf); FANTOM5 CAGE (https://

fantom.gsc.riken.jp/5/data); GeneCards (https://www.genecards.org; v4.7 for hg38); and 

Umap/Bismap (https://bismap.hoffmanlab.org; ‘before March 2020’ version). In addition, 

recombination rate and nucleotide diversity were obtained from Gazal et al50. The whole-

genome individual functional annotation data was assembled from a variety of sources and 
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Figure 1 |. MetaSTAAR workflow.
a, Input data of MetaSTAAR for each study, including genotypes, phenotypes, 

covariates and sparse genetic relatedness matrix are prepared. b, Summary statistics, 

including individual variant score statistics, sparse weighted LD matrices and low-rank 

projection matrices accounting for covariate effects for each study are generated using 

MetaSTAARWorker. c, All rare variants in the merged variant list are functionally annotated 

and two types of variant sets are defined: gene-centric analysis by grouping variants into 

functional genomic elements for each protein-coding gene; and genetic region analysis using 

agnostic sliding windows. d, The MetaSTAAR-O P values for all variant sets defined in c 
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are obtained. e, The conditional MetaSTAAR-O P values for all significant variant sets from 

d after adjusting for known variants are obtained and reported.
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Table 2 |

Comparison of computation time and storage of MetaSTAARWorker and RareMetalWorker.

Region Sample 
size No. of SNVs

MetaSTAARWorker RareMetalWorker 
(RMW)

RMW/
MetaSTAARWorker

CPU 
hours (h)

Storage 
(GB)

CPU hours 
(h)

Storage 
(GB)

CPU 
hours 
Ratio

Storage 
Ratio

chromosome 6: 160 
Mb – 161 Mb

4,791 35,993 0.22 0.01 2.05 1.77 10.4 158.2

12,316 52,853 0.30 0.02 10.47 3.77 39.5 180.8

30,138 88,845 0.40 0.04 69.94 10.14 195.2 227.2

chromosome 16: 0 Mb 
−12 Mb

4,791 666,256 2.58 0.30 80.28 65.34 33.4 220.2

12,316 978,314 3.83 0.56 358.04* 123.94* 94.7 223.3

30,138 1,617,138 5.92 1.11 2303.78* 328.79* 402.2 296.8

Runtime and storage of MetaSTAARWorker v0.9.6 (linear model) and RareMetalWorker v4.15.1 (linear model) to generate summary statistics, 
respectively. Three datasets from TOPMed Freeze 5 total cholesterol WGS data were used in this benchmarking test: MESA cohort (n = 4,791); 
TOPMed Freeze 3 data (n = 12,316, including 4 study cohorts FHS, JHS, MESA and OOA described in the Supplementary Note) and TOPMed 
Freeze 5 data (n = 30,138, including 14 study cohorts described in the Supplementary Note). Two genetic regions were considered in this test: all 
uncommon variants (MAF < 5%) from 160 Mb to 161 Mb on chromosome 6 and all uncommon variants from 0 Mb to 12 Mb on chromosome 
16. The sparse-weighted LD matrices were computed using 500-kb banded windows. MetaSTAARWorker was performed at a 2.10 GHz computing 
core with 12 GB memory and RareMetalWorker was performed at the same core with 30 GB memory. No. of SNVs, number of uncommon variants 
(MAF < 5%) in the region. MESA, Multi-Ethnic Study of Atherosclerosis; FHS, Framingham Heart Study; JHS, Jackson Heart Study; OOA, Old 
Order Amish.

*
Predicted numbers based on partial results.
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