UC San Diego

UC San Diego Previously Published Works

Title

Nontrivial t-designs over finite fields exist for all t

Permalink

https://escholarship.org/uc/item/1b52234d

Journal

Journal of Combinatorial Theory Series A, 127(1)

ISSN

0097-3165

Authors

Fazeli, Arman Lovett, Shachar Vardy, Alexander

Publication Date

2014-09-01

DOI

10.1016/j.jcta.2014.06.001

Peer reviewed

Nontrivial t-Designs over Finite Fields Exist for All t

Arman Fazeli

University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093 afazelic@ucsd.edu

Shachar Lovett

University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093 slovett@ucsd.edu

Alexander Vardy

University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093 avardy@ucsd.edu

June 11, 2013

Abstract

A t- (n,k,λ) design over \mathbb{F}_q is a collection of k-dimensional subspaces of \mathbb{F}_q^n , called blocks, such that each t-dimensional subspace of \mathbb{F}_q^n is contained in exactly λ blocks. Such t-designs over \mathbb{F}_q are the q-analogs of conventional combinatorial designs. Nontrivial t- (n,k,λ) designs over \mathbb{F}_q are currently known to exist only for $t \leq 3$. Herein, we prove that simple (meaning, without repeated blocks) nontrivial t- (n,k,λ) designs over \mathbb{F}_q exist for all t and q, provided that k > 12t and n is sufficiently large. This may be regarded as a q-analog of the celebrated Teirlinck theorem for combinatorial designs.

1. Introduction

Let X be a set with n elements. A t- (n,k,λ) combinatorial design (or t-design, in brief) is a collection of k-subsets of X, called blocks, such that each t-subset of X is contained in exactly λ blocks. A t-design is said to be *simple* if there are no repeated blocks — that is, all the k-subsets in the collection are distinct. A *trivial t-design* is the set of all k-subsets of X. The celebrated theorem of Teirlinck [20] establishes the existence of nontrivial simple t-designs for all t.

It was suggested by Tits [23] in 1957 that combinatorics of sets could be regarded as the limiting case $q \to 1$ of combinatorics of vector spaces over the finite field \mathbb{F}_q . Indeed, there is a strong analogy between subsets of a set and subspaces of a vector space, expounded by numerous authors [6, 9,24]. In particular, the notion of t-designs has been extended to vector spaces by Cameron [4,5] and Delsarte [7] in the early 1970s. Specifically, let \mathbb{F}_q^n be a vector space of dimension n over the finite field \mathbb{F}_q . Then a t- (n,k,λ) design over \mathbb{F}_q is a collection of k-dimensional subspaces of \mathbb{F}_q^n (k-subspaces, for short), called blocks, such that each t-subspace of \mathbb{F}_q^n is contained in exactly λ blocks. Such t-designs over \mathbb{F}_q are the q-analogs of conventional combinatorial designs. As for combinatorial designs, we will say that a t-design over \mathbb{F}_q is simple if it does not have repeated blocks, and trivial if it is the set of all k-subspaces of \mathbb{F}_q^n .

The first examples of simple nontrivial t-designs over \mathbb{F}_q with $t \ge 2$ were found by Thomas [21] in 1987. Today, following the work of many authors [3,11,15,16,18,19,22], numerous such examples are known. All these examples have t=2 or t=3. If repeated blocks are allowed, nontrivial t-designs over \mathbb{F}_q exist for all t, as shown in [16]. However, no simple nontrivial t-designs over \mathbb{F}_q are presently known for t>3. Our main result is the following theorem.

Theorem 1. Simple nontrivial t- (n,k,λ) designs over \mathbb{F}_q exist for all q and t, and all k > 12(t+1) provided that $n \ge ckt$ for a large enough absolute constant c. Moreover, these t- (n,k,λ) designs have at most $q^{12(t+1)n}$ blocks.

This theorem can be regarded as a q-analog of Teirlinck's theorem [20] for combinatorial designs. Our proof of Theorem 1 is based on a new probabilistic technique introduced by Kuperberg, Lovett, and Peled in [12] to prove the existence of certain regular combinatorial structures. We note that this proof technique is purely existential: there is no known efficient algorithm which can produce t- (n, k, λ) design over \mathbb{F}_q for t > 3. Hence, we pose the following as an open problem:

Design an efficient algorithm to produce simple nontrivial t- (n,k,λ) designs for large t (\star)

The rest of this paper is organized as follows. We begin with some preliminary definitions in the next section. We present the Kuperberg-Lovett-Peled (KLP) theorem of [12] in Section 3. In Section 4, we apply this theorem to prove the existence of simple t-designs over \mathbb{F}_q for all q and t. Detailed proofs of some of the technical lemmas are deferred to Section 5.

2. Preliminaries

Let \mathbb{F}_q denote the finite field with q elements, and let \mathbb{F}_q^n be a vector space of dimension n over \mathbb{F}_q . We recall some basic facts that relate to counting subspaces of \mathbb{F}_q^n . The number of distinct k-subspaces of \mathbb{F}_q^n is given by the q-binomial (a.k.a. Gaussian) coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q \stackrel{\text{def}}{=} \frac{[n]_q!}{[k]_q! [n-k]_q!} \tag{1}$$

where $[n]_q!$ is the *q-factorial* defined by

$$[n]_q! \stackrel{\text{def}}{=} [1]_q[2]_q \dots [n]_q = (1+q)(1+q+q^2) \dots (1+q+q^2+\dots+q^n)$$
 (2)

Observe the similarities between (1) and (2) and the conventional binomial coefficients and factorials, respectively. Many more similarities between the combinatorics of sets and combinatorics of vector spaces are known; see [10], for example. Here, all we need are upper and lower bounds on *q*-binomial coefficients, established in the following lemma.

Lemma 2.

$$q^{k(n-k)} \leqslant {n \brack k}_q \leqslant {n \choose k} q^{k(n-k)}$$

Proof. We use the following identity from [10, p. 19],

The largest term in the sum of (3) is $q^{k(n-k)}$, which corresponds to $s_i = n - k + i$ for all i. The number of terms in the sum is $\binom{n}{k}$, and the lemma follows.

3. The KLP theorem

Kuperberg, Lovett, and Peled [12] developed a powerful probabilistic method to prove the existence of certain regular combinatorial structures, such as orthogonal arrays, combinatorial designs, and *t*-wise permutations. In this section, we describe their main theorem.

Let M be a $|B| \times |A|$ matrix with integer entries, where A and B are the set of columns and the set of rows of M, respectively. We think of the elements of A, respectively B, as vectors in \mathbb{Z}^B , respectively in \mathbb{Z}^A . We are interested in those matrices M that satisfy the five properties below.

- **1. Constant vector.** There exists a rational linear combination of the columns of M that produces the vector $(1, 1, ..., 1)^T$.
- **2. Divisibility.** Let \overline{b} denote the average of the rows of M, namely $\overline{b} = \frac{1}{|B|} \sum_{b \in B} b$. There is an integer $c_1 < |B|$ such that the vector $c_1\overline{b}$ can be produced as an integer linear combination of the rows of M. The smallest such c_1 is called the *divisibility parameter*.
- **3. Boundedness.** The absolute value of all the entries in M is bounded by an integer c_2 , which is called the *boundedness parameter*.
- **4. Local decodability.** There exist a positive integer m and an integer $c_3 \ge m$ such that, for every column $a \in A$, there is a vector of coefficients $\gamma^a = (\gamma_1, \gamma_2, \dots, \gamma_{|B|}) \in \mathbb{Z}^B$ satisfying $||\gamma^a||_1 \le c_3$ and $\sum_{b \in B} \gamma_b b = m e_a$, where $e_a \in \{0,1\}^A$ is the vector with 1 in coordinate a and 0 in all other coordinates. The parameter c_3 is called the *local decodability parameter*.
- **5. Symmetry.** A *symmetry* of the matrix M is a permutation of rows $\pi \in S_B$ for which there exists an invertible linear map $\ell : \mathbb{Q}^A \to \mathbb{Q}^A$ such that applying the permutation on rows and the linear map on columns does not change the matrix, namely $\ell(\pi(M)) = M$. The group of symmetries of M is denoted by Sym(M). It is required that this group acts transitively on B. That is, for all $b_1, b_2 \in B$ there exists a permutation $\pi \in Sym(M)$ satisfying $\pi(b_1) = b_2$.

The following theorem has been proved by Kuperberg, Lovett, and Peled in [12]. In fact, the results of Theorem 2.4 and Claim 3.2 of [12] are more general than Theorem 3 below. However, Theorem 3 will suffice for our purposes.

Theorem 3. Let M be a $|B| \times |A|$ integer matrix satisfying the five properties above. Let N be an integer divisible by c_1 such that

$$c|A|^{52/5}c_1(c_2c_3)^{12/5}\log(|A|c_2)^8 \le N < |B|$$
 (4)

where c > 0 is a sufficiently large absolute constant. Then there exists a set of rows $T \subset B$ of size |T| = N such that the average of the rows in T is equal to the average of all the rows in M, namely

$$\frac{1}{N} \sum_{b \in T} b = \frac{1}{|B|} \sum_{b \in B} b = \overline{b} \tag{5}$$

4. Proof of the main result

We will apply Theorem 3 to prove existence of designs over finite fields. We first introduce the appropriate matrix M, which is the incidence matrix of t-subspaces and k-subspaces.

Let M be a $|B| \times |A|$ matrix, whose columns A and rows B correspond to the t-subspaces and the k-subspaces of \mathbb{F}_q^n , respectively. Thus $|A| = {n \brack t}_q$ and $|B| = {n \brack k}_q$. The entries of M are defined by $M_{b,a} = 1_{a \subset b}$. It is easy to see that a simple t- (n,k,λ) design over \mathbb{F}_q corresponds to a set of rows b_1, b_2, \ldots, b_N of M such that

$$b_1 + b_2 + \dots + b_N = (\lambda, \lambda, \dots, \lambda)$$
 for some $\lambda \in \mathbb{N}$ (6)

Note that this implies $\lambda {n \brack t}_q = N {k \brack t}_q$, because each row $b \in B$ has Hamming weight ${k \brack t}_q$. In order to relate (6) to Theorem 3, we need the following simple lemma. The lemma is well known; we include a brief proof for completeness.

Lemma 4. Let V be a t-subspace of \mathbb{F}_q^n . The number of k-subspaces U such that $V \subset U \subset \mathbb{F}_q^n$ is given by $\begin{bmatrix} n-t \\ k-t \end{bmatrix}_q$.

Proof. Fix a basis $\{v_1, v_2, \dots, v_t\}$ for V. We extend this basis to a basis $\{v_1, v_2, \dots, v_k\}$ for U. The number of ways to do so is $(q^n - q^t)(q^n - q^{t+1}) \cdots (q^n - q^{k-1})$. However, each subspace U that contains V is counted $(q^k - q^t)(q^k - q^{t+1}) \cdots (q^k - q^{k-1})$ times in the above expression. \square

It follows from Lemma 4 that

$$\overline{b} = \frac{1}{|B|} \sum_{b \in B} b = \frac{\begin{bmatrix} n-t \\ k-t \end{bmatrix}_q}{\begin{bmatrix} n \\ k \end{bmatrix}_q} (1,1,\ldots,1) = \frac{\begin{bmatrix} k \\ t \end{bmatrix}_q}{\begin{bmatrix} n \\ t \end{bmatrix}_q} (1,1,\ldots,1)$$
(7)

Therefore, a simple nontrivial t- (n, k, λ) design over \mathbb{F}_q is a set of N < |B| rows of M satisfying

$$b_1 + b_2 + \cdots + b_N = N\overline{b}$$

But this is precisely the guarantee provided by Theorem 3 in (5). Note that the corresponding value of $\lambda = N{k \brack t}_q/{n\brack t}_q$ would be generally quite large.

4.1. Parameters for the KLP theorem

Let us now verify that the matrix M satisfies the five conditions in Theorem 3 and estimate the relevant parameters c_1, c_2, c_3 in (4).

Constant vector. Each k-subspace contains exactly $\begin{bmatrix} k \\ t \end{bmatrix}_q t$ -subspaces, so the sum of all the columns of M is $\begin{bmatrix} k \\ t \end{bmatrix}_q (1, \ldots, 1)^T$. Hence $(1, 1, \ldots, 1)^T$ is a rational linear combination of the columns of M.

Symmetry. An invertible linear transformation $L: \mathbb{F}_q^n \to \mathbb{F}_q^n$ acts on the set of k-subspaces by mapping $U = \langle v_1, v_2, \dots, v_k \rangle$ to $L(U) = \langle L(v_1), L(v_2), \dots, L(v_k) \rangle$. It acts on the set of t-subspaces in the same way. Note that if U is a k-subspace and V is a t-subspace, then $V \subset U$ if and only if $L(V) \subset L(U)$. Now, let $\pi_L \in S_B$ be the permutation of rows of M induced by L, and let $\sigma_L \in S_A$ be the permutation of columns of M induced by L. Then $\pi_L(\sigma_L(M)) = M$. Note that σ_L acts as an invertible linear map on \mathbb{Q}^A by permuting the coordinates. Hence, π_L is a symmetry of M. The corresponding symmetry group is, in fact, the general linear group GL(n,q). It is well known that GL(n,q) is transitive: for any two k-subspaces U_1, U_2 , we can find an invertible linear transformation L such that $L(U_1) = U_2$, which implies $\pi_L(b_1) = b_2$ for the corresponding rows.

Boundedness. Since all entries of M are either 0 or 1, we can set $c_2 = 1$.

Local decodability. Let m be a positive integer to be determined later. Fix a t-subspace V corresponding to a column of M. We wish to find a short integer combination of rows of M summing to me_V . In order to do so, we fix an arbitrary (t+k)-subspace W that contains V. As part of the short integer combination, we will only choose those rows that correspond to the k-subspaces contained in W. Moreover, the integer coefficient for a k-subspace $U \subset W$ will depend only on the dimension $j = \dim(U \cap V)$. We denote this coefficient by $f_{k,t}(j)$.

We need the following conditions to hold. First, by Lemma 4, there are $\binom{k}{k-t}_q$ k-subspaces U such that $V \subset U \subset W$. Therefore, we need

$$f_{k,t}(t) \begin{bmatrix} k \\ k-t \end{bmatrix}_q = m \tag{8}$$

Second, for any other t-subspace $V' \subset \mathbb{F}_q^n$, we need that

$$\sum_{V' \subset U \subset W} f_{k,t} (\dim(U \cap V)) = 0$$
(9)

where the sum is over all k-subspaces U containing V' and contained in W. Note that we only need to consider those t-subspaces V' that are contained in W. For all other t-subspaces, our integer combination of rows of M produces zero by construction.

The following lemma counts the number of k-subspaces which contain V' and whose intersection with V has a prescribed dimension. Its proof is deferred to Section 5.

Lemma 5. Let V_1 , V_2 be two distinct t-subspaces of \mathbb{F}_q^n such that $\dim(V_1 \cap V_2) = l$ for some l in $\{0, 1, \ldots, t-1\}$. The number of k-subspaces $U \subset \mathbb{F}_q^n$ such that $V_1 \subset U$ and $\dim(U \cap V_2) = j$, for some $j \in \{l, l+1, \ldots, t\}$, is given by

$$q^{(k-t-j+l)(t-j)} \begin{bmatrix} t-l \\ j-l \end{bmatrix}_{q} \begin{bmatrix} n-2t+l \\ k-t-j+l \end{bmatrix}_{q}$$

$$\tag{10}$$

With the help of Lemma 5 we can rephrase (9) as the following set of t linear equations:

$$\sum_{j=l}^{t} f_{k,t}(j) \begin{bmatrix} t-l \\ t-j \end{bmatrix}_{q} \begin{bmatrix} k-t+l \\ j \end{bmatrix}_{q} q^{(k-t-j+l)(t-j)} = 0 \quad \text{for } l = 0, 1, \dots, t-1$$
 (11)

Equations (8) and (11) together form a set of t + 1 linear equations, which can be represented in the form of a matrix production:

$$Df = (0, 0, \dots, 0, m)^{T}$$
(12)

where $f = (f_{k,t}(0), f_{k,t}(1), \dots, f_{k,t}(t))^T$ and D is an upper-triangular $(t+1) \times (t+1)$ matrix with entries

$$d_{l,j} = \begin{bmatrix} t - l \\ t - j \end{bmatrix}_q \begin{bmatrix} k - t + l \\ j \end{bmatrix}_q q^{(k - t - j + l)(t - j)} \qquad \text{for } 0 \leqslant l \leqslant j \leqslant t$$
(13)

The condition $t \le k$ ensures nonzero values on the main diagonal. Therefore, det D is nonzero and the system of linear equations is solvable. By Cramer's rule, we have

$$f_{k,t}(j) = \frac{\det D_j}{\det D} m \tag{14}$$

where D_j is the matrix formed by replacing the j-th column of D by the vector $(0,0,\ldots,1)^T$. Note that $\det D$ is an integer. Thus we set $m = \det D$, so that $f_{k,t}(j) = \det D_j$. This guarantees that the coefficients $f_{k,t}(0)$, $f_{k,t}(1)$, ..., $f_{k,t}(t)$ are integers.

We are now in a position to establish a bound on the local decodability parameter c_3 . First, the following lemma bounds the determinants of D and D_j . We defer its proof to Section 5.

Lemma 6.

$$|\det D| \leqslant q^{k(t+1)^2}$$

 $|\det D_j| \leqslant q^{k(t+1)^2}$ for $j = 0, 1, \dots, t$

The number of k-subspaces U contained in W is $\begin{bmatrix} k+t \\ k \end{bmatrix}_q$. We have multiplied the row of M corresponding to each such subspace by a coefficient $f_{k,t}(j)$ which is bounded by $q^{k(t+1)^2}$. Hence

$$c_{3} = \max\{m, \|f\|_{1}\} \leqslant {k+t \brack k}_{q} q^{k(t+1)^{2}} \leqslant {k+t \choose k} q^{kt} q^{k(t+1)^{2}} \leqslant q^{2k(t+1)^{2}}$$
(15)

Divisibility. The proof of local decodability also makes it possible to establish a bound on the divisibility parameter c_1 . We already know that for $m = \det D$, we can represent any element in $m\mathbb{Z}^A$ as an integer combination of rows of M. By (7), we have $\begin{bmatrix} n \\ t \end{bmatrix}_q \overline{b} = \begin{bmatrix} k \\ t \end{bmatrix}_q (1, 1, \ldots, 1)$. Hence, $m \begin{bmatrix} n \\ t \end{bmatrix}_q \overline{b} \in m\mathbb{Z}^A$ can be expressed as an integer combination of rows of M. It follows that

$$c_1 \leqslant m {n \brack t}_a \leqslant q^{k(t+1)^2} {n \choose t} q^{t(n-t)} \leqslant q^{k(t+1)^2 + t(n-t) + n}$$
 (16)

4.2. Putting it all together

We have proved that the incidence matrix M satisfies the five conditions in Theorem 3, and established the following bounds on the parameters:

$$c_1 \leqslant q^{k(t+1)^2 + t(n-t) + n} \tag{17}$$

$$c_2 = 1 \tag{18}$$

$$c_3 \leqslant q^{2k(t+1)^2} \tag{19}$$

By Lemma 2, we also have

$$|A| = {n \brack t}_q \leqslant {n \choose t} q^{t(n-t)} \leqslant q^{t(n-t)+n}$$
(20)

$$|B| = \begin{bmatrix} n \\ k \end{bmatrix}_q \geqslant q^{k(n-k)} \tag{21}$$

Combining (4) with (17) – (20), we see that the lower bound on N in Theorem 3 is at most

$$c'|A|^{52/5}c_1(c_2c_3)^{12/5}\log(|A|c_2)^8 \leqslant cq^{(57/5)\cdot(t+1)n+ckt^2}n^c$$
(22)

for some absolute constant c > 0. If we fix t and k, while making n large enough, then the right-hand side of (22) is bounded by $cq^{12(t+1)n}$. In view of (21), this is strictly less than |B| whenever k > 12(t+1) and n is large enough. It now follows from Theorem 3 that for large enough n, there exists a simple t- (n,k,λ) -design over \mathbb{F}_q of size $N \leq cq^{12n(t+1)}$. The reader can verify that this holds whenever $n \geq \tilde{c}kt$ for a large enough constant $\tilde{c} > 0$.

5. Proof of the technical lemmas

In this section, we prove the two technical lemmas (Lemma 5 and Lemma 6) we have used to establish the local decodability property.

5.1. Proof of Lemma 5

Let V_1 , V_2 be two distinct t-subspaces of \mathbb{F}_q^n with $\dim(V_1 \cap V_2) = l$. Let U be a k-subspace of \mathbb{F}_q^n such that $V_1 \subset U$ and $\dim(U \cap V_2) = j$. Further, let $X = V_1 \cap V_2$ and $Y = V_1 + V_2$. It is not difficult to show that the following holds:

$$\dim(X) = l \qquad \dim(Y) = 2t - l$$

$$\dim(U \cap V_1) = t \qquad \dim(U \cap V_2) = j \qquad (23)$$

$$\dim(U \cap X) = l \qquad \dim(U \cap Y) = t + j - l$$

We will proceed in three steps. First, fix a basis $\{v_1, v_2, \ldots, v_t\}$ for V_1 . Next, we extend V_1 to the subspace $Z = U \cap Y$ which has an intersection of dimension j with V_2 . In order to do that, we pick j-l vectors $v_{t+1}, v_{t+2}, \ldots, v_{t+j-l}$ from $Y \setminus V_1$, in such a way that $v_1, v_2, \ldots, v_{t+j-l}$ are linearly independent. The number of ways to do so is

$$N_1 = \prod_{i=0}^{j-l-1} \left(q^{2t-l} - q^{t+i} \right) \tag{24}$$

However, each such subspace Z is counted more than once in (24), since there are many different ordered bases for Z. The appropriate normalizing factor is $N_2 = \prod_{i=0}^{j-l-1} (q^{t+j-l} - q^{t+i})$. Hence, the total number of different choices for Z is

$$\frac{N_1}{N_2} = \prod_{i=0}^{j-l-1} \frac{q^{2t-l} - q^{t+i}}{q^{t+j-l} - q^{t+i}} = \prod_{i=0}^{j-l-1} \frac{q^{t-l} - q^i}{q^{j-l} - q^i} = \begin{bmatrix} t - l \\ j - l \end{bmatrix}_q$$
 (25)

In order to to complete U, we need to extend Z by k-(t+j-l) linearly independent vectors chosen from $\mathbb{F}_q^n \setminus Y$. The number of ways to do so is $N_3 = \prod_{i=0}^{k-(t+j-l)-1} (q^n - q^{(2t-l)+i})$, with normalizing factor $N_4 = \prod_{i=0}^{k-(t+j-l)-1} (q^k - q^{(t+j-l)+i})$. We have

$$\frac{N_3}{N_4} = \prod_{i=0}^{k-(t+j-l)-1} \frac{q^{(2t-l)+i}}{q^{(t+j-l)+i}} \cdot \frac{q^{n-(2t-l)-i}-1}{q^{k-(t+j-l)-i}-1} = q^{(k-t-j+l)(t-j)} \begin{bmatrix} n-2t+l \\ k-(t+j-l) \end{bmatrix}_q$$
(26)

Combining (25) and (26), the total number of different choices for the desired subspace U is given by (10), as claimed.

5.2. Proof of Lemma 6

Lemma 6 follows from the following two lemmas. The first bounds the product of the largest elements in each row. The second bounds the number of nonzero generalized diagonals in D_j — that is, the number of permutations $\pi \in S_{t+1}$ such that $(D_j)_{i,\pi(i)} \neq 0$ for all $i \in \{0,1,\ldots,t\}$.

Lemma 7.

$$\prod_{l=0}^{t} \max_{j} d_{l,j} \leqslant 2^{k(t+1)+1} q^{(k-t)t(t+1)}$$

Proof. We first argue that for $l \in \{1, 2, ..., t\}$, the largest element in row l is $d_{l,l}$. For l = 0, the largest element in the row is either $d_{0,0}$ or $d_{0,1}$. To see that, we calculate

$$\begin{split} \frac{d_{l,j+1}}{d_{l,j}} &= \frac{\begin{bmatrix} t-l \\ t-j-1 \end{bmatrix}_q}{\begin{bmatrix} t-l \\ t-j \end{bmatrix}_q} \cdot \frac{\begin{bmatrix} k-t+l \\ j+1 \end{bmatrix}_q}{\begin{bmatrix} k-t+l \\ j \end{bmatrix}_q} \cdot q^{(k-t-j+l-1)(t-j-1)-(k-t-j+l)(t-j)} \\ &= \frac{[t-j]_q![j-l]_q!}{[t-j-1]_q![j-l+1]_q!} \cdot \frac{[j]_q![k-t+l-j]_q!}{[j+1]_q![k-t+l-j-1]_q!} \cdot q^{1-(t-j)-(k-t-j+l)} \\ &= \frac{q^{t-j}-1}{q^{j-l+1}-1} \cdot \frac{q^{k-t+l-j}-1}{q^{j+1}-1} \cdot q^{1-(t-j)-(k-t-j+l)} \\ &= \frac{q^{t-j}-1}{q^{t-j}} \frac{q^{k-t-j+l}-1}{q^{k-t-j+l}} \frac{q}{(q^{j+1}-1)(q^{j-l+1}-1)} \\ &< \frac{q}{(q^{j+1}-1)(q^{j-l+1}-1)} \end{split}$$

Note that unless j = l = 0, this implies that $d_{l,j+1} < d_{l,j}$. The only remaining case is $d_{0,1}/d_{0,0} < q/(q-1)^2$. This ratio can be at most 2 for q = 2, and is below 1 for q > 2. Hence

$$\prod_{l=0}^t \max_j d_{l,j} \leqslant 2 \prod_{j=0}^t d_{j,j}$$

We next bound this product:

$$\prod_{j=0}^{t} d_{j,j} = \prod_{j=0}^{t} {k-t+j \brack j}_{q} q^{(k-t)(t-j)} \leqslant \prod_{j=0}^{t} {k-t+j \brack j} q^{j(k-t)+(k-t)(t-j)} \leqslant 2^{k(t+1)} q^{(k-t)t(t+1)}$$

Lemma 8. D_i has at most 2^t nonzero generalized diagonals.

Proof. Let $\pi \in S_n$ be such that $(D_j)_{i,\pi(i)} \neq 0$ for all i. If j > 0 then we must have $\pi(i) = i$ for all i < j, and $\pi(t) = j$. Letting r = t - j this reduces to the following problem: let R be an $r \times r$ matrix corresponding to rows $j, \ldots, t-1$ and columns $j+1, \ldots, t$ of D_j . This matrix has entries $r_{l,j} \neq 0$ only for $j \geqslant l-1$. We lemma that such matrices have at most 2^t nonzero generalized diagonals. We show this by induction on r. Let us index the rows and columns of R by $1, \ldots, r$. To get a nonzero generalized diagonal we must have $\pi(r) = r - 1$ or $\pi(r) = r$. In both cases, if we delete the r-th row and the $\pi(r)$ -th column of R, one can verify that we get an $(r-1) \times (r-1)$ matrix of the same form (e.g. zero values in coordinates (l,j) whenever j < l-1). The lemma now follows by induction.

Proof of Lemma 6. The determinant of D or D_j is bounded by the number of nonzero generalized diagonals (which is 1 for D, and at most 2^t for D_j), multiplied by the maximal value a product of choosing one element per row can take. Hence, it is bounded by

$$\max\{|\det D|, |\det D_j|\} \leqslant 2^t \cdot 2^{k(t+1)+1} q^{(k-t)t(t+1)} \leqslant q^{t+k(t+1)+1+(k-t)t(t+1)} \leqslant q^{k(t+1)^2}$$

Acknowledgment

We are grateful to Michael Braun and Alfred Wasserman for helpful discussions regarding the history and the current state of knowledge about *t*-designs over finite fields.

References

- [1] R. AHLSWEDE, H.K. AYDINIAN, and L.H. KHACHATRIAN, On perfect codes and related concepts, *Des. Codes Cryptogr.* **22** (2001), 221–237.
- [2] A. BEUTELSPACHER, Parallelismen in unendlichen projektiven Raumen endlicher Dimension, *Geom. Dedicata* **7** (1978), 499–506.
- [3] M. Braun, A. Kerber, and R. Laue, Systematic construction of *q*-analogs of designs, *Des. Codes Cryptogr.* **34** (2005), 55–70.
- [4] P. CAMERON, Generalisation of Fisher's inequality to fields with more than one element, in T.P. McDonough and V.C. Mavron, Eds., *Combinatorics*, London Math. Soc. Lecture Note Ser. 13, Cambridge: Cambridge Univ. Press, 1974, pp. 9–13.
- [5] P. CAMERON, Locally symmetric designs, Geom. Dedicata 3 (1974), 65–76.
- [6] H. COHN, Projective geometry over \mathbb{F}_1 and the Gaussian binomial coefficients, *Amer. Math. Monthly* **111** (2004), 487–495.
- [7] PH. DELSARTE, Association schemes and *t*-designs in regular semilattices, *J. Combin. Theory Ser. A* **20** (1976), 230–243.
- [8] T. ETZION and A. VARDY, On *q*-analogs for Steiner systems and covering designs, *Adv. Math. Commun.* **5** (2011), 161–176.
- [9] J.R. GOLDMAN and G.-C. ROTA, On the foundations of combinatorial theory IV: Finite vector spaces and Eulerian generating functions, *Stud. Appl. Math.* **49** (1970), 239–258.
- [10] V. KAC and P. CHEUNG, Quantum Calculus, New York: Springer-Verlag, 2001.
- [11] A. KOHNERT, P.R.J. ÖSTERGÅRD, and A. WASSERMANN, Designs and partial geometries over finite fields, **arXiv:1305.1455v1**, May 2013.

- [12] G. KUPERBERG, SH. LOVETT, and R. PELED, Probabilistic existence of regular combinatorial structures, **arXiv:1302.4295**, February 2013, also in *Proc. 44-th ACM Symp. Theory of Computing* (STOC), New York, May 2012, pp. 1091–1106.
- [13] J.H. VAN LINT and R.M. WILSON, *A Course in Combinatorics*, 2nd ed., Cambridge Univ. Press, Cambridge, 2001.
- [14] K. METSCH, Bose-Burton type theorems for finite projective, affine and polar spaces, in J.D. LAMB and D.A. PREECE, Eds., *Surveys in Combinatorics*, 1999, London Math. Soc. Lecture Note Ser. 267, Cambridge Univ. Press, Cambridge, 1999, pp. 137–166.
- [15] M. MIYAKAWA, A. MUNEMASA, and S. YOSHIARA, On a class of small 2-designs over GF(q), J. Combin. Des. 3 (1995), 61–77.
- [16] D.K. RAY-CHAUDHURI and N.M. SINGHI, *q*-analogues of *t*-designs and their existence, *Linear Algebra Appl.* **114/115** (1989), 57–68.
- [17] M. SCHWARTZ and T. ETZION, Codes and anticodes in the Grassmann graph, *J. Combin. Theory Ser. A* **97** (2002), 27–42.
- [18] H. SUZUKI, 2-designs over $GF(2^m)$, Graphs Combin. 6 (1990), 293–296.
- [19] H. SUZUKI, 2-designs over GF(q), *Graphs Combin.* **8** (1992), 381–389.
- [20] L. TEIRLINCK, Non-trivial t-designs without repeated blocks exist for all t, Discrete Math. **65** (1987), 301–311.
- [21] S. THOMAS, Designs over finite fields, Geom. Dedicata 21 (1987), 237–242.
- [22] S. THOMAS, Large Sets of t-Designs over Finite Fields, Geom. Dedicata 63 (1996), 247–253.
- [23] J. TITS, Sur les analogues algébriques des groupes semi-simples complexes, in *Colloque d'Algébre Supèrieure*, tenu á Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain, Paris: Librairie Gauthier-Villars, 1957, pp. 261–289.
- [24] J. WANG, Quotient sets and subset-subspace analogy, Adv. Appl. Math. 23 (1999), 333–339.