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Abstract

Although we are generally good at observing a busy scene and
determining whether it contains one agent pursuing another,
we are not immune to making errors and may identify a pur-
suit when there is none. Further, we may have difficulty ar-
ticulating exactly what information allowed us to determine
whether there was a pursuit. To gain a better measure of when
people correctly or erroneously detect pursuit, we designed a
novel pursuit detection task. To compare performance given
different strategies, we developed a cognitive model that can
perform this task. The results of our pursuit detection exper-
iment indicate that, indeed, people typically identify pursuit
events correctly, but they make infrequent yet systematic er-
rors for particular scenes. When the model implements spe-
cific strategies, simulation results are well correlated with em-
pirical results. Moreover, the model makes the same errors as
human participants. We show how the empirical results can be
accounted for in terms of decision criteria indicated by high
performing model strategies.

Keywords: pursuit detection; chasing; relations; dynamic
scenes

Introduction
To determine whether one object is pursuing another, peo-
ple must track the objects over time and compare their lo-
cations. The psychological notion of pursuit can implicate
intentionality: a cat intends to catch the mouse it pursues
(Schultz & Frith, 2022). Thus, the perception of pursuit is
critical to our understanding of the behavior of those around
us. Perceptual failures can yield maladaptive behavior: for
example, a 2022 CCTV video shows how a group of CrossFit
athletes running through a bar’s outdoor seating area caused
mass panic among its patrons who, wrongly thinking that the
athletes were running away from some danger, fled the bar
and ran with the athletes (Bass, 2022). If we can better un-
derstand where failures in pursuit detection originate, we can
anticipate such problems.

A large body of research has explored the features that
support and hamper pursuit detection. Whereas early re-
search used free response questions or animacy rating scales
(e.g., Bassili, 1976; Dittrich & Lea, 1994; Heider & Simmel,
1944), recent pursuit studies used tasks designed to probe
the perception of pursuit in dynamic stimuli (e.g., Meyerhoff,
Huff, & Schwan, 2013). These latter studies sought to test
various cues that impact how people identify a ‘pursuer’ ob-
ject (the agent pursuing something) and a ‘target’ object (the
agent being pursued): for instance, the number of objects in a
scene (Gao et al., 2019; Meyerhoff et al., 2013), the direction
that the pursuer faces (Gao, McCarthy, & Scholl, 2010; Gao,
Newman, & Scholl, 2009), the degree to which the pursuer
deviates from the most direct path to the target (Gao et al.,
2019; Gao et al., 2009; Meyerhoff et al., 2013), and the dis-

tance between the pursuer and target (Meyerhoff, Schwan, &
Huff, 2014a,b) can all affect detection of pursuit.

However, the tasks used in these studies have two limita-
tions in their ability to identify factors contributing to suc-
cess or failure in pursuit detection. (A) They did not isolate
the pursuit detection task from other cognitively demanding
tasks. For example, in a typical task, participants looked for
pursuit among a field of identical, moving objects, resulting
in potential difficulties with tracking the objects over time.
(B) They did not provide a full picture of the error patterns
produced by people; when participants incorrectly responded
that pursuit was occurring, they were never asked to indicate
which objects they believed were the pursuer and the target.
In addition, many studies showed a complete video before
asking participants to respond, limiting their ability to deter-
mine at what point in the video participants recognized that
pursuit was occurring.

In this paper, we present a novel experiment designed to
provide a better understanding of the factors that support or
impair perception of pursuit. Additionally, we describe a
computational model that explores the procedural steps un-
dertaken to detect pursuit. Because human participants often
cannot articulate the approach they used to complete a task,
such a model has the potential to allow us to test pursuit de-
tection strategies (Briggs et al., 2023; Kon & Francis, 2022,
2023). The results from the behavioral experiment are used
to evaluate computational strategies and stopping rules and
derive hypotheses about how people complete the task. Fur-
thermore, the model makes predictions about: particular dy-
namic scenes that are more likely to induce errors in pursuit
detection, and the type and timing of such errors.

Experiment 1
This experiment tested two robust patterns of pursuit detec-
tion observed in previous work: people are faster to detect
pursuit than its absence, and people are slower to detect pur-
suit as set size increases. It presented participants with a
series of videos of colored circles moving on a black back-
ground. The videos depicted either 2 or 6 circles. Half the
videos depicted a red circle pursuing a circle of another color
(‘pursuit present’ trials), and the other half depicted no such
pursuit (‘pursuit absent’ trials).

The experiment addressed the two limitations identified
above. (A) To make it easier to re-identify and track the ob-
jects over time, the circles were all given different colors and
the potential pursuer circle was always red. On each trial,
participants first assessed whether the red circle was pursuing
another circle by tapping an appropriate key, which caused
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the video to pause. (B) To identify error patterns, after a par-
ticipant indicated that there was pursuit, they were instructed
to click on the target circle. They did this even on trials where
they were incorrect, and no actual pursuit was occurring. (On
trials where participants indicated an absence of pursuit, they
used the mouse to click on any circle.)

Circles appear and 
move until

Stage 1 response

responded
‘absent’

responded
‘present’

Click the circle being
chased by the red circle.

Click any circle in the
video to continue.

Feedback provided
and prompt to 
start next trial

Prompt for Stage 2
response with paused
video until response

Fixation cross
at initial red circle

position for 1000 ms

Correct.
Press the N-key to start the next trial

tim
e

Figure 1: Stimulus sequence for an experimental trial with set size
6. After seeing a fixation cross that indicated the starting position
of the red circle, participants saw a video of moving circles, which
are indicated here by the white arrows. (Note that participants did
not see such arrows; they are only included on the static image here
in order to give the reader a sense of their motion. The entire video
is here: https://osf.io/49pra.) After participants pressed a key
to indicate whether they thought the red circle was pursuing another
circle, the video paused and a prompt indicating the Stage 2 task ap-
peared above. After they clicked on a circle, feedback and a prompt
to initiate the next trial were provided.

Method
Participants 99 participants (mean age = 42.05 years; 46
females, 52 males, 1 prefer not to answer) completed the
study on the Amazon Mechanical Turk online platform in
exchange for US$2.50. All but one participant reported
normal color vision; the participant who reported suspected
colorblindness yielded 97% accurate responses, so we re-

tained their data. Another participant yielded low accuracy
data (61% accurate responses, > 2 standard deviations from
pooled mean accuracy). We analyzed the remaining data from
n = 98 participants.

Materials, Procedure and Design The study was devel-
oped using custom JavaScript and HTML code within the
nodus-ponens package (Khemlani, 2022). Figure 1 pro-
vides a schematic example of the videos participants saw in a
trial. A trial began with a black square and a fixation cross
to highlight where the pursuer circle would be in a video
that would begin 1000 ms later. The video showed 2 or
6 uniquely colored circles moving at the same fixed speed
for 22 seconds. Half the videos were pursuit-present, half
pursuit-absent, and the videos varied the color of the target
circle. Circles could take on one of five separate colors that
came from a colorblind-friendly palette, and so materials con-
sisted of 20 separate videos. The experiment code and all
videos are available here: https://osf.io/65ezq/.

For each video, the study assigned circles a random initial
direction and position such that no circle overlapped with an-
other. Circles bounced off the edges of the square. If one cir-
cle contacted another, it continued on its trajectory and passed
through that circle. Every 50 ms, the red circle updated direc-
tion such that it went towards the present location of the target
circle. The red circle was visible for the entirety of the video,
i.e., it overlapped all other circles on contact. The remaining
circles were drawn on randomized layers, but all videos de-
picting pursuit contained no frame in which the target circle
was completely covered by a distractor. Likewise, no video
showed the red circle contacting its target.

After navigating to the webpage with the study, partici-
pants saw instructions that described the task, informed them
that the circle in pursuit was always red, described the role of
the fixation cross, and presented a few example trials. After
the participants pressed a key to initiate a trial and the fixation
cross appeared, circles then appeared and moved until partici-
pants pressed a key indicating the presence or absence of pur-
suit (Stage 1 response). For the duration of the circles’ move-
ment, text remained on the screen that reminded participants
of the response key assignments. Participants responded us-
ing the ‘F’- and ‘J’-keys on their keyboard to indicate whether
a pursuit was present or absent; key assignment was coun-
terbalanced across participants. The video paused on a key
press and the study then prompted participants to click a cir-
cle on the screen (Stage 2 response). They used their mouse
to click on the target circle for ‘present’ responses, and to
click on any circle in the video for ‘absent’ responses. Af-
ter they clicked, the display became black and feedback ap-
peared on the screen. They received feedback for all trials
(“Correct.”; ”Incorrect - red was chasing.”; “Incorrect - no
chasing.”; “Incorrect circle.”) as well as notifications if their
Stage 1 response was too fast (< 500 ms) or too slow (> 20
s). We dropped trials with reaction times that were too fast or
too slow from analysis.

Participants received 4 practice trials and then carried out
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Figure 2: Plot A: Mean reaction times for Experiment 1. Plots B-D: Mean model reaction time for three different strategies, with correlations
between the data and model results for each strategy. All response times were calculated from correct trials. Error bars represent one standard
error of the mean.

32 experimental trials in randomized order. The experiment
yielded a 2 (pursuit present vs. absent) x 2 (2 circles vs. 6 cir-
cles) repeated-measures design, with those 4 total conditions
repeating 8 times. Across the 8 repetitions, the target circle’s
color was selected from 5 possible values by rotating values
across participants using a Latin square.

Results and Discussion
We ran three ANOVA models in R (version 4.3.1; R Core
Team, 2023) using the ez package (Lawrence, 2016), one that
analyzed participants’ Stage 1 accuracy, one that analyzed
Stage 2 accuracy, and one that analyzed reaction times.

Participants were largely accurate for each individual con-
dition, i.e., they were accurate on 94% of the trials. How-
ever, the data revealed slight but reliable main effects, e.g.,
participants were less accurate in assessing the presence of
pursuits when multiple distractors were present. (For brevity,
we focus our analyses on reaction time, but full analyses are
available at https://osf.io/c2dju.)

The ANOVA on reaction times, which was run for correct
trials only (see Figure 2A for mean reaction times of these
trials), showed that participants were significantly slower for
absent trials than present trials, F(1,97) = 61.28, p < .001,
ηp

2 = .050. They were also slower when more objects were
in the display, F(1,97) = 371.52, p < .001, ηp

2 = .164. The
interaction between the present/absent condition and set size
was not significant, F(1,97) = 0.03, p = .871, ηp

2 < .001.
These results suggest that the greater the number of ob-

jects in a scene, the longer it takes to detect whether there
is a pursuit, which replicates previous findings (Meyerhoff
et al., 2013). Likewise, as the number of objects in a scene
increases, participants are more likely to misjudge whether
there is a pursuit and misidentify the target circle. These re-
sults establish benchmark patterns in pursuit detection: reac-
tion times increase as set size increases, and reaction times
tend to be greater for absent than present trials.

A key strength of this experimental paradigm is that it can
provide detailed information on human error patterns. Due
to space constraints, we focus on the errors for one particular
video (hereafter called ‘video 1’ and provided at https://

osf.io/52yuv). This was a pursuit-absent trial where a dis-
proportionate number of participants incorrectly responded
‘present’ in Stage 1. In fact, this video received 45% of the to-
tal incorrect ‘present’ responses across all videos. The Stage
2 responses to this video, in which participants indicated what
target they falsely believed the red circle was pursuing, are
depicted in the left graph of Figure 3A. As the graph indi-
cates, nearly all participants believed the red circle was purs-
ing the green circle. On reviewing video 1, which had 6 cir-
cles, we believe that the red circle could be interpreted as
tracking the green circle from about the 4.5 second mark un-
til the 7 second mark, after which time it heads away from
the green circle. Notably, the mean Stage 1 reaction time for
these incorrect trials was M = 5.73, SD = 2.06, which was
during that window of time when the red circled appeared to
be pursuing the green circle, whereas the mean time for cor-
rect responses was M = 7.29, SD = 2.77, after it may have
become apparent that there was no pursuit.

As video 1 shows, systematic errors in pursuit perception
may occur at various points of a sequence of movements. If
errors are robust, then a cognitive model of pursuit detection
should be able to simulate them. We turn to the development
of a computational model that explains both benchmark pat-
terns of pursuit detection as well as errors.

Model Simulations
We developed a computational model to simulate the pro-
cesses that underlie pursuit detection behavior. A core idea
of this model is that perception depends on directing spatial
attention to task-relevant locations in a scene (Posner, 1980;
Ullman, 1984). For example, to determine where an object is
going, you attend to the object and then scan forward along
the object’s path, allowing your attention to be drawn to any
other objects that overlap this scan pattern. To simulate the
relationship between perception and attention, we used AR-
CADIA (Bridewell & Bello, 2016), a computational platform
designed to explore attention’s role in perception, cognition,
and action. ARCADIA has been used to model several other
attentionally demanding visual tasks, including multiple ob-
ject tracking (Lovett, Bridwell, & Bello, 2019) and enumera-
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Figure 3: A: Percent of trials where a particular colored circle was
selected as the target after observers incorrectly responded ‘present’
on a difficult pursuit-absent video (‘video 1’). B: Sensitivity analysis
showing, for each strategy, what pairs of parameter values resulted in
correct ‘Absent’ responses or incorrect ‘Present’ responses for video
1. The green coloring indicates that the model always selected the
green circle as the target after an incorrect ‘Present’ response.

Our objective in developing the model was to outline a gen-
eral strategy for detecting pursuit, while providing parameters
to tweak its strategy and stopping rules, in order to explore
the space of possible human strategies. The general strategy
works as follows. 1) Pick out the red circle, track it as it
moves, and determine its trajectory. 2) Scan forward along
that trajectory to determine whether the red circle is moving
towards another circle. 3) If the scan intersects another cir-
cle, increment an intersection count for that circle. 4) Repeat
steps 1-3. Over time, this strategy builds up a representation
of how often the red circle appears to be moving towards each
other circle (how often the scan along the red circle’s trajec-
tory intersects that circle). If the red circle is frequently seen
moving towards another particular circle, then that circle is
likely the one being pursued.

The model’s general strategy is accompanied by three stop-
ping rules indicating when to respond ‘present’ or ‘absent’ on
a trial. 1) If the intersection count for any circle exceeds a
threshold, respond ‘present’. That circle is likely being pur-
sued by the red circle. This means the model will respond

‘present’ more quickly if the red circle is consistently seen
moving towards another circle. 2) If a sufficient time has
passed without responding ‘present’, then respond ‘absent’.
This rule captures ending the task because there isn’t suffi-
cient evidence that pursuit is occurring. This type of ‘absent’
response will always take longer than a ‘present’ response. 3)
If, after observing a video for a short time, there are no in-
tersections observed at all, then respond ‘absent’. This rule
provides a means to short-circuit the task, producing a fast
‘absent’ response when there is no evidence of pursuit.

The pursuit model is implemented on the ARCADIA plat-
form. Further details about ARCADIA are available else-
where (e.g., Briggs et al., 2023), but we provide a high-level
description here. ARCADIA models consist of sensors, com-
ponents (e.g., see Table 1), and an attentional strategy. On
each cycle of processing, ARCADIA components operate in
parallel, taking data from the sensors, processing information,
and producing output. Afterwards, a single focus of attention
is selected from the output of all the components, according
to the model-specific attentional strategy; this strategy is a set
of priorities indicating what types of elements should receive
the focus of attention for the modeled task. Finally, the focus
of attention, as well as the output from other components, is
made available to all components as input on the following
cycle.

Table 1: Summary of model components

Component Function Support
image segmenter figure-ground

segmentation
Palmer & Rock,
1994

color highlighter pop out effect Wolfe & Horowitz,
2004

trajectory scanner scan along
trajectory

Gerstenberg et al.,
2017

scan highlighter focus on scan Bello et al., 2018
object file binder feature integration Treisman &

Gelade, 1980

An example from the pursuit model can illustrate AR-
CADIA’s operations (Figure 4, and see https://osf.io/
65ezq/ for simulation output for all videos). Here, a sen-
sor grabs a still frame from the pursuit video on each cycle.
Thus, each cycle of processing corresponds to one frame of
video, in this case 18 ms of real time. An image segmenter
component takes this image and segments out any possible
figures, like the six colored circles shown in Figure 4. Next,
a color highlighter component identifies the color of each
circle. Because this model’s attentional strategy prioritizes
focusing on objects that have been classified as “red,” the red
circle becomes the focus of attention (indicated by the small
orange box on this circle in Figure 4, during cycle A), allow-
ing information about its motion trajectory to be generated.
When sufficient information is available to calculate the red
circle’s trajectory (represented by the cyan line in Figure 4),
a trajectory scanner component projects a small window
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time
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Figure 4: Example of model performance. The relevant model component for each step is listed above the images.

forward (represented by the magenta box in Figure 4) along
this trajectory. If that window intersects another circle (Fig-
ure 4, cycle D), a scan highlighter component suggests it as
a candidate for the focus of attention. Finally, because the at-
tentional strategy prioritizes objects that have intersected the
scan even above “red” objects, the intersected circle becomes
the focus of attention, causing an object file binder to gen-
erate a representation of this object (Figure 4, cycle E), and
causing its intersection count to be incremented. See Table 1
for a summary of these components.

The model has several free parameters that can be adjusted
to change its strategy and stopping rules. The first, scan win-
dow size, is how large the scan window is. There is some
simulation-based support for the claim that scan window size
is part of a task-dependent strategy for optimizing perfor-
mance (e.g., Kon & Francis, 2022). The larger the window
is, the more likely it is to intersect a circle near the scan path,
whether that be the actual pursuit target or a distractor. For
example, the size of the scan window in the image from cycle
D in Figure 4 is large enough to intersect with the pursued
pink circle, thereby making that circle a possible focus of at-
tention. However, it is small enough that it does not intersect
the orange circle distractor.

The remaining free parameters relate to the stopping rules.
The intersection counter threshold is the number of times
the scan must intersect a circle before the model responds
‘present’. Increasing this threshold means the model must
gather more evidence before responding ‘present’, and it is
more likely to run out of time and respond ‘absent’. This
parameter interacts with maximum time, the amount of time
that must pass without responding ‘present’ before the model
will respond ‘absent’. The final stopping rule, for generat-
ing quick ‘absent’ responses, depends on two parameters: the
initial intersection threshold is the minimum number of inter-
sections that must be counted for a circle to prevent a quick
‘absent’ response, and the initial time check is the time at
which that threshold is checked. For the present simulation,
we kept these final two parameters constant while varying the
others. The initial intersection threshold was 1, and the ini-
tial check time was 185 cycles, or about 3.3 seconds, meaning
that after 3.3 seconds, if the model had not detected at least

one intersection, it gave a quick ‘absent’ response.
By varying three of the model’s free parameters, we were

able to explore a space of possible strategies. The model
could be more or less sensitive to objects that appear near the
red circle’s trajectory (scan window size), it could be faster
or slower to respond ‘present’ (intersection counter thresh-
old), and it could be faster or slower to abandon the trial and
respond ‘absent’ (maximum time).

Simulation Stimuli, Method and Procedure

We ran the model on the same set of videos shown to par-
ticipants in Experiment 1. Recall that the videos covered 2
(pursuit present vs. absent) x 2 (2 circles vs. 6 circles) x
5 (target color) conditions, for 20 total videos. Because the
model’s behavior is non-random, there was no need to repeat
some videos to produce the 32 trials provided to humans.

To see how the model performed with different strategies,
we ran simulations with three different scan window size
strategies. Strategy 1 (‘large scan window’) used a large-
sized scan window, which had a diameter that was the same
as one of the circles. Strategy 2 (‘small scan window’) used
a small scan window (0.6 times the size of a circle diame-
ter, and shown in Figure 4). Notably, these two strategies
may be overly simplistic: they assume that participants uti-
lize an identical strategy regardless of the stimuli or task dif-
ficulty. In reality, when there is a large number of distractors,
a smaller window may help to eliminate noise from nearby
objects; whereas when no distractors are present, a larger
window may allow one to determine whether the pursuer is
approaching the target more quickly. To capture this possibil-
ity, Strategy 3 (‘combination’) implemented a hybrid policy,
using a large scan window for set size 2, but a small window
for set size 6.

To examine the impact of stopping rule parameter val-
ues on performance, we also conducted sensitivity analyses
where we varied stopping rule parameter values. The max-
imum time ranged from 280 to 600 cycles from video onset
in increments of 80 (which is approximately 4.0, 5.5, 6.9,
8.4, or 9.8 seconds after circle onset), and the intersection
counter threshold ranged from 4 to 8 in integer increments.
This analysis was conducted for each window size strategy,
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and it allowed us to determine the impact of different stop-
ping parameters for each strategy.

Model Results and Discussion
Figure 2 provides a side-by-side comparison of the Exper-
iment 1 reaction time results with those of the model sim-
ulations for each of the three window size strategies. We
conducted several simulations where we systematically var-
ied the stopping rule parameter values, but the model results
shown in Figure 2 were for simulations with the following pa-
rameter values: intersection counter threshold = 8, maximum
time = 440 cycles (or about 6.9 seconds). These values were
chosen to facilitate comparison across strategies as they pro-
duced the best performance (no errors and lowest response
times) across the three strategies.

Mean response time by condition for each strategy is
shown in Figure 2B-D. For all strategies, response time is
in accord with the benchmark pattern, with response times
tending to be longer for the higher set size and for the absent
condition. However, when the model implements the combi-
nation strategy, the results have the highest correlation with
the data (correlation values are listed in Figure 2B-D).

Notably, response time for absent trials was constant across
the three strategies. This was because correct absent trials al-
ways took time equal to either initial time check (meaning a
fast ‘absent’ response due to no intersections with any circle
early in the video) or maximum time (meaning a slow ‘ab-
sent’ response after failing to detect pursuit), and these two
parameters were the same across the three models. However,
the response times for present trials varied between strategies.
Under the large scan window strategy, the model generated
fast ‘present’ responses because its larger window resulted
in more intersections with potential targets. Under the small
scan window strategy, the model generated slower ‘present’
responses—it took more time for evidence to accumulate be-
cause the smaller scan window resulted in fewer intersec-
tions. Finally, under the combination strategy, which adjusted
the window size, the model generated fast ‘present’ response
when there were no distractors (set size 2), but slower re-
sponses when distractors were present (set size 6). Essen-
tially, the combination strategy was more cautious in cases
where there was a higher risk of encountering distractors. In
doing so, it produced the best fit to the human data.

We returned to the particularly difficult video 1 to explore
whether the model could explain human performance on that
video. Given the parameters selected for the comparison to
humans in Figure 2, the model correctly responded ‘absent’
on this video. However, as we varied the stopping rule pa-
rameters (intersection counter threshold and maximum time),
a different pattern emerged (Figure 3B). Consider Strategy
3 (‘combination strategy’), which had the best fit to human
data. When intersection counter threshold was high (mean-
ing the model required a large amount of evidence to re-
spond ‘present’), the model correctly indicated that there
was no pursuit, but when this parameter was lower (meaning
less evidence was needed), the model incorrectly responded

‘present’. Critically, when it did so, it indicated that the green
circle was being pursued, just as human observers had done
(Figure 3A, left plot). The timing of its response (around 5.6
s) was also aligned with that of humans observers measured
in Experiment 1, which was during the window of time when
the red circle appeared to be moving towards the green. Thus,
the model demonstrated how an error could emerge when in-
dividuals are not careful to gather sufficient evidence before
responding ‘present’.

General Discussion

Pursuit detection has been recognized as an important area of
study, as it enables inferences about the intent of humans and
other animals. However, many questions remain about the
factors that contribute to success or failure. To better answer
those questions, this paper presents a novel experimental de-
sign for studying pursuit detection. This design isolates the
task from other demanding perceptual tasks, such as object
tracking, while providing information about the timecourse of
perception and the error patterns that emerge when the task is
difficult. The empirical results replicate typical findings from
previous studies, while allowing us to study difficult problems
in ways that have not been possible in the past.

The novel experiment is complemented by a computational
model, developed based on the idea that perception requires
directing spatial attention to task-relevant locations in a scene.
When it implements particular strategies, the model is able
to achieve a close fit to human data, and it demonstrates how
people can be influenced by brief periods of apparent but false
pursuit, particularly when their decision criterion is not strict
enough.

Why study errors in pursuit detection if people were largely
accurate in their responses? Some of these errors happen sys-
tematically. Study of such systematic errors can not only help
provide insights into ways in which pursuit detection breaks
down, but it can also provide clues about what features we
use to detect pursuit successfully. For example, in some cases
where people wrongly detect pursuit, one object is frequently
in front of the proposed pursuer for a short time. Thus, the
identification of the type and timing of errors made possi-
ble by our novel experiment combined with how the model
makes similar errors provides support for the claim that one
cue to pursuit detection is an object being in front of the pur-
suer frequently.

The computational model allows us to develop a theory
of pursuit perception beyond the stimuli and the videos we
tested in the experiment. For instance, by conducting an anal-
ysis across a wide range of parameter values and strategies,
we are able to derive a novel, testable hypothesis: participants
adjust their pursuit detection strategy based on the difficulty
of a task, notably focusing attention within a narrower area
when there is a large number of distracting objects in a scene.
Future research will allow us to evaluate this hypothesis and
refine our understanding of how people perceive pursuit.
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