UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Modulation of rhythmic brain circuitry alters the pattern of experience-based decision processing

Permalink

https://escholarship.org/uc/item/1b78f317

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Ghaderi, sadegh Hemami, Mohammad Amani Rad, Jamal <u>et al.</u>

Publication Date

2024

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Modulation of rhythmic brain circuitry alters the pattern of experience-based decision processing

sadegh Ghaderi

Institute of Cognitive and Brain Sciences Cognitive modeling, Tehran, Iran, Islamic Republic of

Mohammad Hemami

Institute of Cognitive and Brain Sciences, TEHRAN, Iran, Islamic Republic of

Jamal Amani Rad

Shahid Beheshti University, Tehran, Iran, Islamic Republic of

Reza khosrowabadi

Institute of Cognitive and Brain Sciences, TEHRAN, Iran, Islamic Republic of

Abstract

Understanding and modulating cognitive aspects of decision-making and reinforcement learning are crucial for addressing neuropsychiatric problems like substance use disorders (SUD). We developed a non-invasive stimulation method to modulate theta phase synchronization between the medial prefrontal cortex and right lateral prefrontal cortex. Our EEGinformed modulation led to bidirectional changes in learning-based decision-making, including error-related components and brain signatures. In fact, by combining HD-tACS with mathematical modeling, we revealed that in-phase/antiphase HD-tACS over the mPFC and rPFC significantly altered (synchronized/desynchronized) theta phase coupling between these regions, influencing decision accuracy (improved/impaired), and neurocomputational parameters of learning-based decision-making. Additionally, this modulation rescued/disrupted the causal link between brain error monitoring and cognitive control systems in healthy/SUD participants, and reshaped punishment-guided decision and learning components. We concluded theta rhythms in the mPFC and mPFC-rPFC coupling play a unifying causal role in regulating choice, learning, and behavioral adaptation in both healthy and patient populations.