
UC Davis
UC Davis Electronic Theses and Dissertations

Title
A Memory-Efficient YOLO Object Detection Convolutional Neural Network Inference Engine
On The KiloCore 2 Manycore Platform

Permalink
https://escholarship.org/uc/item/1b5393kk

Author
Mao, Yikai

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b5393kk
https://escholarship.org
http://www.cdlib.org/

A Memory-Efficient YOLO Object Detection Convolutional
Neural Network Inference Engine On The KiloCore 2 Manycore

Platform

By

YIKAI MAO
THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Bevan M. Baas

Member, Soheil Ghiasi

Member, Hussain Al-Asaad

Committee in charge
2021

– i –

© Copyright by Yikai Mao 2021
All Rights Reserved

Abstract

Object Detection is one of the most resource-intensive tasks for Convolutional Neural

Networks (CNN). To predict the category of the objects and at the same time determine their

location, the Object Detection network has to use a very deep structure, typically 10 to 50 layers,

along with a huge number of learnable parameters ranging from a few million to over a billion. Many

architectures have been implemented on various hardware platforms to accelerate the inference

speed of Object Detection. For example, the cuDNN library on Nvidia GPUs and the Intel DLIA

framework on x86 CPUs. However, they either consume a lot of power or require large memory to

perform the acceleration algorithm, making them unsuitable for edge-computing use cases where

power is limited and energy must be conserved.

This thesis presents an efficient and high-throughput network inference implementation for

the YOLOv3-Tiny Object Detection system on the KiloCore 2 manycore platform. YOLOv3-Tiny is

a light-weight and accurate Object Detection network with only 13 Convolution layers and 8,861,918

learnable parameters, and the KiloCore 2 platform is a low-power manycore processor chip with 697

programmable cores and a high-speed on-chip communication network.

Specifically, this thesis presents two software optimization techniques to relax the memory

requirements of YOLOv3-Tiny, and a scalable hardware architecture for calculating convolutions.

On the software side, low-precision quantization reduces all the parameters from 16-bits to 8-bits

while still maintaining 90% of the accuracy, and Batch Normalization (BN) Folding is used to

compress the computation complexity of the network, removing all the BN layers together with

12,736 parameters. This thesis describes a standardized process of applying quantization and BN

Folding so that these optimization techniques can be implemented on any CNN. On the hardware

side, a scalable and modular architecture to calculate convolution utilizing a maximum of 536

cores on KiloCore 2 is presented, achieving a high throughput per chip area of 1.002 frames per

second/cm2 and offers a low energy consumption of 2.232 J/image.

Compared with other hardware platforms such as general-purpose CPUs and specialized

GPU accelerators, this implementation achieves a less than 5% reduction in throughput per chip area,

but offers 9.17× to 441× greater throughput per watt. Furthermore, to run the full YOLOv3-Tiny

network, this implementation requires only 17.72 MB of off-chip memory for parameters and 896 KB

of on-chip memory, which provides a 49.5× to 64.8× memory reduction compared with the GPU

implementations.

– ii –

Acknowledgments

2020 was a very difficult year for everyone, but I consider myself to be extremely lucky

because I have met so many great people who have supported me throughout my graduate studies

at UC Davis.

I would like to thank Dr. Bevan Baas. Thank you for giving me the opportunity to join

the VCL, this research project has been a delightful experience under your guidance.

Also, I want to thank Dr. Soheil Ghiasi and Dr. Hussain Al-Asaad. Thank you for your

time and effort in reviewing my thesis.

Everybody in VCL was so friendly and helpful. Thank you to Sharmila and Brent for

helping me with the Project Manager and KiloCore 2 hardware, and thank Shifu for giving me

many pieces of advice for my research project.

I’m grateful to meet Haotian, Ziyuan, and Weitai in Davis. Thank you all for your support.

Finally, I want to thank my family. This thesis would be impossible to finish without their

love.

– iii –

Contents

Abstract ii

Acknowledgments iii

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Structure . 3

2 Background - YOLOv3-Tiny 4

2.1 Overview . 4

2.2 YOLOv3-Tiny Object Detection System . 4

2.3 Convolutional Neural Network of YOLOv3-Tiny . 6

2.3.1 Convolution Layer of YOLOv3-Tiny . 6

2.3.2 Activation Layer of YOLOv3-Tiny . 7

2.3.3 Maxpool Layer of YOLOv3-Tiny . 7

3 Background - KiloCore 2 Platform 9

3.1 Overview . 9

3.2 Processors . 10

3.3 On-Chip SRAM . 11

3.4 Programming . 12

4 YOLOv3-Tiny CNN Optimization for KiloCore 2 14

4.1 Overview . 14

4.2 Batch Normalization Folding . 14

4.3 16-bit Fixed-Point Quantization . 16

4.4 Final CNN Structure . 19

5 YOLOv3-Tiny Architecture on KiloCore 2 23

5.1 Overview . 23

5.1.1 Overview - System Level . 24

5.1.2 Overview - Chip Level . 24

5.1.3 Overview - Core Level . 24

5.2 System Level Operarion . 25

– iv –

5.3 Chip Level Architectures . 26
5.3.1 Data Distribution Stage . 27
5.3.2 Computation Stage . 28
5.3.3 Output Buffering Stage . 29
5.3.4 Chip Level Summary . 30

5.4 Core Level Implementation . 31
5.4.1 im2col . 32
5.4.2 Image Distributor (Weight-stationary Architecture) 33
5.4.3 Image Distributor (Input-stationary Architecture) 34
5.4.4 Weights Distributor (Weight-stationary Architecture) 37
5.4.5 Weights Distributor (Input-stationary Architecture) 38
5.4.6 2D Convolution Module (Inside 3D Convolution Module) 39
5.4.7 3D Convolution Module . 41
5.4.8 Output Buffer . 42
5.4.9 Core Level Summary . 45

6 Inference Evaluation 50
6.1 Overview . 50
6.2 Inference Result . 51
6.3 Simulation Measurements . 54

7 Performance Comparison with Other Hardware Platforms 58
7.1 Overview . 58
7.2 Comparison of YOLOv3-Tiny Manycore Implementation with Other Platforms . . . 58

7.2.1 Performance . 61
7.2.2 Power/Energy-Efficiency . 62
7.2.3 Memory-Efficiency . 64

7.3 Summary . 65

8 Future Work 66
8.1 8-bit Quantization . 66
8.2 Alternative Mappings of YOLOv3-Tiny . 67
8.3 Quantization Aware Training . 68

9 Thesis Summary 69

Glossary 70

Bibliography 73

– v –

List of Figures

1.1 Example outputs of the YOLOv3 Object Detection System, the predicted category is
accompanied with a confidence score. The maximum possible score is 1.00. 2

2.1 YOLO Object Detection System workflow. The input image is divided into grid
blocks (step a) and multiple predictions will be made in relative to the center of the
grid blocks (step b), predictions in the same catogories are grouped together (step c)
and the low-scoring detections are filtered out to form the final output. [1]. 5

2.2 YOLOv3-Tiny Convolutional Neural Network structure, each dot is a layer and the
arrows indicate residual connection. Image produced by MATLAB Deep Learning
Toolbox. 5

2.3 Example of 3×3 convolution and 1×1 convolution. A 3×3 convolution operates on
the 2D plane to extract spatial information, whereas a 1×1 convolution compresses
the depth of the input matrix in the 3D space. 6

2.4 Plot of the Leaky ReLU activation function. 7

2.5 Example of 2×2 maxpool with stride = 2, the image size is reduced by half. 8

3.1 Overview of the KiloCore 2 chip [2] [3]. 9

3.2 A single standard processor tile of the KiloCore 2 chip [2]. 10

3.3 A single high-speed processor tile of the KiloCore 2 chip [2]. 11

3.4 On-chip SRAM module [2]. 12

3.5 Project Manager GUI [2]. 13

4.1 Batch Normalization Algorithm. [4]. 14

4.2 Visualization of BN Folding. Left side is a typical CNN without BN Folding, so
after each convolution layer there is a Batch Normalization layer with additional
parameters that must be streamed into the processor. Right side is a CNN with BN
Folding, all the BN parameters are ”folded” into the weights and biases so there is
no need to use Batch Normalization layer during inference. 15

4.3 Distribution of all the weights for the YOLOv3-Tiny network. Only 5.5% of weights
are below precision using a Q7.9 fixed-point quantization. Most of the weights are
inside the range between 2-3 and 2-7. 17

4.4 Distribution of all the biases for the YOLOv3-Tiny network. Only 6 (0.2%) biases
are below precision using a Q7.9 fixed-point quantization. Most of the biases are
inside the range between 22 and 2-2. 18

4.5 Max/Min trend of the weights and biases. The dynamic range shrinks significantly
as the layer gets deeper. 18

– vi –

4.6 Final YOLOv3-Tiny CNN architecture after optimization. Each dot is a layer and
the arrows indicate residual connection. Notice that all the Batch Normalization
layers are removed comparing with the original CNN structure in Chapter 2 section
2 (Figure 2.2). 19

5.1 3 level of the implementation. When designing the architecture, programs are written
for the cores, then the cores are connected together on the chip level, taking inputs
from the test system (Direction of Design). When the implementation is in operation,
data is saved on the system level and streamed into the chip, then processed inside
the cores (Direction of Operation). 23

5.2 System level operation. The full set of weights/biases and the input image are stored
in the off-chip storage, and they are streamed layer by layer into KiloCore 2. For
each iteration KiloCore 2 processes conv/activation/maxpool in one shot and outputs
the data back to the off-chip storage. 25

5.3 Operation timing diagram. Green means KiloCore 2 is processing that layer, and red
means KiloCore 2 is switching architectures, which is discussed in section 5.3. Red
arrow indicates data flow. 26

5.4 Left: Weight-stationary Architecture. Right: Input-stationary Architecture. Red
path highlights the data stream. 28

5.5 High level dataflow of the computation stage. Data are streamed into the 2D and
3D Convolution modules, the convolution outputs might be incomplete due to the
layer being too deep so the output is connected to the Output Buffering Stage for
post-processing. 28

5.6 High level dataflow of the output buffering stage. Notice that SRAM has bi-directional
communication with the adder. The final output is either after activation or maxpool,
depending on that layer’s configuration. 29

5.7 Difference showing the active and idle region of KiloCore 2 when processing a layer.
When new data is being streamed into the chip, the computation and output buffering
stages are in idle state. When the chip has all the data for the current layer, it starts
processing and the chip is fully utilized. 30

5.8 Chip level parallel operation. This Figure gives an overview of one full KiloCore
2 chip. Notice that each of the 3D convolution modules in the computation stage
contains multiple 2D convolution modules inside, depending on the input layer depth. 31

5.9 im2col algorithm demo showing in the bottom. The multi-dimension convolution is
flattened in to a single matrix multiplication. 32

5.10 Image distributor, weight-stationary architecture. 33

5.11 Image distributor, input-stationary architecture. The left side distributes all the even
indexes, showing in blue. The right side distributes all the odd indexes, showing in
orange. To distribute all 64 channels, the distributor needs to loop 4 times, outputting
16 channels at a time. 35

5.12 Weights distributor, weight-stationary architecture. Four distribution cores are used
because four 3D convolution modules are processing in parallel. SRAM is saving the
full weights/biases for the current layer. 38

5.13 Weights distributor, input-stationary architecture. SRAM is buffering four weights/biases
at a time, then distribute them in parallel to the 2D convolution modules. 39

5.14 2D convolution module. Example dataflow is showing on the right. 40

5.15 3D convolution module. Each 2D conv module inside can process one image channel.
So if there are 16 2D conv modules inside one 3D conv module (n = 16), then the
3D conv module can process 16 channels in one shot. 42

– vii –

5.16 3D deep convolution without output buffer. Layer 8 has 1,024 channels, but using
1,024 2D conv modules in one 3D conv module will cost at least 6,144 cores, which is
impossible to place on 1 KiloCore 2 chip. 42

5.17 3D deep convolution with output buffer. The 3D conv module can process 16 channels
at a time, and the partial 3D conv output is saved inside the output buffer. 43

5.18 Fly line diagram of the weight-stationary architecture, each dot is a processor core,
and the green lines indicate inter-core connection. 47

5.19 The complete error-free weight-stationary architecture mapping to the manycore
processor array. The various link colors signify different types of communication links:
nearest neighbor, long distance, or packet network. 48

5.20 Fly line diagram of the input-stationary architecture, each dot is a processor core,
and the green lines indicate inter-core connection. 48

5.21 The complete error-free input-stationary architecture mapping to the manycore
processor array. The various link colors signify different types of communication links:
nearest neighbor, long distance, or packet network. 49

6.1 Test image used in this section with three detections expected: dog, person, and horse. 50
6.2 Mean and max error plot for each layer. 51
6.3 Output image of each layer. Red arrow indicates data flow for generating the coarse

prediction in 13 × 13, Blue arrow indicates data flow for generating the fine prediction
in 26 × 26 . 53

6.4 Final detection output. Left side is the result generated by KiloCore 2, right side is
the Golden Reference output produced by the original YOLOv3-Tiny system. 54

7.1 Throughput per area comparison. Memory area for the GPUs and CPUs is not
included in this data because it is publically unavailable, however memory area is
included for the KiloCore 2 implementation. 61

7.2 Throughput per watt comparison. Core i3-8145U not included due to value too small. 62
7.3 EDP comparison. Core i3-8145U not included due to value too large. 63
7.4 Memory requirement comparison. 65

8.1 8-bit weights of layer 8, the SQNR is 12.7% with all the bits used as fraction bits. . 66
8.2 Bigger chip configuration using n output ports. 67
8.3 Pipelined connection of 13 KiloCore 2 chips. The critical path along with the two

slowest layers are marked in red. 68

– viii –

List of Tables

4.1 Detail of the YOLOv3-Tiny Concolutional Neural Network 20
4.2 Detail of the YOLOv3-Tiny Concolutional Neural Network, Cont’d. 21
4.3 Detail of the YOLOv3-Tiny Concolutional Neural Network, Cont’d. 22

5.1 Detailed information showing the data size of each layer. Green means less than
896KB, red means larger than 896KB (larger than the capacity of the on-chip SRAM). 27

5.2 Summary of the code structure for all the code level blocks 46
5.3 Core counts for all the basic modules. n equals to the number of 2D conv modules

inside one 3D conv module. 47

6.1 Mean and max error for each layer compared to the Golden Reference 51
6.2 Performance data of this work. 56
6.3 Detailed simulation measurements of each layer. 57

7.1 The polynomial coefficient values and delay factors calculated with equation 7.1. [5] 59
7.2 The polynomial coefficient values and energy factors calculated with equation 7.2. [5] 59
7.3 Factors used for area scaling [5]. 60
7.4 Performance data for all hardware platforms [6] [7] [8] [9] [10]. CPU Power is assumed

to be one half of the TDP. Memory area for the GPUs and CPUs is not included in
this data because it is publically unavailable, however memory area is included for
the KiloCore 2 implementation.
*No public data available . 60

7.5 Throughput per area comparison. Data taken from table 7.4. Memory area for the
GPUs and CPUs is not included in this data because it is publically unavailable,
however memory area is included for the KiloCore 2 implementation. 61

7.6 Throughput per watt and EDP comparison. Data taken from table 7.4 62
7.7 Memory requirement comparison. Data taken from table 7.4, [8], and [11].

*DNR = did not run, caused by limited memory capacity, unsupported network layers,
or hardware/software limitations [11]. 64

– ix –

Chapter 1

Introduction

1.1 Motivation

Convolutional neural networks (CNN) have become one of the most commonly used

Machine Learning (ML) algorithms for processing image-related tasks. Following the breakthrough

development of AlexNet [12], numerous advanced CNN architectures have been developed that can

achieve near-human performance. For example, the Inception V3 model with 78.8% accuracy [13]

and the FixResNeXt-101 model with 86.4% accuracy [14], all performing image classification on the

ImageNet [15] dataset.

After successfully applying CNN to Image Classification tasks, Object Detection becomes

the next challenge for computer scientists and hardware engineers. For Object Detection, not only

the CNN has to tell the category of the object, but it also has to predict where the object is,

along with a bounding box showing the predicted area of that object. One of the most popular

and high-performance Object Detection Systems is YOLO (You Only Look Once), which uses a

deep CNN feature extractor to predict both the objects and their location in one single network

evaluation. Although the YOLO model shows a slightly lower accuracy score for the ImageNet

dataset at 78.5%, it is incredibly lightweight and fast, making it suitable for running on low-power

hardware.

Because CNN training for Object Detection requires massive storage for the dataset, it

is usually executed by high-performance and specialized GPUs and ASICs, like Google’s Tensor

Processing Unit (TPU) [16]. However, when deploying the trained Object Detection System to the

1

Figure 1.1: Example outputs of the YOLOv3 Object Detection System, the predicted category is
accompanied with a confidence score. The maximum possible score is 1.00.

field, its inference speed is often limited by the processing capability, system memory, or power

ratings of the real-world hardware. To accelerate the YOLO system, and to optimize CNN inference

in general, various designs have been implemented on GPU [8], general-purpose CPU [17] and

FPGAs [18]. GPUs can offer very low latency, but they are associated with a high power rating

and a large memory area. CPUs consume less power but the throughput is limited by their parallel

processing capability. For example, the YOLOv3-Tiny implementation by Han et al. [8] using

Nvidia’s Jetson GPUs require memory more than 1GB and consumes a maximum power of 9.6W,

while the same algorithm running on an Intel CPU(i5-8365UE) shows a performance loss around

50% in terms of Frames per Second. FPGAs can achieve high throughput by having a custom

design, but their performance is heavily bottlenecked by the memory bandwidth and capacity. The

YOLO inference architecture made by Yu and Bouganis [18] using Xilinx XC7Z020 shows that when

memory is limited to 512MB DDR3, the latency can be 10× slower compared to Zynq7035 with

double the memory space.

This thesis presents a power-efficient and memory-efficient YOLO inference architecture

on the KiloCore 2 manycore platform that can offer high-performance, and occupies minimal silicon

chip area. The manycore implementation utilizes a modular design that breaks down the CNN

computation into small and simple tasks for parallel acceleration, as well as reducing the memory

requirement by spreading out the large matrix calculations to each core. The implementation is

also scalable, which makes it easily adapts to different manycore configurations and other CNN

architectures.

2

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2: Software background about the YOLO Object Detection System. Convolutional

Neural Network structure, and the YOLOv3-Tiny architecture.

• Chapter 3: Hardware background about the KiloCore 2 manycore platform. Hardware

implementation, processor architecture, and memory architecture.

• Chapter 4: Optimization techniques used to pre-process the YOLOv3-Tiny CNN on the

software level. Batch Normalization Folding, 16-bit Fixed-Point Quantization.

• Chapter 5: The implementation of YOLOv3-Tiny on the hardware level. Modular components,

algorithms, and implementation notes.

• Chapter 6: Simulation result and measurements.

• Chapter 7: Compare the hardware performance with other implementations.

• Chapter 8: Future work. Alternative mappings of the architecture, other possible optimizations.

• Chapter 9: Summary of the thesis.

3

Chapter 2

Background - YOLOv3-Tiny

2.1 Overview

In addition to image classification tasks where an image is categorized with a confidence

score, object detection systems can identify and predict a region where the object is located.

Traditional object detection systems apply image classifiers at different locations on different scales,

then regions with a high confidence score are selected as detections [19]. This architecture can

achieve high accuracy but the workflow is very inefficient, because the same image must be processed

multiple times in order to find every detectable object. To attack the Object Detection problem

from a different angle, the YOLO [1] Object Detection System was invented.

2.2 YOLOv3-Tiny Object Detection System

YOLO (you only look once) is designed with a completely new architecture. The input

image is processed only once, and the final output of the Convolutional Neural Network is a 3D

tensor containing all the predictions indexed by virtually divided grid blocks [1].

Figure 2.1 shows the workflow of the YOLO Object Detection System. The Neural Network

is applied to the full image, this divides the image into blocks. If the center of a detectable object

falls into one block, then that block is in charge of predicting the object. Each block will predict

multiple bounding boxes and objectiveness scores, and the low-scoring predictions are filtered out

before outputting the final detection result. This design eliminates the need for Fully-connected

layer and Softmax layer, which makes YOLO extremely fast and efficient.

4

Figure 2.1: YOLO Object Detection System workflow. The input image is divided into grid blocks
(step a) and multiple predictions will be made in relative to the center of the grid blocks (step b),
predictions in the same catogories are grouped together (step c) and the low-scoring detections are
filtered out to form the final output. [1].

YOLOv3 is the third iteration of the YOLO detection system. It’s faster, more accurate,

and lightweight compared with YOLOv1 and YOLOv2. The Tiny version of YOLOv3 is a small

model designed for constrained environments. With only 8,861,918 learnable parameters and 13

convolutional layers, YOLOv3-Tiny can achieve an impressive 33.1 mAP (mean Average Precision)

score on the COCO dataset [19].

Figure 2.2: YOLOv3-Tiny Convolutional Neural Network structure, each dot is a layer and the
arrows indicate residual connection. Image produced by MATLAB Deep Learning Toolbox.

5

2.3 Convolutional Neural Network of YOLOv3-Tiny

The basic building block of a Convolutional neural network (CNN) is a three-layer trio:

convolution layer, activation layer, and maxpool layer [12]. The convolution layer first extracts

various features from the input image to produce a feature map, then passes the feature map to the

activation layer to apply non-linearity, and the maxpool layer can reduce the variance of the feature

map by downsampling. These are explained further in section 2.3.1 to 2.3.3.

The typical structure of a CNN includes multiple building blocks connected together to

successively extract features and compress the image. Because this structure is simple yet effective,

it is used by various state-of-the-art Object Detection Systems as their backbone Neural Network,

including YOLOv3-Tiny.

2.3.1 Convolution Layer of YOLOv3-Tiny

The core idea of a convolution layer is to convolve a small filter matrix on top of a large

input matrix, therefore extracting 2D spatial information of the input matrix. This makes CNN

suitable for processing complicated and multi-dimensional image data.

YOLOv3-Tiny is using 3×3 and 1×1 convolution filters for its convolution layers. For the

layers with a 3×3 filter, they are running with padding set to 1 and stride equals to 1, this ensures

that the output has the same 2D dimension as the input. A convolution layer with a 1×1 filter is

sometimes called Depth-wise Pooling layer or Channel-wise Pooling layer, since it does not change

the 2D dimension of the image but can be used to compress the depth of the output.

Figure 2.3: Example of 3×3 convolution and 1×1 convolution. A 3×3 convolution operates on the
2D plane to extract spatial information, whereas a 1×1 convolution compresses the depth of the
input matrix in the 3D space.

6

2.3.2 Activation Layer of YOLOv3-Tiny

The activation layer applies non-linearity to the output of the convolution layer. Intuitively,

they dynamically select which pixel describes a feature, and which pixel contains no useful information.

This operation is crucial for Neural Networks, because without a non-linear activation function, all

the stacked convolution layers will collapse into one single linear transformation.

YOLOv3-Tiny uses Leaky ReLU as its activation function:

f(x) =


x if x>0,

αx otherwise.

α = 0.1 for YOLO (2.1)

This is an improved version of the original ReLU activation function, which allows the

non-active (negative) pixels to pass with a small gradient. α is 0.1 for YOLOv3-Tiny.

Figure 2.4: Plot of the Leaky ReLU activation function.

2.3.3 Maxpool Layer of YOLOv3-Tiny

Maxpooling is an efficient way to select sharp features from the image, and at the same

time remove noise. Since YOLOv3-Tiny is using a 2×2 maxpool filter for all of its maxpool layers,

they will reduce the width and height of the image by a factor of 2. One exception happens at

maxpool layer 6, where padding is used and the stride is changed to 1 to keep the image size fixed.

7

The initial input to the CNN is 416×416, and the final outputs are two feature maps (matrices)

reduced to 13×13 and 26×26.

Figure 2.5: Example of 2×2 maxpool with stride = 2, the image size is reduced by half.

8

Chapter 3

Background - KiloCore 2 Platform

Figure 3.1: Overview of the KiloCore 2 chip [2] [3].

3.1 Overview

KiloCore 2 is the 4th generation of the Asynchronous Array of simple Processors (AsAP)

manycore platform [20] [21] [22]. Compared with the previous generations [23] [24], KiloCore

2 comes with various enhancements such as circuit switch network, packet switch routers for

9

better long-distance communication, new oscillator design, and various core architecture/ISA

improvements. The fabricated chip consists of 697 efficient, programmable processors to run

software programs, 697 packet routers that are each paired with a processor, 2 Viterbi accelerators,

1 FFT accelerator, and 14 memory modules containing 64KB of memory each that may be used for

data or instructions [2] [25] [26]. [27]

3.2 Processors

Figure 3.2: A single standard processor tile of the KiloCore 2 chip [2].

The KiloCore 2 chip is made up of small, user-programmable processor cores. These

cores execute RISC-type instructions with their in-order, single-issue central datapath, and are

interconnected using a mixture of statically configured circuit links, dynamic packet links, and

dynamic circuit links. Each core has an independent oscillator for per-core Globally Asynchronous

Locally Synchronous (GALS) clock generation [28]. A Dynamic Voltage Frequency Scaling (DVFS)

controller selects power supply voltage between three power rails and a cutoff voltage based on

10

workload [29], so they dissipate exactly zero active power (leakage only) when they are in an idle

state [2] [30] [31].

Standard processors and routers are designed to operate at 2.0 GHz at 900 mV. This

achieves a 63% higher throughput per processor than the original KiloCore. Specialized high speed

processors are designed to operate at 3.85GHz at 900mV. At 1.1V, the standard and high speed

processors are projected to reach 2.9 GHz and over 5 GHz respectively. The entire array is projected

to achieve over 2 tera-operations per second when running at 1.1V. [2].

Figure 3.3: A single high-speed processor tile of the KiloCore 2 chip [2].

3.3 On-Chip SRAM

Fourteen 64KB SRAM memories are placed at the bottom of the KiloCore 2 chip, which

offers 896KB total shared memory on-die, as shown in Figure 3.4. The memories can also be used

to run larger programs on the neighboring core, acting as an expanded instruction memory for

that core. With the help of the very-small-area packet router, data can be supplied to all 697

programmable cores, which helps reduce spaces inside the processors and leave more area for the

computing components [2].

11

Figure 3.4: On-chip SRAM module [2].

3.4 Programming

The programming environment developed for KiloCore 2 is called Project Manager, which

provides software packages for writing task-parallel applications, mapping the architecture on the

chip, launching simulations to verify correctness, and gathering measurements. Programs are written

in either Python or C++, with the open-sourced Clang compiler front end for optimizing the

assembly code [2].

KiloCore 2 supports 39-bit RISC-type assembly instructions formatted as "Opcode,

Destination, Source1, Source2, Options". STALL and NOP instructions are inserted by the

compiler to avoid pipeline hazards including Read-After-Write (RAW), Write-After-Read (WAR),

and Write-After-Write (WAW). Based on application profiling done by the compiler, branch predic-

tion paths are determined at compile-time and included in the branch Opcode [2].

The Project Manager also has a GUI which provides an accessible way for users to run

scripts, view task layouts and mappings, run the integrated tools, and view simulation results.

Figure 3.5 shows the Project Manager GUI after a simulation of a 650-processor version of the FFT

application on KiloCore 2. Simulation metrics are recorded for each individual processor, along with

a global summary.

12

Figure 3.5: Project Manager GUI [2].

13

Chapter 4

YOLOv3-Tiny CNN Optimization for

KiloCore 2

4.1 Overview

Convolutional Neural Networks are known for their intensive computation workload and

large memory demand, but effective optimization techniques have been developed to help large CNNs

run on low-power edge devices that have a simple architecture. For this work, Batch Normalization

Folding is used to reduce computation complexity, and 16-bit fixed-point quantization is used to

relax the memory requirements.

4.2 Batch Normalization Folding

Figure 4.1: Batch Normalization Algorithm. [4].

14

Batch Normalization (BN) is a common technique used in modern Convolutional Neural

Networks. The main purpose of Batch Normalization is to achieve a stable distribution of activation

values during training, so it is possible to use a much higher learning rate. In addition, random

initialization of the weights can perform much better because BN layers can also act as a regularizer

[4].

YOLOv3-Tiny employs Batch Normalization as well, but since this work is focused on the

inference architecture, having additional BN layers will add significant computation complexity to

the CNN. This is due to the operations in Batch Normalization, for example, division and calculating

square roots, are all expensive to the ALU. To solve this problem, Batch Normalization Folding is

used.

Figure 4.2: Visualization of BN Folding. Left side is a typical CNN without BN Folding, so after
each convolution layer there is a Batch Normalization layer with additional parameters that must
be streamed into the processor. Right side is a CNN with BN Folding, all the BN parameters are
”folded” into the weights and biases so there is no need to use Batch Normalization layer during
inference.

During inference time, the Batch Normalization parameters are no longer updating, so a

BN layer becomes a simple linear transformation of the convolution layer’s output. By “folding”

the Batch Normalization parameters into the convolution layer’s weights and biases beforehand, all

15

the BN layers can be removed during inference, and this will not cause any accuracy loss. A total of

12,736 parameters have been removed from YOLOv3-Tiny’s CNN after Batch Normalization folding.

Equation 4.1 to 4.4 gives the process of Batch Normalization folding.

Convolution: conv output = conv weight ∗ input + conv bias (4.1)

Batch Normalization = γ · conv output− µ√
σ2 + ε

+ β



µ mean, calculated during training

σ2 variance, calculated during training

γ scale, learnable parameter

β offset, learnable parameter

ε constant added for numerical stability

(4.2)

Folded conv weight =
γ · conv weight√

σ2 + ε
(4.3)

Folded conv bias =
γ · (conv bias− µ)√

σ2 + ε
+ β (4.4)

4.3 16-bit Fixed-Point Quantization

To further reduce computation complexity, and to match the width of the hardware

datapath, the YOLOv3-Tiny CNN is quantized from 32-bit floating-point down to 16-bit fixed-point.

Because Neural Networks are trained to extract useful features from seemingly random inputs using

deep connections, they are naturally robust against noise. Moreover, aggressive quantization, like

16-bit or even 8-bit, has been proven to have little to no effects on the accuracy of a Deep Neural

Network [32]. Quantization also reduces the storage requirements for the weights and biases by 50%,

from a total of 35.45MB down to 17.72MB.

The integer width and fraction width of the weights must be carefully chosen in order to

avoid possible overflow and retain as much accuracy as possible. Figure 4.3 shows the distribution

of all the weights for the YOLOv3-Tiny network. As the data suggests, the dynamic range of all

16

the weights is [-16.967, 20.564], this requires 6-bits integer width to cover the full range. However,

to minimize the occurrence of overflow during convolution, one extra integer bit is used. With a

Q7.9 number format, the representable range extends to [-64, 63.998]. A total of 488,483 weights

are below precision using 9-bits fraction width, but the Signal to Quantization Noise Ratio (SQNR)

is still below 10%. No weights are outside the representable range of Q7.9.

Figure 4.3: Distribution of all the weights for the YOLOv3-Tiny network. Only 5.5% of weights
are below precision using a Q7.9 fixed-point quantization. Most of the weights are inside the range
between 2-3 and 2-7.

Figure 4.4 gives the distribution of all the biases. Since the dynamic range of all the biases

is [-15.38, 9.3989], Q7.9 is also sufficient to represent the full range of biases. Only 6 biases are

below precision, which is 0.2% of 3,694 biases.

A layer-by-layer analysis in Figure 4.5 shows that the dynamic range of the weights and

biases shrinks significantly for the deeper layers. To preserve accuracy, starting from layer 6, the

number format is changed from Q7.9 to Q5.11.

17

Figure 4.4: Distribution of all the biases for the YOLOv3-Tiny network. Only 6 (0.2%) biases
are below precision using a Q7.9 fixed-point quantization. Most of the biases are inside the range
between 22 and 2-2.

Figure 4.5: Max/Min trend of the weights and biases. The dynamic range shrinks significantly as
the layer gets deeper.

18

4.4 Final CNN Structure

After applying Batch Normalization Folding and 16-bit fixed-point quantization, the

optimized CNN now has 8,845,488 weights and 3,694 biases. The largest layer is layer 7, with a

weight size of 3×3×512×1024 and an input size of 13×13×512. There are also two special layers in

YOLOv3-Tiny: upsampling layer and routing layer. Upsampling layer is only used once between

layer 11 and layer 12, and it is simply repeating the elements in the x and y direction to expand the

input image from 13×13 to 26×26. The routing layer is performing matrix concatenation of the

two inputs along the 3rd dimension. Intuitively, this is bringing the fine-grained features from the

previous layer to the deeper layer so it can make a prediction with more details of the image.

Figure 4.6: Final YOLOv3-Tiny CNN architecture after optimization. Each dot is a layer and the
arrows indicate residual connection. Notice that all the Batch Normalization layers are removed
comparing with the original CNN structure in Chapter 2 section 2 (Figure 2.2).

19

Name Type Activations Learnables Total Learnables

input

416x416x3 images
Image Input 416x416x3 - 0

conv2d 1

16 3x3x3 convolutions with

stride [1 1] and padding ’same’

Convolution 416x416x16
Weights 3x3x3x16

Bias 1x1x16
448

leaky relu 1

Leaky ReLU with scale 0.1
Leaky ReLU 416x416x16 - 0

maxpool 1

2x2 maxpool with stride [2 2]
Maxpool 208x208x16 - 0

conv2d 2

32 3x3x16 convolutions with

stride [1 1] and padding ’same’

Convolution 208x208x32
Weights 3x3x16x32

Bias 1x1x32
4640

leaky relu 2

Leaky ReLU with scale 0.1
Leaky ReLU 208x208x32 - 0

maxpool 2

2x2 maxpool with stride [2 2]
Maxpool 104x104x32 - 0

conv2d 3

64 3x3x32 convolutions with

stride [1 1] and padding ’same’

Convolution 104x104x64
Weights 3x3x32x64

Bias 1x1x64
18496

leaky relu 3

Leaky ReLU with scale 0.1
Leaky ReLU 104x104x64 - 0

maxpool 3

2x2 maxpool with stride [2 2]
Maxpool 52x52x64 - 0

conv2d 4

128 3x3x64 convolutions with

stride [1 1] and padding ’same’

Convolution 52x52x128
Weights 3x3x64x128

Bias 1x1x128
73856

leaky relu 4

Leaky ReLU with scale 0.1
Leaky ReLU 52x52x128 - 0

maxpool 4

2x2 maxpool with stride [2 2]
Maxpool 26x26x128 - 0

conv2d 5

256 3x3x128 convolutions with

stride [1 1] and padding ’same’

Convolution 26x26x256
Weights 3x3x128x256

Bias 1x1x256
295168

Table 4.1: Detail of the YOLOv3-Tiny Concolutional Neural Network

20

leaky relu 5

Leaky ReLU with scale 0.1
Leaky ReLU 26x26x256 - 0

maxpool 5

2x2 maxpool with stride [2 2]
Maxpool 13x13x256 - 0

conv2d 6

512 3x3x256 convolutions with

stride [1 1] and padding ’same’

Convolution 13x13x512
Weights 3x3x256x512

Bias 1x1x512
1180160

leaky relu 6

Leaky ReLU with scale 0.1
Leaky ReLU 13x13x512 - 0

maxpool 6

2x2 maxpool with

stride [1 1] and padding ’same’

Maxpool 13x13x512 - 0

conv2d 7

1024 3x3x512 convolutions with

stride [1 1] and padding ’same’

Convolution 13x13x1024
Weights 3x3x512x1024

Bias 1x1x1024
4719616

leaky relu 7

Leaky ReLU with scale 0.1
Leaky ReLU 13x13x1024 - 0

conv2d 8

256 1x1x1024 convolutions with

stride [1 1] and padding ’same’

Convolution 13x13x256
Weights 1x1x1024x256

Bias 1x1x256
262400

leaky relu 8

Leaky ReLU with scale 0.1
Leaky ReLU 13x13x256 - 0

conv2d 9

512 3x3x256 convolutions with

stride [1 1] and padding ’same’

Convolution 13x13x512
Weights 3x3x256x512

Bias 1x1x512
1180160

leaky relu 9

Leaky ReLU with scale 0.1
Leaky ReLU 13x13x512 - 0

conv2d 10

255 1x1x512 convolutions with

stride [1 1] and padding ’same’

Convolution 13x13x255
Weights 1x1x512x255

Bias 1x1x255
130815

conv2d 11

128 1x1x256 convolutions with

stride [1 1] and padding ’same’

Convolution 13x13x128
Weights 1x1x256x128

Bias 1x1x128
32896

leaky relu 11

Leaky ReLU with scale 0.1
Leaky ReLU 13x13x128 - 0

Table 4.2: Detail of the YOLOv3-Tiny Concolutional Neural Network, Cont’d.

21

upsample 1

[1 1] upsampling for YOLOv3
Upsample 2D 13x13x128 - 0

routing 2

Depth concatenation of 2 inputs
Depth Concatenation 26x26x384 - 0

conv2d 12

256 3x3x384 convolutions with

stride [1 1] and padding ’same’

Convolution 26x26x256
Weights 3x3x384x256

Bias 1x1x256
884992

leaky relu 12

Leaky ReLU with scale 0.1
Leaky ReLU 26x26x256 - 0

conv2d 13

255 1x1x256 convolutions with

stride [1 1] and padding ’same’

Convolution 26x26x255
Weights 1x1x256x255

Bias 1x1x144
65535

Table 4.3: Detail of the YOLOv3-Tiny Concolutional Neural Network, Cont’d.

22

Chapter 5

YOLOv3-Tiny Architecture on

KiloCore 2

5.1 Overview

One major goal of this thesis is to show that the KiloCore 2 chip is capable of running

a large, modern Convolutional Neural Network, especially on the real KiloCore 2 Test System

hardware. Conceptually, the program workflow can be described as a 3-level model, the levels are:

System Level, Chip Level, and Core Level.

Figure 5.1: 3 level of the implementation. When designing the architecture, programs are written
for the cores, then the cores are connected together on the chip level, taking inputs from the test
system (Direction of Design). When the implementation is in operation, data is saved on the system
level and streamed into the chip, then processed inside the cores (Direction of Operation).

23

5.1.1 Overview - System Level

This is the top level of the implementation. For this level, the available hardware is the

KiloCore 2 Test System, equipped with one KiloCore 2 chip and 1GB of DDR3 DRAM. The inputs

to this level are the original image, full weights and biases, and configuration parameters of the

CNN. All the data is stored inside the 1GB DRAM, which is controlled by the TE0712 FPGA. The

FPGA will stream the CNN layer by layer into the KiloCore 2 chip to produce the final output, and

the final output of this level is the CNN detection result, which are two matrices in 13 × 13 × 255

and 26 × 26 × 255.

5.1.2 Overview - Chip Level

For one KiloCore 2 chip, there are 697 user-programmable cores and fourteen 64KB

shared SRAMs. Since it is impossible to store all the weights and biases inside one chip, the

CNN in this level is processed layer by layer. To make the program more efficient, three layers

(conv-activation-maxpool) are combined into one program as three stages: data distribution,

computation, and output buffering. The inputs to this level are the configuration parameters,

weights/biases, and the input image of the current layer. The output of this level is the convolution

result of the current layer, which is stored off-chip temporarily in the 1GB DRAM, so it can be

streamed back into the chip as the input to the next layer.

5.1.3 Overview - Core Level

On the core level, the conv-activation-maxpool workflow is broken into simple and

small tasks to achieve higher throughput, massive parallelism, and lower power consumption. In

the data distribution stage, depending on the size of the image and the weights/biases, the data

distribution cores direct some of the input data to the on-chip SRAM to be reused throughout the

convolution process. The second stage is computation, where the convolution cores and adder

cores do 3D convolution. For the output buffering stage, the intermediate 3D convolution results

are temporarily stored in the on-chip SRAM. So after getting all the convolution outputs from the

computation stage, Leaky-ReLU activation and Maxpool are applied here before finally outputting

the data to the off-chip DRAM.

24

5.2 System Level Operarion

Figure 5.2: System level operation. The full set of weights/biases and the input image are stored
in the off-chip storage, and they are streamed layer by layer into KiloCore 2. For each iteration
KiloCore 2 processes conv/activation/maxpool in one shot and outputs the data back to the off-chip
storage.

On the system level, KiloCore 2 is in charge of all the CNN computations, and the 1GB

DRAM is controlled by the TE0712 FPGA board. In the beginning, the FPGA will send the input

image and the weights/biases of layer 1 from the DRAM to KiloCore 2. After Kilocore 2 finishes

outputting the result of layer 1 to the DRAM, they are combined with the weights/bases of layer 2,

then streamed back into KiloCore 2. The loop continues until all 13 layers are finished.

As Figure 5.3 shows, the KiloCore 2 chip starts by loading the programs into its cores, and

take the input image at layer 1. The CNN of YOLOv3-Tiny is being processed one layer at a time,

and it produces two output matrices after layer 13 of YOLOv3-Tiny is done. No reprogramming

is needed between layer 1 to layer 3, and between layer 4 to layer 13. However, during operation,

KiloCore 2 needs to be stopped once and reprogrammed at layer 4, because the hardware architecture

needs to be switched in order to process the large amount of weights and biases. Details are explained

further in the next section.

25

Figure 5.3: Operation timing diagram. Green means KiloCore 2 is processing that layer, and red
means KiloCore 2 is switching architectures, which is discussed in section 5.3. Red arrow indicates
data flow.

5.3 Chip Level Architectures

For a typical CNN dataflow, as the layer gets deeper, the image is compressed smaller

and the depth of the weights becomes larger. This pattern applies to YOLOv3-Tiny as well. The

largest 2D image size is 416×416 (layer 1), and the smallest 2D image size is 13×13 (layer 6, 7, 8,

9, 10, 11). For the weights, the smallest weight is 3×3×3×16 (layer 1), and the largest weight is

3×3×512×1024 (layer 7). A detailed analysis of every layer is shown in table 5.1.

The input image and weights/biases should be stored very close to the processor since CNN

optimization relies heavily on data reuse. However, although the CNN is processed layer by layer on

the chip level, it is still impossible to save the full input image plus the weights/biases of one layer

in the on-chip 896KB SRAM. To bring data as close to the processor as possible, while still being

flexible enough to fit different layers of YOLOv3-Tiny on the KiloCore 2 chip, this work presents

two chip level architectures to process CNN with minimal memory usage: weight-stationary

architecture and input-stationary architecture.

26

Layer Weights Bias Total
Parameter

Size (KB)
Input

Input

Size (KB)
Output

Output

Size (KB)

1 3x3x3x16 1x1x16 448 0.875 416x416x3 1014 208x208x16 1352

2 3x3x16x32 1x1x32 4640 9.0625 208x208x16 1352 104x104x32 676

3 3x3x32x64 1x1x64 18496 36.125 104x104x32 676 52x52x64 338

4 3x3x64x128 1x1x128 73856 144.25 52x52x64 338 26x26x128 169

5 3x3x128x256 1x1x256 295168 576.5 26x26x128 169 13x13x256 84.5

6 3x3x256x512 1x1x512 1180160 2305 13x13x256 84.5 13x13x512 169

7 3x3x512x1024 1x1x1024 4719616 9218 13x13x512 169 13x13x1024 338

8 1x1x1024x256 1x1x256 262400 512.5 13x13x1024 338 13x13x256 84.5

9 3x3x256x512 1x1x512 1180160 2305 13x13x256 84.5 13x13x512 169

10 1x1x512x255 1x1x255 130815 255.5 13x13x512 169 13x13x255 84.2

11 1x1x256x128 1x1x128 32896 64.25 13x13x256 84.5 13x13x128 42.25

12 3x3x384x256 1x1x256 884992 1728.5 26x26x384 507 26x26x256 338

13 1x1x256x255 1x1x144 65535 128.0 26x26x256 338 26x26x255 336.7

Table 5.1: Detailed information showing the data size of each layer. Green means less than 896KB,
red means larger than 896KB (larger than the capacity of the on-chip SRAM).

5.3.1 Data Distribution Stage

For YOLOv3-Tiny, layer 1 to layer 3 are using the weight-stationary architecture, layer

4 to 13 are using the input-stationary architecture. In other words, the weights/biases are stored

on-chip for layer 1 to layer 3, and the input is stored on-chip for layer 4 to layer 13. The major

difference between the two architectures is in the data distribution stage, where the weight-stationary

architecture is distributing the weights from the SRAM to multiple convolution cores, and the

input-stationary architecture is distributing the input image along its 3rd dimension (usually called

channels). Figure 5.4 shows the different distribution paths for the two architecturs.

27

Figure 5.4: Left: Weight-stationary Architecture. Right: Input-stationary Architecture. Red path
highlights the data stream.

5.3.2 Computation Stage

During the first stage, the dimension of the input data is reduced to 1D vectors. So in the

computation stage, the direction of the dataflow is pointing to the higher dimension to rebuild the

final 3D output tensor. As the vectorized image and weights go into the 2D convolution modules,

they are multiplied and accumulated together to form a 2D matrix. Then after passing through a

series of adders, multiple 2D matrices are combined along the 3rd dimension to form one output

image. By repeating this process on the same image with different weights, the final output is in

the correct shape and will be outputted in row-major order.

Figure 5.5: High level dataflow of the computation stage. Data are streamed into the 2D and 3D
Convolution modules, the convolution outputs might be incomplete due to the layer being too deep
so the output is connected to the Output Buffering Stage for post-processing.

28

5.3.3 Output Buffering Stage

Figure 5.6: High level dataflow of the output buffering stage. Notice that SRAM has bi-directional
communication with the adder. The final output is either after activation or maxpool, depending
on that layer’s configuration.

The output buffering stage is designed to process images that are deep in the 3rd dimension

(channels). One 3D convolution module can process 3 to 16 channels at a time, and the output

buffers can save the intermediate outputs from the 3D Conv module, combine them with the previous

3D Conv output, then wait for the next batch of outputs. When the computation stage finishes all

the channels, the output buffers can apply activation function element-wise and maxpool the image,

depending on that layer’s configuration. In this way, the 2D and 3D convolution cores don’t have to

interact with the SRAM and the activation/maxpool algorithms. Instead, they can focus on just

performing the MAC operation, which simplifies the code, and makes the hardware pipeline runs

more efficiently.

29

5.3.4 Chip Level Summary

The two chip level architectures share the same logic for the computation stage and output

buffering stage, so no reprogramming is needed for these cores when switching architectures for

layer 4. This reduces the overall delay and saves power when the program is running on only one

KiloCore 2 chip.

Figure 5.7 shows how KiloCore 2 is utilized under different workloads. When taking inputs

from the off-chip storage, the computation stage and output buffering stage are staying idle because

the input distribution logic is not ready to send data for processing. When data input is finished

and SRAMs have all the weights/image, the full chip starts circulating data and all three stages are

fully utilized.

Figure 5.7: Difference showing the active and idle region of KiloCore 2 when processing a layer.
When new data is being streamed into the chip, the computation and output buffering stages are in
idle state. When the chip has all the data for the current layer, it starts processing and the chip is
fully utilized.

Furthermore, all the hardware modules in the two architectures are designed to be scalable.

Since KiloCore 2 has four circuit I/O ports that support standard 16-bit data, processing four sets

of weights in parallel can increase the throughput by four times, as shown in Figure 5.8.

30

Figure 5.8: Chip level parallel operation. This Figure gives an overview of one full KiloCore 2 chip.
Notice that each of the 3D convolution modules in the computation stage contains multiple 2D
convolution modules inside, depending on the input layer depth.

5.4 Core Level Implementation

The principle of designing programs for manycore platforms is to break down the large

application into small and simple tasks, then deploy the tasks to the cores so that each core can

focus on doing only one job. Practically, this helps eliminate branch instructions and can reduce

the number of function calls.

The user-programmable cores in KiloCore 2 support standard C++ language, working

with the Clang and LLVM infrastructure, modern compiler optimizations are also available. This

section will discuss the detailed algorithms of the core level implementations.

31

5.4.1 im2col

The fundamental convolution algorithm implemented in this work is im2col, Figure 5.9

gives an example comparing im2col with intuitive convolution. In short, im2col reshapes the

complex multi-dimensional convolution process into a simple 2D matrix multiplication [33] [34]. This

algorithm suits KiloCore 2 well for two reasons. First, the processors in KiloCore 2 have a dedicated

MAC module with a 9-stage hardware pipeline, which naturally accelerates matrix multiplication.

Second, traditional im2col implementations require large memory to save the reshaped image and

weights, and the throughput is usually bottlenecked by memory bandwidth. But with its manycore

architecture, KiloCore 2 can avoid this problem by distributing the matrix to be processed to a

large pool of cores, thus reducing the memory requirements for each core.

Figure 5.9: im2col algorithm demo showing in the bottom. The multi-dimension convolution is
flattened in to a single matrix multiplication.

32

5.4.2 Image Distributor (Weight-stationary Architecture)

The image distributor in weight-stationary architecture has four cores: one for processing

the inputs and communicating with the SRAM, three for distributing the image according to the

width of the filters. One channel of the input image is streamed into the input core in row-major

order, since YOLOv3-Tiny uses 3x3 filters, the input core will always buffer three rows of the image

in the SRAM, then distribute them concurrently. Therefore, later in the computation stage, the 2D

convolution module will get the full im2col window, and can reshape the three rows of image into a

column vector.

Figure 5.10: Image distributor, weight-stationary architecture.

Another job for the image distributor is padding. YOLOv3-Tiny always uses “same”

padding for its inputs, this means adding two extra rows of zeros to the first and last row, plus two

extra columns of zeros on the left side and right side. To reduce the number of SRAM reads and

writes, the zeros are added dynamically during distribution. Configuration information including

image size and filter width is sent from the weights distributor.

The distribution core is configured like a single-input, multiple-output (SIMO) broadcaster.

The outputs of the image distributor go directly to the 2D convolution module in the computation

stage.

Algorithm 1 image distributor (weight-stationary architecture)

1: image dimension ← INPUT

2: loop(i < image depth)

33

3: loop(j < image height)

4: SRAM ← 3 rows of image ← INPUT . buffer 3 rows

5: loop(k < image width+2)

6: 0→ all OUTPUT rows . first column, padding zeros

7: if (j == 0) then

8: 0→ OUTPUT row 0 . first row, padding zeros

9: SRAM row j → OUTPUT row 0

10: SRAM row j+1 → OUTPUT row 1

11: else if (j == image height) then

12: SRAM row j+1 → OUTPUT row 1

13: SRAM row j+2 → OUTPUT row 2

14: 0→ OUTPUT row 2 . last row, padding zeros

15: else

16: SRAM row j → OUTPUT row 0

17: SRAM row j+1 → OUTPUT row 1

18: SRAM row j+1 → OUTPUT row 2

19: end if

20: 0→ all OUTPUT rows . last column, padding zeros

21: end loop

22: end loop

23: end loop

5.4.3 Image Distributor (Input-stationary Architecture)

This image distributor is designed to use a large portion of the SRAM to store the whole

input image. Since the input-stationary architecture is applied from layer 4 to layer 13, it must

have enough memory to store the largest input image among those layers, which is at layer 12. The

input dimension of layer 12 is 26×26×384 (259,584 numbers), because each SRAM can store 32,768

16-bit numbers, this means the image distributor needs at least 8 SRAM modules to accommodate

for layer 12 (32,768×8 = 262,144 numbers).

The distribution flow uses a hierarchical structure to repeatedly collect 16 channels of the

34

input image from the 8 SRAM modules and send them to the 2D convolution cores. Figure 5.11

shows an example using the input dimension of layer 4, which is 52×52×64. To distribute all 64

channels, the loop needs to run four times. The same logic applies to all the later layers, and the

loop count is calculated at runtime, so no reprogramming is needed between layers for this image

distributor. Same as the image distributor in the weight-stationary architecture, padding is done

dynamically during distribution.

Figure 5.11: Image distributor, input-stationary architecture. The left side distributes all the even
indexes, showing in blue. The right side distributes all the odd indexes, showing in orange. To
distribute all 64 channels, the distributor needs to loop 4 times, outputting 16 channels at a time.

The image channels are saved into the SRAM based on the parity of their index, the

even indexes are saved to the left four SRAMs, and the odd indexes are saved to the right four

SRAMs. This design ensures that the two final distribution cores can output the 16 channels in

series together, so the adder tree in the 3D convolution module doesn’t have to stall.

If no parity check is implemented when saving the channels into the SRAMs, then for the

35

two final distribution cores, the left core will output the first eight channels (channel 0 to 7), and

the right core will output the last eight channels (channel 8 to 15). This distribution scheme will

cause the adders in the 3D convolution module to stall because the adders are working in series.

Although the adder at channel 8 can have one of its addend ready when the convolution for channel

8 is finished, it must wait for the first eight adders to finish their job in order to have another

addend appears at its input port.

Algorithm 2 image distributor (input-stationary architecture), input logic

1: image dimension ← INPUT

2: loop(i < image depth)

3: image one channel ← INPUT

4: if channel is even then . save image to left four SRAMs

5: SRAM index ← (channel index / 16 mod 4)

6: SRAM ← SRAM index ← image one channel

7: else if channel is odd then . save image to right four SRAMs

8: SRAM index ← (channel index / 16 mod 4 + 4)

9: SRAM ← SRAM index ← image one channel

10: end if

11: end loop

Algorithm 3 image distributor (input-stationary architecture), internal logic

1: image dimension ← INPUT

2: num image sets ← image depth / 8

3: for (every 2 image sets) do . loop unrolling

4: loop(i < image height)

5: loop(j < image weight)

6: image one channel ← INPUT port 0 . read in and pass left input

7: image one channel → OUTPUT

8: end loop

9: end loop

10: loop(i < image height)

11: loop(j < image weight)

12: image one channel ← INPUT port 1 . read in and pass right input

36

13: image one channel → OUTPUT

14: end loop

15: end loop

16: end for

Algorithm 4 image distributor (input-stationary architecture), distribution logic

1: image dimension ← INPUT

2: loop(i < image depth)

3: loop(j < image height)

4: loop(k < image width+2)

5: 0→ broadcast all OUTPUT ports . first column, padding zeros

6: if (j == 0) then

7: 0→ broadcast all OUTPUT ports . first row, padding zeros

8: else if (j == image height) then

9: 0→ broadcast all OUTPUT ports . last row, padding zeros

10: else

11: image eight channels ← INPUT

12: image one channel → broadcast all OUTPUT ports

13: end if

14: 0→ broadcast all OUTPUT ports . last column, padding zeros

15: end loop

16: end loop

17: end loop

5.4.4 Weights Distributor (Weight-stationary Architecture)

Because this architecture is weight-stationary, the full set of weights is stored in the SRAM.

The configuration inputs include image size and filter dimension, this information is shared with the

image distributor through a helper core. The number of distributor cores depends on how many

sets of weights are processed in parallel on one chip. For example, four sets of weights are processed

in parallel for layer 2, so four distributor cores are used, as shown in Figure 5.12. The outputs of

the weights distributor go directly to the 2D convolution modules in the computation stage.

37

Figure 5.12: Weights distributor, weight-stationary architecture. Four distribution cores are
used because four 3D convolution modules are processing in parallel. SRAM is saving the full
weights/biases for the current layer.

Algorithm 5 weights distributor (weight-stationary architecture)

1: weights biases dimension ← INPUT

2: weights biases ← INPUT

3: config ← INPUT

4: weights biases → SRAM . save full set

5: config → OUTPUT to image distributor

6: loop(num weights/4) . parallel outputs

7: SRAM → weights biases → OUTPUT port 0

8: SRAM → weights biases → OUTPUT port 1

9: SRAM → weights biases → OUTPUT port 2

10: SRAM → weights biases → OUTPUT port 3

11: end loop

5.4.5 Weights Distributor (Input-stationary Architecture)

The weights distributor in image-stationary architecture has a simple structure, because

they only need to buffer four weights at a time and distribute them to the 2D convolution modules.

38

Figure 5.13: Weights distributor, input-stationary architecture. SRAM is buffering four
weights/biases at a time, then distribute them in parallel to the 2D convolution modules.

The only difference compared with the other weights distributor is that the configuration inputs are

no longer shared with the image distributor.

Algorithm 6 weights distributor (input-stationary architecture)

1: weights biases dimension ← INPUT

2: loop(num weights/4) . parallel outputs

3: SRAM ← weights biases ← INPUT . buffer 4 sets

4: SRAM → weights biases → OUTPUT port 0

5: SRAM → weights biases → OUTPUT port 1

6: SRAM → weights biases → OUTPUT port 2

7: SRAM → weights biases → OUTPUT port 3

8: end loop

5.4.6 2D Convolution Module (Inside 3D Convolution Module)

Intuitively, one 3x3 filter is convoluted with one channel of the input image inside the 2D

convolution module. Since this is the most repeated operation for the entire Convolutional Neural

Network, parallel optimization inside this module will offer significant performance improvements for

the whole program. To calculate a 3x3 convolution window requires nine MAC operations. Instead

of using one core to do MAC nine times, three cores are used here to do MACs in parallel, so each

core only needs to do MAC three times. One distribution core is in charge of flattening the 3x3

39

Figure 5.14: 2D convolution module. Example dataflow is showing on the right.

filter into three 1x3 filters, then after the MAC stage, partial convolution results are combined in

the adder tree to form the output pixel of that convolution window.

• implementation note: Overflow handling

16-bits fixed-point multiplication will generate a 32-bits wide result, since the MAC module

is 40-bits wide, overflow will not happen during the MAC stage. However, extra logic to

prevent overflow is needed inside the adder tree. If two positive numbers are added and the

result overflows to a negative number, this means a pixel that is supposed to be activated

will be falsely deactivated later by the Leaky-ReLU function. Similarly, a negative pixel that

overflows to a positive pixel will be falsely activated by the Leaky-ReLU function. Algorithm

8 shows the overflow checker implemented in the adders, which uses saturation logic to cap

the result at maximum or minimum to preserve the sign bit of the convolution output.

Algorithm 7 2D convolution

1: image dimension ← INPUT

2: weights dimension ← INPUT

3: loop(i < image depth) . following the output dimension of image distributor

4: loop(j < image height+2) . image with padding

40

5: loop(k < image width+2) . image with padding

6: image vector ← 3 rows of image ← INPUT

7: weight vector ← weight ← INPUT

8: conv result partial = image vector × weights vector

9: sum(conv result partial) → OUTPUT

10: end loop

11: end loop

12: end loop

Algorithm 8 overflow handling (saturation)

1: num1 ← INPUT

2: num2 ← INPUT

3: sum ← INPUT

4: if (sign of num1 == sign of num2) then

5: if (num1 is negative & sum is positive) then . neg + neg = pos,

OVERFLOW!

6: 0x8000 → OUTPUT . return 16-bit negative max

7: else if (num1 is positive & sum is negative) then . pos + pos = neg,

OVERFLOW!

8: 0x7FFF → OUTPUT . return 16-bit positive max

9: end if

10: else

11: sum → OUTPUT . overflow impossible

12: end if

5.4.7 3D Convolution Module

This module is called 3D convolution because it is adding multiple 2D convolution results

along the 3rd dimension (channel-wise) to form one output feature map. The modular design of the

2D and 3D convolution blocks allows the program to be scaled up easily to increase performance.

Specifically, the more 2D Conv modules used inside the 3D Conv module, the more image channels

41

Figure 5.15: 3D convolution module. Each 2D conv module inside can process one image channel.
So if there are 16 2D conv modules inside one 3D conv module (n = 16), then the 3D conv module
can process 16 channels in one shot.

can be processed at once, and multiple 3D Conv modules can work in parallel to improve overall

throughput.

5.4.8 Output Buffer

Figure 5.16: 3D deep convolution without output buffer. Layer 8 has 1,024 channels, but using
1,024 2D conv modules in one 3D conv module will cost at least 6,144 cores, which is impossible to
place on 1 KiloCore 2 chip.

42

Theoretically, to offer the best performance and efficiency, the number of 2D Conv modules

in one 3D Conv module should match the number of channels of the input image. But to ensure

that a large convolution layer can work on a single KiloCore 2 chip with 697 cores, it’s not realistic

to use all the resources just for one module. For example, as shown in Figure 5.16 the input image

to layer 8 has a dimension of 13×13×1024. Since one 2D Conv costs 6 cores, a 3D Conv module

that can process 1024 channels will require at least 6,144 cores, which far exceeds the number of

available cores on the KiloCore 2.

Figure 5.17: 3D deep convolution with output buffer. The 3D conv module can process 16 channels
at a time, and the partial 3D conv output is saved inside the output buffer.

The output buffer shown in 5.17 is designed to solve this problem by saving the partial

3D Convolution result, so that the 3D Conv module can use fewer hardware resources and looping

through all the channels of a large input image. This also separates all the post-processing tasks

including activation and maxpooling from the convolution modules, which makes the architecture

more flexible in adapting to other CNNs with different activation functions and maxpooling

configurations.

• Implementation note: Leaky-ReLU activation

f(x) =


x if x>0,

0.1x otherwise.

(5.1)

43

Algorithm 9 Leaky-ReLU branchless implementation (SLOW ON KILOCORE 2)

1: x ← INPUT

2: max(0, x)+0.1×min(0, x) → OUTPUT

Algorithm 10 Leaky-ReLU straightforward implementation (FAST ON KILOCORE 2)

1: x ← INPUT

2: if x ≥ 0 then

3: x → OUTPUT

4: else

5: x×0.1 → OUTPUT

6: end if

It is important to design software with the underlining hardware infrastructure in mind,

especially when designing software for specialized architecture like KiloCore 2. One common

technique for code optimization is branch removal, as shown in algorithm 9. The straightforward

implementation of Leaky-ReLU is shown in algorithm 10. For complex hardware with multi-

threaded core and out-of-order execution capabilities, the branchless algorithm can achieve

high performance. However, in practice, algorithm 10 beats algorithm 9 when running on

KiloCore 2. This can be explained from two aspects. First, the processors in KiloCore 2 have

a simple datapath for high efficiency, so the cost associated with function calls is higher than

the other typical general-purpose processors. Second, the static branch predictor of KiloCore

2 is helping the processor pipeline to use minimal ALU operations. Even if a misprediction

occurs, the cost is still low because the logic for each branch is very simple.

• implementation note: maxpool

Algorithm 11 maxpool

1: loop(i <image height)

2: loop(j <image width) . 2x2 maxpool window, read 4 elements

3: window 0 ← image row i, element j ← SRAM

4: window 1 ← image row i, element j+1 ← SRAM

44

5: window 2 ← image row i+1, element j ← SRAM

6: window 3 ← image row i+1, element j+1 ← SRAM

7: max(window 0, window 1, window 2, window 3) → OUTPUT

8: end loop

9: end loop

Following the concept described in the Leaky-ReLU implementation, the maxpool algorithm

is also simple and straightforward. Since the output buffer already have the full output

image saved in the attached SRAM, the maxpooling process is just successively reading the

maxpool windows from SRAM and selecting the maximum number to send to the output

port. YOLOv3-Tiny always uses 2x2 maxpool window with stride equals to 1, so the cost of

producing each maxpool output is three operations (subtraction).

5.4.9 Core Level Summary

Concretely, the core level implementations closely follow the mathematical operations of

a Convolutional Neural Network, especially from a dimensionality point of view. The dimension

of the inputs are flattened in the distribution modules, then the convolution modules rebuild the

output dimension from 1D to 2D, according to the configuration of each layer. Finally, multiple 3D

modules work in parallel to add the 3rd dimension to the output matrix.

The weight-stationary architecture uses a maximum of 143 cores on KiloCore 2, and the

input-stationary architecture costs 536 cores. Depending on different layer configurations, the actual

core count might be lower. For example, layer 10 and layer 11 are using input-stationary architecture

but they use only 248 cores. Because the filter dimension for these two layer are all 1×1, so they

don’t require too many 2D Conv modules to perform convolution. Table 5.2 gives an overview of

the code structure for all the standalone modules, and Table 5.3 gives a summary of the core counts.

45

Core Level Blocks Functions
C++ Code

Number Of Lines

Number of

Assembly Instructions

image distributor

(weight-stationary architecture)
image distributor 70 119

input divider 51 73

image 1 input to 4 output 7 6

image 1 input to 3 output 7 6

image distributor

(input-stationary architecture)
SRAM controller 55 99

image 4 input to 16 output 79 116

image 8 input to 4 output 48 71

image distributor 35 40

image input 116 174

image to 2D conv 7 6

weights distributor

(weight-stationary architecture)
weight 1 input to 4 output 46 62

weight to MAC 42 57

weight distributor 57 92

weights distributor

(input-stationary architecture)
weight 1 input to 8 output 50 78

weight distributor 69 104

2D convolution module weight to MAC 39 49

MAC 0 69 134

MAC 1 69 134

MAC 2 72 134

conv adder final stage 61 64

conv adder first stage 58 63

3D convolution module channel adder final stage 64 64

channel adder first stage 61 65

channel adder middle stage 56 60

output buffer output buffer 90 124

Table 5.2: Summary of the code structure for all the code level blocks

46

Cores # SRAMs

Image Distributor (Weight-stationary Architecture) 4 1

Image Distributor (Input-stationary Architecture) 31 8

Weights Distributor (Weight-stationary Architecture) 6 1

Weights Distributor (Input-stationary Architecture) 5 1

2D Convolution Module (Inside 3D Convolution Module) 6 N/A

3D Convolution Module (n×6)+(n-1) N/A

Output Buffer 1 1

Table 5.3: Core counts for all the basic modules. n equals to the number of 2D conv modules inside
one 3D conv module.

Figure 5.18 and 5.19 show the actual error-free mapping of the weight-stationary architec-

ture on KiloCore 2, produced by the mapper of Project Manager, the KiloCore 2 simulator/Compiler.

Figure 5.18: Fly line diagram of the weight-stationary architecture, each dot is a processor core,
and the green lines indicate inter-core connection.

47

Figure 5.19: The complete error-free weight-stationary architecture mapping to the manycore
processor array. The various link colors signify different types of communication links: nearest
neighbor, long distance, or packet network.

Similar to the previous Figures, Figure 5.20 and 5.21 show the actual error-free mapping

of the input-stationary architecture on KiloCore 2, produced by the mapper of Project Manager,

the KiloCore 2 simulator/Compiler.

Figure 5.20: Fly line diagram of the input-stationary architecture, each dot is a processor core, and
the green lines indicate inter-core connection.

48

Figure 5.21: The complete error-free input-stationary architecture mapping to the manycore
processor array. The various link colors signify different types of communication links: nearest
neighbor, long distance, or packet network.

49

Chapter 6

Inference Evaluation

6.1 Overview

The functionality of the two chip level inference architectures on KiloCore 2 has been

verified by using random inputs generated by MATLAB. However, in order to show that the

optimized YOLOv3-Tiny implementation in this work is still able to accurately perform Object

Detection, a real-world image is used as an input to test its performance, as shown in Figure 6.1.

The image is quantized to 16-bit fixed-point and the final prediction output is compared with the

original YOLOv3-Tiny implementation working in full 32-bit floating-point accuracy.

Figure 6.1: Test image used in this section with three detections expected: dog, person, and horse.

All simulation data are obtained with Project Manager, a cycle-accurate C++ simulator for

the KiloCore 2 platform. The simulator also generates accurate power and throughput measurements,

which can be used to compare with other hardware platforms like GPU and general-purpose CPU.

50

For this section, all the fixed-to-float (or float-to-fixed) conversions and data visualizations are made

with code written in MATLAB.

6.2 Inference Result

A MATLAB implementation of the original YOLOv3-Tiny system is used as the Golden

Reference for comparison. The MATLAB implementation closely follows the version written in C

by the original author and uses the unaltered 32-bit floating-point parameters, this guarantees that

any potential errors in the KiloCore 2 implementation won’t be repeated in the Golden Reference.

Outputs are gathered and compared layer by layer, table 6.1 shows the mean error and max error

for each layer, calculated with equation 6.1 and 6.2.

mean error = mean(|image Golden Reference − image KiloCore 2 output|) (element-wise) (6.1)

max error = max(|image Golden Reference − image KiloCore 2 output|) (element-wise) (6.2)

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13

mean 0.0071 0.0282 0.0346 0.0504 0.0969 0.0552 0.25 0.0947 0.3262 1.0032 0.2609 0.236 1.2051

max 0.1263 0.2215 0.3247 0.4628 0.8898 4.8365 19.07 3.1055 2.9977 8.464 5.9827 4.1391 10.1982

Table 6.1: Mean and max error for each layer compared to the Golden Reference

Figure 6.2: Mean and max error plot for each layer.

51

Figure 6.3 gives a visual representation of the outputs of each layer. The output images

are in greyscale with the positive number showing in light pixel and the negative number showing

in dark pixel. Intuitively, a light pixel means that the convolution filter thinks this pixel contains

important information, and it is being extracted by the activation function [35]. As the output

image on layer 10 and layer 13 shows, three clusters of filters are heavily activated, which correspond

to the three predictions: horse, person, and dog.

The final detection output is converted to human-readable bounding boxes shown in Figure

6.4 along with the golden reference detection output. The detections produced by this thesis show

that all the predicted categories are correct, and the confidence errors are within 0.01 compared

to the golden reference. The box dimensions are slightly affected due to the lower precision of the

weights used, but the predicted centers of the objects are still accurate. In conclusion, the result

proves that this work has implemented the CNN calculations correctly, and all the optimization

techniques used including quantization and BN folding did not degrade the accuracy and performance

of the YOLOv3-Tiny system.

52

Figure 6.3: Output image of each layer. Red arrow indicates data flow for generating the coarse
prediction in 13 × 13, Blue arrow indicates data flow for generating the fine prediction in 26 × 26

53

Figure 6.4: Final detection output. Left side is the result generated by KiloCore 2, right side is the
Golden Reference output produced by the original YOLOv3-Tiny system.

6.3 Simulation Measurements

The simulation environment is set to limit available resources to one KiloCore 2 chip, so the

result can be reproduced on the real KiloCore 2 Test System board. The maximum available core

count on one KiloCore 2 chip is 697, with 14 SRAM modules, and 4 complex 16-bit input/output

ports. Energy measurements from the 32 nm PD-SOI CMOS fabricated chip are used as inputs to

the simulator to obtain energy data. Area usage is physically measured from the fabricated 32 nm

PD-SOI CMOS chip, where each processor occupies 265 µm × 274.5 µm of area and each SRAM

memory occupies 356.2 µm × 475.41 µm of area. The total area used is calculated by equation 6.3,

where nProc and nMem are the maximum number of processors and memory modules used. For

this work, nProc is 536 and nMem is 13.

Area(mm2) = nProc× 0.0727(mm2) + nMem× 0.169(mm2) (6.3)

Throughput is calculated as the reciprocal of the total latency to process 1 image for the

CNN implementation, using equation 6.4. This property is also called Frame rate, or frames per

second (FPS). Latency is calculated as the sum of the processing time of each layer, using equation

54

6.5.

Throughput(FPS) =
1

total latency(s)
(6.4)

Total Latency(s) = (

13∑
i=1

LastOutputT imei (ps))× 1012 (6.5)

Power is calculated as in equation 6.6, where Energy is the sum of the total energy

consumed by each layer, using equation 6.7.

Power(W) =
Energy(J)

total latency(s)
(6.6)

Energy(J) = (

13∑
i=1

TotalEnergyi (nJ))× 109 (6.7)

Throughput per area is calculated as the throughput (FPS) divided by the die area in

mm2 and is given by equation 6.8.

Throuput per Area(FPS/mm2) =
Throughput(FPS)

Area(mm2)
(6.8)

Throughput per watt is calculated as the throughput (FPS) divided by power (W) and is

given by equation 6.9.

Throuput per Watt(FPS/W) =
Throughput(FPS)

Power(W)
(6.9)

The Energy-Delay Product (EDP) is calculated as the product between latency and the

energy consumed per image as shown in equation 6.10. A lower Energy-Delay Product means the

system is more efficient.

EDP = Energy(J)× Latency(s) (6.10)

55

Total memory requirement is calculated by summing the run-time SRAM space and the

off-chip DRAM space. The DRAM needs to save the input image with all the weights and biases,

and also have enough space to buffer the largest layer’s output, which is 208×208×16 at layer 1.

Memory Requirement(MB)

= (SRAM requirement) + (DRAM requirement)

= (SRAM used× 64KB) + (input image+Weights/Biases+ layer buffer)

= (13× 64KB) + (1014KB + 17.72MB + 1352KB)

= 19.53MB

(6.11)

Area

(mm2)

Latency

(s)

Throughput

(FPS)

Power

(W)

Energy

(J)

Throughput/Area

(FPS/mm2)

Throughput/Watt

(FPS/W)
EDP

41.16 2.424 0.4126 0.9209 2.232 0.01002 0.4481 5.409

Table 6.2: Performance data of this work.

56

Layer Active Energy (nJ) Total Energy (nJ) First output time (ps) Last output time (ps) Cores used

1 51,293,292 64,949,252 64,676,619 96,302,349,479 102

2 136,491,464 160,473,595 21,842,347,065 182,888,582,793 143

3 140,250,749 159,881,252 9,185,674,260 149,702,903,210 143

4 141,079,995 148,579,141 4,939,071,081 153,652,724,316 536

5 141,902,225 149,588,950 2,763,278,413 157,496,095,519 536

6 146,450,814 154,564,407 1,541,100,813 166,241,530,945 536

7 581,363,490 613,790,917 3,135,402,837 664,417,462,499 536

8 58,353,187 68,652,293 2,311,330,098 94,370,481,702 248

9 146,346,534 154,458,706 1,540,379,435 166,213,257,259 536

10 29,267,257 34,415,456 1,135,646,393 47,172,814,157 248

11 7,359,007 8,656,389 547,650,852 11,887,837,962 248

12 423,260,703 444,564,230 7,996,207,737 436,495,761,828 536

13 58,718,848 69,279,358 2,229,646,118 96,765,724,888 248

Total - 2,231,853,946 - 2,423,607,526,557 -

Table 6.3: Detailed simulation measurements of each layer.

57

Chapter 7

Performance Comparison with Other

Hardware Platforms

7.1 Overview

The metrics used for comparison are throughput per area, throughput per watt, work

per energy, and run-time memory requirement, they are chosen to show performance, power-

efficiency, and memory-efficiency of the manycore implementation on KiloCore 2, respectively. GPUs,

specialized CNN ASICs, and general-purpose CPUs are included for an exhaustive comparison

across all platforms.

7.2 Comparison of YOLOv3-Tiny Manycore Implementation with

Other Platforms

Because different fabrication technologies can significantly affect performance and power,

all the measurements used for comparison are scaled to 32nm to match KiloCore 2’s manufacturing

process. The scaling method uses predictive polynomial models with table-based coefficients, which

produces an accurate scaling factor of CMOS device performance between different technology

nodes [5] [36].

58

DelayFactor = ad3V
3 + ad2V

2 + ad1V + ad0 (7.1)

EnergyFactor = ae2V
2 + ae1V + ae0 (7.2)

The scaling factors are calculated using equation 7.1 and 7.2 with the coefficients provided

in table 7.1, 7.2 from [5].

process ad3 ad2 ad1 ad0 delay factor

32nm LP @ 0.9V -325.9 1374 -1922 913.2 58.7589

20nm HP @ 1V 0 34.63 -66.37 41.15 9.41

16nm HP @ 1V 0 24.8 -47.52 28.87 6.15

14nm HP @ 1V -40.66 109.2 -100.6 35.92 3.86

10nm HP @ 1V -34.95 93.65 -85.99 30.4 3.11

Table 7.1: The polynomial coefficient values and delay factors calculated with equation 7.1. [5]

process ae2 ae1 ae0 energy factor

32nm LP @ 0.9V 0.9559 -0.7823 0.471 0.541209

20nm HP @ 1V 0.373 -0.1582 0.04104 0.25584

16nm HP @ 1V 0.2958 -0.1241 0.03024 0.20194

14nm HP @ 1V 0.2363 -0.09675 0.02239 0.16194

10nm HP @ 1V 0.2068 -0.09311 0.02375 0.13744

Table 7.2: The polynomial coefficient values and energy factors calculated with equation 7.2. [5]

The scaled data is calculated using equations 7.3, 7.4, 7.5, and 7.6. For area scaling, the

factors are given in table 7.3.

Areax = AreaFactory ×Areay (7.3)

Delayx =
DelayFactorx
DelayFactory

×Delayy (7.4)

Energyx =
EnergyFactorx
EnergyFactory

× Energyy (7.5)

Powerx =
EnergyFactorx ·DelayFactory
EnergyFactory ·DelayFactorx

× Powery (7.6)

59

process scale factor

32nm 1

20nm 2.2

16nm 2.4

14nm 2.7

10nm 4.5

Table 7.3: Factors used for area scaling [5].

Table 7.4 gives the performance measurements across all hardware platforms, scaled to

32nm.

KiloCore 2 Jetson NANO Jetson TX2 Core i3-8145U Core i5-8365U Core i7-8665U Core i9-9900K

Area

(mm2)
41.16 259.6 N/A* 553.5 N/A* N/A* 486

Latency

per image (ms)
2424 367.3 212.3 944.7 608.9 585.5 205.7

Throughput

(FPS)
0.4126 2.722 4.710 1.059 1.642 1.708 4.861

Power

per image (W)
0.9209 55.70 178.5 1042 381.6 381.6 2417

Energy

per image (J)
2.232 20.46 37.89 984.0 232.3 223.4 497.1

Throughtput

per Area

(FPS/cm2)

1.002 1.049 N/A* 0.1912 N/A* N/A* 1.000

Throughtput

per Watt

(FPS/W)

0.4481 0.04887 0.02639 0.001016 0.004304 0.004476 0.002012

energy×delay

(J*ms)
5.409 7.515 8.045 929.5 141.5 130.8 102.3

Table 7.4: Performance data for all hardware platforms [6] [7] [8] [9] [10]. CPU Power is assumed to
be one half of the TDP. Memory area for the GPUs and CPUs is not included in this data because
it is publically unavailable, however memory area is included for the KiloCore 2 implementation.
*No public data available

60

7.2.1 Performance

Table 7.5 shows the performance (throughput per area) data of various platforms, comparing

with KiloCore 2. A visualization is shown in Figure 7.1.

KiloCore 2 Jetson NANO Core i3-8145U Core i9-9900K

Throughtput/Area(FPS/cm2) 1.002 1.049 0.1912 1.000

Normalized Throughtput/Area 5.24 5.49 1 5.23

Table 7.5: Throughput per area comparison. Data taken from table 7.4. Memory area for the GPUs
and CPUs is not included in this data because it is publically unavailable, however memory area is
included for the KiloCore 2 implementation.

Figure 7.1: Throughput per area comparison. Memory area for the GPUs and CPUs is not included
in this data because it is publically unavailable, however memory area is included for the KiloCore
2 implementation.

Comparing with the GPUs, this implementation can achieve the same high-performance

level in terms of throughput per area. If comparing with the general-purpose CPU, KiloCore 2 can

offer a 5.24× performance improvement. This shows that the manycore structure of KiloCore 2 is

suitable for processing Convolutional Neural Networks. Similar to GPUs, the large pool of cores on

KiloCore 2 can provide massive parallelism for accelerating matrix-related tasks.

61

7.2.2 Power/Energy-Efficiency

Table 7.6 shows the throughput per watt and Energy Delay Product (EDP) of various

platforms, comparing with KiloCore 2. A visualization of throughtput per watt is shown in Figure

7.2.

KiloCore 2 Jetson NANO Jetson TX2 Core i3-8145U Core i5-8365U Core i7-8665U Core i9-9900K

Throughtput

/Watt(FPS/W)
0.4481 0.04887 0.02639 0.001016 0.004304 0.004476 0.002012

Normalized

Throughput/Watt
441 48.1 26.0 1 4.24 4.41 1.98

energy×delay

(J*ms)
5.409 7.515 8.045 929.5 141.5 130.8 102.3

Normalized

energy×delay
1 1.39 1.49 172 26.2 24.2 18.9

Table 7.6: Throughput per watt and EDP comparison. Data taken from table 7.4

Figure 7.2: Throughput per watt comparison. Core i3-8145U not included due to value too small.

62

As the throughput per watt comparison shows, at the same wattage rating, this work

can offer an impressive 9.17× to 16.98× performance boost compared with the mainstream low-

power GPU accelerators. Among the different level of consumer CPUs, KiloCore 2 beats the

highest-performance Core i9 by 222.73×, demonstrating remarkable power-efficiency.

Figure 7.3 gives an illustration of the EDP comparison of the various platforms. Since

EDP is combining energy consumption and latency together, it becomes an ideal metric to show

the energy-efficient of a system. EDP can become very large for a fast system if the system is

consuming a lot of energy to increase its processing speed. Conversely, a system can reduce the

energy consumption by lowering its clock speed, but this will cause the latency to increase, again

making the EDP grow. However, as the data shows, this work demonstrates a moderate 1.39× to

1.49× EDP advantage compared with the GPUs, and again beating the CPUs by a large margin,

from 18.90× to 171.84×.

Figure 7.3: EDP comparison. Core i3-8145U not included due to value too large.

63

7.2.3 Memory-Efficiency

Table 7.7 shows the run-time memory requirement data of various platforms, comparing

with KiloCore 2. A visualization of the same data is shown in Figure 7.4.

KiloCore 2
Jetson

Nano

Jetson

TX2

Jetson

Xavier

NX

Raspberry pi 3

with Intel Neural

Compute Stick 2

Google Edge

TPU Dev

Board

Memory

requirement

(MB)

19.53 966 1044 1265 DNR* DNR*

Normalized

memory

requirement

1 49.5 53.5 64.8 N/A N/A

Table 7.7: Memory requirement comparison. Data taken from table 7.4, [8], and [11].
*DNR = did not run, caused by limited memory capacity, unsupported network layers, or hard-
ware/software limitations [11].

Modern hardware and software implementations for Covolutional Neural Network inference

relies heavily on run-time memory capacity and bandwidth. Not only that a large memory chip will

increase power consumption, but it also adds more cost to the whole system, either due to more

area on the PCB, or designing specialized high-bandwidth connection to the processor. As table

7.7 shows, the Intel Neural Compute Stick 2 and Google Edge TPU Dev Board are all popular

low-power Machine Learning accelerator ASICs, but they all have DNR result for YOLOv3-Tiny.

Although they can not even run the YOLOv3-Tiny Neural Network, they are included here to show

the importance of memory capacity in an inference system.

For this work, the run-time memory requirement is reduced by 49.46× to 64.77×, comparing

with the three GPU accelerators. So for the same performance in terms of throughput per area,

KiloCore 2 is able to use significantly less memory area, which reduces system complexity and saves

even more energy.

64

Figure 7.4: Memory requirement comparison.

7.3 Summary

First, as the throughput comparison shows, the YOLOv3-Tiny inference architectures

implemented in this thesis can achieve a performance level that is on par with the modern state-

of-the-art GPU accelerator and high-performance CPU. Second, this implementation working on

the KiloCore 2 chip displays an impressive power efficiency that is 9.17× to 440.87× more efficient

compared with the other hardware platforms in terms of throughput per watt. Finally, as the

memory requirement suggests, mainstream CNN inference architectures depend heavily on large

memories to offer data-level parallelism, which consumes more area on the whole PCB. In contrast,

this thesis provides a manycore implementation that uses 49.46× to 64.77× less memory compared

with the GPUs, while still being capable of running a large and deep Convolutional Neural Networks

with the lowest EDP.

65

Chapter 8

Future Work

8.1 8-bit Quantization

More aggressive quantization techniques should be investigated to further reduce memory

usage and increase performance. Compressing all the weights and biases from 32-bit to 8-bit will

offer a 4× reduction in memory requirements, from 35.45MB down to 8.86MB. This also means

that it will be possible to save the input image and all the weights together for one layer in the

on-chip SRAM modules, which will increase the performance of the inference architectures.

Figure 8.1: 8-bit weights of layer 8, the SQNR is 12.7% with all the bits used as fraction bits.

66

Previous research has shown that CNNs can still work accurately if they are quantized to

extremely low precision like 8-bit [37] [38], and there exists software implementation of YOLOv3

in INT8 precision like [39] which proves that YOLOv3’s functionality will not be affected by 8-bit

quantization. A preliminary analysis applying 8-bit word length for layer 8 in YOLOv3-Tiny is

shown in Figure 8.1. As the data suggests, precision loss caused by 8-bit quantization is still

manageable and can be limited under 15%.

8.2 Alternative Mappings of YOLOv3-Tiny

For this thesis, the available hardware is assumed to be just one KiloCore 2 chip with

697 cores and 14 SRAM modules. However, since KiloCore 2 is based on the AsAP scalable

manycore platform, more flexible mapping of the inference architectures should be explored. One

direction to go is to consider a bigger chip with more cores, SRAM modules, and Input/Output

ports. As illustrated in Figure 8.2, this design is aimed to improve the latency per image as more

3D convolution modules are used in parallel. No algorithmic changes are needed for this mapping

strategy, and it does not consume more SRAM modules compared to the architectures implemented

in the previous chapters.

Figure 8.2: Bigger chip configuration using n output ports.

67

Another direction is to increase throughput by using multiple KiloCore 2 chips. Figure

8.3 shows a pipelined connection of 13 KiloCore 2 chips, with the critical path highlighted in red

going through the two most computationally intensive layers: layer 7 and layer 12. The critical

path is the slowest path in the implementation, which sets the throughput of the whole pipelined

system. Using the simulation data in chapter 6, table 6.3, the throughput of this pipelined mapping

is assumed to be 1.506 FPS (0.664 s), which is 3.65× better than the single chip implementation.

Figure 8.3: Pipelined connection of 13 KiloCore 2 chips. The critical path along with the two
slowest layers are marked in red.

8.3 Quantization Aware Training

Quantization aware training is a technique used to improve the accuracy and efficiency of a

quantized CNN during inference. The main idea is to introduce quantization during training so the

CNN can optimize the weights for lower precision data [40]. For 16-bit quantization implemented in

this thesis, more simulation with different input images should be performed in order to evaluate

the overall accuracy. If using 8-bit quantization, this training strategy is likely required to make

sure that the final detection result of YOLOv3-Tiny can preserve as much accuracy as possible.

68

Chapter 9

Thesis Summary

This thesis presents a high-performance, memory-efficient, and power-efficient Convolutional

Neural Network inference implementation for the YOLOv3-Tiny Object Detection System on the

KiloCore 2 manycore platform.

Chapter 1 gives the motivation of this project, which states that a manycore platform is

best suited for running CNN inference and achieving a good power-performance balance. Chapter 2

and Chapter 3 introduce the software and hardware background of this work. Specifically, Chapter 2

explains why YOLOv3-Tiny is used, how it works, and how the CNN is constructed. Then Chapter

3 gives the hardware information of the KiloCore 2 chip, describes the architecture of its processors,

memories, and programming workflow. The YOLOv3-Tiny CNN is pre-processed in Chapter 4,

using BN folding and quantization to make it run more efficiently on the KiloCore 2 chip. All

the implementation details, from the top-level dataflow to the core level algorithms, are given in

Chapter 5. Finally, Chapter 6 evaluates the performance of the implementation, and Chapter 7

compares this work against a wide variety of hardware platforms. To improve this implementation

in the future, some practical optimization techniques are introduced in Chapter 8.

This work provides 9.17× to 440.87× improvement over the other hardware platforms

in terms of throughput per watt, at the same time offers the lowest EDP and still maintaining

the same performance comparable to other high-power CPUs and specialized GPU accelerators in

terms of throughput per area. The manycore implementation also consumes the least amount of

memory among all platforms, which significantly reduces the overall PCB area of the hardware

system, makes it suitable for mobile devices and edge-computing use cases.

69

Glossary

AsAP Asynchronous Array of simple Processors. A manycore platform designed by the VLSI

Computation Lab at UC Davis.

ASIC Application-Specific Integrated Circuit. Customized integrated circuit for one particular

application.

BN Batch Normalization. A normalization layer between convolution layers to stabilize the

activations during training.

Clang Compiler front end for the C, C++, Objective-C and Objective-C++ programming lan-

guages.

CMOS Complementary Metal–Oxide–Semiconductor.

CNN Convolutional Neural Network, a Deep Learning algorithm that can extract useful information

from a multi-dimensional input matrix, typically an image.

CPU Central Processing Unit. General-purpose processor that can handle various tasks.

DRAM Dynamic Random Access Memory. A type of volatile memory that is typically used as

the ”main memory” outside the processor. Cheap but slower than SRAM.

DVFS Dynamic Voltage and Frequency Scaling. A technique to reduce power consumption where

the voltage and frequency of a processor is dynamically adjusted based on its workload.

EDP Energy Delay Product. A metric to measure how energy-efficient and low-latency of a system

is.

70

FPS Frames per Second. A measurement of how many images can be processed for every second.

GALS Globally Asynchronous Locally Synchronous. A circuit design method that breaks the

global clock network into modular and decentralized clock domains.

GPU Graphic Processing Unit. A kind of processor that is optimized for processing image related

tasks.

im2col image to column, or image to column vector. An algorithm to efficiently implement

convolution.

KiloCore 2 The 4th generation of Asynchronous Array of simple Processors design inspired by

the AsAP 2.0 platform.

Leaky ReLU Leaky Rectified Linear Unit activation function. Allows a positive input to pass

without modification, and applies a small, positive gradient when the input is not positive.

ML Machine Learning. Using supervised or unsupervised algorithms to perform complex analysis

on large data sets. Example applications: Image Classification, Natural Language Processing,

Autonomous Driving, etc.

PD-SOI Partially Depleted Silicon-on-Insulator.

ReLU Rectified Linear Unit activation function. Allows a positive input to pass without modifica-

tion, and removes every non-positive input.

RISC Reduced Instruction Set Computer. A computer (processor) that uses a short and optimized

Instruction Set.

SIMO Single Input Multiple output.

SQNR Signal to Quantization Noise Ratio. A measurement showing the quality and accuracy of

the quantization.

SRAM Static Random Access Memory. A type of volatile memory that is typically used as the

first-level cache to the processor. Extremely fast but expensive.

71

TDP Thermal Design Power. Refers to the power consumption under the maximum theoretical

load.

YOLO You Only Look Once. An Object Detection System that can output predictions in one

Neural Network evaluation. The network is trained to predict categoriness, location, and

bounding boxes all at the same time, the data is encoded inside the output 3D tensor, so no

Softmax layer or Fully-connected layer is used.

72

Bibliography

[1] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection, 2016.

[2] Brent Bohnenstiehl. Design and Programming of the KiloCore Processor Ar-
rays. PhD thesis, University of California, Davis, Davis, CA, USA, March 2020.
http://vcl.ece.ucdavis.edu/pubs/theses/2020-1.bbohnenstiehl/.

[3] Aaron Stillmaker, Brent Bohnenstiehl, and Bevan Baas. The design of the kilocore chip. In
ACM/IEEE Design Automation Conference, Austin, TX, Jun. 2017.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015.

[5] Aaron Stillmaker and Bevan Baas. Scaling equations for the accurate prediction of cmos device
performance from 180nm to 7nm. Integration, 58:74–81, 2017.

[6] Nvidia jetson nano gpu specs — techpowerup gpu database. https://www.techpowerup.com/gpu-
specs/jetson-nano-gpu.c3643. Accessed: 8/6/21.

[7] Nvidia jetson tx2 gpu specs — techpowerup gpu database. https://www.techpowerup.com/gpu-
specs/jetson-tx2-gpu.c3231. Accessed: 8/6/21.

[8] Byung-Gil Han, Joon-Goo Lee, Kil-Taek Lim, and Doo-Hyun Choi. Design of a scalable and
fast yolo for edge-computing devices. Sensors, 20(23), 2020.

[9] Intel core i3-8145u specs — techpowerup cpu database. https://www.techpowerup.com/cpu-
specs/core-i3-8145u.c2101. Accessed: 8/6/21.

[10] Intel core i9-9900k specs — techpowerup cpu database. https://www.techpowerup.com/cpu-
specs/core-i9-9900k.c2098. Accessed: 8/6/21.

[11] Jetson nano: Deep learning inference benchmarks. https://developer.nvidia.com/embedded/jetson-
nano-dl-inference-benchmarks. Accessed: 8/6/21.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, May 2017.

[13] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision, 2015.

[14] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test
resolution discrepancy, 2020.

73

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge, 2015.

[16] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing
unit, 2017.

[17] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks
on cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[18] Zhewen Yu and Christos-Savvas Bouganis. A parameterisable fpga-tailored architecture for
yolov3-tiny. In Fernando Rincón, Jesús Barba, Hayden K. H. So, Pedro Diniz, and Julián
Caba, editors, Applied Reconfigurable Computing. Architectures, Tools, and Applications, pages
330–344, Cham, 2020. Springer International Publishing.

[19] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

[20] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work, Jeremy
Webb, Michael Lai, Tinoosh Mohsenin, Dean Truong, and Jason Cheung. AsAP: A fine-grained
many-core platform for DSP applications. IEEE Micro, 27(2):34–45, March 2007.

[21] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy Webb, Eric
Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan M. Baas. An asynchronous array of
simple processors for dsp applications. In IEEE International Solid-State Circuits Conference,
(ISSCC ’06), pages 428–429, February 2006.

[22] Zhiyi Yu, M.J. Meeuwsen, R.W. Apperson, O. Sattari, M. Lai, J.W. Webb, E.W. Work,
D. Truong, T. Mohsenin, and B.M. Baas. AsAP: An asynchronous array of simple processors.
Solid-State Circuits, IEEE Journal of, 43(3):695–705, Mar. 2008.

[23] D. Truong, W. Cheng, T. Mohsenin, Zhiyi Yu, T. Jacobson, G. Landge, M. Meeuwsen,
C. Watnik, P. Mejia, Anh Tran, J. Webb, E. Work, Zhibin Xiao, and B. Baas. A 167-processor
65 nm computational platform with per-processor dynamic supply voltage and dynamic clock
frequency scaling. In VLSI Circuits, 2008 IEEE Symposium on, June 2008.

[24] Bevan M. Baas. A parallel programmable energy-efficient architecture for computationally-
intensive DSP systems. In Signals, Systems and Computers, 2003. Conference Record of the
Thirty-Seventh Asilomar Conference on, November 2003.

[25] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. KiloCore: A 32 nm 1000-processor array. In IEEE HotChips Symposium on High-
Performance Chips, August 2016.

74

[26] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. A 5.8 pJ/Op 115 billion Ops/sec, to 1.78 trillion Ops/sec 32 nm 1000-processor array.
In Symposium on VLSI Circuits, June 2016.

[27] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J. Meeuwsen,
A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas. A 167-processor
computational platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits (JSSC),
44(4):1130–1144, April 2009.

[28] Zhiyi Yu and Bevan M. Baas. A low-area multi-link interconnect architecture for GALS
chip multiprocessors. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
18(5):750–762, May 2010.

[29] Tinoosh Mohsenin and Bevan M. Baas. Split-row: A reduced complexity, high throughput
LDPC decoder architecture. In IEEE International Conference of Computer Design (ICCD),
October 2006.

[30] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. Kilocore: A 32-nm 1000-processor computational array. IEEE Journal of Solid-State
Circuits (JSSC), 52(4):891–902, April 2017.

[31] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. KiloCore: A fine-grained 1,000-processor array for task parallel applications. IEEE
Micro, 37(2):63–69, March 2017.

[32] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, 2016.

[33] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High Performance Convolutional Neural
Networks for Document Processing. In Guy Lorette, editor, Tenth International Workshop on
Frontiers in Handwriting Recognition, La Baule (France), October 2006. Université de Rennes
1, Suvisoft. http://www.suvisoft.com.

[34] Yangqing Jia. Learning semantic image representations at a large scale, 2014.

[35] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks,
2013.

[36] Aaron Stillmaker, Zhibin Xiao, and Bevan Baas. Toward more accurate scaling esti-
mates of cmos circuits from 180 nm to 22 nm. Technical Report ECE-VCL-2011-4,
VLSI Computation Lab, ECE Department, University of California, Davis, December 2011.
http://www.ece.ucdavis.edu/cerl/techreports/2011-4/.

[37] Norbert Mitschke, Michael Heizmann, Klaus-Henning Noffz, and Ralf Wittmann. A fixed-point
quantization technique for convolutional neural networks based on weight scaling. In 2019
IEEE International Conference on Image Processing (ICIP), pages 3836–3840, 2019.

[38] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks
on cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[39] Light version of convolutional neural network yolo v3 & v2 for objects detection with a minimum
of dependencies (int8-inference, bit1-xnor-inference). https://github.com/AlexeyAB/yolo2 light.
Accessed: 8/6/21.

75

[40] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference, 2017.

76

