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Improving Quantum Simulation Efficiency of
Final State Radiation with Dynamic Quantum Circuits

Plato Deliyannis,1, ∗ James Sud,2, † Diana Chamaki,2, ‡ Zoë

Webb-Mack,1, § Christian W. Bauer,1, ¶ and Benjamin Nachman1, ∗∗

1Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, UC Berkeley, Berkeley, CA 94720, USA

(Dated: March 21, 2022)

Reference [1] recently introduced an algorithm (QPS) for simulating parton showers with interme-
diate flavor states using polynomial resources on a digital quantum computer. We make use of a
new quantum hardware capability called dynamical quantum computing to improve the scaling of
this algorithm to significantly improve the method precision. In particular, we modify the quantum
parton shower circuit to incorporate mid-circuit qubit measurements, resets, and quantum operations
conditioned on classical information. This reduces the computational depth from O(N5 log2(N)2)
to O(N3 log2(N)2) and the qubit requirements are reduced from O(N log2(N)) to O(N). Using
“matrix product state” statevector simulators, we demonstrate that the improved algorithm yields
expected results for 2, 3, 4, and 5-steps of the algorithm. We compare absolute costs with the original
QPS algorithm, and show that dynamical quantum computing can significantly reduce costs in the
class of digital quantum algorithms representing quantum walks (which includes the QPS).

I. INTRODUCTION

High energy physics (HEP) simulations are one of the
most natural and exciting applications of quantum com-
puters, given the complex many-body quantum nature of
HEP processes. Foundational work establishing the exis-
tence of polynomial scaling digital quantum algorithms
for scattering calculations [2] has been followed by a va-
riety of particle and nuclear physics investigations into
simulations on quantum computers1.

While most of these studies propose quantum algo-
rithms for the full scattering process on a quantum com-
puter, a complementary approach has been proposed to
exploit factorization [4]. In particular, scattering cross
sections approximately factor into pieces governed by
physical processes occurring at different energy scales.
One way to factorize a full calculation at a collider like
the Large Hadron Collider (LHC) involves parton shower
(PS) Monte Carlo. Parton showers govern the collinear
radiation from high energy charged particles. Classical
PSs approximate this radiation as a Markov Chain. This
is an excellent approximation in some cases, but ignores
certain interference effects. Recently, Ref. [1] introduced a
quantum algorithm for parton showers (QPS) that models
interference effects from intermediate flavor states. This
algorithm requires only polynomial resources compared
to existing exponentially scaling algorithms to model the

∗ pdeliyannis@lbl.gov
† jamessud@berkeley.edu
‡ dchamaki@berkeley.edu
§ zwebbmack@lbl.gov
¶ cwbauer@lbl.gov
∗∗ bpnachman@lbl.gov
1 There are now over a hundred papers in this area; see Ref. [3]

for an overview to this topic and the papers that cite Ref. [2] for
specific studies.

same physics. While the QPS does not describe the full
properties of PSs in the Standard Model (dominated
mostly by the strong force), it represents an important
benchmark for developing and testing HEP algorithms
on quantum computers.

Even though the QPS requires only polynomial quan-
tum resources, it is still challenging to run on existing
devices. This is because we are in the Noisy Intermeidate
Scale Quantum (NISQ) [5] computing era where qubit
counts, connectivities, and coherence times are limited
and quantum gate and readout operations have significant
noise. Therefore, there is a strong motivation to improve
the polynomial scaling of the current quantum algorithms
like the QPS.

In this paper, we improve the original QPS algorithm
[1] by using dynamical quantum circuits: we incorporate
mid-circuit qubit measurements2 and quantum gates ap-
plied dynamically based on results of classical processing
on these measurements. The resulting quantum state
prepared by the modified protocol is equivalent to the
original. By re-setting the measured qubits to the ground
state and re-using them for subsequent iterations the com-
putational complexity in both qubits and gates can be
reduced. Compared to the original algorithm, the new
version uses a factor of O(N2) fewer standard entangling
gates, where N is the number of points used to discretize
the PS.

This paper is organized as follows. Section II introduces
dynamic quantum computing, in which a quantum pro-
cessing unit (QPU) interacts with a classical processing
unit (CPU) during computation. This is in contrast with
nearly all current digital quantum algorithms, where a
preset sequence of quantum gates are applied, and the

2 Throughout the paper, we use the terms ’mid-circuit measure-
ments’ and ’remeasurement’ interchangeably.
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system is measured only as the final step of the com-
putation. Next, Sec. III begins by briefly reviewing the
QPS algorithm [1], including its qubit and quantum gate
requirements. Section III then continues by introducing a
modified QPS that incorporates mid-circuit measurement
and quantum-classical feedback. We have implemented
this algorithm in Qiskit [6] and provide numerical results
in Sec. IV. The simulations agree with those in Ref. [1] and
we are able to make more precise predictions than were
possible before, using the matrix product state simulator.
The paper ends with conclusions in Sec. V.

II. DYNAMIC QUANTUM COMPUTING

Dynamic quantum computing involves dividing a pro-
gram into (1) steps that can only be implemented in a
quantum computer (QPU) and (2) steps that can be im-
plemented more efficiently on a classical computer (CPU),
and interfacing between the QPU and CPU wherever
necessary. This scheme manifests in two categorically
distinct ways.

First, one could execute an algorithm consisting of a se-
quence of alternating quantum and classical steps, where
the result of each step is fed serially to the next. Varia-
tional algorithms such as the variational quantum eigen-
solver (VQE) [7] are primary examples of this scheme. To
compute the smallest eigenvalue of a Hermitian operator
H, VQE alternates between a quantum step that com-

putes the expectation of H on some vector
∣∣∣ψ(~θ)

〉
, and a

classical step that minimizes the expectation 〈ψ(~θ|H|ψ(~θ)〉
over parameters ~θ. In this scheme, each quantum step
is independent from the previous, so the same QPU is
reset and reused for all quantum steps. This means that
the QPU’s coherence time must be long enough only to
accommodate the time to execute a single quantum step.

On the other hand, one could also construct an algo-
rithm that requires rapid interfacing between QPU and
CPU. For example, standard quantum error correction
(QEC) procedures entail measuring a syndrome opera-
tor, followed by a recovery operation in which pre-defined
quantum gates are applied conditional on measurement
results [8]. Therefore, incorporating QEC to some general
quantum program requires frequent interfacing between
QPUs and CPUs in the form of measurements (QPU
to CPU) and feedback (CPU to QPU). In addition to
direct feedback based on measurement results, one could
also perform classical computations on them before ap-
plying quantum gates conditioned on the results of those
computations. This procedure describes a fully dynamic
quantum-classical computer and is the basis for the al-
gorithm presented in this paper. Figure 1 illustrates the
operation of a dynamic quantum computer.

In contrast with VQE, where quantum and classi-
cal steps alternate serially, QEC and other algorithms
that use a similar rapid interfacing scheme require that
quantum resources (qubits) maintain coherence during

quantum-classical interfacing. Limited qubit coherence
times are a major bottleneck for implementing QEC and
other dynamic algorithms. However, coherence times con-
tinue to improve as hardware is developed and refined,
and because of the importance of QEC for developing
fault-tolerant quantum computers, dynamic hardware will
be a major focus in the long term. Until now, demonstra-
tions of dynamic computing with rapid digital interfacing
include active qubit resets [9–11], quantum teleportation
[12–16], and error-correction [17–26]. A more complex ex-
ample was recently demonstrated by IBM [27], employing
a hybrid quantum-classical version of phase estimation on
two qubits, where an m-bit representation of the phase
is computed using several shots of a hybrid circuit that
contains m measurement-feed-forward cycles. For each
cycle, an Rz(θ) gate is selected and applied conditionally
on previous measurement results. Different measurement
results select different θ values.

The hybrid phase estimation algorithm demonstrated
by IBM [27] closely resembles the hybrid QPS we will
introduce below in that it consists of single-qubit rotation
gates with rotation angles that depend on classical infor-
mation, i.e. mid-circuit measurement results. Therefore,
IBM’s demonstration of executing a hybrid quantum algo-
rithm shows that our QPS algorithm can theoretically be
implemented on real devices in the future. In Sec. III, we
summarize the original QPS algorithm [1] before laying
out the dynamical version.

III. QUANTUM PARTON SHOWER
ALGORITHM

First, we summarize the quantum parton shower (QPS)
algorithm originally presented in Ref. [1].

A. Physical Background

Parton shower algorithms are perturbative approaches
to efficiently describe high-multiplicity final states by
focusing on the soft and collinear regions of phase space.
The QPS algorithm in Ref. [1] was developed for a simple
quantum field theory involving two types of fermion fields,
f1 and f2, interacting with one scalar boson φ governed
by the following Lagrangian:

L = f̄1(i/∂ +m1)f1 + f̄2(i/∂ +m2)f2 + (∂µφ)2

+ g1f̄1f1φ+ g2f̄2f2φ+ g12

[
f̄1f2 + f̄2f1

]
φ . (1)

The first three terms in Eq. (1) describe the kinematic
properties of the fermions and scalar while the latter
three terms govern their interactions. The goal of a PS
algorithm is to describe the collinear dynamics of the
theory, which in this case correspond to the fermions
radiating scalars (fi → fjφ) and scalars spliting into
fermion pairs (φ→ fif̄j).
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|0〉⊗n . . .

|0〉⊗k . . .

. . .

n

k

QPU Quantum operations Quantum operations

|0〉⊗k

CPU CPU Processing

FIG. 1: Dynamic computing workflow. The essential procedure consists of four steps: (1) Measure a subset of
quantum resources in the QPU, represented here by the k-qubit register, (2) On the CPU perform some processing on

the measured data, (3) Reset the measured qubits to the |0〉 state so they can be re-used, and (4) Based on CPU
outputs, apply additional quantum operations on the QPU. Note that the QPU must maintain coherence throughout

this procedure.

In classical PSs, the rates of these processes are de-
scribed by splitting functions:

Pi→jφ(θ) = g2
ijPf (θ) , i, j ∈ {1, 2} (2)

Pφ→ij̄(θ) = g2
ijP̂φ(θ) , i, j ∈ {1, 2} , (3)

where gi ≡ gii. The splitting functions describe the
probability for a particular particle at a given step (pa-
rameterized by the scale θ) in the parton shower evolution
to undergo a transformation. There are many formally
equivalent definitions of the scale; here we use a common
choice of the opening angle of the emission with respect
to the emitter (angularly ordered shower).

In addition to the splitting functions, another important
quantity is the no-branching probability (Sudakov factor):

∆i,k(θ1, θ2) = exp

[
−g2

i

∫ θ2

θ1

dθ′P̂k(θ′)

]
, (4)

which describes the probability that no emission occurs
between scales θ1 and θ2. With the splitting functions and
Sudakov factors, we can sample from the cross-section
using a Markov Chain algorithm that generates one emis-
sion at a time, conditioned on the previous emissions. In
particular, at a given step in the algorithm with a fixed
number of particles, the probability that none of them
radiate or split is simply a product over Sudakov factors.
If something does happen at a given step, the probabilities
are proportional to the appropriate splitting function. In
the limit g12 → 0, the Markov Chain algorithm can be
implemented in terms of emission probabilities, and is
therefore classically efficient. However, if g12 > 0, there
are now multiple histories with unmeasured intermediate
fermion types which contribute to the same final state.
To account for these interferences, we must implement
the Markov Chain on at the quantum amplitude level,
which necessitates keeping track of O(2N ) different his-
tories, where the range of opening angles is discretized
into N parts. This motivates the QPS algorithm, which
computes the final state radiation with g12 > 0 using only
polynomially many qubits and gates on a digital quantum
computer.

B. Basis for the Quantum Algorithm

The interaction terms (Eq. (1)) of the Lagrangian can
be written as a matrix equation:

Linteraction =
(
f̄1 f̄2

)( g1 g12

g12 g2

)(
f1

f2

)
φ . (5)

Furthermore, the “interaction matrix” is real and sym-
metric, and can thus be diagonalized as

G ≡
(
g1 g12

g12 g2

)
= U†

(
ga 0
0 gb

)
U . (6)

By defining a change of basis(
fa
fb

)
≡ U

(
f1

f2

)
, (7)

the interactions (Eq. (1)) become diagonal:

Linteraction =
(
f̄a f̄b

)(ga 0
0 gb

)(
fa
fb

)
φ . (8)

In this “diagonal basis”, splitting do not create inter-
ference between fermion types. In other words,

Pi→jφ(θ) = δijg
2
ijPf (θ) , i, j ∈ {a, b} (9)

Pφ→ij̄(θ) = δijg
2
ijPφ(θ) , i, j ∈ {a, b} , (10)

where δij is Kronecker delta. This is also the case in the
original basis if g12 = 0.

Therefore, to simulate interference between fermion
types, we first rotate particle registers |p〉 encoding
fermion/boson fields into the diagonal basis according to
Eq. (7), proceed with a quantum analogue of the classical
Markov Chain algorithm (generating a history of angles
and particle types), and lastly rotate the final particle
states back to the original basis. If g12 > 0, then the ini-
tial rotation to the diagonal basis creates a superposition
of fa and fa fermions. Subsequent operations act on this
superposition, and all intermediate amplitudes/histories
are preserved throughout the quantum Markov Chain.
This contrasts the classical MCMC parton shower, where
there superpositions of multiple fermion types are not
included. Note that in this model, there is no interference
between histories where emissions occurred at different
angles.
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C. Original Quantum Algorithm

The QPS circuit uses three qubit registers to encode the
particle state and history, three registers to store derived
quantities about the number of particles, and a number
of ancillary qubits. For N steps of the algorithm (i.e,
discretizing the range of angles into N parts) and with nI
initial particles, the qubit counts are provided in Table I.

Register Purpose # qubits
|p〉 Particle state 3(N + nI)

|h〉 Emission history
∑N−1
m=0dlog2(m+ nI + 1)e

|e〉 Did emission happen? 1
|nφ〉 Number of φ dlog2(N + nI)e
|na〉 Number of fa dlog2(N + nI)e
|nb〉 Number of fb dlog2(N + nI)e

Ancillas 4dlog2(N + nI)e+ 5

TABLE I: Registers in the QPS quantum circuit [1]
along with the number of qubits required for N steps

and nI initial particles.

The QPS algorithm then proceeds by iteratively apply-
ing a series of steps. As described schematically above,
each step has six components: (1) basis rotation R(m),

(2) count particles Ucount, (3) determine emission U
(m)
e ,

(4) update history Uh, (5) update particles U
(m)
p , and

(6) inverse basis rotation R(m)† . Using the registers de-
scribed in Table I, Alg. 1 gives a high-level description of
the QPS algorithm in terms of these six meta gates. An
alternative description in the form of a computational pro-
tocol is provided in Alg. 1. A detailed description of each
register and each quantum gate is provided in App. A.
Additionally, Fig. 2 illustrates two steps of the circuit
diagram for Alg. 1. Note that emission history register
|h〉m is updated and controlled on for Up once at step
m, but left alone during previous and subsequent steps.
This property of the history register is a consequence of
the lack of interference between different histories with
the same emission angles. This motivates the idea of
measuring |h〉m after each step, and then re-using those
qubits during subsequent steps, which would reduce qubit
requirements for the QPS.

D. Modified Quantum Parton Shower

Using mid-circuit operations conditioned on measure-
ment results, we can significantly simplify the quantum
circuit of the previous section. A qubit that is untouched
for the remainder of a circuit can be measured at any
time without changing (in principle) the properties of
the encoded quantum state. In fact, a qubit used only
to control operations on other qubits can be measured –
and all subsequent quantum controls replaced by classical
controls – without affecting the distribution of measured
states. By invoking this deferred measurement principle
on Fig. 2, the history sub-register |h〉m at step m can be

Algorithm 1: Original QPS algorithm [1]

Data: Splitting functions Pi→jφ, Pφ→ij , couplings g1,
g2, g12, step parameter ε, number of steps N ,
and nI initial particles.

Result: Full amplitude description of final state
radiation.

begin
Initialize all qubit registers in the |0〉 state.
Encode initial particles |p〉1 ... |p〉nI .

for j ← 0 to N − 1 do
(1) Basis rotation: Rotate all particles in |p〉

to the diagonal basis (Eq. (6)) using Eq. (A5).
(2) Count particles: Using Ucount

(App. A 0 f), count the number of each particle
type, storing the results in |na〉, |nb〉, |nφ〉.

(3) Determine emission: Using Ue
(App. A 0 g), encode whether an emission
occurred this step on |e〉, where the probability
of emission is controlled on |na〉, |nb〉, |nφ〉.

(4) Update history: Using Uh (App. A 0 h),
update the history register |h〉m, which
encodes which particle (if any) emitted this
step. The relative amplitudes for particular
emissions are controlled by |na〉, |nb〉,
|nφ〉 , |p〉 , |e〉. (Note that |e〉 is put back into
the |0〉 state implicitly in Uh.)

(5) Update particles: Using Up (App. A 0 i),
update the particle state, controlled on which
particle emitted (encoded in |hm〉).

(6) Inverse basis rotation: Rotate all
particles in |p〉 back to the original basis, using
the inverse of Eq. (A5).

Measure all qubits.

measured directly after applying U
(m)
h , and the results

used to classically control U
(m)
p . Therefore, in principle,

the qubits of |h〉m can be reset to the ground state |0〉 and
re-used for |h〉m+1. Because |h〉m encodes a superposition
of which particle |p1〉 , . . . , |pnI+m−1〉 , or None emitted at
step m, measuring |h〉m projects the wavefunction onto a
definite emission history. In other words, the sequence of
emission locations (particles) is stored classically during
the circuit execution. This does not affect the dynamics
of the simulation, as different emission histories do not
interfere with each other – fermion superpositions within
the particle register |p〉 remain intact and only affect oper-
ations within the same history. Therefore, by running the
simulation a polynomial number of times (given some con-
stant statistical tolerance), we still construct an accurate
probability distribution of final states. In this section, we
describe at a high level how measuring and resetting |h〉
after each step simplifies the QPS algorithm. A detailed
treatment of the improvements is provided in App. A.

Measuring the history register at a given step tells us
which particle emits at that step, so the entire emission
history is available as classical information during the
simulation. In fact, given that the simulation begins with
a definite type (fermion or boson) of initial particle, we can
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p p p p . . .

h

h

. . .

nφ nφ . . .

na na . . .

nb nb . . .

|p〉 R(0) U
(0)
p R(0)† R(1) U

(1)
p R(1)†

|h〉1 U
(1)
h

|h〉0 U
(0)
h

|e〉 U
(0)
e U

(1)
e

|nφ〉

Ucount Uh Ucount Uh|na〉

|nb〉

FIG. 2: High-level circuit diagram of the first two steps of the QPS algorithm. Round gates indicate control qubits.

p p p p . . .

|0〉 |0〉 . . .

. . .

na na na na . . .

. . .

. . .

|p〉 R(0) U
(0)
p R(0)† R(1) U

(1)
p R(1)†

|h〉 U
(0)
h U

(1)
h

|e〉 U
(0)
e U

(1)
e

|na〉 Ucount Ucount

h0 h0

h1 h1

FIG. 3: High-level circuit diagram of the first two steps of the improved QPS algorithm. Round gates indicate control
qubits. Double wires indicate classical information stored on a CPU, and measured from |h〉. Double wires attached to
Up indicate that sub-gates in Up are selectively applied based on measured values of h0, h1, .... The |0〉 attached to the

same gate indicates a reset to the |0〉 state.

inductively infer from the emission history which type of
particle emitted at each step. Note that while individual
fermions may be in a superposition of different “flavors”
a/b, for the two types of emissions considered – knowledge
of the emitting particle type (f or φ) always implies the
emitted particle type, as we consider the splittings f → fφ
and φ → ff . Therefore, the total number of particles
(ntot), number of bosons (nφ), and number of fermions
(nf = nfa + nfb) are classical information. This lets us

remove two of the three counting registers |nφ〉, |na〉, |nb〉,
as follows.

In the original QPS, the Ue and Uh gates apply rota-
tions with different angles, where each rotation (angle) is
controlled on the corresponding possible value stored in
|na〉 |nb〉 |nφ〉. With mid-circuit measurements of |h〉, nφ
is classical information, so there is no need store and con-
trol on |nφ〉 at all. Now suppose we count the number of
a-fermions – without loss of generality as we could instead
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count the number of b-fermions – and apply rotations con-
trolled on each possible value stored in |na〉. There is a
one-to-one mapping of the possible values stored in |na〉
to the possible values of |nb〉, given by ntot = na+nb+nφ,
as ntot and nφ are stored on a CPU. Therefore, there is
no need to store and control on |nb〉, as the superposi-
tion of possible nb’s is already implicitly encoded in |na〉.
Thus, by measuring |h〉 at each step, |nb〉 and |nφ〉 become
redundant and can be removed.

Suppose we start with

nf,0 = initial number of fermions = nfa + nfb
nφ,0 = initial number of bosons

ntot,0 = nf,0 + nφ,0

(11)

Then, after measuring the history register, the CPU stores
which of the initial particles emitted, so we adjust

nf,0 7→ nf,1

nφ,0 7→ nφ,1

ntot,0 7→ ntot,1

(12)

in the CPU accordingly, and the emitted particle is en-
coded in |p1〉. This process is repeated for each subsequent
simulation step, so inductively nf,i, nφ,i, ntot,i are stored
in the CPU throughout the simulation. Under the as-
sumption that we can implement the workflow from Fig. 1,
we can use this information to reduce both the computa-
tional complexity and absolute qubit/gate counts of QPS.
Alg. 2 gives a high-level description of the improved QPS
algorithm with mid-circuit measurements.

The second simplification is as follows. Storing φ or
None in particle register is redundant, as given the emis-
sion history, the location of all φ and None particles in
the simulation is stored in the CPU. Therefore, we encode
particle m into a qubit sub-register |pm〉 only if it is a
fermion. To see that this can be done without significantly
changing the QPS algorithm, we briefly comment on each
gate that acts on |p〉: R, Ucount, Uh, and Up (see Fig. 3).
The basis rotation R (Eq. (A5)) acts as the identity on φ’s,
so simply not encoding φ’s does not affect the action of
R. For each particle |pm〉 in |p〉, the counting gate Ucount

applies an incrementer on |na〉 controlled on |pm = fa〉
(see App. B 1). Therefore, not encoding φ’s on qubit does
not affect the action of Ucount. The Uh gate applies a
two-level rotation to |h〉 for each particle in |p〉, where the
rotation angle is controlled by particle type (see App. B 3).
Recall that by measuring the history register, the CPU
stores whether each particle in the emission history is a
f , φ or None. Therefore, for fermions, control on |p〉 as
before, but for φ’s the corresponding rotation can simply
be applied without controlling on |p〉. In the circuit dia-
gram of Uh – Fig. 13 – this can be visualized by replacing
quantum register |pi〉 with classical wires if |pi〉 = |φ〉.
The gate sequence of Fig. 13 is unchanged, except that

some rotations U
(m,i)
h may no longer be controlled on |pi〉,

but applied directly to |h〉.

Algorithm 2: QPS with mid-circuit
measurements

Data: Splitting functions Pi→jφ, Pφ→ij , couplings g1,
g2, g12, step parameter ε, number of steps N ,
and nI initial particles.

Result: Full amplitude description of final state
radiation.

begin
Initialize all qubit registers in the |0〉 state.
Encode initial particles |p〉1 ... |p〉nI .

for j ← 0 to N − 1 do
(1) Rotate all particles in |p〉 to the diagonal

basis (Eq. (6)) using Eq. (A5).
(2) Using Ucount (App. A 0 f), count the number

of a-fermions, storing the result in |na〉.
(3) Using Ue (App. A 0 g), encode whether an

emission occurred this step on |e〉, where the
probability of emission is controlled on |na〉,
and nφ, ntot. from the CPU.

(4) Using Uh (App. A 0 h), update the history
register |h〉m, which encodes which particle (if
any) emitted this step. The relative
amplitudes for particular emissions are
controlled by |na〉, |e〉, and nφ, ntot. from the
CPU. (Note that |e〉 is put back into the |0〉
state implicitly in Uh.)

(5) Measure the history register |h〉, storing the
result on the CPU.

(6) If the measurement result indicates that a
φ→ ff̄ emission occurred, apply Up (Fig. 14)
to update the particle state.

(7) Reset |h〉 to the |0〉 state.
(8) Rotate all particles in |p〉 back to the

original basis, using the inverse of Eq. (A5).

Measure |p〉.

Finally, the particle update Up must be applied only if
a φ → ff̄ emission occurs. If that is the case, then the
circuit in Fig. 14 is applied to |p〉.

1. Qubit Costs

Figure. 3 illustrates the high-level circuit diagram for
two steps of the improved QPS algorithm. Note the re-
duction in registers compared to the original QPS. The
improved QPS circuit calls for four qubit registers, de-
tailed in Table II below.

Register Purpose # qubits
|p〉 Particle state 2(N + nI)
|h〉 Emission history dlog2(N + nI)e
|e〉 Did emission happen? 1
|na〉 Number of fa dlog2(N + nI)e

Ancillas 2dlog2(N + nI)e+ 1

TABLE II: Registers in the improved QPS algorithm
along with the number of qubits required for N steps

and nI initial particles.
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Note that the particle state only calls for 2(N + nI)
qubits, compared to 3(N + nI) originally (Table. I). By
only encoding fermions in quantum registers, two qubits
are sufficient to encode fa, fb, f̄a, f̄b. Also note that
the number of required qubits varies between different
circuit executions, as a simulation where more fermions
are produced requires more quantum resources. In the
worst case, |p〉 will still consist of N + nI sub-registers,
while the actual number is nf . Depending on parameters
g1, g2, g12, ε, and the splitting functions Pi→jφ, Pφ→ij ,
the expectation for 〈nf 〉 may be significantly smaller
than N + nI . Therefore, the maximum number of qubits
required for an N -step simulation is

# Qubitsmax =

2(nI +N) + 4dlog2(nI +N)e+ 2 ,
(13)

while the actual number is

# Qubitsactual =

2
[
nf + dlog2(nI +N)e+ dlog2(nf )e+ 1

]
,

(14)

where the latter could be used if a variable number
of qubits can be used for the circuit execution. The
asymptotic qubit scaling is just O(N + nI), compared to
O(N log2(N + nI)) for the original QPS algorithm (Ta-
ble I). This original qubit scaling is from storing the emis-
sion history at each step, which means using N subregis-
ters |h〉m each with dlog2(nI +m+1)e ∼ O(log2(N+nI))
qubits. By measuring, resetting, and re-using |h〉 after
each step, |h〉 just consists of dlog2(N + nI + 1)e qubits,
and the dominant scaling becomes the O(N + nI) qubits
of |p〉. The qubit scaling difference is illustrated in Fig. 4,
which plots qubit count against N , with one starting
particle, nI = 1.

2. Gate Costs

We measure gate costs by writing operations in terms
of the universal standard gate set consisting of two-qubit
controleld not gates (CNOTs) and arbitary single qubit
gates U(θ, φ, λ). Multi-controlled gates are decomposed
into sequences of Toffoli (CCX) gates using a standard
procedure that requires ancillary qubits equal to the num-
ber of controls minus one [8]. Then, Toffoli gates are
decomposed into six two-qubit entangling gates [8]. As
two-qubit entangling gates are far costlier to implement in
real devices than single qubit gates, we quote gate counts
in terms of CNOTs. Note that while we illustrate “classi-
cal controls” in our circuit diagrams (Fig. 14, Fig. 13) for
quantum gates selected dynamically by the CPU, only the
attached quantum gates are included in the gate count.

Table III summarizes the gate costs of each component
of the improved QPS algorithm. The overall asymptotic
scaling is

O(N · (N + nI)
2 · log2(N + nI)

2) , (15)

2 4 6 8 10 12 14 16
Number of steps (N)
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Mid-circuit meas.

FIG. 4: Qubit cost comparison between the original QPS
and the improved version with mid-circuit measurements.
This plot is simply an illustration of Eq. (13) and the
sum over Table I with nI = 1. For nI > 1, the qubit

count curves simply shift to the left, as nI and N only
appear together in the qubit scaling, as N + nI .

Element Step m cost Total Scaling (N steps)

R 2(nI +m) O(N2 +NnI)
Ucount 13`(nI +m) O(N(N + nI) · log2(nI +N))
Ue (nI +m)(12`− 10) O(N(N + nI) · log2(nI +N))
Uh O(N(N + nI)

2 · log2(nI +N)2)
Up 2 2N

Total O(N(N + nI)
2 · log2(nI +N)2)

TABLE III: Gate costs of the different circuit elements
using re-measurement. ` ≡ dlog2(nI +m+ 1)e

.

which is a factor of (N + nI)
2 more efficient than the

original QPS gate scaling:

O(N · (N + nI)
4 · log2(N + nI)

2) . (16)

This scaling improvement is due to the fact that at step
m, |na〉 is a superposition of nI +m possible basis states,
while |na〉 |nb〉 |nφ〉 is a superposition of (nI+m)3 possible
basis states. To implement Uh (see App. A), rotation
gates controlled on |na〉 is applied to |h〉 for each possible
value stored in |na〉. Therefore, in the original algorithm,
Uh consisted of O((m+ nI)

3) controlled-rotations, while
in the improved algorithm, only O(m + nI) controlled
rotations are applied.

Fig. 5 compares the actual gate counts of our improved
QPS circuits with those of the original QPS circuits. The
dashed line is the contribution from just the Uh gate, and
Fig. 5 illustrates that the gate cost of Uh is dominant.
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FIG. 5: Gate cost comparison: The dashed line
represents the dominant contribution from Uh to the

total gate count for QPS with mid-circuit measurements.

IV. NUMERICAL RESULTS

Using Qiskit’s matrix product state simulator [28, 29],
we are able to simulate QPS with one initial particle
(nI = 1) up to several steps. For each simulation, we use
a scale parameter θ = θm, defined by

θm ≡ εm/N , ε = 0.001 , (17)

splitting functions

Pi→iφ(θ) = g2
i P̂f (θ) =

g2
i log(θ)

4π
(18)

Pφ→īi(θ) = g2
i P̂φ(θ) =

g2
i log(θ)

4π
, (19)

couplings

g1 = 2 g2 = 1 g12 = 1 , (20)

and one initial f1 (see Eq. (A2)),

|p〉initial = |p1〉 = |100〉 . (21)

The couplings g1 = 2, g2 = 1, g12 = 1 are arbitrary,
but chosen such that ga, gb 6= 0 and ga 6= gb (Eq. (6)),
in order to capture the full problem complexity. For
simplicity, the couplings are also kept independent of step
for simplicity (in reality, they would run with the scale).
This means that the rotations are the same at each step.
The numerical values of the diagonalized couplings are

ga =
3 +
√

5

2
≈ 2.618 (22)

gb =
3−
√

5

2
≈ 0.382 , (23)

and the rotation angle u is

u =

√
5− 1

2
√

5
≈ 0.28 rad . (24)

With these parameters, the Sudakov factors, which give
probabilities to have no emission from a given particle at
step m, can be written as

∆a(θm) = εg
2
a/4πN (25)

∆b(θm) = εg
2
b/4πN (26)

∆φ(θm) = ε(g
2
a+g2b )/4πN . (27)

Because the couplings are kept constant, these probabili-
ties also remain constant at each step.

We run simulations with g12 = 0 in addition to g12 = 1.
As explained in Sec. III A, when g12 = 0 the parton shower
can be solved using a classical Markov Chain algorithm.
Therefore, as a sanity check, we overlay analytical Markov
Chain calculations, each with 109 shots, over simulation
results with g12 = 0 in our plots.

Figures 6 and 7 present simulation results for N =
2, 3, 4, 5 steps and compare the outputs between the orig-
inal QPS and QPS with mid-circuit measurements3. We
have chosen two different observables for illustration.

First, Fig. 6 shows histograms of the total number of
emissions (E). The main subplot illustrates the prob-
ability distributions of E for classical MCMC (black),
original QPS (filled bars), and QPS with mid-circuit mea-
surements (solid edges) simulations, with both g12 = 0
(blue) and g12 = 1 (red). The second subplot magnifies
differences between the MCMC and g12 = 0 simulation
distributions, which are due to statistical noise and exhib-
ited the expected deviations. The third subplot magnifies
differences between distributions obtained from original
QPS and QPS with mid-circuit measurements, which are
also within the expected statistical variations. With 105

shots per simulation, typical statistical errors are on the

order of σ ∼
√

Pr(E)
105 .

√
1

105 ≈ 0.0032. Error bars shown

in the second and third subplots Fig. 6 are 1σ ranges for
the difference distributions, and the simulation results
exhibit deviations on the expected scale. In other words,
the second subplot shows that quantum simulations with
coupling turned off (g12 = 0) agree with the classical
MCMC algorithm, as expected. Additionally, the two
different versions of the quantum algorithm – original

3 We have stopped at 5 steps due to the simulation time. The
present criteria for determining how many steps to use is that
simulations with 105 shots have to take fewer than 3 hours running
naively without any parallelization on a 8 GB RAM Mac. It would
be possible to go a bit further with larger computing resources.
For the remeasurement circuits, it took ∼ 2.5 hours to achieve
105 shots for g12 = 0 and g12 = 1. We note that classical
conditioning is not fully implemented in Qiskit (it is not possible
to do arbitrary classical calculations), so we have to apply an
exponential number of classically-conditioned gates.
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and with mid-circuit measurements – agree with one an-
other. Nevertheless, the classical (g12 = 0) and quantum
(g12 = 1) algorithms yield fundamentally different results.

We briefly describe the qualitative features of Fig. 6.
First, with the chosen parameters (Eqs. (17), (19)
and (20)), it turns out that

Pr(E = 0, g12 = 0) > Pr(E = 0, g12 = 1) . (28)

Additionally, for g12 = 1, the probability of φ-emission is
1−ε7/4πN , compared to 1−ε5/4πN for g12 = 0. Therefore,
conditional on a φ particle being present in the system,
φ-emissions occur more frequently when g12 = 1. This
explains why the probability of having just one emission
for g12 = 1 is so low compared to g12 = 0. Finally,
the exact shape of E distributions depends on numerical
parameter values, but the general shape exhibited in
Fig. 6 – increasing density with increasing E up to a peak
(which could be E = N), followed by a tail where density
decreases as E → N – is expected to hold for all N and all
parameter values. The probability of emission at a given
step is higher when there are more particles in the system,
which explains why having just one or two emissions is less
probable compared to having several emissions. However
at the tail end (E → N) of this trend, the distribution
decreases slightly, because combinatorially there are more
histories with E = N − 1 then with E = N .

The second observable, Fig. 7, is the distribution of
the “hardest” emission angle, which algorithmically cor-
responds to the first emission that occurred during the
shower evolution. The emission probability decreases ex-
ponentially with log(θ), or linearly with opening angle
θ. Algorithmically, this is because the probability of first
fi → fiφ emission occuring at smaller angles (later steps)
is just an exponential of the Sudakov factor (Eq. (27)).
For g12 = 0,

Pr(First emission at stepm)

= (1−∆a(θm))

m−1∏
i=1

∆a(θm)

= (∆a)
m−1

(1−∆a) ,

(29)

and for g12 = 1,

Pr(First emission at stepm)

=u (∆a)
m−1

(1−∆a)

+(1− u) (∆b)
m−1

(1−∆b) .

(30)

Fig. 7 shows the distribution of loge(θmax), with prob-
abilities displayed in the main subplot and differences
displayed in the secondary subplots. For this observable
there is again a demonstrated difference in results between
the classical (g12 = 0) and quantum (g12 = 1) algorithms.
Nevertheless, the third subplot illustrates that the two
versions of QPS – original and with mid-circuit measure-
ments – agree within expected statistical variations.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have simplified the digital Quan-
tum Parton Shower (QPS) algorithm presented in [1]
by considering mid-circuit measurements and quantum
gates that are dynamically selected based on these mea-
surement results. The QPS is an iterative “quantum
Markov Chain” algorithm with N steps, and by mak-
ing a mid-circuit measurement on a subset of qubits at
each step, subsequent multi-qubit controlled Ry rota-
tions in the original QPS can be replaced by dynami-
cally selected single-qubit Ry rotations. In this case, the
number of required Ry rotation at each step is reduced
by a factor of N2. Additionally, qubits measured mid-
circuit can be reset to the initial |0〉 state and re-used
during subsequent steps, which reduces the qubit costs
significantly. The resulting Alg. 2 improves the quantum
gate complexity from O(N · (N + nI)

4 · log(N + nI)
2) to

O(N · (N + nI)
2 · log(N + nI)

2) (Fig. 5), and the qubit
complexity from O((N + nI) log(N + nI)) to O(N + nI)
(Fig. 4), compared to the original algorithm (Alg. 1).

We implement our quantum circuits using Qiskit
(where dynamical quantum operations is a relatively new
feature), and present results for N = 2, 3, 4, 5 steps. We il-
lustrate agreement between the original and improved ver-
sions of QPS, as well as agreement with classical MCMC
simulations in the limit g12 = 0, where QPS can be ef-
ficiently computed classically. Errors are shown to be
consistent with the expected statistical uncertainties in
all cases.

More generally, we showed how adopting a hybrid
quantum-classical computing platform can be used to
make an originally quantum algorithm more efficient.
Recent studies [27, 30] have demonstrated that dy-
namic/hybrid quantum computing is feasible, and even
implemented shallow algorithm on current hardware. As
qubit design continues to improve, we expect to be able
to execute more complicated hybrid algorithms such as
QPS on real devices, and eventually be able to compute
classically inaccessible physical observables. Moreover, as
dynamic quantum computing is an intrinsic component
of quantum error correction, developing dynamic/hybrid
computing platforms is likely necessary in order to realize
fault-tolerant quantum computers. The improved QPS
algorithm serves as an additional case for prioritizing de-
velopment of dynamic computing platforms, as reduced
qubit and gate complexities/costs raise the potential for
realizing QPS to compute classically inaccessible physical
quantities much sooner. It is likely that other digital quan-
tum algorithms with similar features – Markov Chain,
or iterative algorithms where interferences exist within
but not between different histories – can benefit from
employing a dynamic/hybrid structure, and we encourage
algorithm developers to consider this approach.
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FIG. 6: Probability vs. Number of emissions (E) for 2, 3, 4, and 5 step simulations. Error bars represent 1σ ranges,
e.g., in each third subplot, the red error bars corresponds to the standard deviation of the difference distribution

between simulation results obtained from original QPS and QPS with remeasurement. Classical MCMC data were
obtained using 107 shots, so the statistical errors are suppressed by a factor of 1/10, and are thus negligible. Error

bars in each subplot represent statistical errors from g12 = 0 simulations.
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FIG. 7: Probability vs. loge(θmax) for 2, 3, 4, and 5 step simulations. As in Fig. 6, error bars represent 1σ ranges for
the difference distributions. Simulation data (red, blue) is normalized such that probabilities are equal to bar height
times bar width. For g12 = 0 simulations (blue), the area of each bar is equal – up to statistical deviations – to the

integral of the analytical curve (black) over the respective bin.
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Appendix A: Details of the original Quantum
Parton Shower (QPS) algorithm

This appendix provides details on the original QPS
algorithm presented in [1].

a. Particle state |p〉

This register consists of N + nI 3-qubit sub-registers,
one for each initial particle, and one for each emission
step,

|p〉 = |p1〉⊗3 ⊗ · · · ⊗ |pnI+N 〉⊗3
. (A1)

We use three qubits to encode each particle, as there are
six different types of particles (f1, f2, f̄1, f̄2, φ, and None)
in our model. The exact encoding is relevant, and we use
the following,

|pi〉 =



000
001
010
011
100
101
110
111


=



None
φ

f1/fa
f2/fb
f̄1/f̄a
f̄2/f̄b


. (A2)

Therefore, operations conditioned on whether a particle
is a fermion are controlled by just the first qubit, and
operations conditioned on whether a fermion is type-a or
type-b are controlled by just the first and third qubits.
Note that two computational basis states are extraneous.

b. Emission history |h〉

In original QPS, |h〉 encodes the location of emission
at each step. In particular, at step m, |hm〉 stores a
binary number between 0 and nI +m that specifies which
particle emitted at that step. The |0〉 state encodes that
no emission occured. Therefore, each sub-register |hm〉
consists of dlog2(nI + m + 1)e qubits, and in total |h〉
consists of

N−1∑
m=0

(dlog2(nI +m+ 1)e) ∼ O(N log2(nI +N)) (A3)

qubits.

c. Emission |e〉

The emission register |e〉 stores a boolean that speci-
fies whether an emission occurred at a given step. It is
straightforward to uncompute |e〉 after each step, so just
one qubit is sufficient to represent |e〉.

d. Number registers |nφ〉 , |na〉 , |nb〉

The number registers are used to count the number of
each particle type at each step. In particular, at step m
each of |nφ〉 , |na〉 , |nb〉 stores a binary number between 0
and nI +m, the maximum possible number of particles
at step m. Also note that the total

0 ≤ nφ + na + nb ≤ nI +m. (A4)

Each number register is uncomputed during each step
and can be reused for subsequent steps. Therefore, for
an N -step algorithm, each number register consists of
dlog2(nI + N)e qubits, for a total of 3dlog2(nI + N)e
qubits between |nφ〉 , |na〉, and |nb〉.

Having set up the six quantum registers shown in Fig. 2,
we now describe each gate in the circuit.

e. R(m) basis rotation

As described in Sec. III B, we rotate fermion states
from the 1/2 basis into the a/b basis by applying unitary
U (Eq. (A5)). Given our particle state representation
A2, rotating a single particle represented by three qubits
entails applying the following unitary gate:

R =

I 0 0 0
0 I 0 0
0 0 U 0
0 0 0 U

 , (A5)

where I and U are 2× 2 matrices. Therefore, to rotate to
complete particle register |p〉 at step m, apply the product
gate

R⊗(nI+m) . (A6)

The gate in Eq. (A5) is just a controlled-U gate, where U is
applied to the rightmost qubit controlled on the leftmost
qubit, in the particle encoding (Eq. (A2)). Therefore,
applying Eq. (A6) at the beginning and end of step m
involves applying (nI + m) controlled-U gates, each of
which can be decomposed into two CNOTs.

f. Ucount particle counting

The counting gate maps the particle state |p〉 at step
m to the number of each particle, which is stored in
|nφ〉 , |na〉 , |nb〉. Note that we count fermions and anti-
fermions of the same type together, as this distinction
does not affect emission probabilities. For each particle
|pi〉 in the particle state |p〉, we apply an increment gate

+ controlled on particle type to each of |nφ〉 , |na〉 , |nb〉,
as illustrated in Fig. 8 The increment gate controlled on
φ, fa, and fb implements respective transformations

|pi〉 |nφ〉 → |pi = φ〉 |nφ + 1〉+ |pi 6= φ〉 |nφ〉 (A7)

|pi〉 |na〉 → |pi = fa〉 |na + 1〉+ |pi 6= fa〉 |na〉 (A8)

|pi〉 |nb〉 → |pi = fb〉 |nb + 1〉+ |pi 6= fb〉 |nb〉 , (A9)
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. . . φ fa fb

... . .
.

φ fa fb . . .

. . .

. . .

. . .

|p1〉

|pnI+m〉

|nφ〉 + +

|na〉 + +

|nb〉 + +

FIG. 8: Complete illustration of the Ucount gate.

and is illustrated in Fig. 9. In total, Ucount consists of

`

`

|pi〉(0) |pi〉(0)

|pi〉(1) |pi〉(1)

|pi〉(2) |pi〉(2)

|0〉

Ripple Adder

|0〉

|0〉 |0〉

|nφ〉 |nφ + c〉

c

J

FIG. 9: Increment gate controlled on |p = φ〉. First, a
multi-control gate that encodes whether |pi〉 is a φ onto
an ancilla |c〉 is applied. Then, a Ripple Adder [? ] with
|c〉 as an input carry, and an additional ancillary register
initialized to |0〉 is applied. Therefore, |nφ〉 is mapped to
|nφ + 1〉 if c = 1, i.e. if |pi〉 is a φ. Increment gates

controlled on |p = fa〉 |p = fb〉 are identical other than
the control setting (see A2).

3(nI +m) controlled-incrementers, each of which requires
O(dlog2(nI +m+ 1)e) gates and dlog2(nI +m+ 1)e re-
usable ancillas. Thus, the total gate complexity of Ucount

is O({m,nI} · dlog2(nI +m+ 1)e).

g. Ue emission update

At each step, the total probability that an emis-
sion occurs depends on the scale θm, splitting functions
Pf (θm), Pφ(θm), and numbers of each type of particle
|na〉 , |nb〉 , |nφ〉. Let

∆a(θm), ∆b(θm), ∆φ(θm) (A10)

denote the probability of no emission from a particular
fa, fb, or φ particle, respectively. (These are the Sudakov

factors definie by Eq. (4).) Then, the total probability of
having no emission at step m is

Pr(No emission)

≡ ∆(m) = ∆a(θm)na∆b(θm)nb∆φ(θm)nφ , (A11)

so that the probability of emission at step m is

Pr(Emit at step m) = 1−∆(m) , (A12)

noting that |na〉 , |nb〉 , |nφ〉 are quantum superpositions
while θm, Pf (θm), Pφ(θm) are classical parameters. The
Ue gate puts qubit |e〉 in the |0〉 state with probability
∆(m) and the |1〉 state with probability 1−∆(m). With |e〉
initially in the |0〉 state, this entails applying a rotation

U (m)
e =

( √
∆(m) −

√
1−∆(m)

√
1−∆(m)

√
∆(m)

)
. (A13)

As ∆(m) depends on the |na〉 , |nb〉 , |nφ〉, this rotation

must be controlled on all three count registers. As ∆(m)

takes a different value for each different combination of
counts, we control on every possible combination, of which
there are O({m,nI}3). Each rotation is controlled on
3dlog2(nI + m + 1)e qubits. A standard method [8] de-
composes multi-control gates into a sequence of Toffoli
gates, which can each be implemented using six CNOTs.
The total costs to implement a single 3dlog2(nI +m+ 1)e-
controlled rotation is

12 ·
(

3dlog2(nI +m+ 1)e − 1
)

(A14)

CNOTs and

3dlog2(nI +m+ 1)e − 1 (A15)

Re-usable ancillary qubits.

h. Uh history update

The Uh gate encodes the probability of particular parti-
cles emitting. If there is no emission, then |h〉 → |0〉 with

amplitude
√

∆(m) But if there is an emission, Uh maps
|h〉 to a superposition of basis states that correspond to
particle numbers 1 to nI + m. Each state |1〉 through
|nI +m〉 gains amplitude equal to the square root proba-
bility that the corresponding particle emits. In particular,
the total probability for a particular particle emitting is
equal to the total probability of emission 1−∆(m) times
the conditional emission probability for that particle type.
Denote the relative emission probabilities

Pa(θm) = 1−∆a(θm) (A16)

Pb(θm) = 1−∆b(θm) (A17)

Pφ(θm) = 1−∆φ(θm) . (A18)
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Given that an emission occurred, the conditional proba-
bility that particle p is the emitter is

Pr(p emits | |e = 1〉)

=
Pp(θm)∑

p∈{a,b,φ} npPp(θm)

=
Pp(θm)∑nI+m

j=1 Pj(θm)
.

(A19)

Therefore, Uh prepares the computational basis states of
|h〉 with the following amplitude distribution:

|h〉 7→
√

∆(m) |0〉+
√

1−∆(m)

×
nI+m∑
j=1

|j〉 · Pr (pj emits | |e = 1〉) . (A20)

Starting with |h〉 in the |0〉 state, this distribution is pre-
pared by applying a series of two-level rotations from |0〉 to
the other computational basis states of |h〉. Each rotation
is controlled on |e〉, and applies the conditional emission
probability of emission for each particle |p1〉 . . . |pnI+m〉.
The rotation controlled on |pj〉 is

U
(m,k)
h =


√

1− Pj(θm)∑
k≥j Pk(θm) −

√
Pj(θm)∑
k≥j Pk(θm)√

Pj(θm)∑
k≥j Pk(θm)

√
1− Pj(θm)∑

k≥j Pk(θm)

 .

(A21)

As the rotation angle depends on counts |na〉 , |nb〉 , |nφ〉,
rotations are controlled on the count registers, in addition
to |e〉 and |p〉. Iterating through each particle p1 . . . pnI+m,
each of these rotations is followed by a decrement to |na〉,
|nb〉, or |nφ〉 controlled on that particle type. This means
the relative emission probabilities given by Eq. (A19) are
updated after each rotation. (Note that the denominator
in the entries of Eq. (A21) is different for each rotation.)
Figure 10 illustrates a single rotation-decrement iterate,
and Fig. 11 illustrates the entire Uh gate.

The gate complexity of Uh isO({m,nI}4 log2(m+nI)
2),

and 3dlog2(nI +m+ 1)e+ 2 re-usable ancilla qubits are
required.

i. Up particle update

The Up gate updates the particle state |p〉 based on
which particle emitted at a given step. At step m, |pm〉
stores the newly radiated particle if any. For example, if
particle i emits a φ at step m, then Up takes

Up |pi = fj〉 |pm = 0〉 → |fj〉 |φ〉 . (A22)

Keeping in mind that |h〉 and |p〉, then Up is implemented
by applying the gate in Fig. 12 controlled on |hm − j〉 for
each j from 1 to nI +m. The single-qubit rotation Ur in

p p φ a b

1 1

≡

nφ

na

nb

|p〉k

|h〉m U
(m,k)
h U

(m,k)
h

|e〉

|nφ〉

U
(m,k)
h

U−

|na〉 U−

|nb〉 U−

FIG. 10: A rotation-decrement iterate used to construct
Uh.

p

. . .

p

p

/0

. . .

. . .

. . .

. . .

|p〉nI+m

|p〉2

|p〉1

|h〉m U
(m,1)
h U

(m,2)
h U

(m,M)
h

|e〉 X

|nφ〉

U
(m,1)
h U

(m,2)
h U

(m,nI+m)
h

|na〉

|nb〉

FIG. 11: Original Uh gate. Each sub-gate is defined by
Fig. 10

Fig. 12 is the gate

Ur =
1√

g2
a + g2

b

(
ga −gb
gb ga

)
. (A23)

In total the particle update step consists of (nI +m) ap-
plications of Up controlled on dlog2(nI +m+ 1)e qubits.
The Up gate has a constant number of operations, so
the overall gate complexity of the particle update is
O({m,nI} log2(nI +m+ 1)).
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|pm〉

Ur

H

|pj〉

FIG. 12: Up consists of applying this gate, controlled on
|hm = j〉, for each j from 1 to nI +m.

Appendix B: Details of the QPS algorithm with
mid-circuit measurements

1. Ucount gate

We need only count the number of a single fermion
type, so both gate and qubit counts are reduced by a
factor of 3, compared to [1].

The total number of CNOTs required to implement
Ucount at step m is

13(nf,m)dlog2(nf,m + 1)e
≤ 13(nI +m)dlog2(nI +m+ 1)e .

(B1)

2. Ue gate

Instead of conditioning on |na〉, |nb〉, and |nφ〉, we only
condition on |na〉. We compute Sudakov factors [1] for
each possible value of |na〉, and apply the appropriate ro-
tation matrices [1] conditioned on the value stored in |na〉.
At the mth simulation step, 0 ≤ na ≤ nI+m, so there are
at most nI +m conditional rotations, each conditioned on
dlog2(nI +m+1)e qubits. In the original algorithm, there
are O(m3) rotations, which is the number of combina-
tions of |na〉 , |nb〉 , |nφ〉. Here nφ and nb are conditioned
on classically, so the number of conditional rotations is
reduced by a factor of m2. Thus, the computational com-
plexity of the Ue gate is reduced to O(m log2dnI+m+1e),
compared to O(m3 log2dnI +m+ 1e) for the original [1].

3. Uh gate

Like the Ue gate, the rotations in this gate must be
conditioned only the value stored in |na〉. Thus, the
computational complexity of the Uh gate is reduced to
O(m2 log2

2dnI + m + 1e), compared to O(m4 log2
2dnI +

m + 1e) for the original [1]. The improved Uh gate is

illustrated in Fig. 13. The individual U
(m,k)
h rotations are

given by Eq. (A21).

. . . p a

...
...

p a . . .

p a . . .

. . .

1 1 . . . 1 /0

na na . . . na

|p〉nI+m

|p〉2

|p〉1

|e〉 X

|h〉 U
(m,1)
h U

(m,2)
h U

(m,nI+m)
h

|na〉 U− U− U−

FIG. 13: The Uh gate at step m. Each U
(m,j)
h gate

denotes a sequence of two-level rotations (see App. A 0 h)
controlled on the different states stored in |na〉 and |p〉j .

These controls are denoted by circular “gates” in the
diagram. The relative probabilities for an emission from
|p〉j depend on whether |p〉j is an fa, fb, or φ, as well as

the number of each particle type in the system (which is
fully encoded by |na〉 and previous measurements of |h〉).
Therefore, we must apply 3dlog2(nI +m+ 1)e different

two-level rotations between |h = 0〉 and |j〉, each
conditional on the values stored in |na〉 and |p〉j .

Applying a controlled-decrement after each U
(m,j)
h

ensures that the correct relative emission probabilities
are encoded into |h〉 (see Appendix A.5 in [1]), and also
resets |na〉 to the |0〉 state. Finally, the last gate puts |e〉
back to the |0〉 state – after updating the history register,
|h〉 6= |0〉 ⇐⇒ |e〉 = |1〉, so we apply a NOT gate

conditional on |h〉 6= |0〉.

4. Up gate

Measuring the history register at step m collapses the
wavefunction of the system such that a particular particle
emitted or there was no emission. There is still quantum
interference between the different fermion *types/flavors*,
as measuring |h〉 does not affect any superpositions within
particle states |p〉.

The selection of which Up gate to apply is determined
dynamically based on the measurement result. If the
emitting particle is a φ, then apply the following particle
update:

If the emitting particle is a fermion, then the particle
update consists of entirely classical operations, as φ and
None are not encoded on qubits. In our particle history
table Table IV, we record that emitting particle j remains
a fermion, and particle m is a φ. The computational cost
of the Up gate is reduced to a maximum constant of 2
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|pm〉
Ur

H

|pj〉]

FIG. 14: Up gate to be applied if pj = φ. Note that prior
to the emission, pj is not encoded on qubits, so the

particle update can be though of as “initializing” new
registers |pj〉 and |pm〉.

CNOTs, compared to (nI +m) log2dnI +m+ 1e for the
original [1].

Step (m) hm Particle m+ 1

0 h0 =⇒ f/φ/None
1 h1 =⇒ f/φ/None
2 h2 =⇒ f/φ/None
3 h3 =⇒ f/φ/None
...

...
...

TABLE IV: Information stored in a CPU. At each step
(m) the history measurement determines whether

particle m+ 1 will be a fermion, boson, or None. This
“particle history table” is filled out row by row as QPS is

iterated through, and quantum gate are dynamically
selected based on the values stored here.
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