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Key Points

• PROs were associated
with a proinflammatory
gene expression
pattern in allogeneic
HCT–treated patients.

• Social well-being was
the most important
predictor of the
proinflammatory
transcriptome.
Patient-reported outcomes (PROs) capture subjective social determinants of health (SDOHs),

which can affect health outcomes through the stress response pathway. The conserved

transcriptional response to adversity (CTRA) is a stress-mediated proinflammatory

transcriptomic pattern that has been linked to adverse hematopoietic cell transplant (HCT)

outcomes. This study examined the association of pretransplant CTRA with patient-reported

SDOHs in allogeneic HCT recipients. In this cross-sectional study, pre-HCT SDOH-related

PROs included the 36-Item Short Form Health Survey and the Functional Assessment of

Cancer Therapy–Bone Marrow Transplant (FACT-BMT). CTRA was assessed by RNA

sequencing of whole blood specimens, with mixed effects linear regression models relating

CTRA expression to PRO scores while controlling for age, sex, race, disease, and

performance status. Among 121 patients, the median age was 54 years, 42% were female,

and 91% were White. CTRA was elevated in participants reporting lower scores on the

FACT-BMT (P = .003), including the general (P = .003) and BMT-specific (P = .014)

components. Effects were driven by the social well-being domain (P = .0001). This

corresponded to an 8% to 15% difference in CTRA RNA expression across a 4 standard

deviation range in patient-reported SDOHs. Ancillary bioinformatics analyses confirmed
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the association of well-being with reduced proinflammatory transcription pathway activity
28 NOVEMB
[cyclic AMP response element-binding protein, (CREB), NF-κB, and activating protein-1 (AP-

1)]. In conclusion, HCT-treated patients who experience unfavorable social conditions show

elevated CTRA expression in pretransplant blood samples. These data highlight the biologic

sequelae of social well-being and community context and suggest a potential molecular

mechanism for the impact of social gradients in HCT outcomes. Targeting this pathway

could optimize outcomes in this high-risk population.
Introduction

Social determinants of health (SDOHs) are the nonmedical factors
in patients’ life experience and social context that influence their
health outcomes and include the multidimensional individual,
societal, environmental, political, cultural, and psychosocial forces
that shape daily life.1 For example, inadequate health insurance,2

poverty,3,4 experienced discrimination,5 and housing instability6

have all been linked to inferior medical outcomes, including for
individuals with cancer.7,8 Within this framework, social and com-
munity support have consistently been identified as critical factors.9

Patients with cancer undergoing hematopoietic cell transplantation
(HCT) may experience even more pronounced challenges from
adverse SDOH, given their prolonged isolation and heightened
risks of morbidity, mortality, and late effects.10,11

Significant disparities in HCT outcomes based on race, insurance
status, education, and socioeconomic disadvantage have been
widely and repeatedly demonstrated.12-15 However, these
assessments often rely on external, objective metrics and do not
account for a patients’ perception of their social condition. Patient-
reported SDOH measures augment our understanding of these
complex phenomena and may improve precision in estimating
relationships between SDOHs and medical outcomes.16 Such
internalized or “experienced” measures of socioenvironmental,
economic, and psychosocial factors influence outcomes in the
HCT-treated population.17,18 Indeed, a recent analysis of Center
for International Blood and Marrow Transplant Research (CIBMTR)
data found a significant relationship between baseline patient-
reported well-being and overall survival after allogeneic HCT.19

However, there is a gap in our understanding of the mechanisms
responsible for these biobehavioral relationships.

The stress response, activated through internal or external triggers,
is a potential pathway linking patient-reported SDOHs and medical
outcomes in HCT.17,20 A stressor can act through neuroimmune
and endocrine pathways to alter molecular signaling profiles that
result in dysregulated immune and nervous system functions.21,22

One such profile, termed the conserved transcriptional response
to adversity (CTRA), is a gene-regulatory program involving an
increased expression of proinflammatory genes and decreased
expression of type 1 interferon response genes after β-adrenergic
signaling from the sympathetic nervous system.23 Previous studies
have shown that circulating immune cells show a systematic
increase in basal CTRA expression profiles during extended
periods of stress, threat, or uncertainty, consistent with the physi-
ology of stress-associated illness24 and favoring a tumor-promoting
milieu.25,26 Knight et al have demonstrated that HCT recipients
ER 2023 • VOLUME 7, NUMBER 22
of lower socioeconomic status (SES), a condition associated
with experienced psychological distress,27 display significantly
increased expression of the CTRA gene profile, which was
associated with increased relapse and decreased disease-free
survival.28 However, this study assessed objective measures of
SES rather than patients’ subjective experience of their social
conditions; inclusion of patient-reported data is important, given the
key role of subjective perceptions in controlling the biologic stress
response.22

A more comprehensive understanding of the socio-biological
mechanisms of SDOHs through incorporation of the subjective
patient experience would have substantial impact on efforts to
interrupt social disparities in HCT outcomes. Here, to the best of
our knowledge, we leverage the largest cohort to date of allo-
geneic HCT recipients with centralized, standardized patient-
reported outcome (PRO) measures and parallel biospecimen
data to test the hypothesis that CTRA gene expression will vary
inversely with patients’ subjectively experienced level of well-
being (general, physical, emotional, social, and functional) and
that such relationships will be most pronounced for perceived
social well-being.

Methods

This was a cross-sectional analysis from a subset of a larger study
published by Shaw et al; the primary aim of the larger study was to
test the feasibility of collecting centralized PROs.19 This cohort
was chosen based on results demonstrating differential survival at
1 year based on a PRO score. Transplant centers were invited to
participate in the larger study based on participation in CIBMTR
data collection, their interest in survivorship, and their willingness to
enroll patients for centralized PRO collection.

CIBMTR is a research affiliation of the International Bone Marrow
Transplant Registry, Autologous Blood and Marrow Transplant
Registry, and the National Marrow Donor Program Office of
Research. The CIBMTR Research Sample Repository maintains
research biospecimens at the Medical College of Wisconsin.
CIBMTR data submission and quality compliance are monitored by
a rigorous audit process. Data are collected and reported at 2
levels: Transplant Essential Data (TED) and Comprehensive Report
Form. TED data include disease type, age, sex, pretransplant dis-
ease stage, and chemotherapy responsiveness, date of diagnosis,
graft type, conditioning regimen, posttransplant disease progres-
sion and survival, development of a new malignancy, and cause of
death. All CIBMTR centers contribute TED data. More detailed
clinical information was collected via the Comprehensive Report
Form mechanism for a subset of randomly selected patients.
SOCIAL TRANSCRIPTOME IN ALLOGENEIC HCT 6831



The study was approved by the National Marrow Donor Program
institutional review board. All patients provided written informed
consent for the research use of their biospecimens and clinical
data.

Patient eligibility

Eligible patients for this analysis were those aged ≥18 years
undergoing allogeneic HCT who completed at least baseline PRO
measures and had available pretransplant whole blood bio-
specimens. To qualify for the larger parent PRO study, patients
were also required to be English-speaking and have access to a
telephone and a valid mailing address in the United States.

PRO SDOH measures

Baseline PRO measures were filled out with paper and pencil by
patients within 30 days before HCT and were returned to CIBMTR. In
addition to a sociodemographic survey, patients completed the 36-
Item Short Form Health Survey (SF-36) and Functional Assessment
of Cancer Therapy–Bone Marrow Transplant (FACT-BMT), measures
commonly used in HCT studies.29 The SF-36 is a 36-item survey
measure that broadly assesses health and functioning with 2 sub-
scales: the Physical Component Summary and Mental Component
Summary (MCS). The normal population mean for the Physical
Component Summary and MCS is 50, with a standard deviation (SD)
of 10.30 The FACT-BMT is a 50-item measure composed of the
Functional Assessment of Cancer Therapy–General (FACT-G) plus a
transplant-specific subscale. The FACT-G is composed of 4 domains:
physical (eg, “I have a lack of energy”), social (eg, “I feel close to my
friends”), emotional (eg, “I feel sad”), and functional well-being (eg, “I
am able to work”); transplant-specific items include questions
regarding appetite, appearance, mobility, and fatigue. The minimal
clinically important difference for the FACT-BMT is 2 to 3 points on
the transplant-specific domains and 3 to 7 on the general domains.31

For all measures, higher scores indicate better functioning.

CTRA assay

Pre-HCT CTRA expression was quantified in genome-wide tran-
scriptional profiles obtained from RNA sequencing as previously
described,32 with total RNA extracted from buffy coat blood sam-
ples, tested for suitable mass and integrity, converted to comple-
mentary DNA using a high-efficiency messenger RNA–targeted
enzyme system (Lexogen QuantSeq 3′ FWD), and sequenced on
an Illumina NextSeq instrument using the manufacturer’s standard
protocols. Sequencing targeted 4 million reads per sample (ach-
ieved median, 4.6 million), each of which was mapped to the
GRCh38 reference human transcriptome (achieved median,
99.0% mapping rate) and quantified as gene transcripts per million
mapped reads using the Spliced Transcripts Alignment to a
Reference (STAR) aligner. Transcript-per-million values were log2
transformed and floored at 0 (1 transcript per million) for statistical
analysis as described later in the article.

Data analysis

Descriptive analyses of patient-, disease-, and transplant-related
factors were prepared, listing means and SDs for continuous var-
iables and counts with percentages for categorical variables.
Sample PRO scores were compared with means of the general US
population using 1-sample t tests. Association of CTRA expression
with patient-reported SDOH measures were quantified by mixed
6832 TAYLOR et al
effect linear model analyses as previously described.28,32 Briefly,
primary analyses analyzed an a priori–defined composite score
representing the CTRA profile of upregulated proinflammatory
gene transcripts (18 indicator transcripts positively weighted: IL1A,
IL1B, IL8/CXCL8, TNF, PTGS1, PTGS2, FOS, FOSB, FOSL1,
FOSL2, JUN, JUNB, JUND, NFKB1, NFKB2, REL, RELA, and
RELB) and downregulated expression of genes involved in type 1
interferon and antibody responses (29 indicator transcripts nega-
tively weighted: GBP1, IFI27, IFI27L1-2, IFI30, IFI35, IFI44,
IFI44L, IFI6, IFIH1, IFIT1-3, IFIT5, IFIT1B, IFITM1-3, IRF2, IRF7-8,
MX1-2,OAS1-3,OASL, JCHAIN, and IGLL1). Data were analyzed
by mixed effect linear models relating average CTRA indicator gene
expression to PRO scores while controlling for systematic effects
of indicator gene and patient age, sex, race, malignant vs nonma-
lignant indication for HCT, and Karnofsky performance status, with
a fully saturated (unstructured) residual variance-covariance matrix
accounting for within-patient correlation of gene transcript resid-
uals. Data analysis was conducted using SAS software (SAS
Institute Inc, Cary, NC).

For specific PRO domains that showed significant CTRA associa-
tion in primary analyses, we conducted secondary confirmatory
analyses using a complementary measure of CTRA biology involving
the activities of transcription factors known to mediate CTRA gene
expression.28,32 These analyses used the Transcription Element
Listening System promoter-based bioinformatic analysis of empirical
genome-wide transcriptome differences to quantify the activities of 2
key proinflammatory transcription factor families involved in CTRA
proinflammatory signaling (NF-κB and AP-1) as well as the CREB
transcription factor family that mediates β-adrenergic signaling from
sympathetic nervous system stress responses. As specificity con-
trols, we also examined the glucocorticoid receptor (GR) transcrip-
tion control pathway that is activated by hypothalamus-pituitary-
adrenal axis stress signaling, in contrast to sympathetic nervous
system β-adrenergic signaling. Transcription Element Listening
System analyses took as input all gene transcripts (genome-wide)
that showed more than twofold difference in average expression
over the range of continuously varying patient-reported SDOH
measures from 2 SDs below the average value to 2 SDs above the
average value (ie, the general 4-SD range of variation). Analyses
compared the prevalence of transcription factor–binding motifs
(TFBMs) in the core promoter sequences of genes that were
upregulated in association with favorable patient-reported SDOH
status (more well-being) in comparison with those upregulated in
association with unfavorable patient-reported SDOH status (less
well-being). TFBMs were identified using position-specific weight
matrixes from the JASPAR library: CREB1, NF-κB1, and FOS::JUN;
and the TRANSFAC library: V$GR_Q6. To confirm involvement of
myeloid lineage cells as would be expected in the CTRA profile,23

we also assessed JASPAR MEIS1-3 and MSX2 TFBMs. These
analyses were repeated over 9 parametric variations of TRANSFAC
MatInspector scan stringency and core promoter length, with
average (log2) TFBM ratios tested for statistical significance using
standard errors derived from bootstrap resampling of linear model
residual vectors from primary linear statistical models described
earlier. This study was not designed or powered for de novo dis-
covery of statistically significant associations between patient-
reported SDOH measures and individual gene transcripts, and we
did not conduct any analysis of statistical significance at the level of
individual genes.
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22



Initial Analytic Cohort
(Shaw)

N = 347*

Available PROs and
biospecimens

N = 204

Pediatric patient
N = 48

Analytic Cohort
N = 140

Final Cohort
N = 121

* Of 390 consenting participants, 43 were excluded from original analysis due to insufficient data.

• Incomplete PRO: n = 13
• Inadequate RNA: n = 6

Incomplete Data

Incomplete Data

• Missing baseline PRO: n = 6
• No banked blood: n = 10

Eligibility

• 2 years old
• Receiving allogeneic HCT
• Speak English
• Telephone access
• Valid US mailing address
• Treated at CIBMTR center

Figure 1. Patient eligibility flow diagram.
Results

Population characteristics

A total of 121 patients representing 8 transplant centers in the
United States met the criteria for inclusion in the analyses
(Figure 1). Patient characteristics are depicted in Table 1. The
median age was 54 years (range, 18-74 years), 42% were female,
and 91% identified as White. The majority of the patients (95%)
had a hematologic malignancy, with acute myelogenous leukemia
being the most common (35%), followed by myelodysplastic syn-
drome (15%) and chronic myeloid leukemia (10%). Most patients
(63%) went on to receive a myeloablative preparative conditioning
regimen, and 44% received total body irradiation before transplant.
According to patient-reported sociodemographic surveys, 70% of
patients were married or living with a partner. Only more than half of
patients (53%) had private insurance, compared with 10% with
Medicare and 10% with Medicaid. Patient-reported income data
were available for approximately half of the participants, of whom
nearly two-thirds reported a household gross annual income of
≥$60 000 compared with one-third in the <$60 000 category.
There were no unexplained sociodemographic differences
between excluded patients and the analytic cohort (supplemental
Table 1).

Patient-reported SDOH outcomes

Baseline (pre-HCT) PRO scores are listed in Table 2 along with
published normative values for the general US population for
reference.30,31 With the exception of the SF-36 MCS and FACT
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22
social well-being subdomains, all PRO scores were statistically
significantly lower in the HCT cohort than in the general US pop-
ulation, indicating lower self-reported well-being.

CTRA associations with patient-reported SDOH

outcomes

Of the 121 patients with leukocyte RNA profiles, analyses showed an
inverse relationship between multiple measures of patient-reported
SDOH and CTRA gene expression (Figure 2). Elevated CTRA
expression was associated with lower FACT-BMT total score (10.7%
increase in average CTRA expression across the 4-SD range in
scores from from high to low FACT-BMT well-being; P = .003) as
well as the FACT-G component score (11.1% CTRA increase; P =
.003) and its BMT-specific subcomponent (8.7% CTRA increase;
P = .014). When both the BMT and general components of the
FACT were analyzed simultaneously in a single multivariate model (ie,
each controlled for the other), only FACT-G continued to show a
significant inverse association with CTRA gene expression (12.7%
CTRA increase; P = .006; BMT-specific component: 0.6%
decrease; P = .90). Within the FACT-G, CTRA gene expression
showed the strongest association with its social well-being sub-
domain (14.9% CTRA increase; P = .0001) and a more modest but
still significant association with lower patient-reported physical well-
being (8.2% CTRA increase; P = .031). The SF-36 MCS also
showed a trend toward a significant inverse association with CTRA
(P = .052), corresponding to a 7.2% increase in CTRA expression
across the 4-SD range in SF-36 MCS scores from more to less well-
being.
SOCIAL TRANSCRIPTOME IN ALLOGENEIC HCT 6833



Table 1. Patient characteristics

Characteristic

No. of patients 121

Age at HCT, y, n (%)

Median (min-max) 54 (18-74)

18-29 20 (17)

30-39 13 (11)

40-49 16 (13)

50-59 30 (25)

60-69 37 (31)

≥70 5 (4)

Recipient sex, n (%)

Male 70 (58)

Female 51 (42)

Race, n (%)

White 110 (91)

Black or African American 8 (7)

Asian 3 (2)

Performance score at HCT, n (%)

≥90 77 (64)

<90 44 (36)

Indication for transplant, n (%)

Malignant

Acute Myeloid leukemia 42 (35)

Acute lymphoblastic leukemia 10 (8)

Other leukemia 8 (7)

Chronic myeloid leukemia 12 (10)

Myelodysplastic syndrome 18 (15)

Other acute leukemia 3 (2)

Non-Hodgkin lymphoma 12 (10)

Hodgkin disease 4 (3)

Plasma cell disorder/Multiple myeloma 3 (2)

Myeloproliferative neoplasm 3 (2)

Nonmalignant

Severe aplastic anemia 3 (2)

SCID and other immune system disorders 2 (2)

Histiocytic disorders 1 (1)

Prior autologous HCT, n (%)

No 107 (88)

Yes 14 (12)

Conditioning intensity, n (%)

Myeloablative conditioning 76 (63)

Reduced intensity conditioning 42 (35)

Undecided at the time of data collection 3 (2)

TBI use, n (%)

No 68 (56)

Yes 53 (44)

Marital status, n (%)

Married or living with partner 85 (70)

Single/separated/divorced/widowed 28 (23)

Missing 8 (7)

Table 1 (continued)

Characteristic

Work status, n (%)

Full time 60 (50)

Other 49 (40)

Missing 12 (10)

Household gross annual income, n (%)

<$60 000 21 (17)

≥$60 000 35 (29)

Declines/unknown 65 (54)

Health insurance, n (%)

Employer 7 (6)

Medicaid 12 (10)

Medicare 12 (10)

Private 64 (53)

Medicaid + private 3 (2)

Medicare + private 9 (7)

Self-pay 1 (1)

Other 8 (7)

Unknown 5 (4)

Y of transplant, n (%)

2011 13 (11)

2012 83 (69)

2013 25 (21)

Follow-up in mo, median (range) 73 (13-98)

CMV, cytomegalovirus; GVHD, graft-versus-host disease; SCID, severe combined
immunodeficiency; TBI, total body irradiation.

6834 TAYLOR et al
To confirm significant results from the primary analyses of the
prespecified CTRA indicator gene sets, we conducted secondary
bioinformatics analyses to assess the activity of CTRA-mediating
upstream transcription factors in unbiased empirical differences
in genome-wide transcriptional profiles. The ratio of upregulated
compared with downregulated TFBMs were quantified as log2
point estimates, which can be conceptualized similar to effect
sizes, with respect to specific PRO domains. These analyses
confirmed the expected association of reduced patient-reported
well-being with increased activity of multiple risk-related transcrip-
tion control pathways, including the CREB transcription factors
(involved in mediating β-adrenergic signaling from the sympathetic
nervous system), the proinflammatory NF-κB and AP-1 transcrip-
tion control pathways, and the myeloid lineage factors MEIS1-3
(Figure 3). These effects were specific to adrenergic sympathetic
nervous system CTRA-related transcription control pathways,
because no significant associations emerged for the GR tran-
scription factor involved in cortisol signaling from the
hypothalamus-pituitary-adrenal axis. As in the analyses of the pre-
specified CTRA indicator gene sets described earlier, these effects
appeared most pronounced for the social well-being subscale of
the FACT-G measure. Although not hypothesized a priori, we noted
a consistent bioinformatic indication of increased MSX2 tran-
scription factor activity associated with the patient-reported SDOH
disadvantage measures (Figure 3).
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22



Table 2. PRO measures compared with those of the general US

population

Outcome measure Mean (SD) US population mean (SD) P*

SF-36

SF-36 MCS 50.0 (10.3) 50 (10) .97

SF-36 PCS 40.8 (9.3) 50 (10) <.001

FACT-BMT

FACT-G 76.8 (13.4) 86.5 (15.2) <.001

Social well-being 20.9 (4.0) 20.2 (5.8) .07

Emotional well-being 17.6 (3.7) 19.5 (4.5) <.001

Physical well-being 21.1 (5.4) 24.9 (4.1) <.001

Functional well-being 17.2 (5.3) 21.4 (5.5) <.001

BMT subdomain 26.7 (5.9) — —

FACT-BMT total 103.5 (17.8) — —

PCS, physical component summary.
*P values were calculated using 1-sample t test.
Discussion

Among this cohort of allogeneic HCT recipients, patient-reported
measures of SDOH risk were associated with higher pretrans-
plant CTRA expression, with less social well-being identified as the
most prominent association. These findings support the impor-
tance of perceived social support and community context within
the wider paradigm of SDOH. Identifying modifiable biomarkers
predictive of patient-reported SDOHs and medical outcomes is
important; capturing a downstream biologic signature associated
with subjective experience can enhance the clinical predictive utility
of standard PROs and facilitate the identification of mechanistic
drivers of pathology. This could ultimately assist in more compre-
hensive biopsychosocial risk stratification and subsequent risk-
adapted care for the HCT population.20
* *
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Social isolation and the resulting subjective experience (loneliness)
have long been tied to negative medical outcomes, including car-
diovascular disease, infections, and even all-cause mortality.33

Conversely, higher perceived social support has been linked to
better quality of life and lower psychological distress after HCT.18

We lack a complete understanding of the underlying mechanisms
linking social support and biology, but it is plausible that a dysre-
gulated immune response plays an important role in inflammatory
pathology.33,34 Expression of the CTRA immunoregulatory pattern
results in a global proinflammatory leukocyte phenotype, and it has
appeared across a spectrum of adverse psychosocial conditions,
including loneliness, poverty, bereavement, and trauma.24,28 Addi-
tionally, the CTRA pattern is consistently observed in various
disease phenotypes, including cardiovascular disease, viral infec-
tions, chronic fatigue, and depression.23 Thus, the CTRA has
emerged as a molecular framework to help understand the
connection between socioenvironmental exposure and human
health and disease.

The role of the CTRA in HCT biology is an area of active trans-
lational investigation, given the pronounced overlap between social
strain and immune dysregulation in malignant processes. Prior
studies have established a relationship between CTRA expression
and clinical cancer and HCT outcomes. Allogeneic HCT recipients
with low SES have consistently demonstrated elevated CTRA
expression compared with patients of high SES, and this has been,
in turn, associated with inferior clinical outcomes.15,28 Importantly,
the CTRA profile can be modified through pharmacologic or
behavioral intervention. For example, both β-adrenergic antagonism
with propranolol and cognitive-behavioral stress reduction training
can reduce CTRA gene expression and related transcriptome
dynamics.32,35,36 Furthermore, in a phase 2 biomarker trial among
autologous HCT patients, those participants randomized to the
β-antagonist (propranolol) arm demonstrated upregulation of
CD34-associated gene transcripts and a trend toward accelerated
engraftment and reduced posttransplant infections.32 Immune cell–
*

*

*
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SWB FACTG FACT-BMT PWB

CREB  0.46 0.38 0.40 0.23

Glucocorticoid 

Receptor  
0.32 0.30 –0.02 0.75

NF-kB  1.25 1.28 1.00 0.02

AP1  0.87 1.08 1.00 0.27

MEIS1  0.37 0.26 0.29 0.35

MEIS2  0.48 0.19 0.25 0.42

MEIS3  0.39 0.26 0.27 0.38

MSX2  –0.46 –0.46 –0.38 –0.57

log2 point estimate
Transcription Factor

Figure 3. TFBM analyses. Bioinformatic analyses quantified

ratio of upregulated vs downregulated TFBMs within these 4

PRO domains. There was a pattern of increased activation of

inflammation-related TFBMs (NF-κB and AP-1) with

decreased patient-reported well-being, with the most

pronounced difference in the social well-being domain.

Differences in myeloid lineage TFBMs (MEIS1-3) were

observed, consistent with CTRA immunobiology as previously

described. PWB, physical well-being; SWB, social well-

being.
mediated inflammation and infections drive a significant proportion
of short- and long-term morbidity and mortality in the HCT popu-
lation37; identifying modifiable predictors of these outcomes could
significantly impact patient outcomes.

Results from our study further support a potential role for CTRA in
mediating socioenvironmental influences on HCT outcomes. Indi-
viduals with lower levels of perceived well-being and lower social
well-being, in particular, demonstrated higher CTRA gene expres-
sion and increased activation of upstream adrenergic stress-
mediated transcription control pathways. Targeting the
psychosocial-CTRA pathway through behavioral (ie, social support,
stress reduction, or positive psychology interventions) and/or
pharmacologic interruption of the adrenergic stress response (ie,
beta-blocker therapy) may be a promising strategy to improve
multidimensional outcomes in the HCT population. Although this
study was not designed or powered to detect changes in clinical
outcomes, the larger parent cohort did report differences in overall
survival based on certain PRO quartiles; this suggests that CTRA
may play a role in the PRO-outcomes relationship, though definitive
conclusions will require additional investigation.19 Future, larger
studies should seek to further clarify potential risk groups for CTRA
activation over time using patient-reported SDOH measures, which
could serve as a helpful clinical adjunct in our effort to provide
optimal whole-person care.

There are important limitations to consider when interpreting this
study’s results. This cohort was quite homogenous with respect to
race, with 91% of participants identifying as White, although this is
comparable with the general US HCT recipient population (ranging
from 83% to 86% White from 2010 to 2020).38 Additionally, there
were missing data in relevant SDOH variables (income, work
status, and marital status), limiting our ability to include
these variables in our primary analyses. However, although our
sample size was modest, it was similar to that of other studies
6836 TAYLOR et al
evaluating high-resolution genomic data in a biopsychosocial
context.15,28,36,39 There are distinct advantages to using a large
database repository for robust and rigorous data capture, but there
were likely unmeasured confounders in the relationship between
CTRA and patient-reported SDOH outcomes. For example, PROs
at initial cancer diagnosis, lines of prior therapy, and some health
behavior data were not captured in this analysis and may also
influence CTRA expression.23 Data were analyzed at a single time
point pre-HCT, restricting our ability to infer causality and quantify
changes over time. Of note, self-reported social well-being did not
differ statistically between our study cohort and the general US
population (Table 2). This is consistent with data showing
perceived social support declines after HCT and then likely
increases further out from transplant.31 Finally, there is no estab-
lished clinically significant change in CTRA RNA expression,
limiting our ability to comment on the overall health significance of
the absolute changes in this biomarker seen in our study. These
data warrant further exploration in a larger, prospective, more
sociodemographically diverse HCT population.

In summary, this study sought to quantify the association between
patient-reported measures of social and behavioral determinants of
health and a specific pretransplant social genomic profile among
allogeneic HCT recipients. We identified multiple domains of
experienced SDOH risk linked to CTRA expression, with low social
well-being emerging as the most significant factor. These results
align with prior studies of the relationship between CTRA and
adverse socioenvironmental factors and suggest the potential for
clinical impacts in the HCT setting. The CTRA molecular pattern is
easily measured and is modifiable, making it an appealing candi-
date as a targetable biopsychosocial biomarker. Ultimately,
applying a social genomics lens to biomarker discovery will help
identify patients at risk of poor outcomes and facilitate the devel-
opment of targeted interventions to improve comprehensive out-
comes in the HCT population.
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