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BABICGC CAL-829 OPERATIONS
HELP (H) LIST CAL COMMANDS

LOAD M1 R=? C=7 LOAD MATRIX Ml OF REAL NUMBERS

ZERC M1+ NR=? NC=? ZERO A REAL MATRIX Ml

LIST (L) LIST THE DIRECTORY OF ALL ARRAYS
PRINT (P} Ml LIST ARRAY NAMED “M1"!

SAVE OR STOP (S) TERMINATE PROGRAM AND SAVE DATABASE

QUIT (Q) TERMINATE PROGRAM

START NEW PRCBLEM NAME

DELETE (D) M1~ DELETE ARRAY NAMED "M1"'

MODIFY M1- MODIFY TERMS IN MATRIX M1

RESUME or READC READ INCORE DATA BASE FROM PREVIOUS RUN
WRITE M1 WRITE ARRAY M1 TO DISK

READ M1 READ ARRAY M1 FROM DISK

RUN EXECUTE OPERATIONS FROM INPUT FILE
RETURN RETURNS TO INTERACTIVE MODE

BTANDARD MATRIX OPERATIONS
MULT M1 M2 M3+
TMULT M1 M2 M3+
ADD M1l- M2

SUB M1~ M2

TRAN M1 M2+

DUP M1 M2+

S5TODG M1~ M2
DUPDG M1 M2+
SCALE Ml- M2
INVERT M1~

SOLVE M1~ M2- 5=7

MULTIPLY M1l * M2 = M3
TRANSPOSE OF M1 % M2 = M3
ADD MATRIX M2 TO MATRIX M1
SUBTRACT MATRIX M2 FROM MATRIX M1
TRANSPOSE MATRIX M1 TO FORM MATRIX M2
DUPLICATE MATRIX M1 TO MATRIX M2
STORES MATRIX M2 ON DIAGONAIL OF MATRIX M1
DUPLICATES DIAGONAL OF M1 TO MATRIX M2
SCALE MATRIX M1 BY THE TERM M2(1,1)
INVERSION OF SYMMETRIC MATRIX "M1™®
SOLVE M1 x = M2
8=0 SOLVE Ax = B
§=] TRIANGULARIZE M1 ONLY
5=2 FORWARD SUBSTITUTE ONLY
8=3 BACK SUBSTITUTE ONLY
STOSM M1 M2 I~=L1l,L2 STORES MATRIX M2 IN MATRIX
M1 AT LOCATION M1{L1,L2)
DUPSM M1 M2+ NR=? NC=7? I=L1,L2 DUPLICATES SUBMATRIX M2
FROM LOCATION M1(Ll,L2) M2 IS NR x NC

DIREBCT BTIFFNESS OPERMTIONSRB

SLOPE Ki+ E=? I=? I=? FORMS 4 X 4 STIFFNESS MATRIX

FRAME Ki+ Ti+ Gi+ E=? I=? A=? S=? X=?,? ¥Y=?,7? P=?
GEOMETRIC STIFF. MATRIX Gi IS FORMED IF P NOT ZERO

TRUSS Ki+ Ti+ E=? A=? N=Ni,Nj FORMS TRUSS STIFF.

FRAME3 Ki+ Ti+ E=? A=? I~I3,I2 J=? N=Ni,Nj P=P1,P2

LOADI ID R=? €=7 LOAD ARRAY V"ID" OF INTEGER NUMBER

ADDK K+ Ki ID N=? ADD ELEMENT STIFFNESS TO TOTAL STIFFNESS

MEMFRC Ki U ID Fi+ N=? EVALUATION OF MEMBER FORCES

BTRUCTURAML DYNAMIC OPERATIONS
ETGEN K~ V+ M- EIGENVALUES OF KV = MVe - DIAGONAL MASS

JACOBI K- V+ M- e EIGEN SOLUTION FOR FULL MASS MATRIX

SQREL M1~ REPLACES EACH TERM OF M1 WITH ITS SQUARE ROOT
INVEL Ml- REPLACES EACH TERM OF M1 WITH ITS INVERSE
DYNAM W C F G(t) X(t} DT=? N=? UNCOUPLED DYNAMIC RESPONSE
NORM Ml M2+ T=7 FORMS COLUMN MATRIX M2 WHERE

Where T=0 SUM ABS-VALUES OF ROWS
T=1 SRSS OF THE ROWS
MAX X Xmax FORMS Xmax FROM MAXIMUM ABS. VALUES OF ROWS OF X
STEP K- M C UVA- U+ P F(t} DT=? L=Li,Lmax P=deta,alpha,theta
PLOT M1 N=? R=R1,R2,.. S=S1,52,.. PLOTS "N" ROWS MATRIX M1
Where Ri = THE ROWS TO PLOT and 8i = SYMBOLS FOR ROW i

RITZ K- M R V+ NV=? S§=?

NV= § OF RITZ VECTORS TO BE GENERATED

5= NONZERO IF STATIC VECTOR IS NOT RETAINED
DFT F(T)- DT=? DISCRETE FOURIER TRANS.-F(T) REPLACED BY F(W)
IDFT F(W)- F(W) REPLACED BY F(T)
RADIUS F{W) R(W)+
FSOLVE W ¢ F G(W) Y(W)+ DT=? FREQUENCY DOMAIN SOLUTION

LOOPING OPERATIONS

LOOP SEP H=7? EXECUTE ALL OPERATIONS BEFORE SEPARATOR "SEP" ON

INPUT FILE. N = NUMBER OF TIMES 170 SUBMIT (DEFAULT~1})

IF M1 M2 TERMINATES LOOP IF M1 IS LESS THAN M2
(PLACE BEFORE "SEP" LINE)
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SUMMARY

The basic purpose of the CAL language is to bridge the gap between traditional methods
of teaching structural analysis and the use of automated structural analysis programs,
As a result of using CAL it is hoped that engineers will understand the theory and

approximations which are used in modern structural analysis programs.

CAL is a computer program which is designed to interpret a sequence of commands which
are supplied by the user, The commands can be given directly in an "interactive mode" or
the program can read the commands from a "batch data file". Commands for matrix
analysis, direct stiffness structural analysis and dynamic response analysis are

possible,

The program is written in standard FORTRAN 77 and will operate on small micro or large
mainframe computer systems. Therefore, the previous version of the program, CAL-78,
has been significantly rewritten and additional commands have been added. Also, the
input has been redesigned wn. which all commands, array names and data are in a
free-field form., The program is based on the use of the CALSAF development system.

The FORTRAN listing of all programs is given in order for the user to verify the exact

numerical method which is used within the program.

The specific version of the FORTRAN source statements, which are given in this manual,
are for MS-DOS microcomputer systems and can be directly compiled with the Microsoft
FORTRAN Compiler Version 3.31.

Since the program can be easily modified and new CAL commands added, the program can
be used as an effective research tool., New numerical algorithms for the staticor

dynamic analysis of structures can be added and tested within a few hours.
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THE CAI. LANGUAGE
¥YORM OF THE CAL COMMARDS

CAL commands and data can be entered interactively or supplied within a data input file
which is prepared by an editor such as WORDSTAR or EDLIN. The user must specify the
*name" of the input file which contains the CAL operations, CAL commands which are
contained within the file are executed by the SUBMIT command which is entered

interactively, The results of every CAL run are saved on the output file name
*name,OUT" which may be displayed, printed or examined with an editor. If no file name

is specified, as is the case of completely interactive use, a default name of "I" is used.

If a CAL run is terminated by an error or the STOP command all arrays which are within
the computer storage are saved on the file "name.COR". The CAL program can then be
restarted, with the same problem "name”, with the READC command., The LIST and
PRINT commands can then be used interactively to examine the data arrays contained

within the computer storage.

Data on a "command line" must be separated by commas, or, one or more blanks. A

typical CAL command line has the following formi
GP Km Km - - bum%mw - B=? | {Comment)

Where "OP* is the name of the CAL command; and, _.Kw " i a one to four character array

nName.

The notation Kw.v indicates that the array will be created by the operation, If the array
name for new data has previously been used the old array will be eliminated before the
operation is executed. The notation Kw; indicates that the array has been modified by

the CAL operation.

._.w»._ is data to be used by the operation and can be in either integer or floating point
form. In the case of floating point numbers, they can have the form of arithmetric
statements, For example, 2.5+4%2-6/2 will be interpreted as ((2,5+4)1%2 - 4)/2.

A "C" in column one of a command or data line indicates that the line will be a comment

line which is used to clarify input information.
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SUMMARY OF BASIC CAL COMMANDS

The following list of CAL commands controls the flow of execution and allows for input

or generation of arrays within the computer storage!

HEIL.P or H
If the HELP command is executed in the interactive mode a list of all possible CAL

commands will be displayed.

STOPor S

The STOP command will terminate the execution of the program and return contrel to the
computer’s operating system. All arrays which are contained in the computer’s storage
will be saved in the file "name.COR" where "name” is the problem (input file) name which

has been spedfied by the user.

REAIDC
The READC cemmand reads all arrays from the file "name.COR" and allows the user to

continue to enter CAL commands from the point the previous run was terminated.

I1.ISTor L.
If the LIST command is executed a list of the name and size of all arrays which are

contained in the computer storage is displayed.

LOAD M R=? C=?

The LOAD command will create a matrix named .,xu.. with "R" rows and "C" columns. The
data must immediately follow the LOAD command, The data must be supplied one row per
line, The data is separated by commas, or, one or more blanks. A line of data may be
continued by the use of a "\" at the end of the first line. If the data for a row is greater
than 160 characters the matrix must be loaded by the use of submatrix operations.

ZERO M," R=? C=? T=? D=?

The 2ERO command will create a R x € matrix named Ku. If "T=7" is specified all terms
of the matrix will be set to "T". If the matrix is square the diagonal terms will be set to
.Un_-

PRINToO P Km

The PRINT command will cause the matrix "M _* to be displayed on the terminal or

1
transferred to the "name . QUT" file if batch input is used.
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DELETEo D M
The array named 3» will be deleted and the storage within the computer will be

tompacted,

MODIFY M~
The MODIFY command can be used interactively to modify individual terms in the matrix

named ZH.

DUP M, z%

The DUP command forms a new matrix KN which is identical to the matrix xu.

RUN

RUN will cause the input commands to the CAL progranm to be
obtained from the Input File Name that is specified.

RETURNM
The RETURN command will terminate the execution of the batch input RUN mode and

return the CAL program to the interactive mode.

IF Ku Km
If the absolute value of K_: +1)1is less than Km:,t the RETURN command is executed
and the RUN operation is terminated.

QUIT

Execution of CAL is terminated, The incore data base is not saved.
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SUMMARY OF MATRIX OPERATION COMMANDS

H1DI0 Z» Zm

The ADD operation replaces the matrix xm with M, + M

1 Z

S wnu xw

The SUB operation replaces the matrix KH with KH - Km

MULT M, M, M’

The MULT command creates the matrix Ew which is the product of the matrices ZN and
Zm. Or TIMTUJI.T where Ku is stored in transposed form.

(The number of numerical operations required for matrix multiplication is N M L | where,
3» isa NxM matrix and Km isaMx L matrix)

TRAN 3u Zm

The TRAKR command forms the matrix Km which is the transpose of the matrix KH.

SCaALE zul M,

The SCALE command multiplies each term in matrix KM by XM:.:.

SOLVE M M, [8§? EG=?]
The SOLVE command operates on the matrix equation xwu = xm where Km is a
symmetric matrix, The f{following options are possible!
5=0 The matrix EH is triangularized and ZN is replaced by the sclution matrix "x".
8=1 The matrix 3 is triangularized only.
=2 The matrix Km is reduced only - x must have been previously triangularized.
8=3 The matrix Zm is replaced by the mnutﬁo: matrix "x® by backsubstitution only.
EQ= The number of equations to be reduced - to be used in substructure analysis,
Any nonsingular set of equations can be made symmetric if both sides of the equation
are multiplied by the transpose of z .
{The number of numerical onm_,mﬁo:m required to triangularize the N x N matrix Z is
Zw
backsubstitution is ZNH.\N ; where, L is the number of columns in the matrix Ku.

/6 . The number of pperations required for forward reduction is ZMH.\M ..Sa for

INVERT xﬂ

The symmetric matrix M_ is replaced by its inverse.

|
{The number of numerical operations reguired to invert a symmetric matrix is Zm\N o)
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SUBMATRIX OFERATIONS

DUPSM M, M, R=? €=? Ll L,
The command DUFSM creates a new matrix Zw with "R" rows and "C" columns, The term

M

NS.S is identical to the term KMFHF%.

STOSM M, M, L=L.L,
The command STOSM stores the submatrix KM in matrix KM. The term M_(1,1) is located
4

at row H.m and column L, in matrix Zu.

DUPDG M, M,
The command DUPDG creates a row matrix Km érom the diagonal terms of matrix Kp.

STODG M, M,
The command 8TODG stores the row matrix M, on the diagonal of the matrix xw.
~
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EXAMPLE OF BASIC CAL COMMANDS

The set of equations shown below must be solved, Since the SOLVE command only solves

symmetrical systems we must use additional operations to make the system symmetrical.

w-hm ||N-D XH
....HQQ 040 XN =
4.0 4.0 X3

An input file of the following form must be prepared!

C SOLUTION DF EQUATIONS EXAMFLE

C
EX1

LGaD & R=3 €

g

0
PRINT

3.
& |Ho
&

3
4 2.
0

P e I

A

LOaAD B R=3 C=1

3
-1

.&
FRINT
TMULT
THMULT
SOLVE
PRINT

T4

» > D

B
A
A
AT

A o

X (RESULTS

C CHECK RESULTS
MULT A& X C

SUgE €
FRINT

C Esch values in this matrix should be
RETURN

£
C

3.0
..IH.O
4.0 _

very close to zero

The CAL program will first ask for the name of the above input file, The above data is

then executed by the

RUN command.
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DIRECT STIFFNESS COMMAINIDS

The direct stiffness operations allow for the automatic formulation of element stiffness
matrices and the direct addition of element stiffnesses to form the global stiffness
matrix. The first step in the use of these commands is for the user to identify all
displacement degrees of freedom at tite joints of the structural system. These

displacements should be numbered Ugr Uy = = = =~y The corresponding external joint
lpads will be m% m.m -——— mz, The structural members should also be numbered from |
te M,

The user must prepare an integer table which identifies the joint equilibrium equation
numbers, 1 to N, for each internal member force, If each member has "I" possible member
forces, then the integer table will be an "I" by "M" array, This array must be loaded by
the LOADI command.

The ADDK command is used for each member to add the element stiffness matrices to the
total (global) stiffness matrix. After the joint loads are defined, the joint equilibrium
equations are solved for joint displacements by the SOLVE command, The use of the

MEMFRC command for each member allows member forces to be calculated,

ADDK K K, ID N=?
The element stiffness matrix named ..Mm_, is added to the total stiffness matrix named
"K", The row and column numbers where the terms are to be added are obtained from the

"N" column of the integer array named "ID",

MEMFRC T U ID F N=?

The member forces are evaluated by the multiplication of the matrix named "T" by the
joint displacement matrix named "U" and the results are stored in a matrix named aﬂ.
The joint displacements which are to be used in multiplication are obtained from the "N*"
column of the integer array named "ID" ., If "T" is the element stiffness matrix the
member farces are given according to the global sign convention. If "T" is a spedial
member force-displacement transformation matrix the member forces will be given in a

local member coordinate system.
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SI.OPE KH E=? I=? L=7?

The slope command forms the 4 x 4 member stiffness matrix Ku for a beam or a column,
Where "E" equals the modulus of elasticity, "I" equals the moment of inertia and "L
equals the length of the member. The positive definition of member forces and

displacements are shown below.

Ry, G R

For this sign convention the classical slope-deflection equations can be written as

HuH = mmm\cmn<u+m<m+®?w!<au\hu
MN = ﬁmH\Cmm<w+h<w+&?w|<»v\ﬂu
m.w = ..m.a = :um.vm.mv\r

These equations can be written as the following matrix equation:

F, 4 2 §/L =e/L T v,

F, 2 4 /L -6/L v,
= EI/L

F, 8/L 6/L 12712 -12/12 Vs

F, -6/L -6/L  -1212 12712 Vg

Or symbolically, ¥ = ¥{wv jwhere, E  is the 4 x 4 stiffness matrix formed
by the SLOFE command.
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FRAME K T I=? A=? E=? Nuxu.xu. 4uﬁb~u

The FRAME command forms the & x & element stiffness matrix named "K" anda 4x 6
force—~displacement matrix named “T" for a general two-dimensional bending member
with axial deformations included in the formulation. The properties of the member are
given as

I = the Moment of Inertia of the member,

A = the Axial Area of the member, and

E = the Modulus of Elasticity of the member.

The coordinates of the "i" and "j" ends of the member are defined by Mwuww and x_._ﬁ
respectively, Note that the user is responsible for the definition of the "i" and "j" ends

of the member.

The element stiffness matrix, "K", is formed with respect to the positive definition of

global forces and displacements as shown below.

t«.

The member forces, with respect to the member’s local coordinate system, can be
evaluated by the use of the MEMFRC operation which multiplies the matrix "T" by the
joint displacements, The positive definition of the member forces in the local
coordinate system is shown below. The MEMFRC command will evaluate the local member

forces in the order mum - - mu_».

w?¥

WO
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TRUSS KT A=7 E=? K=NiLKj

The TRUSS command forms the & x 4 element stiffness matrix named "K" anda 1 x4
force-displacement matrix named "T" for a general three-dimensional member with
axial deformation only included in the formulation. The properties of the member are
given as

A = the Axial Area of the member

E = the Modulus of Elasticty of the member

The coordinates of joint numbers Ni and Nj must have been previously loadedina RT x
3 array named "XYI". Where NT is the number of joint coordinates. Therefore, Ni
and Nj refer to the row numbers in the "XYZ" array. The element stiffness matrix, "K",
is formed with respect to the positive definition of global forces and displacements as

shown below.

The member axial force can be evaluated by the use of the MEMFRC operation which
multiplies the matrix "T" by the joint displacements., A positive axial force indicates

tension.
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FRAMEZIKT 1=133,122 A=? J=7 E=? =7 N=Ni,Nj P=P1,FPZ

The FRAMEZ command forms the 12 x 12 element stiffness matrix named "K" and an 8
x 12 force-displacement matrix named "T" for a general three-dimensional member
with axial, bending and torsional deformations included in the formulation, The
properties of the member are given as

I33 = the Moment of Inertia about the 3-axis

122 = the Moment of Inertia about the Z-axis

J

the Torsional Moment of Inertia about the {-axis

Ll

the Axial Area of the member
the Shear Modulus, and
the Modulus of Elasticty of the member,

H

A
G
E

The coordinates of joint number Ni, Nj, P! and P2 must have been previously lnaded in an
array named "XYZ". The element stiffness matrix, "K", is formed with respect to the

positive definition of global forces and displacements as shown below.

The member forces, with respect to the member’s local coordinate system, can be
evaluated by the use of the MEMFRC operation which multiplies the matrix *T" by the
joint displacements., The positive definition of the member forces in the local
toordinate system is shown below, The MEMFRC command will evaluate the local member

forces in the order P, - - P, LY

Locol 1,2,3 System
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The section properties HNN and Mww of a three-dimensional frame member must be
specified with respect to a 1-2-3 local member coordinate system. In addition, member
forces, which are produced by the computer programs, are defined in reference to this
local system. Therefore, it is the user’s responsibility to define the member 1-2-3
system in reference to the global x-y-z system. Both systems must be right-hand

coordinate systerms,

The positive l-axis, dw vector, is defined by a line along the axis of the member from

joint "I* to joint "J",

The 2 and 3-axes can be spedfied, with the m,uuu,_um option, by any one of the following
three methods!

METHOD {1 - GLOBAL PLANES ONLY - P=7,0

xy plane P=1,0 3-axisis Z-axis and dm = dw x ﬁm
zx plane P=2,0 3-axis is Y-axis and ﬂm =Vox du
yI plang P=3,0 3-axisis X-axis and dm = dw b4 du

METHOD 2 - SPECIFICATION OF ._Qv_. VECTOR - P=P1,F2

The coordinates of joint numbers Py and p, are specified by the user in the joint
coordinate information, The vector ﬁﬁ is defined by the line from joints Py to Py The
2 and 3-axes are then calculated as follows!:

qm = ¢n x du

cm = dm x cm
If necessary, additional (dummy) joints may be added which are not connected to

members,

METHOD 3 - SPECIFICATION OF "k JOINT - P=0,k
The Qx vector is defined by the line from joint “I" to joint *k*, The 3 and 2-axes are
then calculated as follows:

4w = QH x dr

V.=V, xV

2 371
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DIRECT STIFFNESS METHOD EXAMPLE - TWO-DIMENSIONAL FRAME

The two-dimensional frame structure shown below was selected to illustrate the direct

stiffnesc pperations contained within the CAL program.

wsed within the same problem.

MEMBER PROFPERTIES
Members ! to 4

1= 1000 in®

A 20 an

E = 30,000 ksi

"

Members 5 & ¢
= 2600 in”
Z
20 in

30,000 ksi

A
E

H

H

Different element types can be

e 400" M

STRUCTURAL DIMENSIONS, PROPERTIES AND LOADS

15

NUMBERS ASSIGNED TO EXTERNAL LOADS "R" AND JOINT DISPLACEMENTS "U™"

Member Member

Force 1 2 3 4 S )
Fi i3 14 0 15 11 i3
F2 7 @ 0 4 8 7
F3 4 7} 0 é i 4
F4 i1 12 13 14 iz 14
FS 8 ig 7 g 19 @
Fé 1 3 4 S 2 S

SUMMARY OF EQUILIBRIUM EQUATIONS
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SAP-84 INPUT DATA FILE - THO-DIMENSIONAL FRAME

ZDEX i SEFARATOR LINE
C FORMATION OF ELEMENT MATRICES

FRAME K1 T1i I=1000 A=20 E=30000 X=0,0 Y=150,300
FRAME K2 T2 I=1000 A=20 E=30000 X=350,300 Y=150,300
FRAME K3 T3 XI=1000 A=20 E=30000 X=0,0 Y=0,150
FRAME K4 T4 I=1000 A=20 E=30000 X=400,350 Y=0,150
FRAME K5 TS I=2000 A=30 E=306000 X=0,300 Y=300,300
FRAME Ké Té6 I=2000 A=30 E=30000 X=0,330 Y=150,150

C LOAD LOCATION ARRAY
LOADT LM R=6 C=6

13 14 06 15 131 13
7 ¢ 6 ¢ 8 7
4 S 0 & 1 4
11 12 13 14 12 14
8 10 7 9 10 9
i 3 4 5 2 %
FRINT LM
C FORMATION OF CGLOEBEAL STIFFNESS MATRIX
ZERD K R=15 C=105
ADDH K H1 LM N=1
ADDK H K2 LM N=Z
ADDK K K3 LM N=3
ADDK K K4 LM N=4
ADDH K KIS LM N=G
ADDK K H& LM N=6
C ENTER LOAD MATRIX
LOAD RT R=1 (=13
g 600O06OGOCO0O0CCO0CS OO0 1000C0
TRAN RT K
F R
C SOLVE EQUILIEBRIUM EQUATIONS
SOLVE K K
F R

C CALCULATE MEMEER FORCES - LOCAL SYSTEM
MEMFRC T1 R LM F1 N=1

FF1
MEMFRC T2 R LM F2 N=2
F F2
MEMFRC T3 R LM F3 N=3
F F3
MEMFRC T4 R LM F4 N=4
FF4
MEMFRC TS R LM FDO N=35
F FS
MEMFRC 76 R LM Fé& N=6
P Fé

C CALCULATE MEMEER FORCES - GLOEAL SBYSTEM
MEMFRC K4 R LM G4 N=4

F G4

RETURN TD INTERACTIVE MODE
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COMMANDS FOR DYNAMIC ANAILYSIS

In this section several commands are presented which allow CAL-80 to perform linear
dynamic analysis of small structural systems. With the aid of other CAL commands it is
possible to solve the following types of dynamic problems:
1. Evaluation of free-vibration mode shapes and frequendes.
2, Automatic generation of Ritz vectors to be used in a mode superposition analysis
or response spectra analysis.
3. Mode superposition analysis due to arbitrary loading.
4, Response spectra analysis due to earthquake loading.
5, Step-by-step analysis of structural systems with arbitrary viscous damping.
é. Dynamic analysis in the frequency domain
All commands assume that the mass and stiffness matrices have been calculated by other

CAL commands, The PLOT command can be used to produce printer plots of results.

EIGEN K V' M
This command solves the following eigenvalue problem for the mode shapes and
frequenties,

KV = MVe
Where "K" is the name of the N x N stiffness matrix . The command is restricted to
a diagonal mass matrix; therefore, the array named "M" must be given as a row or

column array of the diagonal terms of the N x N mass matrix MM,

The N x N matrix W, which contains all the eigenvectors {mode shapes) stored

columnwise, is named "V" and is normalized in order that .C..H. M V=1,

The N x N matrix e is a diagonal matrix of eigenvalues ium {frequencies w, are in
radians per mmn.mv. The EIGEN command stores the eigenvalues A in place of the mass

terms xw in the array named "M",

The program uses the standard Jacobi method;} therefore, both ¥ and IM must be

symmetric and positive definite matrices.

SQREL M,
The SGREL command replaces each term in matrix ZH with the square root of the term.

INVEL zM-

The INVEL command replaces each term in matrix ZH with the inverse of the term,
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DYNAM W C F Gt Xt DT=? N=?
This command evaluates a set of "I" uncoupled second order differential equations which
are generated in the mode superposition analysis of a structural system. The typical

equation is of the following formi

¥ +2cw X +wlX = fot); i=1,---1
i b I T i i

Where
W is a row or column array of the frequencies w, in radians per second.
C is the name of a row or column array of the damping ratios €
F is the name of I x | column array of the terms mw.
G is the name of a 2 x M array which can be used to define the time function g(t),
X(t)is the name of the I x N array where the results are stored,

DT is the time increment for which the results are produced,

The array G defines a time function in terms of straight line segments where G{1,J)
defined the time .J. and G{2,7) is the value mﬁv. The time function must be defines in
the range T =0 to Tmax. Where Tmax = N x DT, Therefore, the maximum value of
G(1,M) must be greater than Tmax.

The accuracy of the solution is not a function of the output time increment "DT" since

the command produces the exact solution for straight line segments.

™MAX X Xmax
The MAX command locates the maximum absolute value in each row of the array named
X () and stores the results in a column matrix Xmax. The maximum value and its column

number is also printed or displayed,

PL.OT M1 N=? R=R};R2 - - RN 5=851,62 - - RN
The PLOT command will produce a printer plot of "N” rows of matrix Mi, Where "Ri" is

the row number to be plotted and “Si" is the symbol used.

FUNCT G Fity' N=? DT=?

The FUNCTion command forms a 1 x N array named F(t), The terms are extracted at
*DT" intervals from the time function defined in the array named G. The array G
defines a time function in terms of straight line segments where G(1,J} defined the time
J. and ((2,J) is the value mﬁ.v. The time function must be defined in the range T =0
to Tmax, where Tmax = N x DT. Therefore, the maximum value of G(1,M) must be

greater than Tmax.
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STEPFP K M C UVA~ U'P F(t) DT=? L=Li,Lmax P=delta,alpha,theta

This command evaluates the displacements w3, at equal time steps, of a structural

system where the dynamic equilibrium equations are spedfied in the following form!
Ma(t) + Cvit) + Ku(t) = PF{{t?

Where
altr, wvit? and w(t) are the time-dependent acceleration, velocity and

displarement vectors respectively,

K, M and C are the names of the N x N stiffness matrix, E, mass matrix, v, and

damping matrix, < respectively,

The loads are specified as the product of a N x { vector Pnamed Pand a { x J array
¥ (t ) named F{t). The loads F(i) are given at equal time steps as specified by "DT".

UVA is the name ofa N x 3 array of initial conditions in which
The first column is a vector of initial displacements w0}
The second column is a vector of initial velocities w(0)
The third column is a vector of initial accelerations &(0)
After STEP is executed this array will contain the displacements, velocities and

accelerations at the last time step.

U is the name of the displacements which are stored as an N x Lmax array. The
step-by-step integration is conducted with a time increment "DT"} however, the
displacements are stored at Li time steps (or at "Li x DT" time intervals). Therefore,

the number of loads spedified "J" must be greater than " Li x Lmax ",

The Newmark-Wilson step-by-step integration method is used where the parameters are
specified by delta,alpha and theta. The following table lists possible values!:

delta alpha theta
Newmark’s Average Acceleration 1/2 /4 1.00
Rewmark's Linear Acceleration 172 1ré 1,00
Theta Method - Low Damping 1/2 1/6 1.42
Theta Method - High Damping 172 176 2.00

1f the P parameters are not specified the linear acceleration method is used.
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JTacosBik VM E
This command solves the following eigenvalue problem for the mode shapes and
frequencies!
KV = MVe
Where "K" is the name of the N x N stiffness matrix ¥C and "M" is the name of the N x

N mass matrix,

The W x N matrix W, which contains all eigenvectors (mode shapes) stored columnwise,

is named "V" and is normalized in order that
vimM=r=1

2 {(frequencies w, are in

3o The JACOEI command stores the eigenvalues e asa H x 1 column

The N x N matrix & is a diagonal matrix of eigenvalues W,
radians per mmn.m

matrix named *E",

The program uses a modified Jacobi method where both FC and IVI must be symmetric

and positive definite matrices.
RITZ X M F V' nv=> §=2

Given a N x N stiffness matrix named "K", a N x 1 mass matrix named "M" anda Nx
i force vector named "F", a N x NV matrix of orthogonal vectors, W, named "V" is

generated using the WYD algorithm. The matrix WV is normalized in order that
T
v oMV =1I

The generated vectors W are not orthogonal with respect to the stiffness matrix ¥ .

IF "5" is a nonzero number the static vector response is not included in the response.

NMORM M M2* T=2
A row matrix M2 is formed in which each column contains the sum of the corresponding
column of the matrix Mi. If *T" is not equal to zero the square root of the sum of the

square is calculated,

PrROD MI D
This command forms a § x 2 array named "D" which contains the product of all terms in

the array named "M1", The produce is stored as two numbers of the form D(1) 1 USV.

LOG
The LOG command replaces each term in matrix Km with the natural log of the term.



- w.m -
DYNAMIC ANALYSIS IN THE FREQUENCY DOMAIN

The CAL-80 operations DFT, IDFT and FSOLVE are provided in order to solve linear
dynamic analysis problems in the frequency domain. This approach can be very effective
for problems in which the loading is periodic over a very large time span such as machine
vibrations or wind and wave loading on structures, It can be used for other types of
loading, {i.e. earthguake ground motions}, if the period of the loading is selected to be
sufficiently long to assure that the response of the structure at the end of each loading
period is essentially zero, If the damping of the system is small a very large period may
be required if accurate results are to be obtained for loading which is not basically

periodic, Following is a summary of these basic CAL operations! '

IDFT Fimt)r DT=?

The M x N array named F(m,t) contains M different time functions, Eachrow in the
array contains values of the function at egual time intervals DT, The time functions
F(m,t) represent a time span of - oo to + oo} however, only the values within a typical

period (N DT) are specified as shown below!

[V N-OT b V N-OF |V N-DT ]

TYPICAL TIME FUNCTION "m"

The term F(m,1} represents the value of the function *m" at the beginning and end pf the
basic time period N DT, The DFT operation expands the time functions in a series of

the following form:
fFit) =
fo o+ Mﬁnx COS(kdw) + M.Jmmx SIN ( k dw }

where k=1,2,~===- {N-11/2 (for N odd); or, (N-2)/2 {(for N even), and dw =20 /7 (N D),
The talculated constants for time function "m" are stored in the 3:..
mnu. ﬁmu, ﬁnw
column will be zero.

row in the order mﬁ.

- - and replace the original terms in the Fim,t) array, For N even the zﬁ
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IIDEFT Fimw)-
This pperation transforms the frequency domain functions back to the time domain. The

M x N array named Fim,w), which is in the form generated by the DFT or FSOLVE

operations, is replaced by time function values at equal time intervals,

RADIUS F(m,w? Ri(mM,w)

This command operates on the Mx N Fimw! array and createsa M x L Rimw) array,

where L={N-1}/2. The terms are calculated from the following equations!

Rim,i) = ,\Ta.mzm + F(m,2i+1)

FSOLVE W CF Pw Ymw+ DT=?

This operation evaluates the sclution of a set of uncoupled second order differential
equations which are generated in the mode superposition analysis of a structural system
for which the loading has been transformed to the frequency domain, W, C,and F are M
x 1 arrays and have the same definition as given by the DYNAM operation. The I x N
array named Plw) is in the same form as produced by the DFT operation and DT is the

time step which was used to transform the time domain to the frequency domain.

th

The m’" row in the M x N array named Y(m,w) contains the terms YorYey' Yait Yoz =7
th

which 1s the solution of the m  mode written in the following form:

ylw) =y, ¢ Mxnx COS(kdw) + Mxmx SIN ( k dw )

The frequency domain solution Yim,w) can be transformed to the modal time domain by
the IDFT operation - JDFT Ym,ti.
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H COMPUTER ADAPTIVE LANGUAGE
FOR THE DEVEIL.OPMENT OF
STRUCTURAIL ANAILYSIS PROGRAMS

SUMMARY

A group of FORTRAN 77 subroutines is presented which are designed to augment the
standard FORTRAN language and to produce a new higher—order, machine-independent
language for the development of structural engineering software . The group of
subroutines which comprise the Computer Adaptive Language for the development of
Etructural Analysis Programs, CAL/SAP, is designed to effectively operate on micro,
supermini and mainframe computers, The CAL/SAP system has been used as the basis
for the development of the SAP-80 series of programs and for CAL-80, a series of

interactive programs for Computer Assisted Learning of structural analysis and design.

The subroutines which define the CAL/SAP development system are divided into the

following three categories:

First, a series of free-field input routines allows input data to be
specified in a consistent manner, in arbitrary order, with optional name
identification and in arithmetric statement form.

Second, a set of incore data management subroutines allows dynamic
storage allocation to be accomplished with integer, real and ASCII data
with a minimum of programming effort. These subroutines eliminate
paging problems on modern super minicomputers with virtual operating
systems,

Third, an put-of-core data management system allows different programs

to access the same data. Simple operations allow data transfer between

the in and out-of-core systems. The out-pf-core data base provides for

sequential, direct access and bulk data files., Communication between

different data bases allow technigues such as multilevel substructure

analysis to be implemented with a minimum of programming.,
The use of the CAL/SAP development system allows computer programs to be rapidly
developed and maintained. Also, it can be used to upgrade existing software in order
to obtain modularity and to operate efficiently on the new generation of computer
systems. The purpose of this paper is to present the CAL/SAP development system
and to illustrate that computer independent programs in structural engineering and
computational mechanics can be developed which operate on both large and small

computers.
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INTRODUCTION

The use of a series of utility subroutines to facilitate the development of computer
programs in the general area of structural analysis and design is not new. Programs
such as SMIS [1], STRUDL [23, ASKA [3]; NASTRAN [4], GIFTS [5], POLO-FINITE [41,
IFAD [73, SESAM (81, NORSAM [9], CAL [10], FEMALE (111, FACTS [12] and NICE
{13) are examples of programs which are based on symbolic input or use special
techniques to manage core and secondary storage. Also, general purpose database
management systems such as RIM [14] have a potential for use with structural
engineering programs. Most of these programming systems were developed for use on
mainframe computers and cannot be easily modified to operate on the new generation of
microcomputers which have a 64Kk byte limitation, Also, the FORTRAN source statements

for many of these programs are not available to be used by other developers,

Most special purpose computer programs in structural engineering, which have been
developed within the past twenty years, have been designed to operate on large
computers in a batch data input mode, Also, the internal structure of many of these
older programs is monolithic in which different areas of the program communicate with
COMMON data areas and external sequential temporary TAPE files. Larger programs
required complex overlay structure because of core storage limitation. Very few
programs of the past generation have simple restart options since the data structure is
fragmented between core storage and several external sequential storage devices.

Therefore, these programs are difficult to maintain and modify. In addition. many of
these older programs are based on obsolete numerical methods and many of the

structural elements should be replaced with more modern and accurate elements,

Since the introduction of inexpensive and very powerful mini and microcomputers, there
has been an attempt to convert these old programs to the new computer systems, This
approach not only tends to perpetuate obsolete technology, but it does not take
advantage of modern computer hardware and software. Of course, this approach is
justified because of the large cost required to develop and verify new computer
programs. Also, most users have little motivation to learn how to use a2 new program
unless it has new capabilities. A reduction in the cost of running a program or an
increase in the accuracy of the results are usually not strong enough reasons for the

normal user to change to a new, unfamiliar program.
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The major purpose of this paper is to present methods of programming which will reduce
the cost of development and maintenance of new and old programs in structural
engineering. The standardization of the user-friendly free-field input data files allows
the user to learn how to use a new program with a minimum of effort, The incore and
out~of-coare mwo?wmm, data management routines allow new and modern elements and
numerical methods to be rapidly incorporated. Therefore, many of the obstacles in the

development of new programs which were previously described can be eliminated.

The techniques presented in this paper were used as the basis for the development of
the SAP-80 series of programs [15], Also, they were used to modernize the CAL
program, which was initially designed to operate in the batch mode, CAL is now a series
of programs with both batch and interactive options which operate on both micro and
mainframe computers [161, The CAL-80 program not only has its previous options, but
can be used as the basis for many new program modules in computer graphics, computer

aided design and data reduction associated with experimental projects.

The CAL/SAP development system is based on the assumption that modern computer
programs are subdivided into several "program modules” which are executed separately.
The components and operation of a typical module is illustrated in figure 1. Each set of
subroutines is independent; therefore, all three sets of subroutines may not be required
in each program module, For a small spedial purpose program, a developer may find that

only the data input interpretation subroutines are required.

The CAL/SAP system and the CAL program are protected by copyright law] therefore,
they cannot be modified and resold as a part of a proprietary program. However,
organizations which join the CAL/SAP users group may develop programs which interface
with the CAL/SAP system and will have the opportunity to interchange program modules.
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PROBLEM DEFINITION — ASCII DATABASE

COMPUTER TERMINAL INPUT

TYPICAL
PROGRAM

MODULE

| Sebrontines

PROBLEM DATABASE —BINARY FILES

FIGURE |I. THE CAL /SAP DEVELOPMENT SYSTEM
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INTERACTIVE AND FREE-FIELD INPUT
One of the obvious advantages in the use of modern micro and minicomputers is that the
input data can be specified in an interactive manner. In an interactive mode of data
input the computer program writes a request to the terminal screen and the user
responds by typing the appropriate information at the keyboard., This approach can
eliminate the need for an elaborate users manual. After careful consideration, however,
it was decided that additional input data options were required for the foliowing

reasons:

The programming effort required to prepare and edit the input data interactively
is comparable or greater than the programming of a new structural element
subroutine,

Many very competent engineers do not type rapidly and prefer to prepare data on
forms and then have assistants enter the information into the computer, Also,
after a user becomes familiar with a program the soreen prompts may tend to slow
down the experiented user.

A complete copy of the input data is necessary if problems are to be rerun at a
later time with a small fraction of the input data altered.

It is desirable that the permanent copy of the input information be in & compact
and symbaolic form for rapid terminal display.

A large number of very excellent open screen editors are now available for
preparation of text or data files on all modern computer systems. The user of
the computer generally is familiar with such an editor and its use does not require
the confusion of learning several different interactive data entering technigques
used by different programs.

The selection of a symbolic free-field input data structure offers many of the
advantages of interactive input with respect to ease of use and error
minimizations.

The same free-field input subroutines can be used in all new program segments;
therefare, a minimum of new programming effort is required to expand the
capability of a program.

Preformatted data files can be prepared for certain classes of problems in which
the location and definition of the data to be entered is given by comment
information which is ignored when the file is read.

Interactive input can still be used when it is the most appropriate method of
entering a small amount of data,
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TYFICAL LIKE OF DATA

A typical line of input information which is read from the input data file {or read from

the computer console) is entered in the following free—field formi
z m mWﬂN nzw»l.l.l »"» u ?»N?bM|I| mﬂwm mewww llllll

Where the input data is designated by Ni, Ai or Bi, The data fields must be separated by
a single comma or by one or more blanks; therefore, a fixed field format can be used for
some data if required. The data Ni,NZ,N3-- without identification must be the first
information on the line., Input data of the form B=B1,B2,B3,--- can be in any order or

location on the line,
For example, the following line of data can be entered!
2/4,5 (O=DEBUG E=2%9400%144 (=200%12+3.5,400/12 AREA=10+20/3-2

Simple arithmetric statements are possible when entering floating point real numbers,
The statement 10+20/5-2 is evaluated as ((10+20)/5)-2),

The "mini name-lists” of data A= or B= can be in any order and provide a flexible method
of supplying a large amount of information on a single line. The symbolic identifiers
make the data line very readable on a video terminal and allow information to be rapidly

modified by a standard open-screen text editor,

FREE-FIELD INPUT SUBROUTINES

Five FORTRAN subroutines are presented which are designed to standardize the
transfer of data from the input data file to information to be used within the computer
program. The file is divided inte data groups with each group identified by a separator
or header, This separator is used as a title for the data that follows. For example, the
separator LOADS can be used as the header for the concentrated joint loads.

Separators can be variable length alphanumeric strings. The separator must begin in
the first column of an input line. Only the first four characters of the string are
compared while searching the input file for the separator. The rest of the line can be

used for comments.
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Within @a FORTRAN program the calls to these subroutines are of the following form:
CALL FIND('SEPA,KEY)
CALL FREE
CALL FREEFT
CALL FREEI¢'I\ISYHM,NUM)
CALL FREER{'R’\RSYM ,NUM}
CALL FREEH('H',HSYM,NC,NUM)

The FIND subroutine searches the input data file for the specified four character
separator SEPA in order that the data which follows the separator can be read in
sequence. If the separator is not found, the routine will return with KEY set equal to !
+ The data following a separator line is specified in a "mini-namelist” fashion as

previously indicated and can contain 0 to 160 characters in each record.

The FREE subroutine reads one record from the input file and transfers that information

to an internal line buffer, Each call to FREE advances the input file by one record.
The FREEPT subroutine will echo the last record read on the console and output file,

The FREEI subroutine will search the line buffer for the symbol *I=" and extract the

next "NUM" integers and store them in the internal array named "ISYM".

The FREER subroutine will search the line buffer for the symbol "R=" and extract the
next "NUM" real numbers and store them in the internal array named "RSYM",

Arithmetric statements are allowed only for real data.

The FREEH subroutine will search the line buffer for the symbol “H=" and extract the
next "NUM" Hollerith words and store them in the jnternal array named *"HEYM", where
"NC" indicates the number of characters in each word. If less than NC characters are
specified the remaining characters are set to blanks. Within the program the Hollerith

data must be specified as character data and dimensioned correctly (.2, HSYMNC,NUM)
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These routines are very flexible and offer many options that can make an input file very
readable. The following is a summary of the options and conventions which are provided

if this package of subroutines is used:

A "C" in column 1 of any line will cause the line to be echoed as a comment on the
consaole,

A backslash "\" at the end of information on the a line will allow the next line to
be interpreted as a continuation of the previous line} therefore, a 160 character
record is possible,

A coloen "t indicates the end of information on a line. Information entered to the
right of the colon is ignored by the program. Therefore, it can be used to provide
additional comments within the input file,

If a blank identifier is specified, the data string is assumed to be the first data
string of the record.

1f less data exists than is specified by NUM, the values returned will be either a
zero or blank according to the routine used,

When an identifier is not found, the values will not be changed and will be the
same ac before the call,

Real numbers do not require decimal points} E formats with + or - exponents are
accepted,

Simple arithmetric statements can be used within the input. The functions that
can be vsed are +, -, ¥, /. The order of evaluation is sequential, not hierarchical
as in the FORTRAN language.

More than one character can be used as an identifier. For example, TOL = 0.001
would be extracted by CALL FREERUL’,TOL,1). Note that when using multiple
chararter IDs, the last character must be unique on a given line,
The FORTRAN 77 scurce statements for these subroutines are given. These should run
on most systems without modification. Only a few statements were required to be
changed for them to be operational with Microsoft FORTRAN which is the standard for

CP/M microcomputer systems.
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EXAMFLE OF FREE FIELD INFPUT

One subroutine will be given in prder to illustrate the use of some of the possible
options of this group of input subroutines., The following input data entered after the
JOINTS separator is intended to describe the joint geometry of a simple

one-dimensional structural system.

C EXAMFLE DATA FILE

JOINTS $JOINT COORDINATES

1 X=100 ¢t JOINT AT LEFT END OF BEAM

11 X=250 G=1,10,1 {JOINT AT RIGHT END and GENERATION
tEND OF JOINT INFUT DATA

The following subroutine will read this data and generate the internal joint coordinates

at equal intervals?

SUEROUTINE JOINTS (X, NUMNF,NOUT)
DIMENSION X (NUMNF)
COMMON /TEMF/ NMIN,NMAX,NINC

Crm—— SEARCH INFUT FILE FOR JOINT DATA---
CaLL FIND(/JOIN’,HEY)
IF(KEY.EQ.0) GO 70 100
HWRITE(NOUT,2000)
STOF

L= READ OF JOINT COORDINATES-——-—=—==w-

100 N =0

Call FREE
Call FREEPT
CALL FREETIC(” “,N,1)
IF(N.EQ. D) RETURN
CALL FREER{7X’,X(N¥,1»

C-===- CHECH FOR GENERATION--—=w-=--———m————
NMIN = 0
CALL FREEI(‘G’,NMIN,3)
IF(NMIN.EQG.D) GO TOD 108

C-———w~ CENERATE JOINYT GEOMETRY-rm—————ww-—-—--
IF(NINC.EQ.D) NINC = 1
XN = ( NMAX - NMIN 3 / NINC

DX = ( X(NMAX) - X{NMIN) ) / XN
ML = NHMIN + NINC
MH = NMAX - NINC
C
DO 200 M=ML,MH,NINC
MM = M -~ NINC
200 X(M) = X(MM) + DX
GO TO 100
O ||||||||||||||||||||||||||||||||||||||

2000 FORMAT (¢ x x JOINT DATA NOT FOUND x x7)
END
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It is apparent that the use of this group of input subroutines offers versatility in
creating'readable input files, Also, the internal use of the subroutines is relatively
simple since all input FORMAT statements have been eliminated. The practical
application of this form of input is only limited by the creativity of the

engineer/programmer,

INCORE DATA MANAGEMENT

The standard approach in the development of FORTRAKN programs is to reserve storage
for arrays by the use of DIMENSION statements, Except for small, specal purpose
programs, the size required by many of the dimension statements is not known at the
time the program is written. The concept of dynamic storage allocation has been used in

order to avoid the problem of recompiling the program for different size problems,

In dynamic storage allocation, core starage for all arrays is reserved in the form of a
single one-dimensional arvay in blank common. Then, at the time of execution of the
program on different computers only the size of the one~dimensional array need be
thanged. Also, all data storage is compacted into a local area of computer storage. This
has advantages for operation on modern computers with virtual operating systems,

These computers are very inefficient if the data is fragmented in a large area of storage

since this will require extensive paging.

The series of subroutines which are presented in this section are designed to allow
storage to be easily allocated and managed during the execution of the program. It also
allows data to be accessed from any subroutine without passing the array names through

as arguments to subroutines.

Each subroutine which communicates with the incore data requires a statement of the

following form!
COMMON MTOT,NFP,IACL)

Where MTOT will be the actual size of the I4& array which must be set in the main
program. All arrays which are contained in the incore data base system are designated
by a four character ASCII name which is selected by the programmer, Before data is
entered in the data area the constants in the COMMON/DBSYS/ must be initialized.
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The five subroutines which are used to allocate and manage storage are called by the

following statements!:

Call DEFINE(/NAME’ ,NANR,ND)

Call DEFINIC/NAME s NAa,NR,NC)

CALL DEFINHU/NAME’ ,NA,NR,NC)

CallL LOCATE{'NAME’,NB,NR,NC)

CaLlL DELETE(/NAME’)
Where ‘NAME’ is a four character name to be assigned by the user. The subroutines
DEFINE, DEFINI and DEFINH reserve storage for REAL, INTEGER and Hollerith data
respectively, The arrays are spedfied to have NR rows and NC columns, The value of

N4 is returned which indicates the location of the array in the 1A array.

The subroutine LOCATE returns the address NB and the number of rows NR and the
number of columns NC of an array "NAME’ which has been previously defined. The value

of NB will be zero if the array has not been previously defined.

The subroutine DELETE removes the array 'NAME’ from the inctore storage area and then
releases the storage for use by other data. It should be noted that new arrays are
always added at the end of the IA storage array. Therefore, if arrays are deleted the
other arrays will be relocated in storage unless the arvay deleted is at the end of the JA
array. It should be noted that if the arrays are deleted in reverse order of definition
the incore data will not be moved., Also, the use of small program segments should

reduce the requirement of incore deletion of data.

The incore data base can be saved on an externally named file. If another program
requires the same incore data base, the appropriately named file can be opened and the
incore data restored., With this method of transferring data between different
programs, it is possible for large programs to be subdivided into small program
segments and run on microcomputers with small storage requirements for each program

segment. This technigue is used extensively in the CAL-80 series of programs.
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OUT-OF-CORE DATA MANAGEMENT

Many programs, in the general area of structural analysis, use out-of-core data base
management systems, Most of these programs were developed prior to the release of
FORTRAN 77 and prior to the existence of modern computer operating systems such as
CP/M and UNIX. Therefore, these programs use one large disk storage area in which the
data base system allocates storage for an array and then records its location as a direct

access record number.

The standard FORTRAN 77 language allows direct access to named files which reside in
the computer operating system and has introduced several new commands which are
associated with file manipulation. As a result of these new developments the
advantages of using only one general purpose data base management system has been

diminished.

The group of subroutines which are responsible for the out-of-core data management in
the CAL/SAP development system contains the option of direct access files as well as
some new options for direct communication with files which reside in the computer’s
operating system. Some of the advantages of the data base management system, DBM,

presented in this paper are as follows!

First, very little additional storage is required for programs which use the DBM
system. Therefore, it is possible to use these techniques on microcomputer
systems with a limitation of 64k bytes of core storage. This allows programs
which are developed on very small computer systems to be transferred without
modification to larger computers.

Second, the direct use of files within the operating system is more efficient with
respect to the use of disk storage. This is because the deletion of information
from the data base and the use of the deleted file storage areas is auvtomatically
accomplished by the computer’s operating system. This task is one of the most
complicated phases in the use of any general purpose data base management
system. Therefore, the subroutines presented in this paper are very simple and
compact whenh compared with other out-of-core data base management systems.,

Third, most of the out~of-core storage requirements associated with element data
within a structural analysis program are best served by standard FORTRAN
sequential files, rather than by separate calls to a DBM system for each element.
In the CAL/SAP DBM system both types of files are possible.
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The most important aspect with respect to the use of any data base is that the
FORTRAN CALL statements be defined and used consistently. If this is accomplished
computer programs which are written for one data base system can easily be converted
to operate on another system. The following is a list of subroutine CALLs to the
CAL/SAP DBM system!

CaLl IFILE

CALL FOFEN(‘ext )

CALL FOPEN(LUN, ext /)

CALL FCLOSE(LUND

CALL FILE (RSYM,’ext “,NR,NC)

CALL FILEI(ISYHM, ‘ext ‘,NR,NC)

CALL RFILE (RSYM, ‘ext ‘,NR,ND)
CALL RFILEICISYM, ‘ext ‘,NR,NC)

b
r
)
B

]
.
I3
+

The subroutine IFILE reads the name of the input data file. This name will be the first
name for all data files assodated with this structure {or substructure), This name will
be contained in the character array named FIN which is made available to all data base
subroutines by the named COMMON /PARC/ statement. All files which are associated
with the problem are referred to by a second name ‘ext ‘ which is used as an argument in

the subroutine calls,

The subroutine POPEN opens the formatted print file, ‘ext ’, and connects the file to the
logiral unit number NOT. Therefore, each phase of the program can have a different

output file.

The FOPEN subroutine opens an existing unformatted sequential access file, ‘name’y and
connects the file to the logical unit specified by LUN. This file may then be written or
read with standard FORTRAN WRITE or READ statements, If LUN is negative the file
will be formatted. The NOPEN subroutine opens a new unformatted sequential access
file,

The FCLOSE subroutine closes the previously named file and disconnects it from logical
unit LUN., The same logical unit number can then be attached to another named file
within the same program by another FOPEN call. This illustrates that a logical unit
number can be thought of as a temporary input/output buffer which is defined within a
FORTRAN 77 program. This is a significant change from traditional FORTRAN in which
a logical unit number was defined as an external tape-like device,



- 4,13 -

The subroutines FILE and RFILE write and read real data to and from the file, ‘ext /,
where NR and NC indicate the number of rows and columns in the array identified by
RSYM. NR and NC are returned when the file is read. The subroutines FILEI and
RFILEI are used to transfer integer data. Logical unit number NFL is reserved for use

by these subroutines which transfer array data in and out of core storage.

The FORTRAN source statements for these out-of-core data base operations are given.
One notes that they involve a minimum number of FORTRAN statements;) therefore, they

can be used effectively on microcomputers with a limited amount of storage,

USE OF THE CAL/SAP SYSTEM

It is apparent that the input/output logical unit numbers must be set and other system
dependent variables must be set prior to the use of the subroutines presented in this
paper. The IDSET subroutine given performs that function for M5-DOG types of
computer systems., The subroutines STOPC save the incore data base at the termination
of a program module. The subroutine READC reads the incore data base information.
This allows different program modules to transfer information very effectively. Since
CAL-£4 can read information from other program modules the information can be

examined interactively and is of great value in a debugging mode of operation.

FINAL REMARKS

The group of subroutines presented in this paper is intended to augment the FORTRAN
language for the development of program modules in the general area of structural
engineering., It assumes that structural analysis and design is accomplished by a series
of programs which operate on modern interactive computer systems. It is intended to
make maximum use of the features of FORTRAN 77 and Microsoft FORTRAN for
microcomputers. Also, it is designed to utilize the data management techniques which
are inherently contained in modern computer pperating systems. The use of these
subroutines should allow computer programs to be rapidly developed or modified in a
very short period of time and at a minimum cost. In addition, the resulting software
should be portable and have a long functional life which is independent of the rapid

changes in modern computer hardware, operating systems and FORTRAN compilers.
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Numerical Methods for Dynamic
Analysis

E. L. Wilson

6.1 INTRODUCTION

The value of the results of a dynamic analysis depends on the approximations
involved in the establishment of mathematical models for the structure and
foundation and in the selection of the various dynamic load conditions. In
general the establishment of the models and the interpretation of the results are
the most critical phases of a dynamic analysis. This assumes that the particular
method of dynamic analysis used does not introduce additicnal errors in the
solution of the model for the specified loads. It is important that the computer
cost for any one analysis is not large in order that inexpensive re-analysis is
possible and the results of the analysis can be used by the engineer to influence
the basic design of the structure. Also an economical computer analysis wiil
allow some of the basic assumptions used in selecting the model and loads to be
varied and the sensitivity of the results evaluated.

The effectiveness of a numerical method for dynamic analysis depends
primarily on two factors—the minimization of computer storage and the
minimization of computer execution time. The purpose of this paper is to
present a summary of various numerical methods which are used in the dynamic
analysis of offshore structures and to comment with respect to their computer
implementation and efficiency.

It should be noted that all structures, regardless of their simplicity, have an
infinite number of degrees of freedom when subjected to dynamic loading. One
of the main objectives of selecting a mathematical model is to reduce the
infinite degree of freedom system to a model with a limited degree of freedom
which will capture the significant physical behaviour of the system. Therefore a
considerable insight into the expected dynamic behaviour of the system must
be present if a realistic mathematical model is to be established. The model
must be capable of representing both the significant wave propagation and
structural vibration behaviour. .

The force equilibrium of an offshore platform modelled as a system with &
finite number of degrees of freedom may be written as

F+F4+F,=F 6.1)
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in which all forces are a function of time and defined as

F, = The inertia force

F, = The internal and external damping forces

F, = The forces carried by the structural members
F =The external applied forces

Equation (6.1) holds for both linear and non-linear systems. However the
appropriate numerical method for solution will depend on the degree of
non-linearity which is present and if linearization is possible.

6.2 LINEAR DYNAMIC ANALYSIS

For linear systems with viscous damping Equation (6.1) can be written in the
form

MU+ CUN+ KU(@)= F(1) 6.2)

in which M is the mass matrix {(lumped or consistent), C is the damping matrix
¢normally not given in the form) and K is the stiffness matrix for the system of
structural elements. The time dependent vectors U(1), U(t) and U{r) are the
displacements, velocities and accelerations respectively.

The time dependent external forces F{r} may be due to wave or seismic
forces. Normally the calculation of wave forces is a complicated procedure
which depends on the shape of the structural elements. Other papers in these
proceedings are referred to for the evaluation of wave forces. In the case of
earthquake motion in three-dimensions the loading is of the form

mﬁnvﬁib\\um.w;lgwmﬁnlau@un (6.3)

where U, is the ground acceleration in direction ¢ and M, is a column matrix
which represents the sum of all columns in the mass matrix M associated with
displacements in the i-direction.’ This definition of the seismic loading is valid
only if the vector is defined as the displacement relative to the displacement at
the base of the structure.

In many cases wave and seismic loads in each direction are mﬁnnwmnm in terms
of a spectrum of maximum response values. In the case of three-dimensional
behaviour, however, great care must be taken in the application of the tech-
nique, since the basic input in the various directions must be statistically
independent if the results are to be combined in a probabilistic manner.

Figure 6.1 indicates the possible solution techniques which can be employed
for the dynamic analysis of linear systems. Four different solution approaches
are possible. Two methods involve the evaluation of the undamped mode
shapes and frequencies as the first step in the analysis—the mode superposition
method and the spectrum analysis method. The frequency domain method
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Figure 6.1 Methods for linear dynamic analysis

involves the expansion of the load in a Fourier Integral which reduces the
dynamic analysis into a series of solutions of linear sets of complex equations.
Another method which can be very efficient for certain systems is the direct
step-by-step integration of the equations of motion.

Each phase of the possible solution methods suggested in Figure 6.1 involves
a numerical method which must be formulated in effective form for computer
implementation. Solution of linear equations, evaluation of eigenvalues and
eigenvectors, numerical evaluation of integrals, transformation to the fre-
guency domain, evaluation by the fast Fourier transform and the step-by-step
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numerical integration of the coupled equations of motion will be discussed in
detail in the following sections.

6.2.1 Solution of linear equations

The solution in the frequency domain, the evaluation of eigenvectors and step-
hy-step solution methods can involve the solution of a set of linear equations;
therefore an efficient solution method for this phase can be very worthwhile.
The sct of equations to be solved can be written symbolically as

AX =0 (6.4)

where A is an Nx N symmetrical matrix and X is a vector of unknowns
corresponding with the specified vector b. One of the most important aspects in
the computer solution of a targe set of equations is the method used to store the
terms in the A matrix. One method which has been found to be very effective is
the active column storage technique in which only the nonzero terms in the
reduced matrix are stored. If a basic elimination method is used the only
storage required will be from the first non-zero terms in each column down to
the diagonal term in that column. Therefore the matrix with terms initially
Iocated as indicated in Figure 6.2(a)canbe stored asa one-dimensional array as
shown in Figure 6.2(b) along with an integer pointer array indicating the
location of cach diagonal term. Figure 6.2(c) indicates how the storage tech-
nique is extended to approximately equal size blocks which can be stored on
low speed storage. The solution technique requires two blocks in high speed
core storage at any particular time. 1t has been demonstrated that most of the
popular methods for the solution of equations are very similar, with respect to
the number of numerical operations. and they can be considered to be
variations of the Gauss elimination method.’

The basic factorization algorithm for the solution of equation stored in active
column form may be summarized by the following three steps:

(a) Triangularization of A {(j = 20 N)
A=LU or A=LDLT (6.5)
in which the jth column of upper triangular matrix U is evaluated from
i=1
C.__.Hub.:lmMr M‘:rcf n“b mO%. AO@w
and the jth row of lower triangular matrix is given by

L,=U,/D. i=fitoj—1 (6.7)

where D is a diagonal matrix, fj is the first non-zero term in column j and fi is
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the first non-zero term in column £ The symbol km represents maximum of ff
and fi. .

The diagonal terms U, and D, are identical since L,; is normalized as 1-0. It
is most convenient to evaluate U, within a computer program column-wise
with i = fj to J. After each column is complete L, is evaluated row-wise with
i =fj to j—1 and stored in transposed form as L} where U, was previously
located. The diagonal term U, or D, remain at the same location as A,.

(b)) Forward reduction
Equation {6.4) can be written as Lz = b, where 2 = DL T Therefore

i=1
zi=b—-Y Liz i=1toN (6.8)

k=fi

If y isdefinedas y=D "'z theny=L"x; or

yi=2,/D, i=1toN (6.9)
(c) Backsubstitution
Fromy=L"x
N
x,=yi— ¥ Liw i=Ntol (6.10)
k=i+1

Itis important to note that all zero operations are skipped by this technique and
that neither the number of operations or the the required storage is a function
of the band width. Also the triangularization operation on the A matrix is
independent of the forward or backsubstitution operations; therefore this
operation need be done only once. The forward and backsubstitution phases
for each load condition normally involve a small number of operations com-
pared to triangularization. Recognition of this can greatly minimize the numer-
ical effort required in some eigenvalue methods and in the direct step-by-step
integration of the equations of motion.

6.2.2 Step-by-step integration

The direct integration of the linear dynamic equations of motion is a simple
approach which can have considerable advantages for some probiems. The
basic equation is satisfied at discrete points in time, 0, &7, 241, 34s,... 1,
t+At, ... T. The solution starts from a point in time where the displacements,
velocities and accelerations are known. Based on an assumption on the
behaviour of the system during the next small increment of time the displace-
ments, velocities and accelerations at the next point in time can be evaluated.
Many different methods have been developed for this purpose.’"'? However
only two techniques will be summarized in this paper.



6-7

{a) The central difference method

In the case of a diagonal mass and damping matrix and for systems where the
shortest period is not too small the central difference method has proven to be
most effective. At time ¢ the equation 1o be satisfied is

MU,+CU,+KU,=F, (6.11)
The following standard finite difference relationships are used:

- 1

ﬁuwﬂﬁc:efucl Usear) (6.12)
: 1
c~ = Mﬂﬁcqibn - Tb; ﬂﬁ.m 3

Equations (6.12) and (6.13) can be substituted into Equation (6.11) to form a
set of linear equations of the form

MU.,=F (6.14)
where
%t;mli..‘imiﬂ 6.15
At 2 Ar 13)
1 1
m.__,iNlNQ@MﬂEGQIQ-ETM&MQQ-E (6.16)

If AMf and C are diagonal one notes that the solution of Equation (6.14)is trivial;
also computer storage will be minimized. Another very important technique
which can be used to further minimize the number of numerical operations and
computer storage requirements is not to form the complete stiffness K. The
structural forces KU, can be evaluated element by element, or

F,=KU,=Y K.U:

in which X, is the stiffness matrix for element m. If elements have identical
stiffness matrices a further reduction in computer storage can be realized.

The solution U,.,, is based on using the equilibrium at time r; therefore this
approach is called an ‘explicit integration method’. One of the most significant
disadvantages of the central difference method is that it is only conditionally
stable.? In order for the method to produce finite results the time step Ar must
be less than T,/m where T, is the shortest period in the discrete model. For
many structures this requires time steps so small that the method may be
impractical.
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b)) The Newmark-Wilson method

One of the most flexible step-by-step integration methods has been presented
by Newmark.” This method is based on the following expressions for the
velocity and displacement at the end of the time interval:

U.s.=U+A (1 =80, +At8U,. 5, 6.17)
Uia= U+ U +AP2 G-, + A7 aU,. s (6.18)

where a and & are selected to produce the desired accuracy and stability. If
& =1and e = the well known linear acceleration is produced, which is also a
conditionally stable method. One of the most widely used methods is the
constant-average-acceleration method (6 =1 and a =1) which is an uncondi-
tionally stable method without numerical damping.

This method is called an ‘implicit integration method’ since it satisfies the
equilibrium equations of motion at time ¢+ A1, or

xﬁ.\.‘l.b;.*..ﬁ.gxg.fhﬂc:bu = Frear AGMOV

“This equation can be solved by iteration; however Equations (6.17}, (6.18) and
(6.19) can be combined into a step-by-step algorithm which involves the
solution of a set of equations at each time step of the form

K*Ua=F* (6.20)

Since X* is not a function of time it can be triangularized once at the beginning
of the calculations. The computer solution time for this type of algorithm is
basically proportional to the number of time steps required.

The Wilson @ method is a technique which can be used to modify the basic
Newmark method in order to increase the stability limits and to add numerical
damping.'® The 6 method was first applied to the linear acceleration method in
order to improve stability and has been used to damp. out high frequency
oscillations which often develop in linear and non-linear step-by-step integra-
tion. The technique involves using the Newmark method to find the solution at
1+ 6 Ar, then, based on linear acceleration, calculating the results at ¢ + At for
use as initial conditions for the next time step. The Newmark~Wilson algorithm
is summarized in Table 6.1. With 8 = 1 the approach is the standard Newmark
method. An unconditionally stable method with large damping in the higher
modes is produced with § =4, a=}and 6 = 1.4

6.2.3 Frequency domain approach

An alternative to the direct integration of the coupled linear equations of
motion is to use a formal mathematical transformation to eliminate the time
_ function from the equations before solution progresses.' The basic approach
involves the expansion of the time-dependent loads in terms of a series of
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Tahle 6.1 The Newmark-Wilson algorithmfor linear step-by-step integration

A. INITIAL CALCULATIONS:
1. Form stiffiness matrix K. mass matrix M and damping matrix C.
2. Initialize Uy, Ug. and U,
3. Specify algorithm parameters . & and §

82050 a=025(0-5+8Y, e=10

4. Calculate integration constants:

1
T= 8 At as=7——1 a;= oth
Za
H 8
ag=—3 a,=—-1 av=AaE-a)
ar a
& r 2
a,=— a,==i8fa~2) ag=a Ar
ar 2
i
a;=— as=Ar{1-4)
ar

5. Form eflective stifiness matrix: K* =K +aM+a,C
6. Triangularize K*: K*=LDL !

B. FOR EACH TIME STEP:
1. Calculate effective load vector at time f+ 7:

F*=F,.,+M(a,U, +a,U + a. U
+Cla, U +aU+a )
2. Solve for displacements at time 1+ 7:
LbL'U,,.,=F"
2 Calculate accelerations, velocities and displacement at 1 + Al
U,y = ag(Use, = UN—a2U - a3 U,

. 1 . .
Q...b_ = Qﬂfl&.&ﬂ\..... v QL

Viear= Uy +asl,+a:U.a

cnobu =U, +b.-ﬁ.\. +§mQ_+hohw-ab_

harmonic functions. One can use the standard Fourier Series in which the loads
F{1) are expanded in a series of the form

oo

Fi)= S Ancos™ i+ ¥ Basin—t (6.21)
Lt & A=0 Q

in which d is the duration of the loading. The Fourier Coefficients can be
evaluated and exact solutions found for the harmonic functions A, cos (n m/d)



and B, sin {nm/d)t. It is assumed that the loading can be approximated by a
finite number of terms. Therefore the total solution in time is 2 summation of
the exact solution for each harmonic function. For systems without damping
this straightforward Fourier Series approach is numerically very effective since
the response of an undamped structure to a harmonic sin or cos function
loading is also sin or cos displacement solution.

An alternate method of eliminating the time variable from the dynamic
equilibrium equations is to express the loads as an infinite integral, or

£

m.uﬁvﬁ% {(A(w)cos wt+ B(w)sin wr)dw {6.22)
O
The functions A (w) and B{w) in the Fourier integral are given by
d
\»?Lu..ua_. F{t)cos wt dt (6.23)
T
N d
Blw)=— _w F(r)sin wr d¢ (6.24)
7 0
Also the Fourier integral can be written in complex form as
F()= h Flw)e™ do (6.25)
in which
Flw)=3i[A(e)-iB(w)] (6.26)
F(-w)=1iA(w)+iB(w)] (6.27)
since

e™ +e™" =2 cos wt
e —e ™ =2 sin w!
The general equilibrium equations can now be written as

MU+CU+ RQL Flw)e™ dw (6.28)

-

The solution is assumed to be of the form

U@)= _. Y(w)e™ dw (6.29)

therefore

x

QSL iwY{w)e" do (6.30)

e



QSH_M —w'Y(w)e™ (6.31)

Hence the following complex set of equations must be solved for various values
of w:

(K +iwC—w’M)Y(w)= F(w) (6.32)

If F{w)requires a large number of points to define the complete function itis
apparent that a large number of solutions of complex equations will be
necessary. This farge numerical effort can be minimized by solving for the basic
eigenvalues of the system and transforming the equations fo a smaller system
expressed in mode! coordinants [Equation (6.67)]. The evaluation of the
complex loads F{w) is not a major computational problem as compared to the
multiple solution of a large system of complex equations. Furthermore the Fast
Fourier transform algorithm can minimize both the evaluation of the Fourier
transforms and the recovery of the displacements, Equation (6.29).

The major advantage of the Frequency Domain approachisinits application
to substructure analysis. Structure-foundation or structure-fluid systems are
considered by the development of the frequency-dependent matrices for the
separate systems. Ritz techniques can also be used to effectively reduce the size
of the system.

6.2.4 Numerical evaluation of mode shapes and frequencies

For large structural systems one of the most time consuming phases of a
dynamic analysis may be the evaluation of eigenvalues and eigenvectors of the
N x N matrix equation

MU+&*KU=0 (6.33)
The undamped free vibration of the structural model has a solution form of
N . w
U= ..m" e"“'dn
Therefore the resulting eigenvalue problem must be solved
(K-@:M)pn=0 (6.34)

{a) Siatic condensation

One technique which is often used to reduce the size of the system before the
evaluation of eigenvalues is to eliminate the massless degrees of freedom from
the system. For this case Equation (6.34) is rewritten as

ko &lle]-+10 )] 39



T he first submatrix equation is
Koatha + Ko =0 (6.36)

Therefore the massless degrees of freedom are related to the degrees of
freedom at the mass points by

b. = Ty (6.37)
where
T=-K.Ka (6.38)
The resulting eigenvalue problem is of the form
Khbs = 6 Myds (6.39)
in which
Kh=Kp+ KT (6.40)

Within a computer program however these submatrix operations are not
necessary since it is more efficient to perform the ‘static condensation’ directly
on the massless degrees of freedom, similar to the Gauss elimination proce-
dure,"* without requiring submatrix storage. One important disadvantage of the
static condensation approach is that the matrix K7, tends to fill as more
massless degrees of freedom are eliminated. Therefore the reduction in size of
the system may not be economical from a computational viewpoint. In addition
if the mass is physically lumped at the time of creating the mathematical model
additional errors may be introduced.

(b)Y Reduction of size of system by Ritz functions
A more general approach to the reduction of the size of the eigenvalue problem
[Equation (6.34)] is the application of the Ritz method. This technigue is not
restricted to a particular mass distribution—a full mass matrix does not
increase the computational effort significantly. However for systems with a
limited number of masses the method can be identical to the static condensa-
tion method.*? ‘

The method can be very accurate if some physical insight into the behaviour
of the structure is known. Static load patterns are selected and corresponding
displacement vectors are calculated. Or

KR=P (6.41)

The true displacements of the system are approximated by a linear combina-
tion of the discrete Ritz vectors R. Or the true eigenvectors are approximated
by

&"kkﬂwu\ﬂwu._v%uxp.fmuxuﬂ_. e RUXy {6.42)
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where L is the number of load patterns and is smaller than the size of the system
N. The load patterns can be very simple; however they must be linearly
independent. In order to produce the lower frequencies the load pattern should
activate the large masses and areas of maximum flexibility. If a singie unit load
is used as a load pattern the method mathematically lumps the consistent mass
of the system at that degree of freedom.

The reduced eigenvalue problem is produced by the substitution of Equation
(6.42) into Equation (6.34) and premultiplication by R . Or,

K*X-MXQ0=0 (6.43)
where
K*=RTKR=RP (6.44)
M*=R"MR (6.45)
Q) =diag (w?) (6.46)

Both K* and M™ are full matrices because the Ritz vectors are not
orthogonal. Since all the eigenvalues and eigenvectors are required and the
system is relatively small, less than 100, the Jacobi method is one of the most
effective for this type of eigenvalue problem.?

One advantage of the Ritz method for the reduction of the number of
degrees of freedom for a very large structure is that it involves only a solution of
a set of linear equations which may have a large number of zerc terms in the
stiffiness matrix, Equation (6.41). Therefore a large number of structural
elements can be used to model the basic structural behaviour. The use of Ritz
functions can be considered as a formal mathematical method of evaluating an
approximate generalized mass matrix for the purpose of dynamic analysis.

Figure 6.3 illustrates the selection of static load patterns for a simple tower
type structure. This structure has 6 unconstrained joints or 36 degrees of
freedom. It is of interest to point out that for the lateral load pattern shown the
resulting displacement is complex and involves movements in all directions in
addition to torsional behaviour.

For a structure of this type one would expect the lateral behaviour to be
expressed by the first six mode shapes. Because of the geometric arrangement
of the members joints 1, 2 and 3 and joints 4, 5 and 6 will act as separate units
with very little relative movement between joints. Therefore the six possible
load patterns which will capture this fundamental behaviour are easily estab-
lished and are shown in Figure 6.3a. Of course the first six vibrational mode
shapes for this structure will be composed of a linear combination of the
resulting displacement patterns. Figure 6.3b itlustrates six other load patterns
which could have been used to produce identical results.
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Figure 6.3 Example of selection of different load patterns for tower structure

The physical modes which have been neglected by this approach are the
breathing modes. between joints 1, 2 and 3 and joints 4, 5 and 6. Also the
vertical vibrational modes have been omitted; but axial deformations are
included in the six lateral modes.

{¢) Subspace iteration

The subspace iteration method for the determination of eigenvalues and
eigenvectors of very large structural systems is a significant extension of the
Ritz reduction approach.'®'"'® It is the only modern computer method for
very large systems {over S000 degrees of freedom) which will converge to the
exact eigenvalues.

Table 6.2 summarizes the subspace iteration method. The computer
implementation of the method and a FORTRAN listing is given in Reference
2. From Table 6.2 one notes that the initial calculations are identical to the
Ritz method in which the first set of load patterns must be specified. After one
Ritz solution is found and the first approximation of the first L eigenvalues of
the system is calculated as

¢V=R, X, ‘ (6.47)
an improved set of load patterns can be calculated from
Py=Mgp"



Table 6.2 Summary of the subspace iteration m_mo,_.:_.a for solution of large eigenvalue problem
Ko, = w Md,

A INITIAL CALCULATHIN:
1. Form stiffness matris K and mass matrix Af
2. Triangularize K:

K=LDL" (NxN)
3. Specify initial load patierns:
P, = NxLmatrix where L«N

B. FOR EACH ITERATION, k=123, ..
1. Salve for Ritz vectors R,

LDLTR, =P, (NxL)
2. Calculate generalized stiffness in sulspace:
K"=RIKR.=R[P. (LxL)
3. Calculate generalized mass in subspace:
M =RIMR, (LxL)
4. Solve eigenvalue problem in subspace:
K®x, =M"x 0%  (LxL)
5. Caiculate improved approximate eigenvectors:
6= R X,
&. Check for convergence:
(1~ diag (w)) and ¢“'~d as k-x

stop if converged—perform Sturm sequence check
7. Caiculate improved load patterns for next iteration:

Pioy=Mo™  (NxL)

g. Returnto Step B-1.

It is assumed that P; is an improved estimation of the inertia forces associated
with the basic mode shapes. From Table 6.2 it is clear that this iteration
technique can be carried out to any desired degree of accuracy, assuming the
method converges. The convergence of the method for various conditions is
given in Reference 2.

Some additional comments associated with the advantages of the subspace
iteration method with respect to numerical effort are:

(i) The total stifiness matrix for the system need be triangularized only
once.



(i) Since K™*'and M’ tend to become diagonal as the iteration progresses
the Jacobi method is very effective for this type of eigenvalue problem.

{iii) The size of the subspace L should be approximately 30 per cent more
vectors more than the number of accurate eigenvalues required.

(iv) In order to insure participation of all modes one additional random
vector should be added to the load pattern set before each iteration.

(v) Since the approach is basically a power method the lowest eigenvalues
converge faster and are more accurate.

(vi} For most structures a high degree of accuracy is not required for the
highest modes, because of their low participation in the dynamic response.
Therefore the subspace iteration produces practical results with respect to
required accuracy.

(d) Additional numerical techniques for eigenvalue problems
Inageneral computer program for the calculation of eigenvalues and eigenvec-
tors several different numerical techniques may be useful in the solution
strategy in order to improve the convergence and to minimize numerical effort.
(¢) Inverse iteration
If only one load pattern is used in the iteration procedure given in Table 6.2
the subspace iteration approach is the standard inverse iteration method and

will converge to the lowest eigenvalue. For this case the eigenvalue problem
in the subspace is trivial. Or

AM=wi=K® /MO . (6.49)

which is better known as the Rayleigh quotient.® After the first eigenpair A,
and ¢, are determined inverse iteration can be used to calculate accurately
additional eigenpairs if the techniques of shifting, determinant search,
deflation and Sturm sequence checking are introduced. .

(it} Determinant search
This numerical technique can be explained by considering the following
equation:

[K-AM}X=0 , {6.50)
For any numerical value of A, the following triangularization is possible
[K-AM]=LDiL{
The determinant of this matrix for A, is
det (K= AM)=D1D2:D33- - - Dnn

where N is the order of the matrix.
If the numerical value of the determinant is evaluated for a large number
of different values of A a function can be generated of the form shown in



Figure 6.4. This function p(A ), which in this case is evaluated numerically, is
a plot of the characteristic polynomial. A, A3, 3, Ay, . .. An, are the eigen-
values of the system and correspond to zero values of the det (K ~AM).

p{r):det (k-aM):D, D, 0, . D

NN
8
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<</|\z

Figure 6.4 Characteristic polynomial [K —AM]

(iif) Deflation
A numerical plot of a polynomial with the first root suppressed, or deflated,
can be computed and would have the approximate shape as shown in Figure
6.5. The only reason for numerically evaluating p1(p:) and pi{ui+1) is to
obtain a better estimation for A, from the extrapolation equation

tk|t»+u
As = pp + 6.53
st -G ) (6.53)

It is this type of strategy which is used to obtain a value of A, which is close to
a desired root. For this case two triangularizations are required in order to
evaluate A,. Therefore this technique is effective for matrices with small band
widths which can be triangularized with a minimum of numerical effort.'®

p(ay=p(A)An-3)

[
Ky ¥ A, y...\..Jru e dy rou
plu) = Sl
' NEB2 e elag) plny)
plu,)

Figure 6.5 Deflated polynomial with A, suppressed



(iv) Shifting
Inverse iteration converges to the numerically smallest eigenvalue. In order
for the method to be used for other eigenvalues the following change of
variable can be introduced

A=A +p (6.54)
Therefore Equation (6.50) can be written as
[K,—pM|X =0 (6.55)
where
K.=K—-AM . (6.56)

If A, is closer to A, than to A, the inverse iteration method when applied to
Equation (6.55) will converge to A.. This follows from the standard power
method proof.’?

(v) Sturm sequence check

One of the potentiaily serious problems which can develop in the numerical
evaluation of frequencies and mode shapes in a practical dynamic analysis is
if important frequencies are neglected. The Sturm Sequence Check is a
method which allows the engineer to verify the results of an eigenvalue
problem. One can prove the Sturm Sequence Theorem as presented here
from a direct examination of the complete family of deflated polynomials,
p(A), pr(A), p2(A), .. .. One notes that they are all derived from the basic
sequence for a given value of A, or

det (K |>ugv" bﬁbnubwu - Dun AOMQV

For a given value of A the basic properties of this sequence of numbers are
illustrated in Figure 6.6. It is apparent that the properties of this sequence of
numbers can be used as a powerful technique in the numerical strategy of
evaluating eigenvalues. If lowest eigenvalues are evaluated by any method
the Sturm sequence can be calculated for

A=1-001A, (6.58)

If all eigenvalues have been calculated the Sturm sequence shouild have n
negative terms.? This assumes a desired accuracy of 0-001.

Another important application of the Sturm Sequence Technique is to
evaluate the number of frequencies in a certain frequency range—say
between A; and An. Therefore LDL7 triangularizations of [K —AxM] and
[K — A M] will indicate the number of eigenvalues below each value. The
difference will be the number of values within the range. in order to calculiate



the eigenpairs in the range one can shift into the range and use inverse
iteration or subspace iteration to evaluate only the values of interest.
6.2.8 Transformation to uncoupied modal equations

The basic numerical properties of the undamped free vibration mode shapes
are

M*=¢ "Mo=1I (6.59)
K*=¢ K¢ =diag (&}) (6.60)

{n which the mode shapes have been normalized so the generalized mass is one.
Or

SIMP, =1 (6.61)

The following transformation, change of variable, is introduced into the basic
equilibrium equations.

M
U= Y ¢.Xa(t)=X(t) (6.62)

nel

Therefore the velocities and accelerations are

Un=¢X® (6.63)
Uty= X (1) (6.64)

If Equations {6.62), (6.63) and (6.64) are substituted into Equation (6.2) and
the resulting matrix equation premultiplied by ¢ we obtain

M X () + C*X()+ K* X(1)= P(1) (6.65)

The matrices M™ and K* are diagonal; however C* is not diagonal unless an
assumption is made on the basic form of viscous damping which exists in the
structure. Since damping is normally small and is difficult to physically model
and identify the following assumption is normally made:

C* =diag (2£:a) (6.66)

where £, is the ratio of damping in mode n to the critical damping for the mode.
With this assumption of uncoupled modal damping the typical modal equation
can be written as

X (1) + 2£,0. X0 (1) + 02X (1) = palt) = cn f(1) (6.67)

After the modal equations are evaluated the time dependent displacements are
calculated from Equation (6.62).
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The same technique can be used to uncouple Equation (6.32) in order to
avoid the solution of a large number of complex linear equations. For this case
the following transformation is introduced

Y(w)=¢Z(w) (6.68)

The substitution of Equation (6.68) into Equation (6.32) yields a typical modal
equation in the frequency domain.

&2+ 2iwdnbn — w1 Zn(w) = ¢ F(w) (6.69)

For structures which are formulated in the frequency domain and whose
behaviour can be represented by a limited number of natural frequencies this is
numerically the most efficient approach.

plx)

[ ALL TERMS IN D POSITIVE

2 NEGATIVE TERMS N D

A X A, A A
N\ﬁw A?U mb\

Y

INEG D 3NEGD, ~ SNEGD,

Figure 6.6 Sturm sequence properties of polynomial

6.2.5 Solution of modal equations

The solution to the single-degree of freedom modal equation given by Equa-
tion (6.67) can be accomplished by one of several methods. For certain loading
which can be expressed as an analytic function exact mathematical solutions
are possible.!

(a) Direct step-by-step solution

The most direct approach to the solution of this second order ordinary
differential equation is to use a numerical finite difference method. The same
techniques are possible which were used for the coupled equation. The step-
by-step solution method given in Table 6.1 is numerically very efficient when
applied 1o Equation (6.67).

() Duhamel Integral

In the case of arbitrary loading it is very common to express the solution in the
form of the Duhamel Integral.! The Duhamel Integral is then numerically
_integrated. Since this numerical integration approach involves many numerical
evaluations of trigonometric and exponential functions, which require series
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expansions within a digital computer, the method cannot be considered a good
numerical method. Also for high frequencies a very small integration interval is
required for accuracy.

(¢} Transformation to the frequency domain

The single degree of freedom modal equations can be transformed into the
frequency domain. The Fourier integrals and transforms can be numerically
evaluated by the Fast Fourier transform technique. This of course is identical to
the approach suggested by Equation (6.69). This method introduces the same
types of errors which are normally associated with the approximation of a
function by a Fourier series or integrals.

(d) Piecewise exact method

Many types of loading can be represented by a series of straight lines between
unequal time intervals. Most earthquake ground acceleration data is in this
form. An exact mathematical solution is possible for a straight line loading
subjected to displacement and velocity initial conditions. Therefore exact
numerical values at any convenient time interval can be calculated. Table 6.3
summarizes the necessarys equations for this approach for the numerical
evaluation of the modal equations. This may not be the most numerically
efficient method; but it is definitely the most accurate. For most structures the
numerical solution of the modal equation involves an insignificant amount of
computer time compared to the computer time required for the other phases of
the problem—{formation of stifiness and mass matrices, solution of eigenvalue
problem, calculation of displacement and member stresses. For these reasons
the piecewise exact method should be used whenever possible.

(e) Response spectra analysis

For many structural problems the dynamic load is not given in terms of a time
dependent function; but the load is specified as a response spectra. By
definition a response spectra is a plot of maximum values of displacement
response v(max) obtained from the solution of the following equation for
various values of w.

G(1)+ 2086 (1) + wiv(t)= (1) (6.70)

A typical plot of the maximum, v(max), for specified w and damping ratios § is
shown in Figure 6.1.
The typical modal equation is of the form

X 42006 X0+ 02X, = duF (1) = caf(1) 6.71)
Therefore the maximum modal response can be calculated from
X, (max) = c.v.(max) (6.72)

where v, (max) is the value obtained from Figure 6.1 for values of w. and &».
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Table 6.3 Piecewise exact solution method

BASIC EQUATION:
Xe28wXsoFXzt{t) 2010
SPECIFIED LOAD (1) t,

»2:

V — V

EXACT DISPLACEMENT SOLUTION
X(t)=A ¢ A t+A e cos u*teA 0™ sin W't
where -25 &

w
t
2
(
X

(t,)-A,

D

b

b
%

D I-Axn uov... fw D~.. D.w

EXACT SOLUTION FOR VELOCITY
annb_ +{” Dua fw bmvm.nt.nom Wt

-{w* D~+ €w b...v e Wt

After the maximum response in each modal equation is evaluated the

maximum displacement in each modeshape for the complete structure is given
by

U(max), = ¢.X.(max) (6.73)

For any particular degree of freedom a probabilistic value of displacement may
be calculated from

u=vV@ul+ud+ud+oul) (6.74)

Other methods exist for adding maximum modal response; however the
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square root of the sum of the squares of the maximum modal values is one of
the most common.

In order to evaluate member stresses it is first necessary to evaiuate the
menmber stresses due to each of the maximum modal responses. Or

o{max)= TU(max), {6.75)

where T is a stress-displacement transformation matrix for the member. The
probabilistic member stress is estimated by

Qﬁkﬁqm+9w+qw+...9wt (6.76)

Note that the probabilistic member stress cannot be calculated from the
probabilistic displacements.

6.3 NON-LINEAR ANALYSIS

For ofishore fixed structures several different types of non-linear behaviour for
both static and dynamic loads are possible. Non-linear behaviour implies that
the displacements and stresses produced by the different load conditions
cannot be directly added; or the basic principle of superposition does not hold.
Because there are so many different types of non-linearities there is not one
general method which can be applied to all problems.

Large structures for which their weight is significant may have a dead load
stress distribution which is highly dependent on the method of construction and
installation sequence. The correct theoretical method of evaluating these
stresses is to perform a complete analysis at each stage of construction with the
internal stresses from the analysis of the previous stage used as initial condi-
tions for the new analysis. This analysis technique can be used for the
evaluation of installation stresses also. For subsequent analysis of the structure
in which additional non-linear stresses are developed due to static or dynamic
loads it may be extremely important to start the analysis with an accurate
estimation of the initial stress conditions. ‘

Perhaps the most common type of non-linear behaviour is due to non-linear
materials. Most structura! design requires that the structural materials remain
in the elastic range during the design loads. However foundation stresses in soil
may be non-linear under low stress levels. Under dynamic loads soil non-
linearities are often approximated by an effective damping factortobe usedina
linear dynamic analysis. Also during earthquake or large sea conditions some
non-linear material behaviour can be tolerated without the collapse of the
structure.

One of the most unlikely types of non-linear behaviour to be expected in 2
practical structure is the existence of large strains which require an alternate
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definition of stress. This type of non-linearity exists in only rubber-like
rmaterials.

For tall structures or structures supported by cables large displacements may
exist under design loading. For this case it is extremely important that the static
or dynamic equilibrium equations are satisfied in the deformed geometry.

For fixed offshore structures where the velocities of the structure are
comparable to the water particle velocities the wave forces are non-linear and
may be expressed as

F(y=FWUQ), Uu) (6.77)

This type of non-linear behaviour can be considered by the linear step-by-step
methods. Based on the previous increment the velocity of the structure can be
predicted from

Qw...bn" N.\-ITDN Qu Ao.qmv

and 2 good estimate of the non-linear drag forces can be estimated. Since the
properties of the structures do not change the effective stifiness matrix need not
be modified or triangularized at each time increment. Therefore the method
given in Table 6.1 can be used for this form of non-linearity.

A general formulation for the non-linear analysis of a structural system can
be developed if Equation (6.1) is rewritten at time

(Fi+ AF)+(Fi+ AF)+(Fi+ AF) = Fis, (6.79)
in which the force changes are given by .
AF\=M, AU, AF!=C AU, AFi=KU, (6.80)

where M, C, and K, are the approximate mass, damping and stiffness matrices
at time £. Therefore Equation {6.79) can be rewritten as

MAU+C AU +K, AU =F (6.81)
where

F*=F, u~Fi-Fi-F . (6.82)

A direct step-by-step method, as presented for linear systems, can be used for
the evaluation of AlJ, AU, and AU, Because the matrices M, C, and X, can
only be approximated over the time interval, it is recommended that the forces
F' F? and F? be recomputed at the end of the time increment. For example the
structural forces F?, which are consistent with U, should be evaluated as
follows:

(a) From the displacement U, calculate in member m the strain em.
(b) From the specified non-linear stress strain behaviour calculate the stress
T



(¢) Using virtual work calculate the structural forces acting on element
F,= .ﬁ. ArrmdV,,

where A, is the strain-displacement transformation matrix for member m.
(d) Calculate the total structural forces at time 7 from

Fi=YFn

For structures with slight non-linearities this type of analysis may be accurate.
However for very non-linear behaviour it may be necessary 10 iterate within a
time step in order to minimize the accumulation of errors. For a more complete
discussion of dynamic non-linear analysis methods the reader is referred to
References 12, 20, 21, 22, 23, 24,

6.4 FINAL REMARKS

Several different numerical methods for the dynamic analysis of linear struc-
tural systems have been presented. Many of these methods have been incorpo-
rated into general purpose programs and have been successfully used in the
solution of offshore structural mwm”nam.u..nu.uo General purpose programs for
non-linear analysis have been developed based on the techniques pre-
sented.?22* However for non-linear analysis of complex offshore structures the
development of special purpose computer programs is justifiable because of
the unique nature of the structures and their loading.
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1. SUMMARY

The major purpose of this "small document” is to provide the essential information for
a new user/engineer to become productive on a DOS microcomputer with a minimum
investment of time. It is assumed that the engineers objectives are to use existing
programs, develop simple FORTRAN programs and to prepare data input files and
technical documentation. In order to simplify the presentation only computers with large
capacity fixed disks and a minimum of one removable floppy disk will be considered.

Only a small number of the most important DOS commands will be presented. In
addition, a few special purpose DOS programs are given which should help during
the initial learning process. The simple easy-to-use open-screen editor, EDED, is
presented as an alternative to the cumbersome line editor, EDLIN. This document is not
intended to be a replacement for the MS-DOS user’s manual, the MS-FORTRAN
reference manual or other professional editors or technical word processors.

2. INTRODUCTION TO DOS

MS-DOS (Microsoft Disk Operating System) is the operating system for many
computers with intel 8088 to Intel 80486 series of Central Processing Units. The DOS
monitor allows all computer programs rapid access to the DOS file management
system. Since certain files are independent of the programming language it is possible
to transfer information between programs which have been written in different
programming languages such as FORTRAN, BASIC or C.

Files are stored on large capacity fixed disks or removable floppy disks. Each disk has
a root "directory" and "subdirectories" which indicate the name, size and location of all
files on the disk. System disks have the basic DOS operating system on a reserved
section of the disk. When the computer is started or "booted” the DOS system and the
COMMAND.COM are read into the computer, control is transferred to the DOS monitor
program, and the "C>" { or "A>" } prompt is displayed on the console indicating that
"C" is the currently logged-in drive and that the DOS system is awaiting a command.
The user can then enter any legal DOS operation followed by a carriage return (CR).

A DOS command is either one of the INTERNAL commands, contained in the
COMMAND.COM file, or it is a request to execute a program which is stored on any
disk drive ( and directory) which is connected to the computer system. Also, the user
can switch to another "logged disk” by typing the new drive name (A,B,C or D) followed
by a colon (:) and terminated by a CR. Also, the user can transfer control to another
directory with the change directory, CD, command.

A-2
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FILE NAMES

A file name consists of two parts: the primary name (1 to 8 characters) and an
extension name (1 to 3 characters) separated by a period. For example, the FORTRAN
source program for the computer program CAL would be named CAL.FOR,; its binary
relocatable file would be named CAL.OBJ and its executable (command) file would be
named CAL.EXE. The general form of a file name is

"drive":\path\"name"."extension”
If the "drive" is not specified it is taken as the currently logged drive. If the path is not

specified it is taken as the current directory. The following symbols are not allowed as
characters within a file name:

<>.,;:= *[1/\
An ambiguous file name is used to refer to one or more files on a disk. For example:
CAL* References all files on the disk with the first name CAL
*.COM References all files on the disk with the second name COM

CA*.FOR References all .FOR files which has CA as the first two letters of its name

SPECIAL DOS CONTROL CHARACTERS

During the execution of DOS programs the following control characters can be entered
at the keyboard:

control C  Causes termination of the execution of the program

control P All subsequent screen output is also directed to the printer until the next
control P is typed

controt S Screen output is stopped temporarily in order to view a segment of output.
Screen output will continue when any other character is typed.

Prt Sc Causes the current screen display to be printed
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3. INTERNAL DOS COMMANDS

The following commands are buit into DOS and are available when the
COMMAND.COM program is loaded:

DIRECTORY COMMAND

DIR Causes the names of all files on the currently logged
disk to be listed on the consocle.

DIR A:*.FOR Causes the names of all FORTRAN files on the disk mounted con drive A
to be listed on the consoie.

The D program, given on page 4, can be used in place of DIR.

DELETE COMMAND

DEL XX.EE The file named XX.EE is removed from the current directory and its disk
space is no longer reserved.

DEL A:*.BAKAIl files in the current directory on the disk mounted
on drive A with the second name BAK are removed.

DEL *.* All files are removed from the currently logged disk.

RENAME COMMAND

The name of a file on a disk may be changed by the REN command. For example:

REN ZQY.AA XX Causes the file ZQY.AA to be renamed to XX.

TYPE COMMAND

The TYPE B:XX.YY command causes the contents of the file named XX.YY on drive B
to be displayed on the console. Control S will cause the display to be halted
temporarily. The TYPE XX.YY|MORE} will cause the display to be halted ever 24 lines.
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corY COMMAND

The COPY program is one of the most important programs which operates under the
DOS system. [t allows files to be duplicated and copied to other directories, disks or
output devices. As examples:

COPY CALFOR CAL.BAK

The above command will create a new file CAL.BAK, within the current directory, which
is identical to the file CAL.FOR.

COPY ** ANZZ\

The above command will copy all files from the current directory to directory ZZ on
drive A. The new files on A will have the same names.

COPY *FCOR A:

The above command will copy all files with extensions .FOR from the current directory
to drive A. The files copied to drive A will replace files which previously existed with
the same name.

DIRECTORY OPERATIONS

It is possible to use a DOS computer system without defining subdirectories. For such
a system all programs and data files would exist in the "root directory" and when the
DIR command is given a list of all files would be displayed. In addition, a potential
problem with conflicting file names exists if several individuals use such a system. Also,
systems without subdirectories are cumbersome to use and to maintain. it is very
convenient to create separate directories for special functions. For other problems

it is useful to create temporary work areas containing files which may be easily deleted
after the problem is completed.

For most systems only one level of subdirectories is required. This approach greatly
simplifies the use of "path names" and the general use and maintenance of a system.
However, a good approach is to retain a minimum number of files in the root directory
and to allow access to the important programs by creating a PATH to all directories
which contain these programs with the use of the SET PATH command.
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The DOS command MD new will create a new subdirectory, or work area, on the
current disk named new which will be able to store data and DOS programs.

After a directory is made it is possible for the user to transfer control to that
subdirectory by executing the command CD \new. To return to the root directory the
command CD \ is executed.

If all files are deleted from a subdirectory and controf is in the root directory the
execution of RD new will delete the directory new.

4. ADDITIONAL DOS PROGRAMS

All computer programs which can be executed on a DOS system are stored as files of
the form NAME.COM or NAME.EXE and are executed by typing the command NAME.
if the program is on a drive other than the iogged drive it is executed by the
specification of the drive name. For example: Anoox will cause the program >0 to
be loaded from drive A and executed. The following is a partial list of some of the
most useful programs {(DOS commands).

FORMAT PROGRAM

This program must be used to initialize the density and record size for every new
diskette. The standard international interchange format is the 360k double sided double
density 5 1/4 inch disk. However, for maximum efficiency and speed, disks which are
to be used locally on one computer system should be initialized at maximum capacity.
The FORMAT operation defines the density of a disk which may be different than what
the maker of the disk writes on the label.

DISKCOPY and DISKCOMP PROGRAM

The DISKCOPY is used to copy all files on one disk to another disk and FORMATS
the new disk during the process. The DISKCOMP program is used to compare the
contents of two disks.
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PRINT and PSET PROGRAMS

The PRINT program can be executed at the same time as other DOS commands or
programs are being executed. Therefore, files can be printed in a "background mode"
and the user can perform other tasks without delay. In addition, the printing of several
files can be initiated at the same time as indicated in the following:

PRINT file1 file2 file3 - - -
The command PRINT/T can be used to terminate printing after the completion of the
current file. The PSET program can be used with dot matrix printers to select print type
and skip perforation options prior to the use of the PRINT program.

D PROGRAM

The D program performs the same general function as the DIR program; however, the
names of the files are presented in alphabetical order and in a more compact form on
the screen.

WHEREIS PROGRAM

The execution of WHEREIS "name" command will locate in which subdirectories the file
"name” exists. This program is very useful in locating duplicate copies of files and
programs.

5. DOS BATCH CAPABILITY

This basic DOS function allows a series of DOS operations and user programs to be
executed in sequence without the requirement that the user type the series of DOS
commands. In order to utilize this option the series of commands must be stored in a
"submit file" which is prepared by an editor. The second name of the batch file must
be "BAT". To illustrate this option let us assume that the series of programs SAP,
FRAME, SOLVE and FRAMEF are to be executed in sequence. First: prepare a "batch
file" with the name "SERIES.BAT" which contains the following information:

SAP
FRAME
SOLVE
FRAMEF
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Next: type the DOS command SERIES and the above list of programs will be executed
in sequence without the computer stopping after each program.

Execution of the batch operation can be terminated by typing a CONTROL C. The
batch operation is extremely useful in "linking together" typically used DOS operations.

The more general form of the batch operation program is one which has several
parameters {arguments) which are specified as variables within the .BAT file as indicated

below:
"match file name” P1 P2 - - - Pn

The variables %1 %2 - - within the batch file are replaced by names P1 P2 - -
during the execution of the BATCH operation. An example of the use of this form of
the batch operation is to erase a series of files which are generated by the program
SAP without deleting the input data file which has the same first name and no
extension. First, the following file named ER.BAT is prepared:

DEL TEMP
REN %1 TEMP
DEL %1.*

REN TEMP %t

if the input data file is named FRMEX, then all files with the first name FRMEX must be
removed except the data file itself. Therefore, the command

ER FRMEX

will perform this function and eliminate the need to type four DOS commands. The
practicality of the batch operation is only limited by the creativity of the user.
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6. CONFIG.SYS, COMMAND.COM and AUTOEXEC.BAT

When a DOS computer system is booted (started), or manually rebooted, DOS looks
for the file CONFIG.SYS in the root directory. K the file is found, DOS interprets the
information within the file in order to configure the DOS system parameters or to select
a different COMMAND processor (SHELL). i the CONFIG.SYS file is not found the
default values, shown below within [ ], are used.

If a different COMMAND processor is not defined the file COMMAND.COM is loaded
from the root directory. Then, DOS automatically searches the root directory for the file
AUTOEXEC.BAT and, if found, executes the DOS commands contained within the file.

The files CONFIG.SYS and AUTOEXEC.BAT are optional files; however, their existence
is very important if the computer system is to be configured and initialized for
professional use. Both files can be prepared or modified by the editor EDED.

A typical CONFIG.SYS file, which is shown below, contains the five different options
which are possible:

BREAK=0ON [OFF] (allows CTRL/BREAK to terminate DOS operations)
BUFFERS=40 [10] (RAM buffers reserved for /O operations)
FILES=15 [12] (files which can be opened concurrently)
DEVICE=ANSLSYS (defines extended screen and keyboard functions)

SHELL=COMMAND.COM (defines standard COMMAND processor)

A typical AUTOEXEC.BAT file is shown below:

VERIFY ON (all COPY operations will be verified)
SET PATH=C:\;C:\DOS;C:\SAP;C:\CAL,; (sets path)

SET PROMPT=$36$P$36%G (DOS prompt will display directory name)
GRAPHICS (allows screen print of graphics)

VER (displays version of DOS)

The PATH command is one of the most useful commands in the DOS system. If a DOS
program is executed, when operating within a directory on any disk, and the program
is not stored within the directory disk space DOS will automatically search for the
program in other directories in the order defined by the SET PATH operation.
Therefore, there is no reason why duplicate copies of programs should exist in different
directories.
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7. FILE Preparation- The EDED Editor

The program which is used most often by an engineer at a microcomputer workstation
is the "editor’. This is normally a highly interactive program which allows the user to
prepare input data files and to examine or modify any existing printable file. Therefore,
the capability of this program is very important if the user/engineer is to be productive.

The editor "YEDLIN", which is supplied with the DOS system, is a very difficult program
to use. An engineer with a minimum of computer experience requires approximately
two weeks to learn to effectively use this line oriented editor. In addition, the possibility
of data input errors is greatly increased if EDLIN is used.

There is a large number of commercial editors available for DOS systems which can
be purchased for $20 to $500. In most cases they have a large number of useful
options; however, a significant amount of time is required to learn to use them
productively. In addition, many of these editors create files with embedded "non-print
characters which are incompatible with standard FORTRAN input files.

The editor EDED, presented here, is designed to be used with a minimum investment
of time. It is a simple open-screen editor with a limited number of commands. This
editor was written by E. C. Gillott and is distributed by ShareWare and users are
encouraged to support his future developments. A complete documentation of the
editor can be obtained by PRINTings the EDEDDOCS.TXT file. Or this file exists in the
current directory it can be read online within EDED with the F4 key.

The EDED program cannot create or edit files larger than 32k bytes.





