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Reasoning about Probabilistic Phenomena: Lessons 
Learned and Applied in Software Design 

 
 

1. TECHNOLOGY ADVANCES IN PROBABILITY 
TEACHING AND LEARNING 

 
The 21st century is a complex, data-driven technological world. Public literacy and 
preparation for the workforce demand that students be able to make data-based decisions, risk 
analysis, inferences, and predictions. All of these statistical pursuits have probabilistic 
phenomena at their heart. By probabilistic phenomena we mean situations where data is 
produced via a random experiment repeatedly conducted on a population or space of 
possibilities. Probability and statistics is now a common curricular strand in K-12 school 
curricula and there is a rapid increase in students taking the Advanced Placement Statistics 
exam in high school (e.g., College Board, 2007; Franklin et al, 2005; National Council of 
Teachers of Mathematics [NCTM], 2000). With access to more advanced technologies, 
teachers are encouraged to use tools for graphical and numerical data analysis and use an 
empirical introduction to probability through computer simulations (Batanero, Henry, & 
Parzysz, 2005; Biehler, 1991; Ben-Zvi, 2000; College Board, 2006; NCTM, 2000; Parzysz, 
2003). There is a growing body of literature on students’ understanding of probability and 
statistics concepts (e.g., Jones, 2005; Jones, Langrall, & Mooney, 2007; Shaughnessy, 1992, 
2003, 2007), and general agreement that research has been lacking sufficient study of how 
learners make connections between empirical data generated by repeated random experiments 
and a theoretical model of probability (e.g., Jones, 2005; Jones et al, 2007; Parzysz, 2003).  
 
In describing the various ways technology tools can support students’ learning in statistics 
and probability, Chance, Ben-Zvi, Garfield, and Medina (2007) promote the use of 
simulations as pedagogical tools. In particular, they emphasize the role of technology in 
allowing students to study random processes and to observe what happens when a process is 
repeated a large number of times. The pseudorandom number generators in technology tools 
use a function dependent on a defined distribution as the basis for its input to generate 
subsequent “random” outputs. Thus, in a technology environment, students can model 
probabilistic situations based on assumptions about a theoretical distribution, simulate an 
experiment to generate a large amount of data, and manipulate and represent the data in 
various ways that would be nearly impossible to do within the time constraints of school 
curriculum and instruction. In this regard, technology offers a rich medium for designing 
tools and studying students’ reasoning about probabilistic phenomena.    
 
As Biehler (1991) noted almost 20 years ago, “It would be valuable to have more experiences 
with software where students can design random devices on the screen” (p. 189). Since that 
time, many researchers have designed probability software based on different perspectives 
and with sometimes different goals for students’ learning (e.g., ProbSim, Konold, 1992; 
Chance World, Jiang 1992; Probability Inquiry Environment, Vahey, 1998; ChanceMaker, 
Pratt, 1998; Probability Explorer, Drier, 2000a; ProbLab, Abrahamson &Wilensky, 2002; 
Model Chance, Konold & Kazak, 2008). Jones et al (2007), in their review of recent 
advances on the study of computer software in probability instruction, state: 



The most promising research involves the use of microworlds and their 
influence of changing and expanding students’ probabilistic thinking 
(Konold, 1995a; Paparistodemou et al., 2002; Pratt, 1998; Pratt & Noss, 
2002; Stohl, 1999-2002) [citations in original]. In particular, the work of 
Pratt and Stohl shows that microworlds can be designed to forge vital links 
between experimental and theoretical probability and to build cognitive 
mechanisms that enable children to challenge their own intuitions. (p. 946) 

 
Several studies have documented how students are able to make connections between 
distributions of data from a simulation and the theoretical distribution described in the model 
with particular attention to the effect of the number of trials (e.g., Abrahamson & Wilensky, 
2007; Drier, 2000a; Konold, et al., 2007; Konold & Kazak, 2008; Pratt 2000; Stohl & Tarr, 
2002b). Collectively, these studies suggest that these tools give students control over 
designing experiments, conducting as many trials as they desire, viewing graphical 
representations of results, and can help students develop understandings of the relationship 
between theoretical models and empirical data.  
 
In this paper, we have several goals. First, we provide a brief description of the key features 
of a technology designed to allow young students opportunities to explore probabilistic 
situations and then explain several research observations made in multiple investigations of 
student explorations with this probability micro-world software package. These observations 
are used to posit a model for a way of reasoning about probabilistic phenomena that focuses 
on the bidirectional interplay between theoretical distribution and empirical data. The lessons 
learned from students’ work on probability tasks and the bidirectional model have 
implications for instructions that we discuss. The paper concludes with a discussion of a next 
generation innovation for representing the theoretical distribution in the software and future 
research directions. This new distribution tool is designed to facilitate the transition from 
intuitive equiprobable discrete probability distributions to the far more complicated density 
representations that lie at the heart of statistical investigations. 

 

2. DESIGN OF PROBABILITY EXPLORER 
Beginning in 1998, H. S. Lee began work in developing the Probability Explorer software 
tool as part of her doctoral dissertation work. The current version of Probability Explorer 
[PE] (Stohl, 2002, v.2.01) was a result of prior iterative research and design studies (Drier, 
2000a, 2000b, 2000c, 2001; Stohl & Tarr, 2002a, 2002b). PE is designed to allow students to 
explore the numerical representations of an underlying probability distribution, as well as the 
numerical and graphical representations of the distribution of results from repeated trials 
(Drier, 2000a, 2001). A probability distribution is currently represented in PE with a finite set 
of outcomes, each of which has an integer “weight”. Various numerical representations of 
this distribution can be accessed through a “Weight Tool” that allows students to examine 
and create distributions that build from part-to-part and part-to-whole reasoning (see Figure 
2). Traditional scenarios of fair coins, dice, and bag of marbles are easily represented; bias 
coins and dice and several real world scenarios (such as the weather) can also be represented. 
To conduct a simulation, students decide the possible outcomes for a simple experiment, how 
many of these to combine into a compound experiment (1, 2, or 3), the number of trials to 
conduct, how to arrange data, and which graphical or numerical representations to view for 
analysis (see Figure 1). In addition, all data representations update dynamically after each 
trial to facilitate students analyzing data during a simulation, rather than only viewing 



representations of data in an aggregate static form (Drier, 2000b). Collectively, these tools 
can help students grapple with key ideas (sample size, independence, and variability) that are 
critical in understanding a relationship between empirical data and theoretical distributions 
(Stohl & Tarr, 2002a, 2002b).  

 

 
Figure 1: Screenshot of sample of 50 trials 

 

2.1 Modeling Probability as Perceived in the Physical World 

Typical activities in probability involve the use of devices such as coins, dice, marbles, and 
spinners. It is not our intention to replace physical experiences with digital simulations. 
Without prior use of such physical devices, children may not fully comprehend the 
randomness of the computer simulation or make meaningful connections between the two-
dimensional icons and their three-dimensional counterparts. In fact, Shaughnessy (1992) 
suggested that “it is important for us to continue developing connections between concrete 
simulations and computer simulations in our teaching and investigating the effects of the 
transition between the two in our research” (p. 485). 
 
PE is designed to make the transition between concrete materials and computer simulations 
as seamless as possible. For example, clicking on the “Run” button in order to simulate a trial 
represents a conscience action by a student. This action is similar to the purposeful act of 
rolling a die or flipping a coin and anticipating the trial result. Once a random result appears 
on the screen, a student can act upon the object to move, sort, organize, or stack or line up in 
a playful and potentially meaningful manner. Actions on these objects can help the child 
instantiate the experimental results and build simple (piles) or complex (venn-like sorted 
groups) re-presentations of the data. The ability to have moveable iconic representations of 
randomly generated data substantially extends the capabilities of experimentation with 
physical devices where results are usually only listed or tallied. In this regard, the microworld 
not only connects with the physical world, but extends the potential actions available in this 
new probability “world.” 
  



2.2 Designing Experiments 

There are several actions needed for defining the type of experiment to simulate in PE. There 
are two “preset” options for students to run simulations with flipping a coin or rolling a 
regular six-sided die. In addition, students can also design their own experiments, either by 
designing a bag of marbles with up to six different colors, or by choosing from approximately 
fifty icons that will represent the possible outcomes (maximum of eight) of a single random 
experiment (Figure 2). In all cases, the user must also decide whether to conduct a simple 
experiment, or to create a compound experiment with two or three of the defined simple 
experiments. The initial assignment of the theoretical probability distribution is equiprobable 
such that each outcome has 1/n chance for 1≤n≤8. The actions of deciding how many 
outcomes in a simple experiment and how many of these experiments should be compounded 
together provides students with a moment of reflection to think about how they are using the 
tools in the computer environment to build a model for a chance situation. 

 

                
Figure 2: Defining the type of random experiment 
 

2.3 Modeling a Theoretical Probability Distribution 

Real world physical devices such as coins and dice cannot be easily and accurately altered to 
affect the probability of an outcome occurring. Thus, many students who use such physical 
devices to model probability situations only experience perceived theoretically equally 
probable outcomes and may inappropriately apply the equiprobable heuristic to real world 
situations that are not equiprobable (e.g., it is highly unlikely that two sports teams are truly 
equally likely to win a game).  
 
As an experiment is being defined, the probability distribution is stored, and can be altered, 
through a Weight Tool (see Figure 1). The metaphor of “weight” was used in earlier and 
current designs to help students understand the process of assigning probabilities to an 
outcome. “Heavier” outcomes are more likely to occur, while “lighter” outcomes are less 
likely to occur. Weight is measured in units of whole numbers. To facilitate the instantiation 
of the “weighting” process, students can click on an object in the Weight Tool to increase its 
weight. Each click corresponds to an increase of one in the weight. By default, students view 
the distribution of weights as a count. This view of the distribution can facilitate thinking 
about the part-to-part relationship between the outcomes, a common way that young children 
may initially think about probability situations (Jones et al, 1997, 1999a). This level of 



thinking is also aligned with children’s early fractional thinking when they only consider the 
“parts” of a fraction (numerator) rather than the “part” in relationship to its “whole” 
(denominator). A part-to-part display is also similar to the concept of odds and can be useful 
for distinguishing between the odds and probability of an event. Because theoretical 
probabilities rely on both the “part” and the “whole,” students also have the ability to view 
the distribution of weights as a fraction and percent. Additionally, children can give all the 
weight to one outcome and explore the scenario where there are several describable 
outcomes, but only one of them is possible.  

 

3. EXPLORING DISTRIBUTIONS IN PROBABILITY 
EXPLORER 

In several prior and on-going studies with students ages 8-14 (e.g., Drier, 2000a, 2000b; Lee, 
2005; Lee & Lee, 2009; Lee, Angotti, & Tarr, under review; Stohl & Tarr 2002b; Tarr, Lee & 
Rider, 2006; Weber, Maher, Powell, & Lee, 2008), it has been observed that many students 
use similar approaches to interpret the probability distribution (e.g., as shown in the Weight 
Tool), use similar arguments for choosing the number of times to repeat a random 
experiment, and often make similar observations regarding the distribution of empirical 
results. In each of these studies, students were working in small groups (2-3 students per 
computer) with Probability Explorer.  
 
Students’ interactions with the software and each other in the primary studies were 
videotaped and analyzed for critical events (Powell, Francisco, & Maher, 2003). These 
critical events were then examined more carefully and an open coding was used to develop 
categories related to students’ interpretation and interactions with theoretical probability 
distributions and empirical distributions. Each of the critical event episodes were then 
grouped according to category and examined in depth.  To illustrate some of the key lessons 
learned within each of these categories, we highlight several examples of students’ playful 
goal-directed activities, their use of capabilities in PE, and their subsequent observations. 
Each example was chosen to represent similar activities observed across studies. 

3.1 What is the Role of a Probability Distribution?  

In the current design of PE (v.2.01), most tasks in which students initially design an 
experiment involve an equiprobable distribution (e.g., fair coin, fair die, choosing up to 8 
possible outcomes), in which the Weight Tool defaults to assigning Weights of 1 to each 
outcome. When students are asked to interpret the weights, two common interpretations are 
prevalent: 

1) Students often imagine a hypothetical experiment where the sample size is equal to the 
total weight and they explain that the empirical distribution should be equal, or almost 
equal, to the assigned weights. For example, in Drier (2000b), Carmella (age 9) designed 
an experiment with two equiprobable outcomes, the sun and the rain.  

Carmella:  It means that if you were to press this [points to the “run” button] 
twice, then one of them would be the sun and one of them would be the 
rain, most likely. 

Teacher:  Most likely. Okay and why is that most likely? 
Carmella:  Because the weight is one and one. And then the total weight would be 

two. And one is divided, and two is divided into one. And that's most 
likely because there is no guarantee. 



2) Students often describe the weights in terms of an imaginary box or bucket filled with 
the number of each items equal to each assigned weight. For example, in Drier (2000a), 
when Jasmine (age 9) designed a weather situation where it would be twice as likely to be 
sunny than to rain, after a lot of struggles, she assigned 24 to “lightening” and 48 to 
“sun.”  

Teacher:  48 and 24. So what do these numbers mean here? 48 over 72 
[displayed as a fraction in Weight Tool]? 

Jasmine:  Forty-eight over 72 …Oh, there are 72 suns and lightning bolts put in 
the box. Forty-eight of them are suns. Twenty-four of them are 
lightning bolts. And children put in that many because they think out 
of 72 days there are going to be 48 and 24, there are going to be 48 
sunny days and 24 thundering days. 

Of course Jasmine also used the first strategy to apply the distribution to an imagined 
empirical situation. Neither of these strategies is surprising, as it is common for students to 
describe the probability of an event in both ways, the first representing a typical empirical 
probability interpretation, and the second a classical counting approach to computing 
probability. However, of interest to us is how students actually collect empirical data and any 
connection they may make to the probability distribution.  
 
When conducting a simulation where a total weight is known from the Weight Tool or 
suggested from the task context (e.g. knowing there are n marbles in a bag but not the exact 
distribution of colors of marbles), the students gravitate towards using the total weight (or n) 
for an initial sample size (e.g., Lee, 2005). Then, when these same students are conducting 
simulations with a hidden weight tool and the experiment suggests no integer weights or a 
total weight (e.g., many fish in a pond), students often are faced with a dilemma and do not 
know what sample size to choose for their experimentation (Stohl & Tarr, 2002b). At this 
point a teacher or peer typically has to tell them they need to choose a sample size, or one is 
suggested. 
 
Students readily accept a strong tie between the Weight Tool and trial results. This is a strong 
start in forming intuitions about the connections between the theoretical distribution and 
empirical data. Students are not surprised by some variation between samples and their 
expectations based on the Weight Tool. However, a big question is what tolerance do they 
have for this variation? How do they form intuitions about this variability? In fact, in many 
episodes we observed, students observing surprising variations provoked playful exploration. 

A key lesson learned is that the integer values in the Weight Tool are highly 
suggestive to students, both in interpretation and sample size choice. And it 
may be these interpretations that drive student expectations for a rather close 
match between the empirical data and the distribution of weights. 
 

3.2 Search for an Exact Empirical Distribution 

When students have enough queues from the distribution to employ exact, small sample size 
selections (like choosing a sample size of 4 when drawing from a bag of 4 marbles), they 
discover that often they will be rewarded with exact matches to the theoretical distribution 
(Drier 2000a). However, they also discover fairly quickly that such small samples can yield 
data that varies greatly from their expectations (Lee, Rider, & Tarr, 2006). In multiple 
episodes, students have demonstrated strategies of lowering the number of trials in a sample 



in order to have a higher probability of getting a particular distribution, typically one that is a 
mirror image of the probability distribution, particularly with experiments of 2-3 outcomes in 
the sample space (e.g., Lee, 2005). At first glance, giving students the freedom to choose the 
number of trials seems likely to reinforce their use of representativeness heuristics (Tversky 
& Kahneman, 1971, 1982). But their reasoning is correct. For example, drawing with 
replacement from a bag containing 50% black and 50% white marbles, it is more likely to 
obtain a half white and half black marble distribution from a sample of 4 trials (p=0.375) than 
it is with a sample of 10 trials (p≈0.246).  

A key lesson learned is that the goal of finding an exact empirical distribution, 
and the strategy of lowering the number of trials in a sample to increase the 
probability of obtaining that distribution, is evoked when students know the 
underlying probability distribution, particularly if it is an equiprobable one.  
 

3.3 Noticing Variability with Small Samples 

In many of the same instances where students have a goal to find an exact empirical 
distribution, they also notice they are more likely to obtain distributions that are very 
different from the theoretical probability distribution with smaller sample sizes (e.g., Lee, 
2005). They begin to attend to variability and the differences in empirical distributions across 
repeated samples. Students often lower the number of trials to meet a different type of student 
directed goal. As reported by Lee (2005), two seventh grade students (age 12-13), Jerel and 
Chris, were using PE to draw a marble from a bag with replacement, in which they knew the 
bag contained 4 blue, 3 green and 3 red marbles. The students initially ran several samples of 
10 trials. However, while they were running samples of size 10, they had created a goal of 
seeing which color “won” with each of them cheering for a color (Jerel claimed blue and 
Chris claimed red). In these samples of 10, some contained more red, some more blue, and 
one had a lot of green.  
 
The students decided to run 100 trials and “cheer” for their respective colors. Although the 
frequency of each color initially changed as well as their relative position in the “race” they 
were envisioning, there were many more blue marbles after about 75 trials. At this point 
Chris noted that blue would win and stopped cheering for his color—of course Jerel still 
cheered on blue and gloated about his win to Chris. When the teacher asked the class if blue 
was always the marble picked the most, Chris replied “No, because at the beginning we 
started getting more red and now we are getting more blue.” He noticed a long-term trend in 
the results from the simulation. All of this is being said to provide a context for his next goal-
directed activity. Chris reduced the number of trials to 10, ran the simulation and obtained 5 
red, 2 green, and 3 blue—and of course gloated to Jerel. Chris appears to have noticed the 
power of small numbers for meeting a specific goal—winning the race with red. Chris’ 
strategy is in accord with the notion that it is with small-sized samples where we are more 
likely to see outcomes with lower theoretical probabilities occurring more frequently. 
Whereas, the law of large numbers tells us that the likelihood of this happening limits to zero 
as the trials size increases. In cases where students only know how many outcomes there are 
in an experiments’ sample space, some students will conduct several samples of n=N trials, 
notice variability across samples, and then do some type of “averaging” to estimate a 
distribution (not always formal, and often more aligned with modal clumping). In many 
cases, this strategy will work and allows for a somewhat reliable estimate.  

A key lesson learned is that allowing students to engage in playful open 
exploration that includes freedom of choice of numbers of trials, the ability to 



quickly do repeated samples, and visualization of data in graphical form can 
lead them to develop intuitions of the role of small sample sizes in variability 
that occurs within and across samples. 
 

3.4 Noticing Variability with Large Samples 

As shown in the example of Jerel and Chris, they initiated the action of running a larger 
number of trials during their game-like activity. In several episodes, we have observed 
students setting goals and creating competitions or games in probability contexts that were 
not initially posed as such. This speaks to the playful nature of their engagement with the 
software and the tasks. When self-selecting to run a large number of trials, students often 
notice something about the distribution of their empirical data, particularly from their 
interpretations of the graphical representations (pie and bar graph). Consider Amanda’s (age 
9) work when she had a small number of trials currently displayed in a pie graph from a 
simulated fair coin toss. She made a goal of trying to create a pie graph that was all blue (i.e., 
only one outcome) like she had seen in prior results with a 4-5 trials (Drier, 2000a). Even 
though the data showed some heads and tails (part blue and part gray shown in pie graph) she 
began to repeatedly press the Run button to add on 10 trials at a time to sample. The action of 
adding more trials to the data set became a pleasurable experience that led to observations by 
her and others (all 9-10 years old) about the empirical distribution. 

Amanda:  Well, it’s [size of sectors in the pie graph] staying in the same place 
pretty much. 

Teacher:  Why do you think it’s staying in the same place? 
Amanda:  Because… 
Carmella:  Because she’s running it so many times, it’s like evening out. 
Teacher:  Really? Why is it evening out? 
Carmella:  Because it’s so many of them and … 
Jasmine:  Look how much you’ve done it [about 1000 trials now]. It’s still going. 
Teacher:  So, Amanda do you think you’re ever going to get all blues (heads) or all 

grays (tails)? 
Amanda:  No. 
Teacher:  Why not? Why couldn’t we have a pie graph be all blue or all gray? 
Carmella:  Because it evens out with how many you do.  
Teacher:  Why did you say that? 
Carmella:  Because the more you do, the more the chance to even out…with more 

coins one is still going to be a little bit ahead of the other mostly, but it’s 
unlikely that one [points to sector in pie] will rise a lot above the other. 
There’s so many it can’t do it [pause] it’s like it evens out.  

 
Amanda’s goal, the visualization with the pie graph, and subsequent questioning from the 
teacher appeared to prompt Carmella’s observation and statement, which appears to be an 
early verbalization of the law of large numbers from a child’s perspective. Consider the 
similarity in other students’ descriptions:  

Donovan (age 12, fair coin): “When you program it to do 500 and run it, after awhile 
you can see the pie graph pretty much staying in the center, so it’s [pie 
graph sectors] always even almost and not going back and forth.” 

Dean (age 8, fair coin after 500 trials): Dean pivoted his forearm to mimic the changes 
in the graph with large swings [representing the wide variability with a 
small number of trials] decreasing toward tiny up-and-down motions [to 



represent the approach to the 50%-50% ratio] with a large number of 
trials. (Drier, 2000c) 

Jon (age 8, fair dice): “The higher you go the more it looks like what you are 
supposed to get.” (Drier, 2000c) 

 
Many students’ first verbalizations of this phenomenon have typically occurred in 
equiprobable situations with two outcomes such as fair coin tosses or a bag of marbles with 2 
colors, although they are typically able to generalize this phenomenon to non-equiprobable 
distributions. It seems that equiprobable situations may be helpful in promoting a sense of 
“evenness” in results from large samples. However, the dynamic visualization of the reduced 
fluctuation in results, particularly with a pie graph, speaks to students viewing this 
phenomenon as not only an end result after a large number of trials, but a process that occurs 
during experimentation (Drier, 2000b). The dynamic pie graph also seems to be the more 
salient graphical representation than the bar graph in promoting the observations related to a 
stabilization process. We hypothesize this is related to the proportional nature of the pie 
sectors. The bar graphs always appear to change due to the rescaling as a sample size 
increases and the constant height comparisons across bars for the discrete outcomes. Any 
representation that display results from experiments during the simulation process can focus 
students’ attention on variability by “observing the fluctuation of samples… and observing 
the stabilization” (Parzysz, 2003, p. 1) within a large run of trials. Using simulation software 
affords students an opportunity to observe the dynamic accumulation of data in numerical 
and graphical forms while data is being generated. As illustrated in the examples of students’ 
work, this visualization of the data has shown to be a powerful motivator for students 
noticing variability in short and long term behavior of random experiments (Stohl & Tarr, 
2002b) and using their observations as evidence to support their claims about an unknown 
probability distribution (Weber, Maher, Powell, & Lee, 2008).  

A key lesson learned is that allowing students to engage in playful open 
exploration with contexts that include equiprobable outcomes, freedom of 
choice of numbers of trials, the ability to quickly do repeated samples, and 
visualization of data in a pie graph (or proportional representation) can lead 
them to develop intuitions of the role of large sample sizes in reducing 
variability that occurs within and across samples. 
 

3.5 Modeling Situations with the Weight Tool 

When modeling a situation, it is not uncommon to observe students using an additive 
approach to create an equivalence relation of different sets of weights for a situation (e.g., 
Drier, 2000a, Stohl & Tarr, 2002b). For example, if given a bag of marbles with 4 red and 6 
green, students would initially believe that weights of 1 and 3 could model this situation since 
6-4 = 3-1. As students gain more experience or are able to readily apply multiplicative 
reasoning, they correctly use weights proportional to the context or to a different set of 
weights. In addition, when asked to create an equivalent experiment including setting a new 
Weight Tool distribution using weights different from a previous experiment, students often 
readily alter the order in which the possible outcomes are entered in the Weight Tool but 
correctly maintain the proportionality.  
 
Of real interest to us is that regardless of the level of maturity in weight equivalence 
reasoning, students appear to expect that equivalent theoretical distributions should give 
similar empirical results. Students often realize after collecting empirical data that their 



“equivalent” weights designed with additive reasoning do not correctly model the context. 
For example, as discussed in Stohl and Tarr (2002b), Brandon and Manuel (age 11) used the 
Weight Tool to create a model (Pink: 4, Yellow: 2, Blue: 4) for a spinner with pink and blue 
sectors each 40% and the yellow sector of 20%. They subsequently ran several trials to 
collect data from their spinner experiment, used the pie graph as a primary representation to 
analyze data and test the “goodness” of their model, and used decimals and percents in the 
data table as secondary representations. They most often ran multiple sets of 100 trials and 
occasionally a larger number of trials. After Brandon and Manuel were convinced that their 
4:2:4 model was accurate, a teacher challenged them to design a model of the spinner using a 
total weight of 50. Manuel typed in 20:10:20 in the Weight Tool. Brandon claimed, “that’s 
not right” and Manuel said, “I bet you a billion dollars it is.” The teacher–researcher asked 
Manuel to convince Brandon that 20:10:20 could be used to model the spinner. Manuel 
struggled to explain how the weight model was in proportion to the original weights of 4:2:4 
or the spinner regions. Brandon decided to run simulations in PE to “see if it still comes 
close, as long as we have the same percentages.” He first ran 100 trials with the pie graph and 
data table open and after 60 trials said, “That looks pretty right.” When the 100 trials were 
complete [showing a 34:23:43 distribution] he said, “Okay, that’s right.” Brandon continued 
to run sets of 50 and 100 trials and compare the pie graph image and percents to the physical 
spinner. Brandon compared percentages of the theoretical distribution in the Weight Tool 
with the empirical data shown in the pie graph and data table. He used empirical data to 
support or confute the notion that weights of 20:10:20 appropriately modeled the spinner. It is 
important to note that Brandon needed to run several sets of 50 and 100 trials before he was 
convinced that the empirical data supported the use of weights 20:10:20 to model the spinner. 

A key lesson learned is that students seek relatively stable and similar 
repeated empirical results, in graphical and numerical form, as a means of 
comparing the goodness of a model and for comparing the equivalence of 
models.  
 

3.6 What Does a Weight of Zero Do?  

Since the Weight Tool currently uses whole numbers to model a distribution, students are 
often faced with situations when zero is used. Some students seem to be able to connect this 
with empirical results where that outcome does not, or could not occur. For example, as 
discussed in Drier (2000a), Jasmine had designed an experiment with four different icons 
(tails, circle, hexagon, volleyball) and equiprobable weights of 1. When asked if they each 
had the same chance, she used the Weight Tool to illustrate her thinking.  

Jasmine:  They each have one. But they wouldn’t have the same chance if someone did 
[she changed the one under the tails to a zero] that. Then there would never be 
any of those [tails]. Or how about this? [she changed the zero under tails to be 
a two] now it’s more likely to get the tails because there are two out of five. 
But there’s only one circle, one hexagon, one volleyball out of five. 

 
However, many students do not initially interpret a weight of zero as meaning the associated 
outcome is absolutely impossible, just highly unlikely. These students willingly run relatively 
large samples in search of this outcome occurring and are surprised when it does not happen. 
For example, in Drier (2000c), Dean and Lydia (8 years old) were modeling a situation where 
they were choosing whether to play soccer or baseball. When asked to design the chances so 
they were certain to play soccer no matter how many times they ran the experiment, they 
gave the soccer ball a weight of 12 and the baseball a weight of 0. Looking over at their 



screen, Jon turned to his computer and used weights of 19 and 0. When asked if the different 
computers would give different results since they used different weights, Jon thought his 
weight of 19 made him “more certain” to get a soccer ball than the other computer. Dean 
promptly said “it doesn’t matter since we both gave baseball 0.” After 100 trials and all 
soccer balls, Lydia was surprised and then, after a pause, noted “it doesn’t matter what 
number you use as long as you give it all to the soccer ball.” Similarly, in Drier (2000a) 
Amanda thought that if she used one and zero as the weights for heads and tails in a coin toss, 
there would be more heads, but that a “few tails” could occur. She ran a simulation with these 
weights and after about 400 trials decided that tails would not occur because “it’s like there 
are none in the bucket.” It was actually this comment, and Amanda’s struggle to interpret the 
representations in the weight tool, that inspired the creation of a dynamic link between the 
weight tool and the bag of marbles. 
 
Some of the students’ initial interpretations of a weight of “0” demonstrate that the number 
zero itself may be too abstract to interpret in a meaningful way. One possible interpretation is 
that students think that the mere listing of the outcome in the Weight Tool asserts its 
possibility. But how is this possibility coordinated with a weight of zero? What if students are 
envisioning the weights as the “usual” distribution of outcomes in a sample of size equal to 
the total weight, but being random means that there is some variation in these sets. It is in 
these variations where any outcome listed can occur. So a zero weight is interpreted as the 
outcome not occurring in the “usual” sample, but the mere listing of the outcome makes it a 
candidate for appearance in the random “errors”. Note that this would mean a subtle but real 
separation of probability and variation. 
 

It is also worth noting that when building the distribution in the Weight Tool via placing 
marbles in a bag, students have never been observed in believing, say, a yellow marble will 
possibly occur if they do not place a yellow marble in the bag, even though a yellow marble 
is listed with a zero probability in the weight tool after construction. So whatever students are 
thinking, it seems to change if they construct weights via a more physical representation. 

A key lesson learned is that a weight of zero is not directly interpreted as an 
impossible outcome, although a physical representation (bag of marbles) 
seems to eliminate this difficulty. In addition, the expectation that an outcome 
with zero as a weight can occur with a small chance may be related to 
students’ imagination, and expectation, of a hypothetical experiment with 
results similar, but not exactly, like a probability distribution.  
 

4. APPLYING LESSONS LEARNED TO                          
THEORY AND INSTRUCTION 

In considering the results of the various studies with Probability Explorer, as well the work 
of several others (e.g., Pratt, 2000; Konold & Kazak, 2008) on the connections between 
theoretical and empirical probability, we propose a model that describes a bidirectional 
relationship between a probability distribution as a model for a probability context and 
empirical data from the same probability context (Figure 3). In addition, we also offer several 
implications from our work for instruction on probability. 
 
 
 



4.1 A Model for Bidirectional Reasoning 
 
The explication of the model we propose below is a refinement of that previously described 
in Stohl and Tarr (2002b), Lee, Tarr, and Powell (2005), and Lee, Angotti, and Tarr (under 
review). The lessons learned, as described above, from the cross study analysis of students 
using Probability Explorer suggests to us that this model may be viable for designing 
instruction and helping students develop an understanding of the connections between data 
and theory, and theory and data, in a robust bi-directional way.  

 

 
 

Figure 3: Model of bidirectional reasoning about probabilistic phenomena 
 
Students may start from a theoretical model if they are able to well estimate a probability 
distribution based on known information in the probability context (e.g., rolling a six-sided 
die). In this case, their initial assumptions of a probability distribution inform an image of 
expected aspects of empirical data. After data collection, they may reflect upon the results 
against their current model of the underlying theoretical distribution (Konold & Kazak, 2008; 
Author 1 & colleagues, under review; Watson & Kelly, 2004). Noticing patterns in the data 
may make them call into question the prior assumptions in their model, or they may not 
believe the data varies enough from their mental image to contradict their initial assumptions. 
Their reasoning may then lead them to decide to collect and analyze more data to again test 
the reasonableness of the match between their hypothesized theoretical model and results 
from repeated trials. Note that it may be quite desirable to take an instructional approach to 
promote iterations of this possible cycle, as described in Konold and Kazak (2008) and used 
in Stohl and Tarr (2002b) and Lee, Angotti, and Tarr (under review). 
 
Our model also promotes starting from empirical data when little is known about a theoretical 
model for the probability context. Students may conduct an experiment (or observe data) and 
wonder about the probability of an observed event where they have no prior experience with 
the phenomena or cannot use a classical approach to build a theoretical model based on a 
sample space (e.g., how likely is it that a tack will land on its side when dropped on the floor). 
Thus, they may start by conducting experiments, examining empirical data and using the 
relative frequencies from that data to inform the construction of a theoretical model, including 
a probability distribution. The first hypothesis about a theoretical model allows students to 
form a mental image of the expected results in future data. Students may also use their model 

Random 
Experiment 



to inform how (or whether) to collect more empirical data about the phenomena. Investigative 
cycles in this direction also seem worthy of promotion, and have been used in the 
instructional sequence described by Stohl and Tarr (2002b). 
 
The robustness of students’ reasoning from empirical data back to a probability distribution is 
influenced by their attention to sample size, understanding the independence of trials, and 
attending to variability of their data. Students need to consider that different trials and 
different sets of trials (samples) are independent of one another and variability among 
individual trials and samples is to be expected. They also need to coordinate conceptions of 
independence and variability with the role of sample size in the design of data collection and 
interpretation of results. Relative frequencies from larger samples are likely to be more 
representative of the theoretical distribution (regardless of their internal representation as 
physical or informational attributes) while smaller samples may offer more variability and be 
less representative.  
 
 
4.2 Implications for Instruction 
 
In order to promote students’ bidirectional reasoning between theoretical distributions 
and empirical data, instruction should include opportunities to engage in tasks that 
allow them to reason about theoretical distributions that are known or are intuitively 
understood (i.e., equiprobable ones) as well as those that are unknown. In the first 
type of task, a goal for student is to explicitly compare empirical data distributions to 
that of the theoretical distribution and to notice conditions under which the two 
distributions appear more similar. In the second type of task, students also engage in 
collecting and examining data distributions, but the goal is to make an inference about 
an unknown theoretical distribution. While starting with the first type of task seems 
essential, the second type of task is needed to develop informal inference skills that 
can eventually support formal statistical inference. The first kind of task informs 
students as to the characteristics of samples that can support their reasoning in making 
inferences in the second task type. Coupled with the use of simulation technology, 
problem tasks similar to those used by Stohl and Tarr (2002) and promoted by 
Zieffler, Garfield, delMas, and Reading (2007) may offer students opportunities to 
grapple with numerous issues central to the study and understanding of informal 
inference. In so doing, students can learn the value of formulating data-based 
arguments and recognizing different characteristics of samples over a variety of 
sample sizes and theoretical distributions. 
 
While it may be helpful at times for a teacher to suggest a sample size when students 
are conducting a simulation, we have learned that students can discover powerful 
ideas when given the opportunity to choose their own sample sizes. This freedom of 
choice needs to be followed, however, with a demand by the teacher for a rationale to 
support such choices and whole class discussions in which students can compare 
results with various sample sizes. Such reasoning and discussions can be useful in 
helping students understand the strong influences of sample size and characteristics of 
the theoretical distribution upon the variability among the empirical distributions and 
the variability between the empirical distributions and the theoretical distribution. An 
understanding of these relationships can further inform students’ expectations in 
empirical distributions based on what they know about the theoretical distribution and 
sample size.  



Probability tasks provide opportunities to build towards and upon students’ ability to 
reason proportionally. The pie graph and data table (decimals, fractions, and percents) 
are useful representations of an empirical distribution that can facilitate proportional 
reasoning, both during experimentation, and in static form after data collection is 
complete. We suggest taking advantage of students’ natural tendency to use the pie 
graph representation because of the way it “wiggles” (Carmella, age 9; Drier, 2000a) 
during data collection. The dynamic change of the graph as the sample grows is a way 
to focus students’ attention to the correlation between the decrease in variation in 
proportions and the increase in sample size. In addition, we suggest capitalizing on 
the display of percents in the current Weight Tool and the data table as an explicit 
way to draw students’ attention to the differences between the theoretical and 
empirical distributions. 
 

5. REFLECTIONS ON DESIGN IMPROVEMENTS FOR 
BIDIRECTIONAL REASONING 

As mentioned earlier, several other researchers have successfully designed software tools and 
documented how students are able to make connections between distribution of data from a 
random experiment and the theoretical distribution described in the model (e.g., Abrahamson 
& Wilensky, 2007; Konold, et al, 2007; Konold & Kazak, 2008; Pratt, 2000, 2005). 
Collectively, the results from these studies, along with the results from the various studies 
using Probability Explorer described in Section 3, can inform the next iterative cycle of 
software design. Although many improvements have been planned based on the results from 
the collective studies, the focus here will be on one proposed change. Specifically, we are 
considering what Weight Tool redesigns may better help students coordinate representations 
of the probability distribution with those of the empirical results that can promote 
bidirectional reasoning about probabilistic phenomena. 
 
The first response may be to keep the Weight Tool essentially the same, but to add on the 
ability to view the theoretical distribution in the same bar or pie chart as is available for the 
empirical results. Being able to watch a static pie chart of the theoretical distribution beside 
the wiggly, slowly stabilizing pie chart of results from a running simulation would be quite 
useful to a student in solidifying connections between the two via some governing law of 
large numbers. However, many of the themes discussed above may be artifacts of the specific 
design of the Weight Tool as a representation of a theoretical probability distribution using 
whole number weights and a total weight. 
 
Since the bag of marbles has shown promise in being a powerful metaphor, we would like to 
draw from the strengths of that, but we want students to move beyond (or avoid altogether) a 
total weight approach to their experimentation. Thus, we would need so many marbles that 
counting the total would be impossible, even as we maintain the appropriate ratios of subset 
cardinalities. Not only would this approach hopefully discourage the thought that a particular 
sample size is optimal, this approach may even suggest the desirability of a large sample size. 
On the other hand, some students may just take on the strategy of picking a sample size equal 
to a multiple of the number of outcomes. 
 
The current Weight Tool was designed based on research of young students’ tendency to 
relate probability in terms of part-to-part relationships rather than part-to-whole. Thus, an 
initial conjecture for the design was to have weights displayed and entered in part-to-part 



format but also displayed in part-to-whole format. This design can, and has been shown to, 
foster student’s proportional reasoning. While that early design was built to help young 
students where they may be starting, we also need to consider a design for the Weight Tool 
that is robust enough to lead students where they are going—inferential statistics. An issue of 
particular importance to statistics is developing a successful transition from different 
representations (relative frequency tables, etc.) of discrete sample spaces to those (density 
functions, etc.) of continuous spaces (Lee, 1999). So, we have been pondering a critical 
question-- can this be done while maintaining intuitions behind the classical and frequentist 
approaches and developing and using students’ understanding of proportions?  
 

6. GRANULAR APPROACH TO PROBABILITY 
DISTRIBUTIONS  

6.1 A New Paradigm for Modeling Probability Distributions 

Introductory probability lessons typically attempt to build from at least one of two primary 
student intuitions: 1) the concept of equiprobable outcomes, 2) and the law of large numbers 
(Batanero, Henry, & Parzysz, 2005). Breaking sample spaces into equiprobable outcomes and 
viewing the probability of an event as a part-to-whole proportion is the primary paradigm 
known as the classical approach. This approach relies heavily on an intuitive understanding 
of uniform probabilities. The combinatorial distributions that can arise from this approach 
give a sound insight to the nature of population distributions found in the real world. 
Unfortunately, even the most basic combinatorics can be quite daunting to most students, not 
to mention the limiting processes involved with interpreting continuous distributions. In 
contrast, a frequentist approach, which often starts from the empirical side of the bidirectional 
model, appeals to the law of large numbers by describing the probability of an event as being 
a limiting proportion of a large number of quasi-identical trials. This approach gives little 
guidance to the interpretation of probability for a single or a small numbers of trials, nor few 
easy guarantees for relative frequencies in the long run. However, this approach binds well 
with the bidirectional model and the related investigative iterations. 
 
In upgrading Probability Explorer, we propose a granular density paradigm to replace the 
integer Weight Tool. A unit amount of “sand” will contain grains, each grain being equally 
likely to be selected in a trial. Any quantity of sand would contain a “large” number of these 
grains. Thus, both primary concepts of equiprobable outcomes and law of large numbers are 
integrated in all scenarios.  
 
Let’s consider the proposed design for representing the theoretical probability distribution in 
Probability Explorer. As a student decides on the n possible outcomes for the sample space, 
the new Distribution Tool will default to n bins of equal width. The content of each bin 
represents the probability for that outcome. A unit volume of sand will be in a large container 
with the goal of redistributing it to the bins below to assign a probability to each outcome. 
The user has the option of auto-distributing the sand equally to all bins (to quickly model 
equiprobable contexts such a fair six sided die roll) or manually “pouring” an amount of sand 
into each bin (Figure 4a), either through typing in numerical values or manually operating the 
spigot.  
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Of course, we recognize the potential for n bricks to also promote a total weight approach to 
experiments. However, the bricks can be “broken” back into sand grains to help transition 
from a discrete to more continuous model. Thus, whether the sand is contained in “bricks” or 
not, the entire probability distribution is made up of a very large, un-named number of tiny 
grains of sand. We believe this large number will reduce the total weight approach in 
students’ data collection and may be suggestive of collecting large sample sizes.  
 
Until a student places sand into a bin, the probability will be displayed as zero. This can 
hopefully help students conceive of a way of correctly interpreting a probability of zero.  We 
are also considering whether or not we should require all sand from the unit to be distributed 
before a sample is taken. Allowing some sand to remain in the unit container could have 
interesting implications and uses for conceiving of conditional probability.  
 
There are times when an instructional task is purposely designed such that students are 
starting from the empirical side of the bidirectional model. In such a case, there needs to be a 
way for a teacher to hide the underlying theoretical distribution that is governing the 
pseudorandom number generator from the students. This capability is in the current version 
of Probability Explorer, and will remain possible in the new version. However, in the new 
version, students will have the opportunity to use the Distribution Tool to distribute sand into 
bins to design a distribution to represent their current hypothesis for a model of a probability 
distribution, based on their empirical results. Then they can revisit this hypothetical 
distribution and make changes to their model based on further data collection from the hidden 
theoretical distribution, or they could take and compare samples from the hypothetical 
distribution. This feature can help make Probability Explorer a tool that could allow teachers 
and students to engage in tasks that are aligned with our bidirectional model.  
 
While there has been use of Probability Explorer as a tool for advanced statistics students in 
secondary school (e.g., Rider & Lee, 2006), the current design does not necessarily support 
advanced conceptualization of a continuous distribution and area under the curve as 
representing probability. As students become more sophisticated in their use of the sand bins, 
they will be able to drag the bin dividers to adjust the width of a bin. This can be done prior 
to redistributing sand from the unit container or after sand has been poured. In the later case, 
students may notice that the amount of sand in each bin is invariant (compare probabilities in 
Figures 4b and 6). We conjecture that having the bins being adjustable in width can 
strengthen the notion of probability being stored in area with height being a byproduct of 
density. This step from the discrete to the continuous, with this move from storing 
distributions as a finite set of numbers to storing them in density functions, is quite weak in 
most curricula. We conjecture that this granular density paradigm can provide a nice step in 
this transition. Further design and research will help us know. 
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processes and goals and provokes thought and discussion on how our model of bidirectional 
reasoning and software designs may afford or constrain students’ probabilistic reasoning. 
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