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Abstract

A t-(n, k, λ) design overFq is a collection ofk-dimensional subspaces ofFn
q , called blocks,

such that eacht-dimensional subspace ofFn
q is contained in exactlyλ blocks. Sucht-designs

overFq are theq-analogs of conventional combinatorial designs. Nontrivial t-(n, k, λ) designs
overFq are currently known to exist only fort 6 3. Herein, we prove that simple (meaning,
without repeated blocks) nontrivialt-(n, k, λ) designs overFq exist for all t andq, provided
thatk > 12t andn is sufficiently large. This may be regarded as aq-analog of the celebrated
Teirlinck theorem for combinatorial designs.

http://arxiv.org/abs/1306.2088v1


1. Introduction

Let X be a set withn elements. At-(n, k, λ) combinatorial design(or t-design, in brief) is a col-

lection of k-subsets ofX, called blocks, such that eacht-subset ofX is contained in exactlyλ

blocks. At-design is said to besimpleif there are no repeated blocks — that is, all thek-subsets in

the collection are distinct. Atrivial t-designis the set of allk-subsets ofX. The celebrated theorem

of Teirlinck [20] establishes the existence of nontrivial simple t-designs for allt.

It was suggested by Tits [23] in 1957 that combinatorics of sets could be regarded as the limiting

caseq→ 1 of combinatorics of vector spaces over the finite fieldFq. Indeed, there is a strong anal-

ogy between subsets of a set and subspaces of a vector space, expounded by numerous authors [6,

9,24]. In particular, the notion oft-designs has been extended to vector spaces by Cameron [4,5]

and Delsarte [7] in the early 1970s. Specifically, letFn
q be a vector space of dimensionn over the

finite field Fq. Then at-(n, k, λ) design overFq is a collection ofk-dimensional subspaces ofFn
q

(k-subspaces, for short), called blocks, such that eacht-subspace ofFn
q is contained in exactlyλ

blocks. Sucht-designs overFq are theq-analogs of conventional combinatorial designs. As for

combinatorial designs, we will say that at-design overFq is simpleif it does not have repeated

blocks, andtrivial if it is the set of allk-subspaces ofFn
q .

The first examples of simple nontrivialt-designs overFq with t > 2 were found by Thomas [21]

in 1987. Today, following the work of many authors [3,11,15,16,18,19,22], numerous such exam-

ples are known. All these examples havet = 2 or t = 3. If repeated blocks are allowed, nontrivial

t-designs overFq exist for allt, as shown in [16]. However, no simple nontrivialt-designs overFq

are presently known fort > 3. Our main result is the following theorem.

Theorem 1. Simple nontrivialt-(n, k, λ) designs overFq exist for allq andt, and allk > 12(t+1)

provided thatn > ckt for a large enough absolute constantc. Moreover, theset-(n, k, λ) designs

have at mostq12(t+1)n blocks.

This theorem can be regarded as aq-analog of Teirlinck’s theorem [20] for combinatorial de-

signs. Our proof of Theorem 1 is based on a new probabilistic technique introduced by Kuperberg,

Lovett, and Peled in [12] to prove the existence of certain regular combinatorial structures. We note

that this proof technique is purely existential: there is noknown efficient algorithm which can pro-

ducet-(n, k, λ) design overFq for t > 3. Hence, we pose the following as an open problem:

Design an efficient algorithm to produce simple nontrivialt-(n, k, λ) designs for larget (⋆)

The rest of this paper is organized as follows. We begin with some preliminary definitions in the

next section. We present the Kuperberg-Lovett-Peled (KLP)theorem of [12] in Section 3. In Sec-

tion 4, we apply this theorem to prove the existence of simplet-designs overFq for all q and t.

Detailed proofs of some of the technical lemmas are deferredto Section 5.
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2. Preliminaries

Let Fq denote the finite field withq elements, and letFn
q be a vector space of dimensionn overFq.

We recall some basic facts that relate to counting subspacesof Fn
q . The number of distinctk-sub-

spaces ofFn
q is given by theq-binomial (a.k.a. Gaussian) coefficient

[

n

k

]

q

def
=

[n]q!

[k]q! [n − k]q!
(1)

where[n]q! is theq-factorial defined by

[n]q!
def
= [1]q[2]q . . . [n]q =

(

1 + q
)(

1 + q + q2
)

· · ·
(

1 + q + q2 + · · ·+ qn
)

(2)

Observe the similarities between (1) and (2) and the conventional binomial coefficients and facto-

rials, respectively. Many more similarities between the combinatorics of sets and combinatorics of

vector spaces are known; see [10], for example. Here, all we need are upper and lower bounds on

q-binomial coefficients, established in the following lemma.

Lemma 2.

qk(n−k)
6

[

n

k

]

q

6

(

n

k

)

qk(n−k)

Proof. We use the following identity from [10, p. 19],
[

n

k

]

q

= ∑
16s1<s2<···<sk6n

q(s1+s2+...+sk)−k(k+1)/2 (3)

The largest term in the sum of (3) isqk(n−k), which corresponds tosi = n − k + i for all i. The

number of terms in the sum is(n
k), and the lemma follows.

3. The KLP theorem

Kuperberg, Lovett, and Peled [12] developed a powerful probabilistic method to prove the exis-

tence of certain regular combinatorial structures, such asorthogonal arrays, combinatorial designs,

andt-wise permutations. In this section, we describe their maintheorem.

Let M be a|B| × |A| matrix with integer entries, whereA andB are the set of columns and the

set of rows ofM, respectively. We think of the elements ofA, respectivelyB, as vectors inZB,

respectively inZA. We are interested in those matricesM that satisfy the five properties below.
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1. Constant vector. There exists a rational linear combination of the columns ofM that pro-

duces the vector(1, 1, . . . , 1)T.

2. Divisibility. Let b denote the average of the rows ofM, namelyb = 1
|B| ∑b∈B b. There is an

integerc1 < |B| such that the vectorc1b can be produced as an integer linear combination of

the rows ofM. The smallest suchc1 is called thedivisibility parameter.

3. Boundedness. The absolute value of all the entries inM is bounded by an integerc2, which

is called theboundedness parameter.

4. Local decodability. There exist a positive integerm and an integerc3 > m such that, for ev-

ery columna ∈ A, there is a vector of coefficientsγa = (γ1, γ2 . . . , γ|B|) ∈ ZB satisfying

||γa||1 6 c3 and∑b∈B γbb = mea, whereea ∈ {0, 1}A is the vector with1 in coordinate

a and0 in all other coordinates. The parameterc3 is called thelocal decodability parameter.

5. Symmetry. A symmetryof the matrixM is a permutation of rowsπ ∈ SB for which there

exists an invertible linear mapℓ : QA → QA such that applying the permutation on rows and

the linear map on columns does not change the matrix, namelyℓ(π(M)) = M. The group of

symmetries ofM is denoted bySym(M). It is required that this group acts transitively onB.

That is, for allb1, b2 ∈ B there exists a permutationπ ∈ Sym(M) satisfyingπ(b1) = b2.

The following theorem has been proved by Kuperberg, Lovett,and Peled in [12]. In fact, the

results of Theorem 2.4 and Claim 3.2 of [12] are more general than Theorem 3 below. However,

Theorem 3 will suffice for our purposes.

Theorem 3. Let M be a|B| × |A| integer matrix satisfying the five properties above. LetN be an

integer divisible byc1 such that

c|A|52/5c1(c2c3)
12/5 log

(

|A|c2

)8
6 N < |B| (4)

wherec > 0 is a sufficiently large absolute constant. Then there existsa set of rowsT ⊂ B of size

|T| = N such that the average of the rows inT is equal to the average of all the rows inM, namely

1

N ∑
b∈T

b =
1

|B| ∑
b∈B

b = b (5)

4. Proof of the main result

We will apply Theorem 3 to prove existence of designs over finite fields. We first introduce the ap-

propriate matrixM, which is the incidence matrix oft-subspaces andk-subspaces.
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Let M be a|B| × |A| matrix, whose columnsA and rowsB correspond to thet-subspaces and

thek-subspaces ofFn
q , respectively. Thus|A| = [nt ]q and|B| = [nk]q. The entries ofM are defined

by Mb,a = 1a⊂b. It is easy to see that a simplet-(n, k, λ) design overFq corresponds to a set of

rowsb1, b2, . . . , bN of M such that

b1 + b2 + · · ·+ bN = (λ, λ, . . . , λ) for someλ ∈ N (6)

Note that this impliesλ[nt ]q = N[kt]q, because each rowb ∈ B has Hamming weight[kt]q. In order

to relate (6) to Theorem 3, we need the following simple lemma. The lemma is well known; we

include a brief proof for completeness.

Lemma 4. Let V be at-subspace ofFn
q . The number ofk-subspacesU such thatV ⊂ U ⊂ Fn

q

is given by[n−t
k−t]q.

Proof. Fix a basis{v1, v2, . . . , vt} for V. We extend this basis to a basis{v1, v2, . . . , vk} for U.

The number of ways to do so is(qn − qt)(qn − qt+1) · · · (qn − qk−1). However, each subspaceU

that containsV is counted(qk − qt)(qk − qt+1) · · · (qk − qk−1) times in the above expression.

It follows from Lemma 4 that

b =
1

|B| ∑
b∈B

b =

[

n − t

k − t

]

q
[

n

k

]

q

(

1, 1, . . . , 1
)

=

[

k

t

]

q
[

n

t

]

q

(

1, 1, . . . , 1
)

(7)

Therefore, a simple nontrivialt-(n, k, λ) design overFq is a set ofN < |B| rows ofM satisfying

b1 + b2 + · · ·+ bN = Nb

But this is precisely the guarantee provided by Theorem 3 in (5). Note that the corresponding value

of λ = N[kt]q/[nt ]q would be generally quite large.

4.1. Parameters for the KLP theorem

Let us now verify that the matrixM satisfies the five conditions in Theorem 3 and estimate the

relevant parametersc1, c2, c3 in (4).

Constant vector. Eachk-subspace contains exactly[kt]q t-subspaces, so the sum of all the columns

of M is [kt]q(1, . . . , 1)T. Hence(1, 1, . . . , 1)T is a rational linear combination of the columns ofM.
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Symmetry. An invertible linear transformationL : Fn
q → Fn

q acts on the set ofk-subspaces by

mappingU = 〈v1, v2, . . . , vk〉 to L(U) = 〈L(v1), L(v2) . . . , L(vk)〉. It acts on the set oft-sub-

spaces in the same way. Note that ifU is ak-subspace andV is a t-subspace, thenV ⊂ U if and

only if L(V) ⊂ L(U). Now, letπL ∈ SB be the permutation of rows ofM induced byL, and let

σL ∈ SA be the permutation of columns ofM induced byL. ThenπL

(

σL(M)
)

= M. Note thatσL

acts as an invertible linear map onQA by permuting the coordinates. Hence,πL is a symmetry

of M. The corresponding symmetry group is, in fact, the general linear groupGL(n, q). It is well

known thatGL(n, q) is transitive: for any twok-subspacesU1, U2, we can find an invertible linear

transformationL such thatL(U1) = U2, which impliesπL(b1) = b2 for the corresponding rows.

Boundedness. Since all entries ofM are either0 or 1, we can setc2 = 1.

Local decodability. Let m be a positive integer to be determined later. Fix at-subspaceV corre-

sponding to a column ofM. We wish to find a short integer combination of rows ofM summing

to meV . In order to do so, we fix an arbitrary(t + k)-subspaceW that containsV. As part of the

short integer combination, we will only choose those rows that correspond to thek-subspaces con-

tained inW. Moreover, the integer coefficient for ak-subspaceU ⊂ W will depend only on the

dimensionj = dim(U ∩ V). We denote this coefficient byfk,t(j).

We need the following conditions to hold. First, by Lemma 4, there are[ k
k−t]q k-subspacesU

such thatV ⊂ U ⊂ W. Therefore, we need

fk,t(t)

[

k

k − t

]

q

= m (8)

Second, for any othert-subspaceV ′ ⊂ Fn
q , we need that

∑
V ′⊂U⊂W

fk,t

(

dim(U ∩ V)
)

= 0 (9)

where the sum is over allk-subspacesU containingV ′ and contained inW. Note that we only need

to consider thoset-subspacesV ′ that are contained inW. For all othert-subspaces, our integer

combination of rows ofM produces zero by construction.

The following lemma counts the number ofk-subspaces which containV ′ and whose intersec-

tion with V has a prescribed dimension. Its proof is deferred to Section5.

Lemma 5. LetV1, V2 be two distinctt-subspaces ofFn
q such thatdim(V1 ∩ V2) = l for somel in

{0, 1, . . . , t − 1}. The number ofk-subspacesU ⊂ Fn
q such thatV1 ⊂ U anddim(U ∩ V2) = j,

for somej ∈ {l, l + 1, . . . , t}, is given by

q(k−t−j+l)(t−j)

[

t − l

j − l

]

q

[

n − 2t + l

k − t − j + l

]

q

(10)
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With the help of Lemma 5 we can rephrase (9) as the following set of t linear equations:
t

∑
j=l

fk,t(j)

[

t − l

t − j

]

q

[

k − t + l

j

]

q

q(k−t−j+l)(t−j) = 0 for l = 0, 1, . . . , t − 1 (11)

Equations (8) and (11) together form a set oft + 1 linear equations, which can be represented in

the form of a matrix production:

D f = (0, 0, . . . , 0, m)T (12)

wheref =
(

fk,t(0), fk,t(1), . . . , fk,t(t)
)T

andD is an upper-triangular(t+1)× (t+1) matrix with

entries

dl,j =

[

t − l

t − j

]

q

[

k − t + l

j

]

q

q(k−t−j+l)(t−j) for 0 6 l 6 j 6 t (13)

The conditiont 6 k ensures nonzero values on the main diagonal. Therefore,det D is nonzero

and the system of linear equations is solvable. By Cramer’s rule, we have

fk,t(j) =
det Dj

det D
m (14)

whereDj is the matrix formed by replacing thej-th column ofD by the vector(0, 0, . . . , 1)T. Note

thatdet D is an integer. Thus we setm = det D, so thatfk,t(j) = det Dj. This guarantees that

the coefficientsfk,t(0), fk,t(1), . . . , fk,t(t) are integers.

We are now in a position to establish a bound on the local decodability parameterc3. First, the

following lemma bounds the determinants ofD andDj. We defer its proof to Section 5.

Lemma 6.
|det D| 6 qk(t+1)2

|det Dj| 6 qk(t+1)2
for j = 0, 1, . . . , t

The number ofk-subspacesU contained inW is [k+t
k ]q. We have multiplied the row ofM cor-

responding to each such subspace by a coefficientfk,t(j) which is bounded byqk(t+1)2
. Hence

c3 = max
{

m, ‖ f‖1

}

6

[

k + t

k

]

q

qk(t+1)2
6

(

k + t

k

)

qktqk(t+1)2
6 q2k(t+1)2

(15)

Divisibility. The proof of local decodability also makes it possible to establish a bound on the di-

visibility parameterc1. We already know that form = det D, we can represent any element in

mZA as an integer combination of rows ofM. By (7), we have[nt ]qb = [kt]q(1, 1, . . . , 1). Hence,

m[nt ]qb ∈ mZA can be expressed as an integer combination of rows ofM. It follows that

c1 6 m

[

n

t

]

q

6 qk(t+1)2
(

n

t

)

qt(n−t)
6 qk(t+1)2+t(n−t)+n (16)

7



4.2. Putting it all together

We have proved that the incidence matrixM satisfies the five conditions in Theorem 3, and estab-

lished the following bounds on the parameters:

c1 6 qk(t+1)2+t(n−t)+n (17)

c2 = 1 (18)

c3 6 q2k(t+1)2
(19)

By Lemma 2, we also have

|A| =

[

n

t

]

q

6

(

n

t

)

qt(n−t)
6 qt(n−t)+n (20)

|B| =

[

n

k

]

q

> qk(n−k) (21)

Combining (4) with (17) – (20), we see that the lower bound onN in Theorem 3 is at most

c′|A|52/5c1(c2c3)
12/5 log(|A|c2)

8
6 cq(57/5)·(t+1)n+ckt2

nc (22)

for some absolute constantc > 0. If we fix t andk, while makingn large enough, then the right-

hand side of (22) is bounded bycq12(t+1)n. In view of (21), this is strictly less than|B| whenever

k > 12(t+ 1) andn is large enough. It now follows from Theorem 3 that for large enoughn, there

exists a simplet-(n, k, λ)-design overFq of sizeN 6 cq12n(t+1). The reader can verify that this

holds whenevern > c̃kt for a large enough constantc̃ > 0.

5. Proof of the technical lemmas

In this section, we prove the two technical lemmas (Lemma 5 and Lemma 6) we have used to es-

tablish the local decodability property.

5.1. Proof of Lemma 5

Let V1, V2 be two distinctt-subspaces ofFn
q with dim(V1 ∩V2) = l. LetU be ak-subspace ofFn

q

such thatV1 ⊂ U anddim(U ∩V2) = j. Further, letX = V1 ∩V2 andY = V1 + V2. It is not dif-

ficult to show that the following holds:

dim(X) = l dim(Y) = 2t − l

dim(U ∩ V1) = t dim(U ∩ V2) = j (23)

dim(U ∩ X) = l dim(U ∩ Y) = t + j − l

8



We will proceed in three steps. First, fix a basis{v1, v2, . . . , vt} for V1. Next, we extendV1 to

the subspaceZ = U ∩ Y which has an intersection of dimensionj with V2. In order to do that,

we pick j − l vectorsvt+1, vt+2, . . . , vt+j−l from Y \ V1, in such a way thatv1, v2 . . . , vt+j−l are

linearly independent. The number of ways to do so is

N1 =
j−l−1

∏
i=0

(

q2t−l − qt+i
)

(24)

However, each such subspaceZ is counted more than once in (24), since there are many different

ordered bases forZ. The appropriate normalizing factor isN2 = ∏
j−l−1
i=0

(

qt+j−l − qt+i
)

. Hence,

the total number of different choices forZ is

N1

N2
=

j−l−1

∏
i=0

q2t−l − qt+i

qt+j−l − qt+i
=

j−l−1

∏
i=0

qt−l − qi

qj−l − qi
=

[

t − l

j − l

]

q

(25)

In order to to completeU, we need to extendZ by k − (t + j − l) linearly independent vectors

chosen fromFn
q \ Y. The number of ways to do so isN3 = ∏

k−(t+j−l)−1
i=0

(

qn − q(2t−l)+i
)

, with

normalizing factorN4 = ∏
k−(t+j−l)−1
i=0

(

qk − q(t+j−l)+i
)

. We have

N3

N4
=

k−(t+j−l)−1

∏
i=0

q(2t−l)+i

q(t+j−l)+i
·

qn−(2t−l)−i − 1

qk−(t+j−l)−i − 1
= q(k−t−j+l)(t−j)

[

n − 2t + l

k − (t + j − l)

]

q

(26)

Combining (25) and (26), the total number of different choices for the desired subspaceU is given

by (10), as claimed.

5.2. Proof of Lemma 6

Lemma 6 follows from the following two lemmas. The first bounds the product of the largest ele-

ments in each row. The second bounds the number of nonzero generalized diagonals inDj — that

is, the number of permutationsπ ∈ St+1 such that(Dj)i,π(i) 6= 0 for all i ∈ {0, 1, . . . , t}.

Lemma 7.
t

∏
l=0

max
j

dl,j 6 2k(t+1)+1q(k−t)t(t+1)

Proof. We first argue that forl ∈ {1, 2, . . . , t}, the largest element in rowl is dl,l. For l = 0, the

largest element in the row is eitherd0,0 or d0,1. To see that, we calculate

9



dl,j+1

dl,j
=

[

t − l

t − j − 1

]

q
[

t − l

t − j

]

q

·

[

k − t + l

j + 1

]

q
[

k − t + l

j

]

q

· q(k−t−j+l−1)(t−j−1)−(k−t−j+l)(t−j)

=
[t − j]q![j − l]q!

[t − j − 1]q![j − l + 1]q!
·

[j]q![k − t + l − j]q!

[j + 1]q![k − t + l − j − 1]q!
· q1−(t−j)−(k−t−j+l)

=
qt−j − 1

qj−l+1 − 1
·

qk−t+l−j − 1

qj+1 − 1
· q1−(t−j)−(k−t−j+l)

=
qt−j − 1

qt−j

qk−t−j+l − 1

qk−t−j+l

q

(qj+1 − 1)(qj−l+1 − 1)

<
q

(qj+1 − 1)(qj−l+1 − 1)

Note that unlessj = l = 0, this implies thatdl,j+1 < dl,j. The only remaining case isd0,1/d0,0 <

q/(q − 1)2. This ratio can be at most2 for q = 2, and is below1 for q > 2. Hence

t

∏
l=0

max
j

dl,j 6 2
t

∏
j=0

dj,j

We next bound this product:

t

∏
j=0

dj,j =
t

∏
j=0

[

k − t + j

j

]

q

q(k−t)(t−j)
6

t

∏
j=0

(

k − t + j

j

)

qj(k−t)+(k−t)(t−j)
6 2k(t+1)q(k−t)t(t+1)

Lemma 8. Dj has at most2t nonzero generalized diagonals.

Proof. Let π ∈ Sn be such that(Dj)i,π(i) 6= 0 for all i. If j > 0 then we must haveπ(i) = i for

all i < j, andπ(t) = j. Lettingr = t − j this reduces to the following problem: letR be anr × r

matrix corresponding to rowsj, . . . , t − 1 and columnsj + 1, . . . , t of Dj. This matrix has entries

rl,j 6= 0 only for j > l − 1. We lemma that such matrices have at most2t nonzero generalized

diagonals. We show this by induction onr. Let us index the rows and columns ofR by 1, . . . , r. To

get a nonzero generalized diagonal we must haveπ(r) = r − 1 or π(r) = r. In both cases, if we

delete ther-th row and theπ(r)-th column ofR, one can verify that we get an(r − 1)× (r − 1)

matrix of the same form (e.g. zero values in coordinates(l, j) wheneverj < l − 1). The lemma

now follows by induction.

Proof of Lemma 6.The determinant ofD or Dj is bounded by the number of nonzero generalized

diagonals (which is1 for D, and at most2t for Dj), multiplied by the maximal value a product of

choosing one element per row can take. Hence, it is bounded by

max
{

|det D|, |det Dj|
}

6 2t · 2k(t+1)+1q(k−t)t(t+1)
6 qt+k(t+1)+1+(k−t)t(t+1)

6 qk(t+1)2

10
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