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Abstract

Purpose: Domain knowledge (DK) acquired from prior studies is important for medical 

diagnosis. This paper leverages the population-level DK using an optimality design criterion to 

train a deep learning model in an end-to-end manner. In this study, the problem of interest is at the 

patient-level to diagnose a subject with idiopathic pulmonary fibrosis (IPF) among subjects with 

interstitial lung disease (ILD) using a computed tomography (CT). IPF diagnosis is a complicated 

process with multidisciplinary discussion with experts and is subject to inter-observer variability, 

even for experienced radiologists. To this end, we propose a new statistical method to construct a 

time/memory-efficient IPF diagnosis model using axial chest CT and DK, along with an 

optimality design criterion via a DK-enhanced loss function of deep learning.

Methods: Four state-of-the-art two-dimensional convolutional neural network (2D-CNN) 

architectures (MobileNet, VGG16, ResNet-50, and DenseNet-121) and one baseline 2D-CNN are 

implemented to automatically diagnose IPF among ILD patients. Axial lung CT images are 

retrospectively acquired from 389 IPF patients and 700 non-IPF ILD patients in five multi-center 

clinical trials. To enrich the sample size and boost model performance, we sample 20 three-slice 

samples (triplets) from each CT scan, where these three slices are randomly selected from the top, 

middle, and bottom of both lungs respectively. Model performance is evaluated using a five-fold 

cross-validation, where each fold was stratified using a fixed proportion of IPF versus non-IPF.
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Results: Using DK-enhanced loss function increases the model performance of the baseline 

CNN model from 0.77 to 0.89 in terms of study-wise accuracy. Four other well-developed models 

reach satisfactory model performance with an overall accuracy greater than 0.95 but the benefits 

brought on by the DK-enhanced loss function is not noticeable.

Conclusions: We believe this is the first attempt that (1) uses population-level DK with an 

optimal design criterion to train deep learning-based diagnostic models in an end-to-end manner 

and (2) focuses on patient-level IPF diagnosis. Further evaluation of using population-level DK on 

prospective studies is warranted and is underway.

Keywords

computed tomography; deep learning; idiopathic pulmonary fibrosis (IPF); optimal design

1. INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive 

fibrosing interstitial pneumonia of unknown causes. IPF is limited to the lungs and usually 

occurs in older adults. 1 It is a rare disease with irreversible and unpredictable progression 

and survival.1 The prevalence estimates of IPF in the USA varied between 14 and 27.9 cases 

per 100,000 in the population.2 The median survival time ranges from 2 to 5 years, but some 

patients live much longer. 1–3

IPF is associated with histopathologic and/or radiologic pattern of usual interstitial 

pneumonia (UIP). 1 Computed tomography (CT) chest images are used to determine the 

presence of the UIP pattern. UIP pattern is associated with some common CT 

representations, including honeycombing, ground glass opacity, reticular pattern with 

peripheral traction bronchiectasis or bronchiolectasis, etc. 3 Notably, these CT features 

usually occur in the subpleural and basal areas.

The diagnosis of IPF involves the collaboration of multi-disciplinary discussion from 

specialists: clinicians, radiologists, and pathologists. The up-to-date clinical practice 

guideline for IPF, published in 2018, provides a detailed explanation and flowchart regarding 

the overall diagnostic workflow. 3 According to the guideline, CT assessment has become a 

cornerstone in the diagnosis of IPF. However, using CT evaluation for IPF diagnosis is a 

difficult task and subject to inter-observer variability, even for experienced radiologists. 4,5 

Developing an automated diagnosis of IPF using CT can be helpful for a prototype of this 

task or a pre-screening tool.

Additionally, in some cases where a definite diagnosis of IPF could not be made, surgical 

lung biopsy is suggested. 3 However, surgical lung biopsy is also known to be associated 

with an increasing risk of in-hospitalization or mortality. 6 In this context, investigating 

automated CT evaluation for IPF diagnosis may potentially reduce the need for lung biopsy 

in the long run.

Our aim is to develop an efficient and domain knowledge-assisted diagnosis model for IPF 

among ILD patients based on their axial lung CT scans. It is a time/memory efficient method 
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and no lung segmentation is required. Domain knowledge (DK) based on previous studies 

and optimal design theory is incorporated in the training of diagnostic models in an end-to-

end manner. An added advantage of our method is that it leverages the population level IPF 

prognostic trends (i.e. whether CT images indicate disease progression or not) across the 

lung positions, which is an important factor in the classification of IPF.

There are three potential clinical significance of this work: (1) it facilitates automatic 

diagnosis of IPF that saves time and reduces inter-observer variability; (2) it enables early 

diagnosis and treatment, which may lead to early anti-fibrotic treatment and increase the 

likelihood of a slow disease progression; and (3) it potentially reduces the need for lung 

biopsy in the diagnosis process. The latter is an important consideration since biopsy is 

associated with increased in-hospital mortality.

There have been growing interests in providing IPF prognosis support after two proven 

effective therapeutic treatments. 7,8 Specifically, developing robust and sensitive biomarkers 

is meaningful for evaluating the efficacy of IPF clinical trials. Previous research used 

machine learning techniques (such as support vector machines) to construct quantitative CT 

scores from texture classification model and they have shown good clinical applicability. 
9–11

Our work, different from IPF prognosis, focuses on the diagnosis of IPF. Computer-aided 

diagnosis system has gained popularity over the past few years. Some attempts have been 

made to use deep learning methods for interstitial lung diseases classification problems on 

multiple input image scales. The input scales vary from image patches of size 32 × 32, 12,13 

one axial slice 14 and frontal-view chest CT image.15

Patient-level UIP diagnosis classifies patients into three categories: UIP, possible UIP or 

inconsistent with UIP. Recent methods using deep learning tools have shown comparable 

performance when patients are diagnosed by radiologists. 16 Our work differs from this 

study conducted by Walsh et al. 16 in three ways: (1) our current work focuses on IPF rather 

than UIP diagnosis; (2) no lung segmentation is needed in our work; and (3) transfer 

learning and DK are incorporated in the present work, which also uses statistical 

optimization techniques. Using CT scans to automatically diagnose IPF is limited so far and 

we believe our proposed method can have a potential impact in patient-level classification of 

IPF with DK using volumetric CT scans.

2. MATERIALS AND METHODS

2.A. Datasets

Axial lung CT scans are retrospectively acquired from five multi-center studies, including 

two IPF studies and three non-IPF studies. The inclusion criterion is that each patient has 

been clinically diagnosed as interstitial lung diseases. CT scans with IPF diagnosis were 

confirmed by multidisciplinary clinical teams1,3. CT images of IPF patients were collected 

from December 2004 to July 2016; CT images of non-IPF patients were collected from May 

1997 to May 2018. For each patient, only the first available total lung capacity (TLC) scans 

are used for the algorithm development and testing. In total, there are 1089 patients, 

Yu et al. Page 3

Med Phys. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including 389 IPF and 700 non-IPF patients, collectively obtained from the five multi-center 

studies. CT images were acquired under different CT scanners and protocols, which are 

summarized in the Supporting Information A. Figure 1 shows the data flow of image 

preprocessing and model construction and Table 1 summarizes the disease diagnosis, the 

number of patient visits, and the number of CT slices per visit for the five studies with study 

1 and 2 involving IPF patients, and study 3, 4, and 5 involving non-IPF ILD patients. CT 

scans from study 1 and 2 were confirmed as IPF with the IPF diagnostic criteria 1,3. CT 

scans from study 3, 4, and 5 were clinically confirmed as other ILD diseases. CT scans from 

study 1, 4 and 5 were anonymized images from multicenter studies, whereas CT scans from 

study 2 and 3 were each collected from a single center. We note that some scans (13.3%, 

N=60) from study 3 are non-volumetric scans, where the spacing between each adjacent CT 

slice along the z-dimension is not consistent. Therefore, the average number of CT slices in 

study 3 is fewer than that of other studies.

2.B. Problem statement

Our main research problem is a binary classification task to determine whether a CT scan is 

from a subject with IPF versus non-IPF. The model input is the axial lung CT images of one 

patient visit, which are usually of dimension 512 × 512 × Ns. Here 512 is the image 

resolution and Ns is the number of slices, which varies from different CT scans. The output 

is a binary label y ∈ 0, 1  indicating whether the CT scan is from a subject with IPF or not. 

Further clinical information, such as gender and age, cannot be retrieved due to the 

anonymization process, and thus is not provided for the automatic diagnosis system.

In clinical settings, the classification task needs to be carried out in a timely manner with 

limited training samples and computational storage. Due to the weak supervision nature of 

this task (i.e. one ground truth label per CT scan) and the relatively limited number of 

images available, we propose to use two-dimensional convolutional neural network (2D-

CNN) models, rather than 3D-CNN, for this work. 2D-CNN models are commonly used for 

other medical-related tasks. 17–19

Dimensionality reduction is necessary before implementing the 2D-CNN models. These 

models constrain the third dimension of the input to be three, corresponding to the RGB 

channels. We propose to reduce the input dimension to 224 × 224 × 3 by the incorporation of 

DK and optimal design theory. Thus, for each training and testing sample, only three lung 

CT slices are used as model inputs. We refer the three CT slices as a triplet throughout the 

rest of the manuscript.

For illustration, Figure 2 shows four representative triplets in terms of their original and 

rescaled images, with different clinical diagnoses. After preprocessing, we automatically 

remove the information that is outside of the body. Each CT slice is rescaled to a uniform 

dimension of 224 × 224, which is the commonly used as the default size of CNN 

architectures, to normalize patients with different sizes along the anteroposterior and lateral 

dimensions. Additionally, for prone CT scans, we rotate the scans 180 degrees to align scans 

with different patient positions. More details of the preprocessing steps are described in 

Section 2.E.
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It is well-known that deep learning models usually require a large amount of training data; 

accordingly, for each scan, we randomly sample a user-selected number M of triplets to 

enrich the number of training and testing samples. In our study, we select M = 20. At the 

same time, we include some additional experiments by setting an adaptive number for M 

based on the number of CT slices for each scan. More details are provided in the section 

2.G.

2.C. Domain knowledge (DK)

We leverage DK in the selection of triplet locations using a statistical optimality design 

criterion and the training of the classification model in an end-to-end manner.

Specifically, we utilize the population-level disease trends of IPF in our classification task. 

Previous studies used quantum particle swarm optimization incorporated with a resampling 

technique and a random forest method to predict the pixel-level IPF progression status (i.e. 

whether the pixel of the segmented CT lung image suggests progressive or not progressive).
20,21 Intuitively, CT slices that contain more progressive pixels have more disease patterns of 

IPF and thus could be useful information in the classification task. Therefore, we assign 

higher weights for triplets which have well-represented IPF progressive trends, and vice 

versa. The weights for each triplet are then evaluated using an optimal design criterion.

Before discussing technical details, we first define standardized slice position (SSP) to align 

patient visits with a varying number of CT slices. We define SSP = ntℎ CT slice number
Ns − 1 , where 

Ns is the number of slices for that patient visit. SSP ranges from 0 to 1, where 0 is the first 

CT slice at the very top of the lung and 1 is the last CT slice at the very bottom of the lung.

Based on the predictive results,21 we plot the percentage of progressive lung area versus SSP 

based on the population level, see Figure 3 (a). The blue line represents the median curve on 

a population level and the gray area represents the 95% quantiles.

We observe that except for the boundaries (i.e. the apex and base of the lungs), which are 

defined by the top and bottom 10%, the percentage of progressive lung areas gradually 

increases as the slice moves towards the base of the lungs. This is consistent with previous 

findings for UIP patterns, which are indicative of IPF and usually reside in the base of lung 

parenchyma. We note that, at the boundaries (the first and last few CT slices), the number of 

segmented lung area voxels are much smaller than that of other areas. Also, there is a high 

level of noise effect due to the proton refection near scapula. Based on these two reasons, the 

prediction results at the boundaries are unstable with a wide quantile for the percentage of 

progressive lung areas. We therefore remove the boundaries for future analysis.

Figure 3 (a) shows four vertical orange dotted lines, which are the SSP locations at 0.1, 0.37, 

0.64, and 0.9. They are obtained by removing the top and bottom 10% to avoid the boundary 

effects, and then evenly dividing the rest of the lung positions into three zones, indicated as 

zone 1, 2, and 3 in the figure. Specifically, zone 1, 2, and 3 represent SSP locations from 0.1 

to 0.37, from 0.37 to 0.64, and from 0.64 to 0.9, respectively, and they capture the upper, 

middle, and lower of the lungs respectively.
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For each triplet, we sample one slice from each zone. We test the model performance with 

and without DK-enhanced loss function in Figure 3. Without DK, we treat each triplet 

identically and assign the same weights for all triplets. With DK, we assign greater weights 

to triplets that are more representative of the population level IPF progressive trends; see for 

example, triplet 2 shown in Figure 3 (c) for calculating the loss function. Thus, these triplets 

play an important role in estimating parameters in the IPF diagnostic model when the entire 

process is conducted in an end-to-end manner. We provide the detailed steps on how to 

calculate the D-criterion value of triplet 1, shown in the Figure 3(b), in the Supporting 

Information C.

2.D. D-optimal design

Model-based optimal design theory has numerous and useful applications in medical 

research, engineering and many other disciplines. 22,23 When we have a statistical model to 

describe the relationship between the mean response variable and covariates, optimal design 

theory provides guidance on how to judiciously design an experiment to optimize the 

criterion. One common criterion is that model parameters be estimated as accurately as 

possible with minimal cost. Such an objective is attained by a D-optimal and described in 

more details below. For our project, a D-optimal design helps us determine the weights to be 

used in each triplet to assess the overall trends of the population-level IPF progressive curve 

using information from prior studies (see Figure 3 (a)) via a DK-enhanced loss function 

shown as D Zi  in the formula (d) in Figure 3. Additional background information on 

optimal designs can be found in Berger and Wong 23, and the following design monographs. 
22,24–26

We now provide some fundamentals on constructing D-optimal designs. Suppose we have N
independent responses from an assumed statistical model given by 

yi = f xi
Tβ + ϵi, i = 1, …, N. Here yi is the univariate response variable from subject i, f xi

is a design vector of dimension p × 1, β is the unknown parameter of dimension p × 1 and the 

error term ϵi is normally distributed with mean 0 and constant variance. For example, we 

may have two covariates age and gender in our study and the regression function 

f xi = 1, agei, genderi T has p = 3 parameters. If the interest is to estimate the three 

parameters in the model, two common design criteria are D-optimality and A-optimality, and 

if interest is to estimate the entire response surface, G-optimality is frequently used. 22 Here 

D, A, and G stand for the determinant (Det), average variance and global criterion, 

respectively and the resulting optimal designs have different properties. The D-optimality 

criterion is the most popular for estimating model parameters and mathematically, it is 

defined by Det[Cov(β)]. A design that achieves the smallest D-criterion value among all 

designs is D-optimal and such a design estimates the model parameters with the smallest 

volume of the confidence ellipsoid for β.

For nonlinear models, the criterion depends on the unknown parameters that we want to 

estimate and they have to be replaced by an initial set of estimates for the model parameters 

before the D-optimality criterion can be optimized. The resulting designs are, strictly 
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speaking, locally D-optimal designs because they depend on the initial set of model 

parameters estimates.

Our response variable is the population trends of the percentage of progressive lung area 

over SSP and we estimated it using data acquired from the pilot study.27 We used the 

generalized linear model (GLM) with a logit link function since the response variable, the 

percentage of progressive pixels, is not normally distributed.

We used data and fitted several what we thought are plausible models: they include 

polynomial models of degrees 3 and 4 and more flexible models like fractional polynomials. 

The latter class models the mean response as a polynomial but additionally allows for 

fractional powers in each nominal. Fractional polynomials were proposed by Royston et al. 
28–31 where they showed via many examples that fractional polynomials can fit univariate 

response variables in the biomedical sciences much better than polynomials. They further 

recommended that for practical applications, it suffices to consider a set consisting of 

positive and nonnegative powers only. For this reason, we also used fractional polynomials 

to estimate the median population level disease progression. Akaike information criterion 

(AIC) and visual examination were used as criteria for model selection. 32 Both criteria 

suggest that FP is the best model that describes the median population trends of IPF 

progression among all the models we have considered. Details on the model comparisons 

and estimated parameters are in the Supporting Information B.

In a nutshell, for each randomly sampled triplet, we evaluate its D-criterion value based on 

the determinant of the information matrix. Triplets with a larger D-criterion value better 

represent the overall population level IPF progressive trends. The Supporting Information C 

and D contain further discussion on the D-optimal design under a generalized linear model 

setting and the distribution of D-criterion values.

2.E. Two-dimensional convolutional neural network (2D-CNN)

Before implementing 2D-CNN models, we normalized each CT scan if the scan did not 

meet the study-level criteria. Four main study-level criteria are: (a) align patient’s position 

into supine, (b) center a patient position, (c) automatically remove the location of table 

information, and (d) rescale to a uniform image size. If a CT scan was deviated from the 

general platform, we normalized the images prior to the algorithm development. As a result, 

the processed image has the uniform property of creating a consistent lung windowing based 

on Hounsfield units, aligning patients’ positions, automatically cropping the scans based on 

the presence of the body by canny edge detector using Python library scikit-image, 33 

resizing to a uniform scale of 224 × 224 by cubic spline interpolation, and standardizing to a 

scale of zero to one.

Traditional 2D-CNNs are designed for processing RGB images (three channels), which are 

usually of size 224 × 224 × 3. We use each triplet as one training or testing sample, where 

three CT slices correspond to three RGB channels.

Four state-of-the-art 2D-CNN structures are implemented for this disease classification task, 

which are MobileNet, 34 VGG16, 35 ResNet-50, 36 and DenseNet-121. 37
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To compare, a baseline CNN model is also designed with two convolutional modules and 

one decision module. The architecture of the baseline CNN model is provided in Figure 4.

For all of the aforementioned models (baseline CNN, MobileNet, VGG16, ResNet-50, and 

DenseNet-121), we run 40 epochs using batch size of 10. We use Adam optimizer with 

learning rate 0.0001 for all scenarios. These hyper-parameters are selected based on 

exploratory attempts. Model parameters are pre-trained by ImageNet 38 and updated using 

medical images for this task. All models are implemented using Keras. 39

2.F. DK-enhanced training of 2D-CNN

We add a dense layer at the last layer of the CNN for all models, producing two CNN scores 

(IPF and non-IPF) for each input triplet. The softmax function is applied afterwards to 

normalize the CNN scores from two real numbers into two probabilities that sum up to 1. 

The two probabilities are the probabilities of the patient being classified into one of two 

classes: IPF (l=1) or non-IPF (l=0) based on their specific input triplet. Let si0 and si1 be the 

CNN scores after the last dense layers for triplet i being classified as non-IPF or IPF, 

respectively. Softmax function is used to calculate the normalized CNN score:

f sil =
exp sil

exp si0 + exp si1
, l = 0, 1.

Without leveraging DK, categorical cross entropy is used as the loss function. The 

categorical cross entropy evaluated with deep learning model weights W at triplet i and is 

presented below:

LCE
W Xi, yi = − yilog f si1 − 1 − yi log f si0 .

Let Xi be the CT input triplet i, let X = X1, …, XN  be the set of all triplets and let 

y = y1, …, yN , where yi is the label of ground truth for triplet i with yi = 1 if the triplet i is 

sampled from an IPF patient and yi = 0 if the triplet i is sampled from a non-IPF patient. The 

overall categorical cross entropy is calculated by averaging the categorical cross entropy 

across all N triplets:

LCE
W X, y = 1

N ∑
i = 1

N
LCE

W Xi, yi ,

where N = n × M, n and M are the total number of patients and the number of sampled 

triplets from each patient respectively (n=1089 and M=20 in our research).

With DK, we designed a DK-enhanced loss function, where we weigh each triplet by its D-

criterion value D Zi  and Zi = (zi1, zi2, zi3) is a 3 × 1 vector representing the SSP for triplet i, 
and Z = Z1, …, ZN  is the set of SSPs for all N triplets. The DK-enhanced loss function is
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LDK
W X, y, Z = 1

N ∑i = 1
N D Zi LCE

W Xi, yi .

Two sample proportion tests between DK and CE were conducted for the overall sensitivity, 

specificity, and accuracy on all five models (baseline CNN, MobileNet, VGG16, ResNet-50, 

and DenseNet-121), respectively. We set the significant level to be 0.05. To account for 

multiple hypothesis testing, we used the Bonferroni correction to set the significance cutoff 

for each statistical test at 0.05
3 = 0.017, where 3 is the number of tests for each model, i.e. the 

overall sensitivity, specificity, and accuracy 40.

2.G. Sensitivity analysis

Sensitivity analysis is defined as a method to determine the quality of a model by evaluating 

the extent to which results are impacted by changing model assumptions, methods, or certain 

model inputs. We design three scenarios to assess whether altering one of the preprocessing 

steps may lead to a different model performance, including sampling different number of 

triplets for each scan (scenario 1), adding an isotropic resampling step (scenario 2), and 

sampling triplets only from lower zones (scenario 3).

Under scenario 1, we sample a varying number of triplets (i.e. using an adaptive selection of 

M) for each scan based on the number of CT slices. This tests if the number of triplets 

should vary in scans which contain different numbers of CT slices. We empirically set 

Mk = 0.1 * Nsk, where Mk is the number of sampled triplets and Nsk is the number of CT 

slices for patient k. For example, if one CT scan contains 250 CT slices Nsk = 250 , we set 

Mk = 25 for this patient k, i.e. sample 25 triplets from this scan. The DK-enhanced loss 

function under scenario 1 is

LDK, S1
W X, y, Z = 1

N′ ∑
i = 1

N′
D Zi LCE

W Xi, yi ,

where N′ = ∑k = 1
n Mk = ∑k = 1

n 0.1 × Nsk, N′ is the total number of triplets under scenario 1, 

Mk is the number of triplets for patient k, n is the total number of patients, and Nsk is the 

number of CT slices for patient k.

Under scenario 2, in order to mitigate the possible confounding effects caused by varying 

slice thicknesses and pixel spacing, we resample all CT scans to a uniform isotropic cube of 

volume 1 × 1 × 1 mm3 by cubic spline interpolation. In this step, we exclude scans which 

have inconsistent spacing along the z-dimension across all CT slices (non-volumetric scans, 

N=68, 6.2%). This step aims to align scans with different pixel spacing and slice 

thicknesses. The DK-enhanced loss function under scenario 2 is

LDK, S2
W (X′, y, Z) = 1

N ∑i = 1
N D(Zi)LCE

W Xi′, yi
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where Xi′ is the CT input triplet i using Xi after isotropic resampling.

Regarding scenario 3, since IPF-related radiological features usually occur in the lower 

lungs, it is instructive to add one experiment to use triplets only collected from lower lungs 

(i.e. zone 3 in Figure 3 (a)). Under this circumstance, the DK-enhanced loss function is

LDK, S3
W X, y, Z = 1

N ∑i = 1
N D Zi LCE

W Xi, yi ,

where Zi = zi1, zi2, zi3
T  is the 3 * 1 standardized slice position for triplet i which are 

sampled from zone 3 only, i.e.zij ∈ 0.64, 0.9 , j = 1, 2, 3 for all triplet i. Xi is the CT input 

triplet i collected based on the standardized slice position Zi.

3. RESULTS

In this section, we summarize the main results and the sensitivity analysis results in 3.A and 

3.B, respectively.

3.A. Main results

We pooled CT images from all five studies (two IPF studies and three non-IPF studies) 

together for the training and testing of the model. We performed a stratified five-fold cross-

validation, a commonly used technique to separate training and testing sets 41, where the 

proportion of IPF versus non-IPF is fixed across all folds. During cross-validation, these five 

folds were separated at the patient level, therefore, no triplets from the same patient are 

evaluated in both training and testing samples. During the testing phase, M triplets were 

sampled from each scan following the manner as discussed, producing M predictive results 

(IPF versus non-IPF) for each scan. The final predictive result for each scan was decided 

based on majority vote of all M triplets. We set M=20 for our task. We use sensitivity, 

specificity, and accuracy as statistical measures. Sensitivity is defined as the number of scans 

which are correctly classified as IPF divided by the total number of IPF scans. Specificity is 

defined as the number of scans which are correctly classified as non-IPF divided by the total 

number of non-IPF ILD scans. Accuracy measures the proportion of CT scans that are 

correctly classified.

Table 2 summarizes the study-wise and overall model performance using five models 

(Baseline CNN, MobileNet, VGG16, ResNet-50, and DenseNet-121) under two loss 

functions, i.e. cross entropy loss (CE) and DK-enhanced loss function (DK). Note that study 

1 and study 2 include IPF patients, which is referred to as positives in this research, with 

sensitivity information only. Similarly, study 3, 4, and 5 contain non-IPF ILD patients, 

which is defined as negatives, with specificity information only. For baseline CNN model, 

using DK significantly increases the overall sensitivity p < 0.001 , but decreases the overall 

specificity p < 0.01 . There is no significant difference between DK and CE for other 

methods under this scenario.
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3.B. Sensitivity analysis results

The complete results for scenario 1 (selecting a varying number of triplets per scan), 2 

(adding isotropic resampling), and 3 (sampling from lower zones only) are provided in the 

Supporting Information Table 4, 5, and 6, respectively. For each of the scenario, we calculate 

the absolute difference in terms of the overall model sensitivity, specificity, and accuracy 

between the main results (Table 2) and that of each scenario. We calculate the median and 

interquartile range (IQR) across all ten models for each metric, under each scenario.

Under scenario 1, the median ±IQR  for the overall model sensitivity, specificity, and 

accuracy between the main results and that of scenario 1 across all ten model architectures is 

0.04 ± 0.01 , 0.01 ± 0.03 , and 0.02 ± 0.03 , respectively.

Under scenario 2, the median ±IQR  for the overall model sensitivity, specificity, and 

accuracy between the main results and that of scenario 2 across all models are 0.01 ± 0.03 , 

0.01 ± 0.01 , and 0.01 ± 0.02 , respectively.

Under scenario 3, the median ±IQR  for the overall model sensitivity, specificity, and 

accuracy between the main results and that of scenario 3 across ten models is 0.03 ± 0.03 , 

0.01 ± 0.01 , and 0.02 ± 0.01 , respectively.

4. DISCUSSION

We developed a deep learning-based model for IPF diagnosis: (1) from a clinical 

perspective, by incorporating DK regarding the disease pattern distribution of IPF; (2) from 

a methodological perspective, by including optimal design methods in building a loss 

function. Methodologically, to the best of our knowledge, this is the first work that leverages 

the merits of optimal design in the training of deep learning methods in an end-to-end 

manner. Clinically, providing automatic IPF diagnosis support is timely and meaningful 

because the proposed method (1) facilitates automated IPF diagnosis and reduces inter- and 

intra- reader disagreement; (2) enables early anti-fibrotic treatment and so may prolong 

patient’s survival time; (3) decreases the likelihood of requiring of lung biopsy in the long 

run and its attendant’s risks.

In medical imaging domain, as contrary to natural imaging, well-labeled and high-quality 

images are time-consuming and expensive to acquire. Therefore, many researches aim to 

tackle the limited sample size problem in medical imaging by utilizing DK. 42,43 Unlike 

previous work, we now focus on the population-level information acquired from the 

previous studies and utilize both DK and optimal design guidelines in the training process of 

the deep learning models.

Each of the earlier studies used in this research contains either IPF patients in study 1 and 

study 2 or non-IPF patients in study 3, study 4 and study 5, and one may argue that the 

diagnosis model captures confounding effects (or batch effects) rather than IPF-related CT 

features. Admittedly, this is one limitation of this work due to the availability of imaging 

data and the nature of retrospective data collection. However, we note that each study is 

conducted at multiple sites with different protocols and a variety of experimental conditions 
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that likely involve CT scanners, slice thickness, reconstruction kernel, and patient positions, 

see the Supporting Information for an expanded list of potential confounders. This 

heterogeneous experimental setup contributes to a fair model that concentrates on the 

underlying CT features of IPF rather than picking up other confounding factors.

In addition, to address this concern of confounding effects, we have added multiple model 

generalizability experiments (see Supporting Information E for more details). By setting 

aside one study as the holdout test set at one time, we evaluate the generalizability of the 

constructed model to unseen domains (i.e. institutions and clinical diagnoses) using 

MobileNet. The results suggest that, most experiments can successfully classify more than 

90% of patients in the holdout study (accuracies greater than 90%). This suggests that most 

experiments are able to generalize well to unseen domains. Notably, there is a certain level 

of decrease in overall model accuracy compared to results provided in the Table 2, when 

using one study as the holdout study at a time. For example, for six out of eight 

generalizability experiments, we observe a 1%–4% degradation in model accuracy; for two 

out of eight experiments, we observe a 25%–26% decrease in model accuracy, which we 

provide some explanations in the Supporting Information E. This degradation in 

performance may due to the fact that the number of training and testing samples are fewer 

since we set one study aside as the holdout set. At the same time, this lack of generalizability 

is not surprising as such findings are frequently reported in many areas of research when 

deep learning models are applied to unseen domains. 44 This provides a warning that when 

deploying the developed model to scans collected from other institutions or ILD patients 

with different clinical diagnoses, some decrease in model performance is to be expected. 

Many domain adaptation and domain generalization techniques have been developed to 

tackle this problem, but they are out of the scope for this paper. 45–49

In summary, we have, for the first time, incorporated the population-level DK (i.e. IPF 

progression trends across the lung position acquired from pilot studies) with ideas of optimal 

design methodology into the training of deep learning models. Specifically, we sample 20 

triplets from each patient visit to augment the number of training data and boost model 

performance. These triplets were randomly sampled with one from each zone (the top, 

middle, and bottom of the lungs). Intuitively, these 20 triplets should not be treated 

identically, as these randomly sampled CT slices might not be fully representative and 

reflect the disease characteristics fairly. Some triplets might contain three slices which are 

adjacent to each other, and thus contain less disease information. To this end, we estimated 

the population-level disease trends across lung positions from previous studies and evaluated 

the importance of each triplet by its D-optimality value. The triplet with a larger value is “a 

better design” for estimating the parameters of the population-level trends, and consequently, 

it is believed to be more representative of the overall disease trends. We then design the DK-

enhanced loss function, where the D-criterion value of each triplet is used as a weight to 

evaluate the importance of each triplet. This process is incorporated into the training of the 

deep learning models in an end-to-end manner.

Current experiments show that incorporating DK in the training of deep learning models 

increases the overall accuracy from 0.89 to 0.91 for the baseline CNN model. However, this 

increase in the overall accuracy using DK is not observed for other well-known model 
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architectures, including MobileNet, VGG16, ResNet50, and DenseNet-121. This may occur 

due to the existence of ceiling effect, since other well-developed deep learning architectures 

have already achieved a satisfactory model performance with overall accuracy greater than 

0.95. We also expect the proposed methodology is generally applicable to tackle other 

similar problems in the medical arena as well, even though our work here only concerns IPF 

diagnosis.

Sensitivity analysis experiments suggest that (1) selecting a flexible number of triplets per 

scan, (2) isotropic resampling each scan to a constant size of 1 mm3 cube, and (3) sampling 

triplets only from lower zones may change the overall model sensitivity, specificity, accuracy 

in a reasonable range.

Our future work includes exploring the constructed model on prospective studies, where IPF 

and non-IPF ILD patients are collected under the same imaging protocols. This is a more 

accurate reflection of the clinical applicability of the developed model, as contrary to using 

five-fold cross validation without independent studies.

5. CONCLUSIONS

We develop an efficient IPF diagnosis model using DK (i.e. population-level disease 

information) and optimal design theory. This study shows satisfactory performance using 

various well-known deep learning models in the task of IPF diagnosis using CT images. To 

the best of our knowledge, this is the first work that (1) leverages population DK with 

optimal design criterion to train deep learning models in an end-to-end fashion; (2) focuses 

on patient-level IPF diagnosis solely based on CT images.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data flow of image preparation and model construction. Ns: the number of CT slices for 

each scan, which varies for each scan.
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Figure 2. 
Four representative triplets of original images and rescaled CT images. The top row is one 

IPF patient with radiological diagnosis of UIP pattern; the second row is one IPF patient 

with possible UIP diagnosis; the third row is a non-IPF patient with possible UIP pattern; 

and the bottom row is one non-IPF patient.
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Figure 3. 
Flowchart of the study design. SSP: standardized slice position, DK: domain knowledge 

with optimization, CE: cross entropy without optimization in selecting slices.
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Figure 4. 
Baseline CNN architecture.
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Table 1.

Basic information of the five studies.

Study Type Disease diagnosis Number of subjects Number of CT slices per visit (mean ± standard deviation)

1 IPF IPF 245 359 ± 106

2 IPF IPF 144 280 ± 46

3 Non-IPF Other ILDs 449 53 ± 25

4 Non-IPF Myositis 81 253 ± 75

5 Non-IPF Systemic sclerosis 170 106 ± 83
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Table 2.

Study-wise model performance and overall model performance.

Sensitivity
(IPF patients)

Specificity
(Non-IPF ILD patients)

Overall model performance

Model (Loss function) Study 1 Study 2 Study 3 Study 4 Study 5 Sensitivity Specificity Accuracy

Baseline CNN (CE) 0.77
(0.38)

0.68
(0.39)

0.96
(0.04)

0.94
(0.09)

0.98
(0.02)

0.74
(0.38)

0.97
(0.03)

0.89
(0.12)

Baseline CNN (DK) 0.89
(0.13)

0.81
(0.20)

0.91
(0.07)

0.88
(0.19)

0.96
(0.03)

0.86
(0.15)

0.94
(0.05)

0.91
(0.04)

MobileNet (CE) 0.97
(0.01)

0.96
(0.07)

1
(0)

0.96
(0.05)

0.99
(0.02)

0.97
(0.02)

0.98
(0)

0.98
(0.01)

MobileNet (DK) 0.98
(0.02)

0.94
(0.06)

1
(0)

0.96
(0.04)

0.98
(0.01)

0.96
(0.02)

0.98
(0.01)

0.97
(0.01)

VGG16 (CE) 0.96
(0.03)

0.87
(0.07)

0.99
(0.02)

0.95
(0.06)

0.99
(0.01)

0.93
(0.04)

0.98
(0.01)

0.96
(0.01)

VGG16 (DK) 0.95
(0.04)

0.86
(0.09)

0.99
(0.02)

0.95
(0.06)

0.99
(0.01)

0.92
(0.05)

0.98
(0.01)

0.96
(0.01)

ResNet-50 (CE) 0.96
(0.02)

0.92
(0.05)

0.98
(0.05)

0.97
(0.03)

0.99
(0.01)

0.95
(0.02)

0.98
(0.01)

0.97
(0.01)

ResNet-50 (DK) 0.96
(0.02)

0.90
(0.09)

1
(0)

0.96
(0.05)

0.99
(0.01)

0.94
(0.03)

0.98
(0.01)

0.97
(0.01)

DenseNet-121 (CE) 0.97
(0.02)

0.98
(0.02)

1
(0)

0.97
(0.04)

0.98
(0)

0.97
(0.01)

0.98
(0.01)

0.98
(0)

DenseNet-121 (DK) 0.96
(0.04)

0.94
(0.06)

1
(0)

0.97
(0.04)

0.99
(0)

0.95
(0.02)

0.99
(0.01)

0.97
(0)

Note: Mean and standard deviations shown in brackets are calculated across the results from each testing fold. CE: cross entropy loss without 
domain knowledge-enhanced loss function; DK: domain knowledge-enhanced loss function. Statistically significant results p < 0.017  are 

highlighted in bold font. The significance cutoff 0.017 is decided by Bonferroni correction for multiple testing, which is dividing the pre-specified 
significance level 0.05 by the number of tests (3, including the overall sensitivity, specificity, and accuracy) for each model.
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