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Abstract

A t-(n,k, \) design oveilF, is a collection ofk-dimensional subspaces Bg, called blocks,
such that eaclrdimensional subspace Iﬂg is contained in exactly blocks. Such-designs
overlF, are theg-analogs of conventional combinatorial designs. Noratit4(n, k, ) designs
overlF, are currently known to exist only fdr< 3. Herein, we prove that simple (meaning,
without repeated blocks) nontrivial(n, k, A) designs oveiF, exist for allt andg, provided
thatk > 12t andn is sufficiently large. This may be regarded aganalog of the celebrated
Teirlinck theorem for combinatorial designs.


http://arxiv.org/abs/1306.2088v1

1. Introduction

Let X be a set withh elements. A-(n,k, A) combinatorial desigrfor +-design in brief) is a col-
lection of k-subsets ofX, called blocks, such that ea¢tsubset ofX is contained in exactly\
blocks. At-design is said to beimpleif there are no repeated blocks — that is, all kkgubsets in
the collection are distinct. &ivial t-designis the set of alk-subsets oK. The celebrated theorem
of Teirlinck [20] establishes the existence of nontriviahple t-designs for alt.

It was suggested by Tits [23] in 1957 that combinatorics td seuld be regarded as the limiting
casej — 1 of combinatorics of vector spaces over the finite fié}d Indeed, there is a strong anal-
ogy between subsets of a set and subspaces of a vector sgameneéed by numerous authors [6,
9,24]. In particular, the notion gfdesigns has been extended to vector spaces by Caméron [4,5]
and Delsarte [7] in the early 1970s. Specifically,Iﬂgtbe a vector space of dimensiarover the
finite fieldIF,. Then at-(n,k,A) design oveil, is a collection ofc-dimensional subspaces ]B);z
(k-subspaces, for short), called blocks, such that e¢atbspace ong is contained in exactly
blocks. Sucht-designs oveif; are theg-analogs of conventional combinatorial designs. As for
combinatorial designs, we will say thattalesign oveilF; is simpleif it does not have repeated
blocks, andrivial if it is the set of allk-subspaces dﬂ;.

The first examples of simple nontriviabesigns ovelF, with ¢t > 2 were found by Thomas [21]
in 1987. Today, following the work of many authors [3//11 /165,18, 19, 2P], numerous such exam-
ples are known. All these examples have 2 ort = 3. If repeated blocks are allowed, nontrivial
t-designs ovelF, exist for allt, as shown in[16]. However, no simple nontriviadesigns ovelr,,
are presently known far > 3. Our main result is the following theorem.

Theorem 1. Simple nontriviat-(n, k, A) designs ovel, exist for allg andt, and allk > 12(t+1)
provided that: > ckt for a large enough absolute constantMoreover, thesé-(n, k, A) designs
have at mosy'2(t+1)" plocks.

This theorem can be regarded ag-analog of Teirlinck’s theorem [20] for combinatorial de-
signs. Our proof of Theoren 1 is based on a new probabilisticriique introduced by Kuperberg,
Lovett, and Peled in [12] to prove the existence of certagui@ combinatorial structures. We note
that this proof technique is purely existential: there iknown efficient algorithm which can pro-
ducet-(n, k, A) design oveiF, for t > 3. Hence, we pose the following as an open problem:

Design an efficient algorithm to produce simple nontrividh, k, A) designs for large ()

The rest of this paper is organized as follows. We begin withes preliminary definitions in the
next section. We present the Kuperberg-Lovett-Peled (KhBprem of[[12] in Sectidn 3. In Sec-
tion[4, we apply this theorem to prove the existence of sinjglesigns oveit,; for all g4 andt.
Detailed proofs of some of the technical lemmas are deféa&abctionb.

2



2. Preliminaries

LetF,; denote the finite field with elements, and |é; be a vector space of dimensiproverlF,.
We recall some basic facts that relate to counting subspﬂ% The number of distindt-sub-
spaces o]Fg is given by theg-binomial (a.k.a. Gaussian) coefficient

nl def [1],!
Mq = My Ky @

where|n],! is theg-factorial defined by
gt = 120, 0] = A+q9)(1+g9+¢*) - Q+q+5+-+4") )

Observe the similarities betweén (1) ahd (2) and the comaltbinomial coefficients and facto-
rials, respectively. Many more similarities between thenbmatorics of sets and combinatorics of
vector spaces are known; seel[10], for example. Here, allege are upper and lower bounds on
g-binomial coefficients, established in the following lemma

k(n—Fk) n N k(n—k)
< [ < Q)

Proof. We use the following identity from [10, p. 19],

Lemma 2.

|:1’l:| _ Z q(51—|—82—|—...+5k)—k(k+1)/2 (3)
q

k 1<s1<sp < <5<

The largest term in the sum df(3) 4§ %), which corresponds tg = n — k + i for all i. The
number of terms in the sum {§), and the lemma follows. O

3. TheKLP theorem

Kuperberg, Lovett, and Peled [|12] developed a powerful g@bdistic method to prove the exis-
tence of certain regular combinatorial structures, suart®gonal arrays, combinatorial designs,
andt-wise permutations. In this section, we describe their nitadorem.

Let M be a|B| x |A| matrix with integer entries, wheré andB are the set of columns and the
set of rows ofM, respectively. We think of the elements Af respectivelyB, as vectors iriZ?,
respectively inZ4. We are interested in those matridesthat satisfy the five properties below.
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1. Constant vector. There exists a rational linear combination of the columna/othat pro-
duces the vectafl, 1,...,1)".

2. Divisibility. Let b denote the average of the rows/df namelyb = ﬁ Y pep b- Thereis an

integerc; < | B| such that the vectar b can be produced as an integer linear combination of
the rows ofM. The smallest sucty is called thedivisibility parameter

3. Boundedness. The absolute value of all the entriesi is bounded by an integes, which
is called theboundedness parameter

4. Local decodability. There exist a positive integer and an integer; > m such that, for ev-
ery columna € A, there is a vector of coefficientg’ = (71,72...,7/p)) € 78 satisfying
17?1 < c3 andYpcp 1pb = me,, wheree, € {0,1}4 is the vector withl in coordinate
a andO in all other coordinates. The parametegis called thdocal decodability parameter

5. Symmetry. A symmetnof the matrixM is a permutation of rowsr € Sg for which there
exists an invertible linear map: Q4 — Q4 such that applying the permutation on rows and
the linear map on columns does not change the matrix, naffelyM)) = M. The group of
symmetries oM is denoted bysym(M). Itis required that this group acts transitively Bn
That is, for allby, by € B there exists a permutation € Sym(M) satisfyingrt(by) = by.

The following theorem has been proved by Kuperberg, Loeettl Peled in[[12]. In fact, the
results of Theorem 2.4 and Claim 3.2 bf [12] are more gendia fTheoreml3 below. However,
Theoren B will suffice for our purposes.

Theorem 3. Let M be a|B| x |A| integer matrix satisfying the five properties above. Nebe an
integer divisible by, such that

8
C|A|52/5C1(C2C3)12/510g(|A|C2) < N < |B]| (4)

wherec > 0 is a sufficiently large absolute constant. Then there erisist of rowsl’ C B of size

|T| = N such that the average of the rowsTiris equal to the average of all the rowsM, namely
'y Ly =5 (5)
N B B

beT beB

4. Proof of the main result

We will apply Theoreni 3 to prove existence of designs ovetdifields. We first introduce the ap-
propriate matrixV, which is the incidence matrix gfsubspaces andsubspaces.
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Let M be a|B| x |A| matrix, whose columngl and rowsB correspond to the-subspaces and
thek-subspaces dFy, respectively. ThugA| = [’t’]q and|B| = [’,Z]q. The entries oM are defined
by My, = 1,cp. Itis easy to see that a simpien, k, A) design oveiF, corresponds to a set of
rowsbq, by, ..., by of M such that

bi+by+---+by = (LA, N for someA € IN (6)

Note that this impIies\[’Z]q = N[’ﬂq, because each roive B has Hamming Weigl"{f;]q. In order
to relate [() to Theorel 3, we need the following simple lemifiae lemma is well known; we
include a brief proof for completeness.

Lemma4. LetV be at-subspace oiFg. The number ok-subspaces! such thatV C U C ]Fg
is given by[Z:f]q.

Proof. Fix a basis{vy,v,...,v:} for V. We extend this basis to a bagis;, vy, . .., v} for U.
The number of ways to do so (8" — ') (g" — gt*1) - - - (¢" — g*~1). However, each subspatk
that containd’ is counted g* — ¢*) (g* — g'*1) - - - (¢ — g*~1) times in the above expression]

4,

Therefore, a simple nontrivia(n, k, A) design oveif, is a set ofN < |B| rows of M satisfying

It follows from Lemma4 that

b = iZb = (1,1,.. (1,1,...,1) )
|B|beB

bi+by+---+by = Nb

But this is precisely the guarantee provided by Thedrem[B)inNote that the corresponding value

of A = N[’t‘]q/[’z]q would be generally quite large.

4.1. Parametersfor the KLP theorem

Let us now verify that the matrid satisfies the five conditions in Theorein 3 and estimate the
relevant parameters, ¢y, c3 in (4).

Constant vector. Eachk-subspace contains exacfﬂ/q t-subspaces, so the sum of all the columns
of Mis [’If]q(l, ...,1)T. Hence(1,1,...,1)T is arational linear combination of the columnsidt
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Symmetry. An invertible linear transformation : IF; — FF; acts on the set df-subspaces by
mappingU = (v1,v,...,v¢) to L(U) = (L(v1),L(v2) ..., L(v)). It acts on the set afsub-
spaces in the same way. Note thatlifis ak-subspace an¥l is at-subspace, thel C U if and
only if L(V) C L(U). Now, letr; € Sp be the permutation of rows @ff induced byL, and let
o1 € S4 be the permutation of columns 8f induced byL. Thenst; (01, (M)) = M. Note thaty,
acts as an invertible linear map @' by permuting the coordinates. Henae, is a symmetry
of M. The corresponding symmetry group is, in fact, the generaal groupGL(7, 9). It is well
known thatGL(#, q) is transitive: for any twd-subspacebl;, U, we can find an invertible linear
transformatior. such that.(U,) = Uy, which impliesrt; (b;) = b, for the corresponding rows.

Boundedness. Since all entries oM are eithe or 1, we can set, = 1.

L ocal decodability. Letm be a positive integer to be determined later. Fixsabspacé/ corre-
sponding to a column a¥. We wish to find a short integer combination of rowsMfsumming
to mey. In order to do so, we fix an arbitrafy + k)-subspacéV that containd/. As part of the
short integer combination, we will only choose those roves ttorrespond to thiesubspaces con-
tained inWW. Moreover, the integer coefficient forkasubspacél C W will depend only on the
dimensionj = dim(U N V). We denote this coefficient bf ;(j).

We need the following conditions to hold. First, by Lenmimalre are[kft]q k-subspacesl
such thatV C U C W. Therefore, we need

k
fu® ] = m ©
Second, for any othersubspacé’’ C ]Fg we need that
Y. fri(dim(UNV)) =0 9)
vVicucw

where the sum is over ditsubspacedl containingV’ and contained ifiV. Note that we only need
to consider thosé-subspace$’ that are contained iftV. For all othert-subspaces, our integer
combination of rows oM produces zero by construction.

The following lemma counts the numbereBubspaces which contal and whose intersec-
tion with V has a prescribed dimension. Its proof is deferred to Se@tion

Lemmab. LetV;, V, be two distinct-subspaces o]Fg’ such thadim(V; N'V,) = [ for somée in
{0,1,...,t — 1}. The number of-subspaces! C IF; such thatV; C U anddim(U N V3) = j,
forsomej € {I,1+1,...,t}, is given by

(k—t=j+1) (=) {f—l} {”—Zf fl} (10)
1 =t k=t —j+1l,



With the help of Lemmal5 we can rephrask (9) as the following®elinear equations:

kat [t_;] [k—;+l} q(k_t_j”)(t_f) =0 forl=0,1,...,t—1 (11)
q q

Equatlons[IB) and (11) together form a set af 1 linear equations, which can be represented in
the form of a matrix production:

Df = (0,0,...,0,m)T (12)

wheref = (fi((0), fi(1),... ,fk,t(t))T andD is an upper-triangulait+1) x (t+1) matrix with
entries

t— ] q ]
The conditiont < k ensures nonzero values on the main diagonal. Theredfetd) is nonzero
and the system of linear equations is solvable. By Crameles we have
, det D
feri) = o D (14)

whereD]- is the matrix formed by replacing theth column ofD by the vector0,0, . . ., 1)T. Note
thatdet D is an integer. Thus we set = det D, so thatf,(j) = detD;. This guarantees that
the coefficientsy ;(0), fi+(1), ..., fit(t) are integers.

We are now in a position to establish a bound on the local dduibty parameter;. First, the
following lemma bounds the determinantsidfandD;. We defer its proof to Sectidd 5.

dl,]- _ [t — l:| [k —t+ Z:| q(k—t—j-‘rl)(t—j) for 0 < 1 < ] <t (13)
q

Lemma 6. |detD| < qk (t+1)2

|detDj| < ¢HV* for j=0,1,... ¢
The number ok-subspaces! contained inW is [k“] We have multiplied the row a1 cor-
responding to each such subspace by a coeffigjgrif) which is bounded byk(f+1)2. Hence

k+t k+t
c3 = max{m, ||f|1} < { . ] qk(t+1)2 < ( . )qktqk(t+1)2 < qzk(t+1)2 (15)
q

Divisibility. The proof of local decodability also makes it possible taleksh a bound on the di-
visibility parameterc;. We already know that fom = det D, we can represent any element in
mZ*" as an integer combination of rows df. By (7), we have[’}]qE = [’t‘]q(l, 1,...,1). Hence,
m[?]q? € mZ* can be expressed as an integer combination of rovid.oft follows that

1 < m{ﬂ < qk(tﬂ)z (?) qf(n—t) < qk(t+1)2+t(n—t)+n (16)
q



4.2. Putting it all together

We have proved that the incidence matkiksatisfies the five conditions in Theorem 3, and estab-
lished the following bounds on the parameters:

o < qk(t+1)2+t(n—t)+n (17)
Cy) = 1 (18)
Cs < qZk(H—l)z (19)
By Lemmd2, we also have
|A| = |:TZ:| < (’Z) qt(n—t) < qt(n—t)+n (20)
q
Bl =|"| > g® 21
q
Combining [(4) with[(1¥) -{(20), we see that the lower bound\bim Theoreni B is at most
C/|A|52/5C1(C2C3)12/5 10g(|A|cz)8 < Cq(57/5)~(t+1)n+ckt2nc (22)

for some absolute constant> 0. If we fix t andk, while makingn large enough, then the right-
hand side of[(Z2) is bounded lby'2(**1)", In view of (Z1), this is strictly less thaiB| whenever
k > 12(t+ 1) andn is large enough. It now follows from Theorém 3 that for largeeghn, there
exists a simple- (1, k, A)-design oveiF, of sizeN < cq'?"(*+1) The reader can verify that this
holds wheneven > ¢kt for a large enough constaft> 0.

5. Proof of thetechnical lenmmas

In this section, we prove the two technical lemmas (Lermmablammdb6) we have used to es-
tablish the local decodability property.

5.1. Proof of LemmalB

Let V4, V; be two distinct-subspaces (ﬁ?g with dim(V; N V;,) = I. LetU be ak-subspace dFZ;
such that’; € U anddim (U NV,) = j. Further, letX = V; NV, andY = V; + V,. Itis not dif-
ficult to show that the following holds:

dim(X) = I dim(Y) = 2t —1
dim(UNV;) = ¢ dim(UN V) = j (23)
dim(UNX) =1 dim(UNY) = t+j—1



We will proceed in three steps. First, fix a baisg, vy, ..., v} for Vi. Next, we extend/; to

the subspac& = U NY which has an intersection of dimensipwith V,. In order to do that,
we pickj — I vectorso;1,v¢42, . . Vbt from Y \ V4, in such a way that,, v, .. ., Upyjj are

linearly independent. The number of ways to do so is

Ny = 1—[ <q2t—l_qt+i) (24)

However, each such subspdces counted more than once 24), since there are many elifter
ordered bases fdf. The appropriate normalizing factord = ]‘[ﬁ;é_l(qfﬂ'—l —g"). Hence,
the total number of different choices fdris
J=I=1 201t J=I=1 el i P
J =y

In order to to completél, we need to extend by k — (t +j — ) linearly independent vectors
chosen frondF \ Y. The number of ways to do so I = [T \H7D71 (gn — qi=D+1) with

normalizing facto, = [T+ "/~ gk — g(t+/=D+). We have
k=(t+j-1)~ —I)+i —(2t—1)—i
Ny (t+j=D-1 g(2t-1+ g (2t=D)—i _q _ q(k_t_j+l)(t_j) n—2t+1 (26)
Nj i qUrTDE gl k=(t+j-Dl,

Combining [25) and (26), the total number of different clesiéor the desired subspadés given
by (10), as claimed.

5.2. Proof of Lemmalg

Lemmal 6 follows from the following two lemmas. The first bosrnte product of the largest ele-
ments in each row. The second bounds the number of nonzeevagieed diagonals i; — that
is, the number of permutations € S;,1 such thatD;); ; # O foralli € {0,1,...,t}.

Lemma.

t
Hmaxdli < zk(f+1)+1q(k—t)t(t+1)
=0 1

Proof. We first argue that fof € {1,2,...,t}, the largest element in rols d; ;. Forl = 0, the
largest element in the row is eithég or dy ;. To see that, we calculate
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t—1 } {k—t—i—l
9

dijen L—f_ 1 j+1 L (kb1 —1) (== 1) = (k—t— 1) (=)

d,; {t—l] '[k—tH]
E=ily Y

N L L e L U111t et LR SR S Y
R T2 Y N R N N | N iy
I et U S ek B (R ST RRRAY)
q]'—l—s—l -1 qj+1 -1 q
gi=i —1gk-t-i+ 1 q
qt—j qk—t—j—H (qj—H _ 1)(qj—l+1 _ 1)
q
S @D o)
Note that unlesg = I = 0, this implies that{; ;,; < d, ;. The only remaining case i /do,0 <
q/ (g — 1)2. This ratio can be at mo&tfor g = 2, and is belowl for g > 2. Hence

dj

=h

Il
=

t

HmaXdl,j < 2
=0 / j
We next bound this product:

_liIdj,j _ liI [k —;‘ +]} gk=D0=) < ﬁ <k —; +j) g =)+ (=) (1)) ¢ Qk(t+1) g (k=0)t(1+1)
j=0 j=0 q j=0 0

Lemma8. D; has at mos2’ nonzero generalized diagonals.

Proof. Let 7 € S, be such thatD;); ;) # 0 foralli. If j > 0 then we must have (i) = i for
alli < j,andrn(t) = j. Lettingr = t — j this reduces to the following problem: IBtbe anr x r
matrix corresponding to rows...,t —1 and columng +1, ..., ¢t of D;. This matrix has entries
rj # 0onlyforj > I —1. We lemma that such matrices have at mshonzero generalized
diagonals. We show this by induction enLet us index the rows and columnsiby1,...,r. To
get a nonzero generalized diagonal we must hase = r — 1 or 7r(r) = r. In both cases, if we
delete the-th row and ther(r)-th column ofR, one can verify that we get gm — 1) x (r — 1)
matrix of the same form (e.g. zero values in coordingteg wheneverj < [ —1). The lemma
now follows by induction. 0J

Proof of Lemmal6.The determinant ob or D; is bounded by the number of nonzero generalized
diagonals (which id for D, and at mosg’ for D;), multiplied by the maximal value a product of
choosing one element per row can take. Hence, it is bounded by

max{| detD|, | det Dj|} <2t 2k(t+1)+1q(k—t)t(t+1) < qt+k(t+1)+1+(k—t)t(t+1) < qk(t+1)2
H
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