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Abstract

A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze

nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength

are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities.

The maximum amplitude is shown to increase in the presence of a laser field. These results set a

limit to the achievable gradient in plasma-based accelerators.
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Of fundamental interest in plasma physics are highly-nonlinear electron plasma waves,

such as those produced in the laboratory via intense laser and beam plasma interactions [1].

Recent breakthrough results [2] on plasma-based accelerators have shown the production

of high-quality electron bunches using ultra-high gradient (∼ 100 GV/m, several orders of

magnitude beyond conventional technology) nonlinear plasma waves driven by intense laser

pulses. In these experiments, the accelerated electrons were self-trapped from the back-

ground plasma through a process referred to as wavebreaking. A basic quantity of interest

in plasma physics, and especially relevant to plasma accelerators, is the maximum plasma

wave amplitude that is achievable prior to wavebreaking and the onset of self-trapping.

Prior calculations [3–7] of the wavebreaking limit, however, are not valid in the regime of

laser-plasma accelerator experiments.

In this Letter, a general result for the maximum field amplitude of a nonlinear electron

plasma wave of arbitrary phase velocity in a warm plasma is derived from first principles.

This result is valid in all regimes of interest, including that of short-pulse laser-plasma

interactions, and reduce to the previous wavebreaking calculations [3–7] in the appropriate

limits. The effects of an intense laser field are also included, as in the self-modulated regime

of the laser wakefield accelerator [8–10], which is shown to increase the maximum field

amplitude. The maximum field amplitude derived in this Letter sets the fundamental limit

to the achievable gradient in plasma-based accelerators.

Using the cold, relativistic fluid equations in one-dimension (1D), the maximum electric

field amplitude of a plasma wave was found [3] to be EWB =
√

2(γϕ − 1)1/2E0, which is

referred to as the cold relativistic wavebreaking field. Here γ2

ϕ = 1/(1−β2

ϕ) is the relativistic

Lorentz factor, vϕ = cβϕ is the plasma wave phase velocity, and E0 = cmωp/e is referred to

as the nonrelativistic wavebreaking field, with ωp = (4πn0e
2/m)1/2 the plasma frequency and

n0 the ambient electron plasma density. For a laser driven plasma wave, vϕ is approximately

the group velocity of the laser pulse, γϕ ≃ ω0/ωp, where ω0 is the laser frequency. For a

charged particle beam driver, vϕ is approximately the particle beam velocity. When the

plasma wave field approaches EWB, the cold plasma density becomes singular n → ∞ [4].

This singularity indicates a breakdown of the cold fluid equations.

Finite temperature fluid theories were applied to calculate the maximum amplitudes in

the limits of nonrelativistic (γϕ ≃ 1) [5] and ultra-relativistic (βϕ = 1) [6, 7] plasma waves.

In the βϕ = 1 limit, the maximum field was found [6, 7] to be Eth = θ−1/4ρth(γϕ, θ)E0, where
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θ is the initial plasma temperature normalized to mc2/kB, with kB the Boltzmann constant,

and ρth(γϕ, θ) ∼ 1 is a slowly-varying function of γϕ and θ. This expression for Eth is valid

for γϕθ1/2 ≫ 1, e.g., for an ultra-relativistic (βϕ = 1) particle beam driver. For laser-driven

plasma waves, however, typically γϕ ∼ 10–100 and θmc2 ∼ 10 eV [11, 12]. Therefore, a

laser-plasma accelerator typically satisfies γϕθ1/2 < 1, and, hence, the above expression for

Eth does not apply. In addition, Eth does not reduce to the nonrelativistic result [5] or the

cold result EWB.

Standard warm relativistic fluid theories derived for collisionally-dominated plasmas (e.g.,

Ref. [13]) are inadequate for describing short-pulse laser-plasma interactions. Short-pulse

laser-plasma interactions access a collisionless regime that is not in local thermodynamical

equilibrium, in which the plasma electrons experience relativistic motion while the tem-

perature (electron momentum spread) remains small. To model short-pulse laser-plasma

interactions, we start with the covariant form of the collisionless Boltzmann equation [13],

pµ∂µf −
[

(e/mc2)F ανpν

]

∂f/∂pα = 0, (1)

where f(x, p, t) is the phase space density, xµ = (ct, x), pν = (γ, γβ) is the normalized par-

ticle four-momentum, ∂µ = (∂ct,−∇), and F µν = ∂µAν − ∂νAµ is the electromagnetic field-

strength tensor, with Aµ = (Φ, A) the four-vector potential and gµν = diag(1,−1,−1,−1)

the space-time metric tensor.

We consider the following centered moments of the phase-space distribution [14–16]:

Θµν =
∫

(pµ−uµ)(pν−uν)fdΩ and Qαµν =
∫

(pα−uα)(pµ−uµ)(pν−uν)fdΩ, where uµ = Jµ/h

is the normalized hydrodynamic four-momentum, h =
∫

fdΩ the invariant particle density,

Jµ =
∫

pµfdΩ the fluid four-current, and dΩ = d3p/p0 the Lorentz invariant momentum-

space volume. Equation (1) implies the exact conservation laws

∂µ(huµ) = 0, (2)

huµ∂µuν + ∂µΘµν = (−e/mc2)F ναhuα, (3)

huα∂α (Θµν/h) + Θνα∂αuµ + Θµα∂αuν + ∂αQαµν

= (−e/mc2) (F ναΘµ
α + F µαΘν

α) ,
(4)

which correspond to the continuity equation, energy-momentum conservation, and energy-

momentum flux conservation, respectively. The inhomogeneous Maxwell equations are ex-

pressed as ∂µF
µν = 4π

∑

s qsJ
ν
s , where the sum is over species with q the charge.
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We will assume a “warm” plasma such that the distribution f has a small momentum

spread about its mean [14–17]. We make no additional assumptions concerning the specific

form of f . This warm assumption will allow the hierarchy of moment equations to be

truncated. We define the invariant measure of thermal spread ǫ2 = −Θµ
µ/h = uµuµ − 1,

where |ǫ| ≪ 1 is assumed, such that β2

th
= ǫ2(1+ǫ2)−1 ≃ ǫ2 is the normalized thermal velocity

spread (temperature). We will assume that in the local plasma rest frame Θµν/h = O (ǫ2)

and Qαµν/h = O (ǫ3). Truncation of the moment hierarchy to order O(ǫ2) is achieved by

neglecting the third-order centered moment Qαµν in the fluid equations. Note that ǫ is a

Lorentz invariant and ǫ2 ≪ 1 is satisfied if the local rest frame temperature of the plasma is

nonrelativistic. We consider the ratio λ = np/h [14, 16], where np = (JµJµ)
1/2 is the proper

density, and introduce (λΓ, λΓw) = uµ = Jµ/h, where uµuµ = λ2 and Γ−2 = (1 − w · w).

Using the contraction of the energy-momentum stress tensor we find λ2 = 1−Θµ
µ/h = 1+ǫ2,

such that λ = (1 − β2

th
)−1/2 is identified as the Lorentz factor associated with the thermal

fluctuations.

Consider a plasma wave driven by a laser pulse propagating in the z-direction with

transverse normalized vector potential a⊥ = eA⊥/mc2 (Coulomb gauge). We consider 1D

motion such that f = g(z, pz, t)δ
2(p⊥−a⊥) and the transverse component of Eq. (3) reduces

to uµ∂µ(λΓw⊥ − a⊥) = 0. For an initially quiescent (w = 0) plasma, λΓw⊥ = a⊥, i.e.,

w⊥ = a⊥(1 − w2

z)
1/2(γ2

⊥
+ ǫ2)−1/2, with γ⊥ = (1 + a2

⊥
)1/2. This is the generalization of

canonical transverse fluid momentum conservation including thermal effects.

The contraction gµνQ
αµν = 0 [to order O(ǫ2)] implies Θµ0 = wzΘ

µ1, and λ2 = 1 + (1 −
w2

z)Θ
11/h. Equations (2), (3), and (4) can be combined to yield

uµ∂µ

(

h−3Γ−2Θ11
)

= 0. (5)

For an initially quiescent plasma of density n0, Θ11/n0 = Γ2(h/n0)
3θ, where θ is the initial

temperature normalized to mc2/kB. Equation (5) is equivalent to a statement of entropy

conservation.

Next, we assume the quasi-static approximation, such that the plasma wave driver (e.g.,

laser field or particle beam) and fluid quantities are functions only of ξ = z − βϕct. The

continuity equation Eq. (2) becomes

∂ξ [hλΓ (βϕ − wz)] = 0, (6)
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or, for an initially quiescent plasma of density n0, h = n0[λΓ(1−β−1

ϕ wz)]
−1. The components

of Eq. (3) can be combined to yield [using Θµ0 = wzΘ
µ1 and Eq. (6)]

∂ξ

[(

hλ2Γ2 + Θ11
)

(1 − βϕwz)(1 − β−1

ϕ wz)
]

= n0∂ξφ, (7)

where φ = eΦ/mc2 is the normalized space-charge potential of the plasma wave and (λΓ)2 =

(γ2

⊥
+ǫ2)/(1−w2

z). Using Eqs. (5) and (6), Eq. (7) can be written as the following longitudinal

constant of motion (conservation of energy in the wave frame):

∂ξ

[

γ⊥(1 − βϕwz)

(1 − w2
z)

1/2
− φ +

3

2
θ
(1 − βϕwz)(1 − w2

z)
1/2

γ⊥(1 − β−1
ϕ wz)2

]

= 0. (8)

The third term on the right-hand side of Eq. (8) is due to the energy in the thermal fluctu-

ations (pressure).

The plasma wave potential is determined by the Poisson equation c2∂2

ξ φ = ω2

p[J
0/n0 −

1 + nb/n0], where nb/n0 is the normalized density of a beam driver, J0/n0 = λΓh/n0 =

βϕ/(βϕ −wz), and the ions are assumed stationary. The Poisson equation can be combined

with Eq. (8) to yield the evolution equation for the axial plasma fluid velocity wz.

We consider the cases of plasma wave excitation behind a beam driver where nb(ξ) =

0, behind a short laser driver (e.g., the standard laser wakefield regime) where γ⊥ = 1,

and excitation under a long laser pulse (e.g., the self-modulated laser wakefield regime)

where γ−1

⊥
|(c/ωp)∂ξγ⊥| ≪ 1 and γ⊥ ≃ constant. Using Eq. (8), the first integral of the

Poisson equation is (assuming nb = 0 and γ⊥ = constant) Ê2 = γ⊥

(

χ0 − χ + χ−1

0
− χ−1

)

+

[F (χ0) − F (χ)] θ/γ⊥, where χ2 = (1 − wz)/(1 + wz), Ê = E/E0 = −(c/ωp)∂ξφ(w),

F (χ) =
6β2

ϕχ [(1 − χ4) − βϕ(χ4 − 2χ2/3 + 1)]

[(1 − βϕ) − (1 + βϕ)χ2]3
, (9)

and χ0 corresponds to the momentum that produces the extremum of φ [i.e., Ê(χ0) = 0].

Solving ∂ξφ = 0 (i.e., a quartic equation for χ2

0
), yields the momentum which produces

the extremum of φ,

χ2

0
= γ2

ϕ (1 − βϕ)2 +
1

2
γ−2

⊥
(1 + βϕ)−2

{

3β2

ϕθ + βϕ

(

48θγ2

⊥
/γ2

ϕ + 9β2

ϕθ2
)1/2

+

[

6θβ2

ϕ

(

10γ2

⊥
/γ2

ϕ + 3β2

ϕθ
)

+ 2βϕ

(

2γ2

⊥
/γ2

ϕ + 3β2

ϕθ
) (

48θγ2

⊥
/γ2

ϕ + 9β2

ϕθ2
)1/2

]1/2}

. (10)

Equation (10) determines the fluid momentum at the maximum compression of the plasma.

In the cold limit (θ = 0), χ2

0
= γ2

ϕ(1 − βϕ)2 and the extremum of the potential occurs when
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the axial fluid velocity equals the phase velocity of the wave, i.e., wz = βϕ. In the ultra-high

phase velocity limit (βϕ = 1), χ2

0
= 3γ−2

⊥
θ/2.

Using the Poisson equation, the phase where Ê is maximum (∂ξÊ = 0) occurs at the

momentum χ = 1 (i.e., wz = 0). Evaluating Ê2 at χ = 1 yields

Ê2

max
= γ⊥

(

χ0 + χ−1

0
− 2

)

+ [F (χ0) − 1] θ/γ⊥, (11)

where F (χ0) is given by Eqs. (9) and (10). Equation (11) is the main result of this Letter,

and determines the maximum field amplitude Emax of a nonlinear plasma wave with phase

velocity βϕ excited in a plasma with initial temperature θ. The maximum density perturba-

tion is given by (J0/n0)max = [1− β−1

ϕ (1−χ2

0
)/(1+ χ2

0
)]−1. Note that the maximum plasma

density perturbation in a warm plasma does not become singular, as in the cold fluid theory

[3, 4].

In the cold plasma limit (θ = 0), Eq. (11) reduces to Ê2

max
(θ = 0) = 2γ⊥ (γϕ − 1). This

is a generalization of the cold relativistic wavebreaking field [3] to include a laser field. Note

that Ê2

max
(θ = 0) is the same as the threshold field for trapping background plasma electrons

in a cold plasma wave [18] (since the cold fluid element orbits are identical to the particle

orbits).

For βϕ ≪ 1, Eq. (11) reduces to

Ê2

max

γ⊥β2
ϕ

≃ 1 − 8

3

(

3θ

γ2

⊥
β2

ϕ

)1/4

+ 2

(

3θ

γ2

⊥
β2

ϕ

)1/2

− 1

3

(

3θ

γ2

⊥
β2

ϕ

)

, (12)

where terms of order O(θβ2

ϕ) have been neglected. For γ⊥ = 1, Eq. (12) is identical to the

result of Ref. [5].

For βϕ = 1 (e.g., an ultra-relativistic electron beam driver satisfying γ−2

ϕ ≪ θ ≪ 1),

Eq. (11) reduces to

Ê2

max
= γ2

⊥
(2/3)3/2 θ−1/2

[

1 − γ−1

⊥
(3θ/2)1/2

]3

. (13)

For the case γ⊥ = 1, Eq. (13) scales to leading order as Emax = θ−1/4ρthE0. Except for the

factor ρth ∼ 1, this scaling is the same as that obtained in Refs. [6, 7].

In the limit, θ ≪ γ2

⊥
/γ2

ϕ ≪ 1, Eq. (11) reduces to

Ê2

max
≃ 2γ⊥(γϕ − 1) − 2γϕ

[

4

3

(

3γ2

ϕγ2

⊥
θ
)1/4 −

(

3γ2

ϕθ
)1/2

]

. (14)
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Equation (14) is the cold relativistic wavebreaking field (generalized to include a laser field)

with the lowest order reduction due to the plasma temperature. For high-intensity lasers

(a⊥ & 1), Eq. (14) indicates that Emax inside a laser pulse is significantly larger compared

to behind the pulse (where a⊥ = 0). For a laser-driver, the phase velocity of the plasma

wave is approximately the nonlinear group velocity of the laser pulse, i.e., γϕ ≃ [γ⊥(1 +

γ⊥)/2]1/2(ω0/ωp). Therefore, for ultra-high intensities (a⊥ ≫ 1), Êmax ≃ (2γ⊥γϕ)1/2 ∼
a⊥(ω0/ωp)

1/2 in the limit θ ≪ γ2

⊥
/γ2

ϕ ≪ 1.

The transition from the laser-driven regime (γ2

ϕθ < 1) to the ultra-relativistic beam-

driven regime (γ2

ϕθ ≫ 1) is shown if Fig. 1, which plots Êmax [Eq. (11)] versus γ2

ϕθ for

θ = 10−3, θ = 10−4, and θ = 10−5 with γ⊥ = 1. The dashed lines in Fig. 1 are the βϕ = 1

limit [Eq. (13)]. Note that for typical short-pulse laser-plasma-interactions, θmc2 ∼ 10 eV

[11, 12], or θ ∼ 5×10−5. Figure 1 shows the inaccuracy of using the ultra-high phase velocity

approximation (βϕ = 1) in the laser-plasma accelerator parameter regime (θγ2

ϕ < 1).

The wavelength λosc of the nonlinear plasma oscillation at the maximum amplitude is

computed from Ê by λosc =
∫

dξ = −2cω−1

p

∫

(dφ/dχ)Ê−1dχ between the extrema of χ.

Figure 2 shows the wavelength of the plasma oscillation λosc normalized to λp = 2πc/ωp

versus γϕ for initial temperatures θ = 10−3, θ = 10−4, and θ = 10−5, with γ⊥ = 1. The

dashed line in Fig. 2 shows λosc/λp for an initially cold plasma θ = 0.

The temperature (thermal velocity spread) evolution is given by β2

th
= ǫ2 = θ(1 −

w2

z)Γ
2(h/n0)

2, which is maximum at the maximum compression of the plasma (χ = χ0),

i.e., ǫ2

max
= 4χ2

0

[

(1 + χ2

0
) − β−1

ϕ (1 − χ2

0
)
]−2

θ. For an ultra-relativistic beam driver (βϕ = 1

and γ⊥ = 1), ǫ2

max
= 2/3 [the upper bound of ǫ2

max
(βϕ)]. In the limit θ ≪ γ2

⊥
/γ2

ϕ ≪ 1

(e.g., laser driver), the maximum temperature is, to leading order, ǫ2

max
≃ γ⊥(γ2

ϕθ/3)1/2[1 −
(3γ2

ϕθ)1/2/(4γ⊥)] ≪ 1, which confirms the validity of the warm plasma approximation ǫ2 ≪ 1.

The above results for Êmax are independent of the driver. Consider excitation by a

laser pulse with length optimized to maximize the wave amplitude. As the laser intensity

increases, the wave amplitude increases, up to the amplitude at which |Ê| = Êmax, which

is first reached behind the laser pulse (where γ⊥ = 1). Note that the maximum density

compression occurs at the phase where Ê = 0, which is at a phase behind that where

|Ê| = Êmax in a warm plasma. Physically, the limit on the wave amplitude is due to

the pressure force. As the plasma becomes highly compressed, the pressure force grows,

ultimately limiting the density compression and therefore the wave amplitude. This is in
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contrast to cold fluid theories where the maximum field is reached when the density becomes

singular (and shock formation occurs). For larger drive intensities, no force balance is

possible, and no travelling wave solutions exist. Further calculations indicate that Ê = Êmax

corresponds to significant trapping of the electrons in the wave [19].

For a laser with a square pulse profile, the maximum amplitude is obtained when the

laser pulse length is of an optimal value such that ∂ξφ = 0 at the end of the laser pulse.

Note that, for an optimal length driver, the laser initially reduces the plasma density and the

pressure force will remain small during the excitation of the plasma wave by the laser pulse.

For relativistic plasma waves (γ2

ϕ ≫ 1), the laser intensity required to excite the maximum

field Eq. (11) is γ⊥ ≃ Êmax/2 + [(Êmax/2)2 + 1]1/2. The limits γ2

ϕ ≫ 1 and γ2

ϕθ ≪ 1, imply

γ⊥ ≃
√

2γϕ[1 − (23/2/3)(γ2

ϕθ/2)1/4 + (5/9)(γ2

ϕθ/2)1/2].

In this Letter, a comprehensive theory has been presented that describes the properties of

nonlinear electron plasma waves with arbitrary phase velocity in a warm plasma, including

the presence of an intense laser field. An analytical result for the maximum field amplitude is

derived, Eq. (11). Equation (11) is capable of describing the regime of current ultra-intense

short-pulse laser interactions with underdense plasma, in contrast to previous results that are

limited to ultra-relativistic particle drive beams. The maximum field is larger in the presence

of an intense laser field. These results place a fundamental limit on the accelerating gradient

in plasma-based accelerators.
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