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ABSTRACT OF THE DISSERTATION

Leveraging Prior Knowledge for Performance Improvement in Control,

Estimation, and Identification

by

Robert Hiroshi Moroto

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2017

Professor Robert R. Bitmead, Chair

In many practical engineering applications, a significant portion of the available in-

formation is excluded from the design process due to a lack of obvious mechanisms for

its incorporation. In this dissertation, several methods are presented for leveraging such

underutilized prior knowledge in application-oriented settings. Three cases, motivated

by real-world examples, are considered, addressing controller, estimator, and identifi-

cation design respectively. In each case, a methodology is presented capturing the key

features of the prior knowledge in a characterization which can be readily incorporated

into standard solution.

Firstly, a flexible modeling framework is presented for characterizing time-advanced

forecast data associated with an exogenous disturbance. The model is incorporated into

a disturbance-attenuating feedforward controller which can be synthesized with standard

H2 or H∞ methods. The closed-loop performance calculation provides a comparative

metric to juxtapose multiple designs and address economic questions, such as sensor

placement. A practical example is provided for a wind turbine and lidar sensor with

xv



tunable focus range.

Secondly, a modeling framework is presented for characterizing logic-valued mea-

surements that provide timely indication of an associated disturbance event. An esti-

mator is constructed using the fast logic-valued measurement, and known disturbance

statistics, to rapidly adjust the disturbance estimate, resulting in improved performance.

The framework is applied to a gas turbine (GT) system with transient load disturbance

associated with a fast electrical breaker switching measurement. The method is gener-

alized to incorporate multiple disturbance load and breaker pairs.

Finally, a high-fidelity GT (HFGT) model is used to construct a linear GT engine

model for control design. The HFGT model generates closed-loop transient simulation

data for system identification and the structure of its internal subsystems is leveraged

to reduce the complexity of the identification process by excluding unnecessary subsys-

tems. The partition of subsystems is enabled by access to signals in the high-fidelity

model which are otherwise unavailable during physical engine testing. The resulting

linear engine model can be modularly reconfigured with different fuel subsystem and

rotor subsystem models. The linear GT model is validated in closed-loop transient sim-

ulations.

xvi



Chapter 1

Introduction

Prior knowledge is any knowledge of a system of interest that contains valuable

information which, if exploited, would potentially improve the performance of the re-

sulting design for the problem at hand.

It is often the case that valuable information is available during design, but is ig-

nored due to a failure to determine an obvious method for incorporating it into the prob-

lem. The nature of the ignored prior knowledge, and its relationship to the problem at

hand, can vary significantly between applications. However, by characterizing the prior

knowledge with a representation that can be combined with the model of the system

of interest, the resulting augmented model can be used in the application of standard

techniques of control, estimation, and identification.

In many practical engineering applications, such as industrial settings, the core tech-

nology of the system of interest does not significantly change over time, and a sufficient

controller or estimator is implemented for an extended duration based on the system

knowledge which was available at the time of initial deployment. However, the ubiqui-

tous growth of sensor instrumentation and simulation capabilities has vastly increased

the amount of prior knowledge available.

The diversity of prior knowledge has also rapidly increased and can take many forms,

such as new sensor technology which can measure previously inaccessible signals; in-

expensive sensors which can be massively and flexibly deployed; high-fidelity simula-

tions which can generate data in a rapid and inexpensive manner; advances engineering

knowledge and first principles models specific to the domain of application; and a host

1



2

of other sources of knowledge. The expanding pool of available prior knowledge often

contains actionable information that can potentially improve the performance, and thus

the economic benefit, of closed-loop systems. However, due to the rapid advancement

and adoption of the technologies which enabled the expansion, available prior knowl-

edge often remains underutilized.

Applied research in control, estimation, and identification has traditionally focused

on adapting the existing theoretical design techniques to specific engineering examples,

which can result in ad hoc solutions for incorporating prior knowledge. The diversity of

specific prior knowledge and the general nature of the techniques of control, estimation

and system identification, leaves a void in the middle ground of the applicability of

design methods and a demand exists for methods which bridge the gap of generality.

Thus, there is a need for to develop approaches for incorporating prior knowledge into

control, estimation, and system identification problems which are specific enough to

leverage prior knowledge of a certain type, but general enough to be applied to multiple

scenarios.

1.1 Contributions

This work is a first step in the development of methods for improving system per-

formance via the systematic inclusion of available prior knowledge into control design,

estimator design, and system identification design processes. Each chapter addresses a

different type of available prior information.

Chapter 2 addresses prior knowledge in the form of forecast data, i.e. time-advanced

disturbance information. A methodology is proposed for constructing a model which

captures the essential features of forecast data. The model can be flexibly adapted to

a variety of forecast data types and its user-specified parameters maintain intuitive in-

formational significance by design. The forecast model is formulated for incorporation

into a feedforward control design problem, for disturbance rejection, in a straightfor-

ward manner. Practical economic questions can be answered by using the calculated

closed-loop performance (which is calculated offline, i.e. prior to implementation) as a

comparative metric among different design configurations. For example, the potential
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benefits derived from different upstream forecast sensor placement locations can be con-

sidered. Juxtaposition of design with sensors of different quality can also be compared

and the potential closed-loop performance benefits can be weighed against the added

cost of the higher quality sensor. A wind turbine and lidar sensor system are used as an

illustrative example.

Chapter 3 addresses prior information in the form of an event-triggered logic signal

acting as a rapid indicator associated with a step change in the exogenous disturbance

signal. Statistical information about the step change in the disturbance signal is known

as well. However, timely direct measurements of the disturbance signal are not avail-

able. The problem is applied to a gas turbine used in power generation in a microgrid.

The switching signal from an instrumented electrical breaker is used to indicate the oc-

currence of a step load disturbance which can not be measured in a timely manner. A

modeling methodology is proposed for characterizing the described setup and a state

estimator is constructed which can accommodate the logic signal and statistical distur-

bance data to rapidly respond to abrupt changes in the disturbance signal, providing

more up to date load estimates than if the prior information was not considered. The

estimator is also generalized to the case of multiple logic-valued signals and associated

disturbances. A numerical example demonstrates the benefits of the approach.

Chapter 4 addresses prior information in the form of a high-fidelity gas turbine model

which generates data for system identification and whose internal subsystem structure

can be exploited in the construction of a linear time-invariant gas turbine model for

control design. The constructed model is highly modular and the identified subsystem

can be interchangeably combined with different fuel subsystem and rotor subsystem

models for control design. The flexibility of the model allows controller to be designed

across the many product configurations that are inherent to industrial gas turbines due

to diverse customer needs.

The proposed methods, although distinct, are unified in the conceptual strategy of

recognizing key features of the prior knowledge and characterizing those features in

such a way that they may be easily incorporated into an augmented model which is

compatible with standard techniques of control design, estimator design, and system

identification respectively.



Chapter 2

Feedforward With Forecast Data

2.1 Introduction

Disturbance rejection control can be augmented with measurements or predictions

of future disturbance values yet to arrive at the plant. In some cases, such as in chemical

processing, these upstream measurements can be exact. However, frequently forecast

data and/or predictions are used and these display the property that distant future values

are less reliable predictions of the disturbance than are more short-term predictions. For

example, in building energy management, weather predictions can provide data for use

by a feedforward controller to improve closed-loop performance, but predictions about

weather far ahead in the future tend to be less accurate than predictions about impending

weather.

The central contribution of this paper is to provide a systematic approach to the

inclusion of this property of forecast data, but reducing to earlier approaches with perfect

forecasts, and the straightforward evaluation of subsequent control performance. This

permits the methodical assessment of the performance benefits of improved forecast

data quality or of sensor placement and design.

2.1.1 Feedforward control

Feedforward (or preview) control is a subject of substantial practical interest because

it brings improved performance to feedback control. It has two core variants: using

4
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time-advanced reference signal information to improve tracking performance, and us-

ing forecast disturbance signals to aid in disturbance rejection. The formulations are

strongly related, see [2]. Our development will concentrate on feedforward of forecast

data for disturbance rejection alone.

A technically thorough and historically detailed survey of preview control was very

recently published by [3]. Feedforward/preview control has been widely applied in areas

such as vehicle suspension, as seen in [4], [5], [6], [7], and [8] and for the control of wind

turbines with wind velocity preview information, as seen in [9], [10], [11], and [12], for

example. The techniques developed in this paper are general without a specific process

in mind, although motivated by the wind turbine lidar problem. The formative recent

works which guide our analysis include [13], [2], [14], [15], and [16]. Our contribution

is to accommodate the nature of forecast data into the feedforward formulation in a utile

fashion. It is well understood that the information bearing quality of forecasts usually

diminishes with horizon, [17].

The standard approach to feedforward design is to precede the disturbance signal in

the system model by a tapped-delay-line of length equal to the preview horizon fed by

the future disturbance values. Access to the input or to the state of this tapped-delay-

line then provides the feedforward information. This is illustrated for horizon N in

Figure 2.1.

The spectral or correlation properties of the disturbance are captured by the disturbance-

generating model driven by white noise wd,k to yield advanced disturbance measure-

ment, dk+N , which then enters the delay line. The feedforward controller uses mea-

surements from both the N -step-ahead disturbance forecast yf,k = dk+N and the plant

output yk to form a control signal uk intended to mitigate the effect of the disturbance

on yk. This feedforward control design paradigm using exact preview measurements

of the disturbance is posed and explored for the H2 control problem in [13] and for

the H∞ control problem in [18]. The potential performance improvement for pre-

view control in the H∞ case was explored in [19]. The entire state of the delay-line,

{dk, dk+1, . . . , dk+N−1} , is simply constructed from dN+k and appears in the controller

as part of the state feedback.

For the reference tracking case, [20] appears to have been the first to introduce the
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disturbance
-generating

model Plant
delay
line

driving
noise
wd,k dk+N

Feedforward
Controller

Plant
output
yk

forecast
yf,k

dk

control
input
uk

exogenous signals
(unmeasured)

Figure 2.1: Feedforward system model with exact previewed disturbance data. Forecast
yf,k captures future values of disturbance dk via the measurement yf,k = dk+N .

delay-line model, although in [21] it is presented as inclusive of white measurement

noise adding to the forecast data. The forecast data signal is no longer just the exact

entering disturbance, dk+N , but a noisy variant of the entire delay-line state. This is de-

picted in Figure 2.2. In this approach, the feedforward data is an inexact representation

of the disturbance because of the presence of the noise signal vf,k. Related methods are

applied by [6], who take a noisy dN+k as input rather than the entire delay-line state.

They then apply these techniques to a vehicle suspension system. The full delay-line

state with additive noise was also explored by [22] as an approach to capturing the

degradation of forecast data information content regarding the future disturbance.

The individual elements of the measurement noise are assumed to be zero-mean, in-

dependent, and white, each with a respective covariance, V (i)
f . Selection of these positive

definite measurement noise covariances ,V (1)
f ≤ · · · ≤ V

(N)
f , introduces a mechanism

for accommodating the diminishing data quality seen with increasingly time-advanced

forecast data. The optimal disturbance rejection performance can still be calculated via

the closed-loop cost, which, much like exact preview control, is monotonically non-

increasing and tends to a limiting value as N grows to infinity. However, compared

to the exact case, inexact previewed disturbance information will typically yield higher
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disturbance
-generating

model Plant
delay
line

driving
noise
wd,k dk+N

Feedforward
Controller

Plant
output
yk

forecast
yf,k

dk

control
input
uk

exogenous signals
(unmeasured)

forecast
noise
vf,k

Figure 2.2: Feedforward control problem with inexact previewed disturbance data.
Forecast yf,k measures disturbance data {dk, dk+1, . . . , dk+N−1} affected by additive
measurement noise vf,k.

cost values for a given forecast horizon N , including the limiting cost value as the fore-

cast horizon extends to infinity.

In this paper, the delay-line of feedforward control is replaced by a forecast signal

model, shown in Figure 2.3, driven by a sequence,
{
d
(1)
k , . . . , d

(N)
k

}
, of N mutually

independent signals of spectra identical to the actual disturbance dk. The parameters
{
α(1), . . . , α(N−1)} determine the loss of coherence between feedforward measurements

{d(1)k , . . . , d
(N)
k } and the eventual disturbance dk. The construction of the forecast signal

model ensures that the forecast data elements, d(i)k , are each correlated with the actual

disturbance d, but are of successively diminishing correlation with increasing prediction

time (i).

The framework we develop subsumes the exact feedforward signal approach with

the selection of α(j) = 1, for all j, but is capable of capturing a wider range of data

quality factors. The parametrization of this forecast signal model is simple and meshes

with the standard linear optimal control design tools such as h2syn and hinfsyn

from MATLAB. With a complete set of forecast measurements along the horizon, our

solution displays the same qualitative closed-loop cost behavior as seen in the exact case

as N tends to infinity, but the performance is reduced because of the data imperfection.
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d
(1)
kd

(N−1)
k

z−1
dk

α(1)Iz−1α(N−1)I

d
(N)
k

z−1

√
1−

(
α(N−1)

)2
I

d
(N)
k d

(N−1)
k d

(1)
k

√
1−

(
α(1)
)2
I

Figure 2.3: Forecast signal model, where 0 ≤ α(j) ≤ 1 for j = 1, . . . , N − 1. Distur-
bance dk affects the system to be controlled.

Further, our analysis permits the consideration of sensor placement, which is not well-

posed in the exact context.

2.1.2 Organization

The remainder of this work is organized as follows. In Section 2.2, we motivate our

control design method with an illustrative example of a lidar-based wind velocity-field

measurement system attached to a wind turbine, and we pose a set of design questions,

that are addressed later in the paper, highlighting the utility of our approach. In Sec-

tion 2.3, we introduce the framework for modeling forecast data that is the primary

focus of this paper which we use to pose a corresponding control problem based on a

generalized plant structure. Section 2.5 is devoted to answering the design questions

posed in Section 2.2 through the use of a simple numerical example. We discuss some

potential applications and areas of future exploration in Section 2.6.

2.2 Motivating example and design questions

The hallmark property of forecast data, exemplified nowhere better than in meteoro-

logical forecasts, is that reliability diminishes with forecast horizon. From a statistical

perspective, the future and present signals might possess identical spectra but the de-

coherence of the eventual signal and its upstream or propagated measurement reduces
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the information value associated with forecast data. For illustrative purposes, we con-

sider a lidar forecast signal in wind turbine mechanical load management.

Figure 2.4 depicts a wind turbine equipped with a lidar-based wind velocity-field

measurement, which can be focused at a number of distances ahead of the turbine to

provide wind gust information for feedforward control of blade and tower loading. The

disturbance arriving at the turbine is dk, as in the formulation above, and the wind ve-

locity forecasts, d(i)k , are associated both with lead time and physical position ahead of

the turbine. Turbulence and flow variation lead to the transformation of the velocity-

field before its eventual arrival at the turbine. This, in turn, leads to the de-coherence of

forecast data as developed in the signal model above.

d

...

d(1)d(N−1)d(N) d(2)...

Figure 2.4: Wind turbine schematic with impinging blade load signal, d, and lidar-based
upstream feedforward/forecast data, {d(i) : i = 1, . . . , N}, at a number of positions.

2.2.1 Design questions

To fix ideas, we pose the following two questions.

(Q1) Given forecast measurements, {d(i) : i = 1, . . . , N}, along the whole horizon,

how is the coherence of the forecast data reflected in the achieved closed-loop

performance?
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(Q2) Given a fixed number of feedforward sensors to place, we ask the following:

(a) At which positions should the sensors be placed to achieve the best closed-

loop performance?

(b) If a feedforward sensor with a higher quality and cost were available, would

the corresponding improvement in performance provide sufficient economic

benefit to justify purchasing, installing and maintaining that sensor? Further,

where should this sensor now be placed?

2.3 Forecast modeling

For clarity, the approach is developed in the H2 framework with commentary pro-

vided in the conclusion, and elsewhere where appropriate, concerning the allied H∞

variant. This parallels the approach of [13] for H2 and [18] for H∞.

2.3.1 Plant model

Plant P is described by state-variable realization

xk+1 = Axk +Buk +W
1
2wk,

yk = Cxk + dk + V
1
2vk.

Here: xk is the plant state, uk is the control signal, yk is the measured output signal, dk
is an additive output disturbance for which forecast data is available, and signals wk and

vk are additional white unit variance exogenous signals representing non-fed-forward

process and measurement white noise signals, scaled by nonnegative definite matrix

W
1
2 and positive definite matrix V

1
2 .

2.3.2 Disturbance-generating model

Disturbance signal {dk} has known spectrum and is modeled as the output of a stable

linear system Gd(z),

dk = Gd(z)wd,k,
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driven by white unit variance noise signal {wd,k}. This is realized in the state variable

system

xd,k+1 = Adxd,k +W
1
2
d wd,k,

dk = Cdxd,k,

where W
1
2
d is a nonnegative definite matrix .

2.3.3 Forecast signal model

We now introduce a forecast signal model that captures the feature of forecast data

that the correlation decreases between a measured upstream disturbance d(i)k and its cor-

responding eventual disturbance dk+i−1 as the lead time, i, between the two signals

increases. Each forecast signal model has the following identical state realization.

x
(i)
d,k+1 = Adx

(i)
d,k +Wd

1
2w

(i)
d,k, (2.1)

d
(i)
k =

{
β(i)Cdx

(i)
d,k−1 + α(i)d

(i+1)
k−1 , if i = 1, . . . , N − 1,

Cdx
(i)
d,k−1, if i = N,

(2.2)

where, for convenience, we define the parameters

β(j) =

√
1− (α(j))

2
, (2.3)

for j = 1, . . . , N − 1. The forecast signal model given in (2.1-2.2) corresponds to the

model illustrated in Figure 2.3 expanded to include the disturbance-generating models

Gd and depicted in Figure 2.5.

The forecast signal model GD and forecast measurement signal yf,k have the aggre-

gated state-variable realization.

xD,k+1 = ADxD,k +BDwD,k,

dk = CDxD,k,

yf,k = CfxD,k + V
1
2
f vf,k,
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d
(1)
kd

(N−1)
k

z−1

√
1− (

α(1)
)2
I

dk
α(1)Iz−1α(N−1)I

d
(N)
k

z−1

√
1− (

α(N−1)
)2
I

w
(N)
d,k

Gd

w
(N−1)
d,k

Gd

w
(1)
d,k

Gd

Figure 2.5: Expanded version of forecast signal model seen in Figure 2.3 including
disturbance-generating models Gd, where 0 ≤ α(j) ≤ 1.

or

yf,k =




d
(1)
k

d
(2)
k

...

d
(N−1)
k

d
(N)
k




+




V
(1)
f

1
2v

(1)
f,k

V
(2)
f

1
2v

(2)
f,k

...

V
(N−1)
f

1
2v

(N−1)
f,k

V
(N)
f

1
2v

(N)
f,k




,

with V (1)
f = V

(2)
f = · · · = V

(N)
f > 0, and where

xD,k =




d
(1)
k

x
(1)
d,k

d
(2)
k

x
(2)
d,k

...

d
(N−1)
k

x
(N−1)
d,k

d
(N)
k

x
(N)
d,k




, wD,k =




w
(1)
d,k

w
(2)
d,k

...

w
(N−1)
d,k

w
(N)
d,k




,
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AD =




0α(1)Cd β
(1)I 0 · · · 0 0 0 0

0 Ad 0 0 · · · 0 0 0 0

0 0 0 α(2)Cd · · · 0 0 0 0

0 0 0 Ad · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · 0α(N−1)Cd β
(N−1)I 0

0 0 0 0 · · · 0 Ad 0 0

0 0 0 0 · · · 0 0 0 Cd

0 0 0 0 · · · 0 0 0 Ad




,

with β(j) defined as in (2.3),

BD =




0 0 · · · 0 0

W
1
2
d 0 · · · 0 0

0 0 · · · 0 0

0 W
1
2
d · · · 0 0

...
... . . . ...

...

0 0 · · · 0 0

0 0 · · · Wd

1
2 0

0 0 · · · 0 0

0 0 · · · 0 W
1
2
d




,

CD =
[
I 0 0 0 · · · · · · 0 0 0 0

]
,

Cf =




I 0 0 0 · · · 0 0 0 0

0 0 I 0 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · I 0 0 0

0 0 0 0 · · · 0 0 I 0




, (2.4)

and where the signals {w(i)
d,k} and signals {v(i)f,k} are unit-variance and white. The signal

vf,k, which is scaled by positive definite matrix Vf , is included for the feasibility of

controllers designed according to this framework.



14

The forecast signal model posed above provides a flexible framework for capturing

the behavior forecast data quality in numerous scenarios. The selection of where to

place upstream disturbance sensors, or where to measure forecast information along the

horizon, is captured by selection of the corresponding partitioned block rows of the fore-

cast measurement matrix Cf in (2.4). Each forecast component, d(i), has identical stable

spectral factor, Gd, but becomes decreasingly correlated, with the actual disturbance d

with increasing lead time i. The rate of decorrelation can be selected by the designer in

a systematic way using the parameters α(j) as seen in the following theorem.

Theorem 1 Let the {w(i)
d,k} (with i = 1, . . . , N ) be independent, zero-mean, unit-variance,

white noise signals. Denote the lag-τ cross-correlation between forecast signals d(p) and

d(q) by

R(p,q)(τ) = E
{
d
(p)
k d

(q)
k−τ

T
}
,

then

R(p,p)(τ) = R(q,q)(τ), (2.5)

for all p, q and τ . Further,

R(m,m+n)(τ) =
m+n−1∏

l=m

[
α(l)
]
R(m,m)(τ − n). (2.6)

Proof:

By construction, the forecast signal model yields the following formula for d(m) in terms

of d(m+n):

d
(m)
k =

m+n−1∏

l=m

[
α(l)
]
d
(m+n)
k−n + β(m)Gd(z)w

(m)
d,k−1

+
m+n−1∑

i=m+1

[(
i∏

j=m

[
α(j)
]
)
β(i)Gd(z)w

(i)
d,k−i+1

]
, (2.7)

with parameters β(p) defined as in (2.3). Applying (2.7) to the correlation function
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R(m,m+n)(τ), and recalling the independence of the signals {w(i)
d,k},

R(m,m+n)(τ) = E
{
d
(m)
k d

(m+n)
k−τ

T
}
,

= E

{(
m+n−1∏

l=m

[
α(l)
]
d
(m+n)
k−n + β(m)Gd(z)w

(m)
d,k−1

+
m+n−1∑

i=m+1

[
i∏

j=m

[
α(j)
]
β(i)Gd(z)w

(i)
d,k−i+1

])
d
(m+n)
k−τ

T

}
,

=
m+n−1∏

l=m

[
α(l)
]

E
{
d
(m+n)
k−n d

(m+n)
k−τ

T
}
.

Since the signal d(m+n) is stationary and all d(i) signals have the same auto-correlation

functions, i.e. R(m,m)(τ) = R(m+n,m+n)(τ), then R(m,m+n)(τ) can be written as

R(m,m+n)(τ) =
m+n−1∏

l=m

[
α(l)
]

E
{
d
(m+n)
k−n d

(m+n)
k−τ

T
}
,

=
m+n−1∏

l=m

[
α(l)
]

E
{
d
(m+n)
k d

(m+n)
k−τ+n

T
}
,

=
m+n−1∏

l=m

[
α(l)
]
R(m+n,m+n)(τ − n),

=
m+n−1∏

l=m

[
α(l)
]
R(m,m)(τ − n).

�

As a direct corollary, the role of the α(j) parameters in capturing the rate of decorre-

lation between an arbitrary i-step ahead disturbance forecast d(i) and the actual distur-

bance d can be directly calculated.

Corollary 1 Define the lag-τ auto-correlation function of disturbance d as Rdd(τ) =

E
{
dkd

T
k

}
. The cross-correlation between disturbance signal d and (i− 1)-ahead fore-

cast signal d(i) satisfies

E
{
dkd

(i)
k−τ

}
=

i−1∏

l=1

[
α(l)
]
Rdd(τ + 1− i). (2.8)
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Note that the selection α(j) = 1 for every j yields the characterization of exact

disturbance forecast data.

The effect of the α(j) parameters on the forecast data quality is visualized in the

simple numerical example plotted in Figure 2.6, where we select a forecast horizon

of N = 3 and the decorrelation parameters are selected as α(1) = α(2) = α(3) =

0.96, which modulate the scaled reduction between the cross-correlation functions with

increasing look-ahead time.

Figure 2.6: Cross-correlation functions between d and d(1), d and d(2), and d and d(3)

with α(j) = 0.96.

2.4 Feedforward controller design

Associated with the forecast signal model and in order to derive the corresponding

feedback/feedforward optimal controller, we pose an optimal control problem. The con-
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trol objective is to design controller K to reject disturbance dk, where K receives two

measurements:

1. feedback measurement yk from the plant and

2. forecast measurement yf,k, which contains present and upstream information about

disturbance dk.

The driving signal and performance output signal of the optimal control problem are

ξk =




wk

wD,k

vk

vf,k



, zk =

[
Q

1
2yk

R
1
2uk

]
, (2.9)

where Q ≥ 0 and R > 0 are matrix performance weights. This is illustrated in Fig-

ure 2.7. The optimal control problem can be posed as LQG (or H2) using the MATLAB

P

GD

K

zkQ
1
2

R
1
20

0

yf,k
yk Yk

uk

wk

wD,k

vf,k

vk

ξk

dk
V 1/2

V
1/2
f

Figure 2.7: Feedforward control problem under consideration.

function h2syn or as an H∞ problem using hinfsyn.
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The linear system from (ξk, yk) to (zk, uk) is as follows.



Xk+1

zk

Yk


 =




A B1 B2
C1 D11 D12

C2 D21 0







Xk
ξk

uk


 ,

where

Xk =

[
xk

xD,k

]
, Yk =

[
yk

yf,k

]
,

A =

[
A 0

0 AD

]
,

[
B1 B2

]
=

[
W

1
2 0 0 0 B

0 BD 0 0 0

]
,


 C1
C2


 =




Q
1
2C Q

1
2CD

0 0

C CD

0 Cf



,


 D11 D12

D21 0


 =




0 0 Q
1
2V

1
2 0 0

0 0 0 0 R
1
2

0 0 V
1
2 0 0

0 0 0 V
1
2
f 0



.

We pose the following control problem

J =min
K
||Hzξ||2 or ∞ , (2.10)

where Hzξ is the transfer function from ξ to z, and only causal controllers K are admis-

sible.
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When an H2 control law is implemented, all exogenous signals are assumed to be

independent white noise with distribution ξ ∼ N (0, I), and signal covariances are cap-

tured by the matrices {W,BD, V, Vf}. When an H∞ control law is used, all exogenous

signals are deterministic unit-energy L2 signals, and the scaling of the exogenous signals

is captured by the matrices {W,BD, V, Vf}.
Both H2 and H∞ control laws yield scalar performance criteria, J , in the form

(2.10), allowing for explicit assessment of the benefits of adding or improving feedfor-

ward data.

2.5 Addressing the design questions with an example

In order to address the design questions and demonstrate the features of the proposed

design framework, we pose an illustrative numerical example with assigned values given

in Table 2.1. For simplicity we solve only for H2 controllers.

Table 2.1: Illustrative numerical example for control problem in Figure 2.7.

Model/Variable Assigned Values

Plant P
A = 0.99 B = 1

C = 0.02

Disturbance-generating Ad = 0.975 Wd

1
2 =
√

5

system Gd Cd = 0.05

Performance weights Q = 5000 R = 10

Sample time Ts = 0.1 s

Scaling matrices

(i = 1, . . . , N )

W = 0.3 V = 0.003

V
(i)
f = 1× 10−6

Cases of α values

(j = 1, . . . , N − 1)

1. small α α(j) = 0.85

2. moderate α α(j) = 0.96

3. large α α(j) = 0.999
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2.5.1 Evaluating and comparing performance of control designs

We can now address design question (Q1) by solving the numerical example in the

case where the forecast measurement yf contains the full horizon of upstream distur-

bance information along the forecast up to horizon length N , {d(1), . . . , d(N)}. Thus,

matrix Cf contains all block rows as in (2.4). We solve this problem for the three sets

of α values and for all horizons in the range N = 1, . . . , 10. The resulting closed-loop

H2 performance is shown in Figure 2.8.

Figure 2.8: Closed-loop performance with fully populated forecasts yf at different hori-
zon lengths N solved for various α values.

Figure 2.8 demonstrates the reduction in feedforward benefit with decorrelation of

the forecast data from the arriving disturbance. Beyond this, it also shows, with data

available along the entire horizon: (i) the characteristic asymptote of the closed-loop

performance as the horizon increases, and (ii) the knee in the performance curve beyond

which returns are diminished. These latter items are aspects evident in the equivalent
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plots from [13] with perfect forecasts.

2.5.2 Determining the placement of forecast sensors

We consider a forecast measurement corresponding to placing an upstream sensor at

N time steps ahead of the plant, which is accommodated in the framework by selecting

the measurement matrix Cf to be the (N−1)th block row of the full Cf matrix given by

(2.4). The corresponding closed-loop H2 performances for the working example solved

at various sensor placement positions N = 1, . . . , 10 is shown in Figure 2.9.

Figure 2.9: Closed-loop performance with a single sensor placed at various upstream
positions N solved for small, moderate, and large values of α.

For the case where the α parameters are large, the disturbance propagating through

the forecast signal model retains much of its coherence, resulting in improved perfor-

mance with increasingly upstream sensor placement, with an optimal sensor position at

N = 10. For the case where the α parameters are of moderate size, the value of in-
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creasingly upstream disturbance information experiences diminishing performance im-

provements, resulting in an optimal sensor position at N = 5. Likewise, for small α

values, the reduction in the coherence of disturbance information is even more extreme,

and any sensor placed anywhere other than at the position of N = 3, will have reduced

performance.

2.5.3 Selecting forecast sensors

The adoption of an improved sensor might become evident in two ways: increase in

the values of α(j) reflecting better coherence with the arriving disturbance, and decrease

in the associated sensor noise variance Vf . Applying the former view, Figure 2.9 may

now be reinterpreted as delivering performance of ||Hzξ||2 = 17.1088 for a low quality

sensor (small α value case) optimally placed at position N = 3 versus a performance

of ||Hzξ||2 = 15.2549 for a higher-quality sensor (moderate α value case) located at

position N = 5. The analysis of the benefits of placement of multiple sensors can

proceed via exhaustive testing of options.

2.6 Chapter Summary

This work presents a model to characterize disturbance forecast data for feedfor-

ward control design that builds upon the standard finite tapped-delay-line by using the

(de)correlation between the disturbance forecast measurement and the eventual distur-

bance signal. A set of parameters, {α(j)}, is included in the model, by construction, to

quantify the correlation between forecast and disturbance signals.

Further exploration could address applications and limitations of the proposed ap-

proach in a practical context. Although not demonstrated directly in this work, the pro-

posed framework can easily be adapted to: produce H∞-optimal controllers; incorpo-

rate disturbances affecting the plant through channels other than additive to the output;

include reference tracking; and other extensions. The presented approach relies heavily

on the knowledge of disturbance-generating model and associated forecast signal model.

Therefore, the question of robustness of the control designs produced from this method

should be considered in future work. Particularly in the case of uncertain models for the
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plant, the disturbance-generating process, and the disturbance propagation model.

It is worth stressing that, practically speaking, the signal model of a stationary

discrete-time stochastic process may be derived directly from its correlation proper-

ties. (See the discussion in [23], Section 9.2.) A Stochastic Realization Problem can

be posed using the correlation to yield a finite-dimensional linear signal model, Gd.

Further, where the plant and disturbance model are jointly fitted via least-squares sys-

tem identification, again it is the second-order statistics or correlations which dictate the

parametrized fit, [24]. Thus, the technique of managing forecast data through correlation

properties would appear to fit this process well.
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Chapter 3

Improving Disturbance Compensation

With Event-Triggered Logic Signals

3.1 Introduction

In this paper, we provide a framework for improving estimates of load demand for

a gas turbine, used for power generation on a microgrid in island mode operation, by

making use of both measured physical signals, as are usually applied for estimation and

feedback control, and electrical breaker status data, an event-triggered logic signal pro-

viding nearly immediate indication of a change in load demand, i.e. real power demand,

typically measured in megawatts. In power grids relying primarily on gas turbine (GT)

power sources, such as island mode applications, the load demand mostly meanders

slowly about nominal values except when nearly instantaneous shifts occur in the load

value, such as those due to electrical breakers connecting or disconnecting equipment to

or from the grid [25]. Frequency regulation in synchronous machine applications dic-

tates a fixed rotational shaft speed and thus, the primary control objective is to maintain

the shaft speed at the grid frequency through fuel regulation. Although sudden changes

in load demand are eventually compensated by the feedback control system, reaction

delays can result in sharp and possibly undesirable fluctuations in electrical frequency,

potentially initiating unplanned shutdowns due to frequency-triggered fault protections.

The control system attempts to minimize the effect of load on shaft speed error. Shaft

24
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power on electric generators driven by GT’s is inferred from the output power of the

generator through voltage and current transformers. However, direct measurements of

voltages and electrical currents can be very noisy or unreliable. Heavy filtering is often

used to clean up these voltage and current measurements, and although the resulting

load estimate is sufficient for regular operation, it can be too slow for the control system

to use in real-time with a major load change. This heavy filtering introduces a delay

which forces traditional feedback GT controllers to wait for changes in shaft speed to

be detected before compensation can occur. If the controller were to have more imme-

diate knowledge of sudden onloads and offloads, then shaft speed could be regulated

in a more timely fashion, improving closed-loop regulation performance. Even though

such quantitative load information is not readily available, logic signals monitoring the

circuit breakers are already simply and rapidly acquired by the turbine control system

without impinging significantly on the client’s operation. Additionally, statistical in-

formation pertaining to the transient loads induced by changes in breaker status can be

easily obtained from the historical data record. We derive a systematic approach to aug-

menting plant analog signals with breaker logic signals, and transient load statistics, to

yield a faster load estimator. At this stage, we do not yet consider the associated control

problem.

In order to improve load estimation, we propose a Kalman filtering signal estima-

tion framework that not only uses the physical measurements traditionally fed back to

the GT control system, but also incorporates the status of the electrical breakers that

regulate the connection of separate pieces of equipment to a GT-powered grid , as well

as the statistical properties of the transient loads associated with a change in breaker

status. This approach, inspired by ideas from [26], provides a simple and systematic

framework for incorporating logic signals, like the status of electrical breakers, into

the well understood and often implemented linear Kalman filter design process, even

though logic-valued signals do not conform to the linear genesis of Kalman filtering

[27, 28]. The computational load associated with Kalman estimator is manageable for

implementation in any modern GT control framework.

Although a GT is a complex piece of machinery, it has been shown in [29] that its

behavior can be adequately described, for control purposes, by a parameter-dependent
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family of LTI models which can be readily identified by applying a closed-loop system

identification method, such as those discussed in [24] and [30]. Thus, LTI models are

used here.

This work provides several primary contributions. The problem of exploiting the

electrical breaker signals of driven equipment in a GT-powered microgrid for the pur-

pose of enhancing the estimation performance of the GT load is, to the authors knowl-

edge, itself novel. A thorough search of relevant literature yielded only one closely

related work, [31], where the generator breaker of the GT, not the driven equipment

breakers, was used to trigger an alternative GT control routine that prevents flameout

during a loss of load condition.

Another contribution of this work is the development of a load model that captures

the breaker signal switching behavior and is appropriate for Kalman filtering. The study

of switched dynamical systems is a mature topic with many branches of specialization.

A switched model that is closely related to this work is the discrete-time Markov jump

linear system (MJLS), see [32], [33], and [34]. MJLS models assume that the switching

signal evolves according to a Markov chain, and thus require knowledge of the transition

probabilities of the switching signal, which can be difficult to determine in practice.

Instead, the proposed approach uses knowledge of the mean and variance of the load

transient, which are often obtainable from data records.

3.2 Nomenclature

GT Gas turbine

LTI Linear time-invariant

NGP Rotational Shaft Speed of Gas Producer

P2 Pressure of GT compressor discharge

T5 Temperature of 5th stage GT power turbine

θ Breaker status signal

P Identified closed-loop GT Plant model

l total load deviation from nominal (disturbance)

y measured output signal of P
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us supplementary control input signal of P

w process noise signal of P

v measurement noise signal of P

x state of P

B base load model

lb base load disturbance contribution of B

wb base load driving noise signal of B

xb state of B

D load shift model

ld load shift disturbance contribution of D

ζ switched load shift input signal of B

ξ load shift driving noise signal prior to switching

xd state of D

X Augmented model state

W Augmented process noise signal

Ke Augmented model state estimator

K Augmented model state estimator gain

Σ Augmented model state estimator error covariance

ˆ Indication of an estimated variable

i.i.d. Independent and identically distributed

γ ∼ N (γ̄,Γ)Normally distributed stochastic variable γ

with mean γ̄ and covariance matrix Γ

E {·} Expected value

M ≥ 0 Nonnegative definite matrix M

M > 0 Positive definite matrix M

cov(·, ·) Covariance
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3.3 Physical Setup

We consider a 5 MW dry low-emission GT power generation system acting as the

sole power source for an electrical microgrid in island mode operation. Examples of

which include backup power generation applications for hospitals and universities, as

well as primary power generation for some remote locations with low reliability or no

grid-quality electricity access. In this case, large abrupt changes in power production/-

consumption can destabilize a local portion of a large electrical grid. By the same token,

the adoption of highly variable renewable sources into a network can create integration

and stability issues, which effects might be ameliorated by improved information avail-

ability and management. The power produced by the turbine is supplied to a collection

of individual loads in the microgrid, including a high-power device L (e.g. a motor or

compressor) whose connection to the microgrid is governed by an instrumented circuit

breaker, which provides a switching signal measurement θ(k), defined at time k by

θ(k) =





−1 , if the breaker opens at time k,

0 , if the breaker does not change at time k,

1 , if the breaker closes at time k.

(3.1)

In steady state operation, the controller regulating the GT system attempts to mitigate

the effect of transient deviations of the total microgrid load with respect to some constant

nominal load value. This total load deviation l(k) acts as a disturbance impinging on

the GT system and is regulated by the nominal controller. When the breaker associated

with device L switches open or closed, the total microgrid load deviation l(k) will shift

instantaneously to a new but unknown value.

The primary goal of this work is to develop an approach to augmenting the GT

feedback controller, based on local turbine signals, to incorporate the switching signal

θ(k). This proceeds by constructing an online estimate of microgrid load deviation dis-

turbance l(k) which uses: the existing feedback measurements; the breaker switching

signal θ(k); and knowledge of the load statistics associated with the device L breaker

switching event. We proceed by formulating a set of models which make the problem

under consideration amenable to standard Kalman filtering techniques in spite of the

presence of the ternary-logic signal, θ(k). The resultant filter is time-varying, however.
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The corresponding estimator for the controlled plant state and the load deviation distur-

bance l(k) is then presented. A numerical example is constructed to demonstrate the

proposed estimator, and we conclude by considering potential future research directions

and applications for the considered modeling framework and associated estimator. In

this work, we focus solely on the estimation problem. Design of a control law will be

addressed in subsequent work.

3.4 Model Formulation

P

B

D

wb

ζ ldξ

Switch
(Breaker)

lb

l

w

us

Ke

v

Estimatory

Switching
Signal θ

X̂ , l̂
Ke

Controlled
GT

Sensor Signal

θ(k)

Load Model

Figure 3.1: Model Framework Block Diagram
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3.4.1 GT System Model P

We characterize the microgrid power generation GT under standard feedback control

with the following state variable model, denoted by P :

x(k + 1) = Ax(k) +Bus(k) + w(k) +Bll(k), (3.2)

y(k) = Cx(k) + v(k), (3.3)

where (3.2-3.3) is a linearized model of the closed-loop controlled GT operating around

nominal load and nominal state values. Such a model has, for example, been identified

from high-fidelity simulation data in [29]. A high-level overview of GT modeling meth-

ods can be found in [30]. x(k) ∈ Rn denotes the state of P at time k. Control signal

us(k) ∈ Rm is a supplemental control input which is unused in this analysis, because we

focus on novel estimation aspects alone, but is included to accommodate the insertion of

further control actions around the current subsumed controller exploiting the improved

load estimates proposed here. y(k) ∈ Rp is the measured sensor data corresponding

to the standard analog GT output quantities which also enter the existing attendant GT

controller subsumed by model P . Process noise w(k) ∈ Rn and measurement noise

v(k) ∈ Rp are stochastic noise signals defined for later use in constructing the Kalman

state estimator.

3.4.2 Total Load Deviation Signal l(k) Models

Load l(k) ∈ R is the total deviation of the GT load from the nominal value and

is comprised of two parts: a slowly varying base load lb(k) ∈ R characterizing the

steady state behavior of the load variations, and a load shift ld(k) ∈ R characterizing

the instantaneous load jumps that occur during breaker switching. Loads lb(k) and ld(k)

sum to yield the total deviation in the load from nominal, i.e. l(k) = lb(k)+ld(k), where

the meandering of the load is captured by lb(k) which, in turn, embodies the summed

variations in unswitched and switched loads. The subsumed feedback controller in P

is designed to achieve minimal steady state error induced by changes in the load l(k).

However, due to the feedback construction, the control bandwidth is limited by feedback

delays and the dynamics of the closed loop system, which is not designed to make use
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of the breaker signal θ(k). At switching times, the load shift ld is modeled as taking a

new random value with a known mean and variance reflecting statistical switched-load

properties. The inclusion of the breaker signal θ(k) permits more rapid estimation of the

change in load immediately following switching. The result is a time-varying estimator.

For the base load model, we define the state variable model B, given by

xb(k + 1) = Abxb(k) +Bbwb(k), (3.4)

lb(k) = Cbxb(k), (3.5)

where xb(k) ∈ Rnb is the state and wb(k) ∈ Rmb is the driving noise signal, and lb(k) is

the base load.

The load shift is modeled by the system D, which captures instantaneous changes

indicated by θ(k), and is an offset to the load l(k). D is given by

xd(k + 1) = xd(k) + ζ(k), (3.6)

ld(k) = xd(k) + ζ(k), (3.7)

where xd(k) ∈ R is the state, ld(k) is the switched load shift offset, and ζ(k) is defined

by

ζ(k) = θ(k)ξ(k), with ξ(k) ∼ N
(
ξ̄,Ξ
)
. (3.8)

The parameters of the distribution of load change, mean ξ̄ and covariance Ξ, quantify

the statistical properties of the switched load, and are assumed to be known. Since the

breaker signal θ(k) indicates transitions only, this yields the switched load as the sum of

a sequence of random variables ζ(k).

ld(k) = xd(k) + ζ(k) =
k−1∑

j=0

ζ(j) + ζ(k) =
k∑

j=0

ζ(j).

Figure 3.2 depicts a diagram illustrating how the load model construction produces a

total load signal which captures the switching behavior of a breaker-connected load. The

steady-state behavior of load deviation signal l(k) is captured by the contribution of base

load lb. In the diagram, the breaker connecting the load to the microgrid is initially open

and the state xd, of the switching load dynamics, is zero. At time k = k1 the breaker
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closes, the breaker instrumentation takes the value θ(k1) = 1, and the mean of l(k) is

increased by adding a random value sampled from the distribution N
(
ξ̄,Ξ
)
. At time

k = k2 the breaker re-opens, the breaker instrumentation takes the value θ(k2) = −1,

and the mean of l(k) is decreased by subtracting a random value sampled from the

distribution N
(
ξ̄,Ξ
)
. At all non-switching times (i.e k 6= k1, k2) we have θ(k) = 0.

Time

L
o
a
d

D
e
v
ia
ti
o
n

(θ(k1) = 1)

E
{l

b
(k

)}
Base load signal lb(k)

Total load signal l(k)

k1
(θ(k2) = −1)
k2

(E
{l

b
(k

1
)}

+
ξ̄

)

(f
ro

m
n
o
m
in

a
l)

Figure 3.2: Diagram of load model operation with total load deviation l(k) in solid blue,
base load lb(k) in dashed violet, and probability density function of the load shift ld(k)
in green. The breaker closes at time k = k1 and opens at time k = k2.
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3.4.3 Augmented System Model

We amalgamate the state models P :(3.2-3.3), B:(3.4-3.5), and D:(3.6-3.7) into a

single augmented model, the form of which will lend itself to the construction of a state

estimator capable of leveraging the logic-valued breaker signal θ(k) in addition to the

standard GT output measurement y(k).

The augmented model has: state variable realization

X (k + 1) =AX (k) + Buus(k) + BwW(k)

+ Gζ̄(k), (3.9)

y(k) =CX (k) + v(k), (3.10)

with augmented signals

X (k) =




x(k)

xb(k)

xd(k)


 , W(k) =




w(k)

wb(k)

ζ̌(k)


 ; (3.11)

augmented system matrices

A =




A BlCb Bl

0 Ab 0

0 0 1


 , Bu =




B

0

0


 , Bw =




I 0 Bl

0 Bb 0

0 0 1


 ,

G =




Bl

0

1


 , C =

[
C 0 0

]
, Q(k) = var(W(k)); (3.12)

and switched-load offset and variation signals

ζ̄(k) = θ(k)ξ̄, ζ̌(k) = θ(k)
(
ξ(k)− ξ̄

)
. (3.13)

The total load deviation l(k) can be expressed in terms of the augmented model variables

as

l(k) = ClX (k) +DlW(k) + ζ̄(k), (3.14)
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where we define matrices Cl and Dl by

Cl =
[
0 Cb 1

]
, Dl =

[
0 0 1

]
. (3.15)

The signals defined by (3.13) imply ζ(k) = ζ̄(k) + ζ̌(k), a decomposition which

ensures augmented process noiseW(k) is zero mean, and allows for knowledge of the

switched-load mean value or offset ζ̄(k) to be incorporated into an estimator in a similar

fashion to known input signal us(k). Signal ζ̌(k) then represents the variation of ζ

around ζ̄(k). Since, by construction (the controlled GT is modeled in P ), A is stable.

Accordingly: the matrix pair (A, C) is detectable; the pair
(
A,Q(k)

1
2

)
will be (time-

varying) stabilizable; and V = var(v(k)) > 0. The Kalman filtering problem is well-

posed and the filter itself will be stable.

It is worth remarking that (3.9-3.10) yield a time-invariant system model driven

by signals, ζ̄(k) and ζ̌(k), which have time-varying statistical properties capturing the

breaker logic signal θ(k). In the resultant Kalman filtering formulation, the known mean

value, ζ̄(k), enters in place of an exogenous control signal and the zero-mean Gaussian

signal, ζ̌(k), augments the process noise variance. This Kalman filter is therefore time-

varying, reflecting the presence of θ(k), even though the underlying system is linear

time-invariant. Relation (3.14)) permits the calculation of a load estimate from the state

estimate.

3.5 State Estimator

We collect the standard signal assumptions needed for the Kalman filter statement

in the sequel.

Signal Assumptions Noise signals w, wb, ξ, and v are independent and identically

distributed (i.i.d.), zero mean, normally distributed white noise signals which are mu-

tually independent. The initial value of the augmented state estimate takes the value

X̂ (0| − 1) = X ∗0 , a random variable, which is distributed, along with the noise signals,
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as follows:



X ∗0
w(k)

wb(k)

ξ(k)

v(k)




∼N







X̄ ∗0
0

0

ξ̄

0




,




Σ∗0 0 0 0 0

0 W 0 0 0

0 0 Wb 0 0

0 0 0 Ξ 0

0 0 0 0 V







, (3.16)

for all k ≥ 0, with nonnegative definite covariances W ≥ 0, Wb ≥ 0, Ξ ≥ 0, Σ∗0 ≥ 0,

and positive covariance V > 0.

State Estimator Solution

Given: the linear time-invariant system equations (3.9-3.10); auxiliary input signal

us(k); GT measured output signal y(k); θ-dependent input signal ζ̄(k); θ-dependent

process noise covariance Q(k); time-invariant measurement noise covariance V ; initial

state estimate X̂ (0| − 1) = X ∗0 ; and initial estimator error covariance Σ(0| − 1) = Σ∗0;

the Kalman filter is immediate.

K(k) = Σ(k|k − 1)CT
[
CΣ(k|k − 1)CT + V

]−1
, (3.17)

X̂ (k|k) = X̂ (k|k − 1) +K(k)
[
y(k)− CX̂ (k|k − 1)

]
, (3.18)

Σ(k|k) = [I −K(k)C] Σ(k|k − 1), (3.19)

X̂ (k + 1|k) = AX̂ (k|k) + Buus(k) + Gζ̄(k), (3.20)

Σ(k + 1|k) = AΣ(k|k)AT + BwQ(k)BTw. (3.21)

From (3.14) for l(k), the associated load estimate follows.

l̂(k|k) = ClX̂ (k|k) + ζ̄(k). (3.22)

3.6 Numerical Example

We demonstrate the features of the proposed modeling and estimation framework via

a numerical simulation using a linear identified model at this stage. We assign values

to the models and signal realizations to calculate the time-varying Kalman filter with
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access to measurements y(k) and θ(k). We also construct a time-invariant Kalman filter

with noise covariance design parameters selected to over-bound the distribution of the

actual noise signals, as might be implemented if one only measures y(k) without θ(k).

The achieved estimator performance of the two state estimators is compared with respect

to the quality of the estimated total load signal l(k) and GT output signal y(k).

Identified GT Model P

This numerical example is based on the closed-loop behavior of a Solar Turbines

5 megawatt GT operating under feedback control around 90% nominal load. The data

is generated by a high-fidelity nonlinear GT simulation with its associated controller,

while the Kalman estimator is derived from the identified linear model from [29]. This

identified closed-loop system is a sixth-order state-space model with a delay of one

sample, at sample period Ts = 0.25s, with a model structure given by that of (3.2-3.3).

The normalized input and output signals of P are the following (nondimensionalized)

physical quantities:

us(k) =
[
uf (k) uv(k)

]T
, (3.23)

y(k) =
[
NGP (k) T5(k) P2(k)

]T
, (3.24)

where uf is the fuel control input signal, uv is the guidevane control input signal, NGP is

GT gas producer rotational speed measurement signal, T5 is the 5th stage GT temperature

measurement signal; and P2 is the GT compressor outlet pressure. For this simulation,

the supplementary control signal has zero value, i.e. us(k) = 0, for all k ≥ 0. The

process noise w(k) and measurement noise v(k) are simulated with signal realizations

possessing covariance matrices W = (0.005)2I and V = (0.10)2I respectively. The

state of P is initialized at the value x(0) = 0.

Total Load Signal l(k) and Model

The load is switched about its nominal value and the associated breaker logic signal

is used in the state and load estimator developed above. As used in the development,

the switched load consists of two parts: a constant offset to the baseload plus continued
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variation of the baseload about this new value. The estimator equipped with the switch-

ing logic signal is compared to and contrasted with an alternative load estimator, which

uses solely the plant measurements and which is tuned to balance transient response

versus static accuracy. The numerical evaluation is in normalized units. If the estima-

tor proposed in this work were to be applied to the design of a supplementary control

signal us(k), l(k) would act as a disturbance on P . Figure 3.3 depicts step changes

upwards and downwards in total load deviation (about nominal) in the simulation. Note

that this signal represents a realistic load disturbance and is not generated via the dis-

turbance model in the Kalman filter. In practice, this would represent the switching-in

followed by the switching-out of part of the load. Signal θ(k) indicates the transition

times: θ(30) = +1 (at time 7.5s), θ(90) = −1 (at time 22.5s), else θ(k) = 0. The total

duration of the simulation is 30s.

The following variable assignments were used to generate the realization of base

load lb(k): Ab =

[
0.995 0

0 0.992

]
, Bb = (0.1538)I , Cb =

[
0.9 0.1

]
, Wb = (0.20)2I ,

and xb(0) = 0. The realization of the load offset signal was defined by

ld(k) =

{
1 , for 30 ≤ k < 90,

0 , for k otherwise.

Breaker-Informed and Breaker-Uninformed Estimators

We consider two distinct load estimators. The breaker-uninformed estimator is de-

rived using models P and B and measurement y(k). The augmented PB-model is lin-

ear, time-invariant and is driven by process noises W and Wb, with the value chosen for

Wb reflective of the total variation in the real load l(k). This value ofWb will therefore be

larger than that chosen for the breaker-informed case below, due to the absence of model

D in the breaker-uninformed estimator. The effect of this choice ofWb will be discussed

with the numerical results. This estimator is time-invariant. The time-invariant breaker-

uninformed estimator was assigned design parameters Ab = 0.99, Bb = 1, Cb = 1,

W = (0.15)2I , V = (0.35)2I , and Wb = (0.04)2. The initial state estimate was initial-

ized by X̂ (0| − 1) = 0. The time-invariant Kalman error covariance and gain, for the
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Figure 3.3: Total load deviation from nominal, l(k).

PB system were calculated accordingly.

The breaker-informed estimator uses models P , B, and D and measurements y(k)

and θ(k). The PBD model is time-varying through the covariance Q(k), comprised of

the matrix with block diagonal elements W , Wb and (θ(k))2 Ξ. and has a known exoge-

nous input signal, ζ̄(k). Because of the explicit presence of this latter covariance term,

the value of Wb is diminished relative to the breaker-uninformed case. The resultant

estimator is time-varying driven by the θ(k) signal. The time-varying breaker-informed

estimator was assigned design parameters Ab = 0.99, Bb = 1, Cb = 1, W = (0.15)2I ,

V = (0.65)2I , Wb = (0.09)2, ξ̄ = 1.10, and Ξ = (0.65)2. The initial state estimate was

initialized by X̂ (0| − 1) = 0 and the initial error covariance was selected as the solution

to the discrete-algebraic Riccati equation fo the augmented PBD system in (3.9-3.10).
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Comparative Estimator Performance

In comparing estimators there are two central aspects: the capacity of the estimator

to track variations in the target signal, and the ability of the estimator to smooth out noise

and so provide an accurate estimate when the signal is roughly stationary. Needless to

say, these aspects are in tension. The variance of an estimate is large if it exhibits poor

noise rejection. But equally in Kalman filtering, the covariance value, Σ(k|k − 1), in

(3.17-3.21) above affects the estimator gain, K(k), with high covariance equated with

fast learning [27]. We plot in Figures 3.4 and 3.5 both the load estimates and their

one-standard-deviation values to indicate the functioning of the method, where the θ(k)

signal is used to adjust the learning aspects dynamically in the time-varying filter via

Q(k).

Figure 3.4 displays the performance of the time-varying breaker-informed estimator

driven by y(k) and θ(k). We note that this estimator exhibits fast transient response at

the switching times together with small variance load estimates during quiescent periods

of nominal behavior. Also evident from this figure is the increase in estimator covariance

at the breaker switching times, which is associated with rapid but noisy estimation of the

new mean load value. The estimation returns to normal-rate learning after the transient

period.

Figure 3.5 displays the corresponding performance for the breaker-uninformed esti-

mator using the same y(k) data and model as previously specified. The points to note

are the time-invariant covariance values corresponding to a fixed separation of the red

lines in the plot from the green. The transient response is much slower than for the

breaker-informed case and the selection of parameter Wb has been made to balance the

estimate variance in quiescent periods versus transient tracking. This compromise is

apparent in the larger steady-state variance versus the time-varying informed case.

Although we have numerically demonstrated the estimation of load l(k), estimates

of the GT system state are a natural byproduct of the estimation framework constructed

here. Hence, estimates of GT process variables are also available. Figures 3.6-3.8

present the resulting comparative estimates of the GT process variables NGP , T5, and

P2. The GT process variables depicted in solid blue lines represent the simulated val-

ues computed by the plant without measurement noise, i.e. the product Cx(k). The
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Figure 3.4: Total load deviation from nominal l(k) (solid blue), its estimate from the
breaker-informed estimator (green squares), and the estimate±one (computed) standard
deviation of estimation error (solid red).

breaker-informed estimates are depicted as green boxes and the breaker uninformed es-

timates as magenta dots, both of which are informed by the GT output measurement

signal y(k) which is subject to measurement noise signal v(k). The breaker-informed

estimation provides significant tracking performance benefits in comparison with the

breaker-uninformed method. The more rapid acquisition of an accurate GT state esti-

mates with the new estimator is evident and would lead to process control improvements

when incorporated into the feedback control signal either in a joint design or through

the supplemental control input us(k). The root mean square (RMS) errors of the θ-

dependent and θ-independent estimates of load l and GT output signals {NGP , T5, P2}
are compared in Table 3.1.
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Figure 3.5: Total load variation from nominal, l(k), (solid blue), its estimate from the
breaker-uninformed estimator (magenta dots), and the estimate ±one computed stan-
dard deviation of estimation error (solid red).

Table 3.1: Table of root mean square errors of θ-dependent and θ-independent estimates
of load l and GT output signals {NGP , T5, P2}.

Estimator Type RMS Errors

l NGP T5 P2

θ-dependent Error 0.0534 0.0448 0.0450 0.0258

θ-independent Error 0.2784 0.2701 0.2462 0.0918
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Figure 3.6: GT shaft speed, NGP (k), (solid blue), its breaker-informed estimate (green
squares) and its breaker-uninformed estimate (magenta dots).
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Figure 3.7: GT turbine 5th stage temperature, T5(k), (solid blue), its breaker-informed
estimate (green squares) and its breaker-uninformed estimate (magenta dots).



44

0 5 10 15 20 25 30

0

0.5

1

1.5

Figure 3.8: GT compressor discharge pressure, P2(k), (solid blue), its breaker-informed
estimate (green squares) and its breaker-uninformed estimate (magenta dots).

3.7 Extension to Multiple Load Deviations

Thus far, we have constructed and demonstrated a modeling framework, which read-

ily lends itself to the construction of a state estimator capable of incorporating a logic-

valued breaker switching signal θ(k) and knowledge of the associated load switching

statistics ξ̄ and Ξ. We will now demonstrate how, with minimal modification, the pro-

posed framework can be extended to incorporateN switching loads, each one connected

to the microgrid via a separately instrumented breaker with breaker switching signals
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θj(k), j = 1, 2, . . . , N . Relation (3.13) is augmented to become

ζ̄(k) =
N∑

j=1

θj(k)ξ̄j, ζ̌(k) =
N∑

j=1

θj(k)
(
ξj(k)− ξ̄j

)
. (3.25)

The bottom right variance term of Q(k) is altered to

var
(
ζ̌(k)

)
=

N∑

j=1

(
θj(k)

)2
Ξj, (3.26)

where the set of data pairs
{

(ξ̄j,Ξj), j = 1, . . . , N
}

correspond to the statistics of the

N individual switched loads.

3.8 Chapter Summary

We have developed a novel estimator for the incorporation of nonlinear, logic-based

switching signals, together with switched load statistics into the load estimation of a GT

power system. This admits greatly improved estimation performance, notably during

transients following switching, at the expense of implementing a time-varying estimator.

The estimator remains linear. Further, this formulation admits a very direct extension to

more complicated classes of problems with multiple switching elements. The complex-

ity of the estimator does not change, although the management of the signals is more

complicated.

Future work will consider two aspects: disturbance rejection feedback control using

this advanced estimator, and extension of the results to include scheduling for changes

of the linearized models as ambient conditions and nominal loads vary. It is well under-

stood that gas turbine engines in aeronautical applications are well modeled and con-

trolled using linear methods scheduled for points in the flight envelope described by

altitude, mach number and ambient temperature. In the power generation case, the en-

velope is more simply characterized.
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Chapter 4

Gas Turbine Modeling for Control

4.1 Introduction

Advances in simulation software and engineering knowledge have driven develop-

ment of gas turbine (GT) engine models which capture dynamic behavior with increas-

ing levels of fidelity. When implemented in transient simulations, these high-fidelity

models provide a flexible, rapid, and inexpensive platform for generating insightful en-

gine data. However, such complex models are often undesirable for control design,

where the simplest possible model which adequately characterizes the system dynamics

is preferred, typically in the form of a linear model. GT models for control design are

commonly obtained with model fitting techniques applied to data from closed-loop in

situ engine experiments, which can be expensive, time-consuming, or impractical, and

depends heavily upon the availability of an appropriate testing platform. However, in

a recent work by [35], an open-loop GT engine model for control design was obtained

using a high-fidelity GT engine model to generate the necessary data for model fitting,

specifically by using system identification techniques.

System identification is an established method for obtaining GT models, such as

in [36], [37], [38], and [39]. Typically, data is generated from in situ experiments on a

physical test engine. Conducting in situ experiments on an engine in the field may not be

feasible due to the potential revenue loss to the customer caused by a lack of availability.

An alternative is to perform in situ engine experiments in a dedicated testing facility. In

order to ensure safe operation of the engine these experiments are performed in closed-

47
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loop with a controller. Traditional white noise excitation signals can degrade the health

of components. Thus, alternative excitation signals, such as multisines, are commonly

used to excite the engine in the appropriate frequency band and minimize the so-called

crest factor [40]. Other consideration related to in situ testing include synchronization

of data, sensor noise, unmeasurable signals, and component failures must be taken into

consideration as well.

Although in situ experiments with a physical GT engine have numerous associated

operational, time, cost, safety, and data management requirements, experiments using

transient simulations of a high-fidelity model (of sufficient quality) can circumvent most

of these issues. Transient simulations experiments with a high-fidelity GT engine model

are inherently fast, cheap, and can be pushed to the limits of realistically safe opera-

tion, allowing a wider selection of excitation signals; recorded signal data does not have

measurement noise and is automatically synchronized with the simulation clock; signals

which are not available during in situ experiments may be available; the internal struc-

ture of the model may offer structural insights which can be incorporated into a linear

model for control design; and reconfiguration of the experimental setup is simple.

Proposed Approach

In this work, an open-loop linear model of a 5 MW dry low emissions GT engine, for

power generation applications, is constructed. A high-fidelity gas turbine (HFGT) model

of the engine, in closed-loop configuration with a high-fidelity model of the existing

controller, is available for use in transient simulations in Simulink. The high-fidelity

model is used to generate data for closed-loop system identification, which circumvents

the cost, time, and numerous requirements of in situ experiments and allows for flexible

and varied experimental configurations, including closed-loop validation experiments

used to verify the constructed engine model, which takes the form of a linear time-

invariant gas turbine (LTI GT) model. Additionally, the internal subsystem structure

of the HFGT model is leveraged to divide the constructed linear engine model into

three major subsystems, and modeling decisions can be applied independently to each

subsystem. The three engine subsystems are denoted as follows:

� the Fuel Subsystem, which is excluded from modeling due to the availability of
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fuel flow during online engine operation;

� the Rotor System, for which a linear model is obtained via a steady state approxi-

mation of its high-fidelity dynamics; and

� the Remainder Subsystem, which includes all subsystem blocks other than the

Fuel Subsystem, and which can be obtained by way of system identification on

closed-loop data from the HFGT model.

The major engine subsystems are illustrated in Figure 4.6, and are discussed in detail in

the body of this paper.

The LTI GT engine model is constructed by combining the identified Remainder

Subsystem model with the linear Rotor Subsystem model. Since the constructed engine

model uses fuel flow directly as an input signal, instead of valve commands, then any

Fuel Subsystem can be used for control design in a modularly interchangeable fashion.

Likewise, the linear model of the Rotor Subsystem preserves the physical significance

of the model parameters from the high-fidelity Rotor Subsystem model, which allows

the linear rotor model to characterize a wide range of rotors in control design.

The LTI GT model is validated in a closed-loop transient simulation while regu-

lated by the high-fidelity model of the existing controller block. The output signals are

compared to those generated by the HFGT model under comparable circumstances.

Organization of Remaining Text

The remainder of the text is organized as follows: Section 4.2 contains nomencla-

ture used throughout the text and a table of relevant GT signals; Section 4.3 contains

brief descriptions of closed-loop system identification and and common approaches;

Section 4.4 contains an overview of GT operation and the HFGT engine model used to

generate data for system identification; Section 4.5 details the approach used to leverage

the internal subsystem structure of the HFGT model in the construction of the LTI GT

model, and models for the Remainder Subsystem and the Rotor Subsystem are obtained;

Section 4.6 discusses the closed-loop transient simulation experiment used to validate

the constructed LTI GT engine model against the closed-loop response of the HFGT
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model in a comparable transient simulation experiments; and Section 4.7 contains a

summary of this work.

4.2 Nomenclature

GT Gas turbine

HFGT High-fidelity gas turbine (model for generating data)

LTI GT Linear time-invariant gas turbine (model constructed in this work)

LTI Linear time-invariant (system)

ID Identification (i.e. system identification)

PLC programmable logic controller

SDNG San Diego natural gas

Wobbe Wobbe index of the fuel

t continuous-time (t ∈ R, with t ≥ 0)

k discrete-time index (k ∈ N, with k ≥ 0, and t = ts · k)

ts sample period (of signal data recorded from transient simulations)
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Table 4.1: Table of gas turbine variables and their physical significance.

GT Variable Physical Significance

KW Load (generator, KW = KW + dKW )

KW Nominal operating load (generator)

KW rated Maximum rated load (generator)

NGP Rotational shaft speed (in percent)

T5 Temperature at GT Stage 5 (power turbine blades)

P2 Pressure at GT Stage 2 (compressor outlet)

P3 Pressure at GT Stage 3 (combustion chamber)

T3 Temperature at GT Stage 3 (combustion chamber)

PFMM Pressure in main fuel manifold

PFMP Pressure in pilot fuel manifold

BVD GT bleed valve command (fuel control signal)

WFI GT fuel injector flow rate (fuel control signal)

GV C GT guide vane command (air control signal)

MVC GT main valve command (fuel control signal)

PV C GT pilot valve command (fuel control signal)

PWR Lossless net engine power (HPT −HPC)

HPT power from power turbine blades (no rotor losses considered)

HPC power consumed by compressor (no rotor losses considered)

dKW load disturbance (perturbation from nominal)

dWFI fuel flow excitation (for system identification)

dGV C guide vane command excitation (for system identification)

4.3 Closed-loop System Identification

This section contains an overview of system identification techniques using data

generated from closed-loop experiments. In general, system identification involves us-

ing input-output signal data to fit a model for a dynamic system of interest. Models

can be identified with various intended uses, such as simulation, prediction, or control
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design. Models for control design capture the dynamic behavior of the system in a fre-

quency passband of interest, typically within plus or minus a decade of the crossover

frequency. It is desired that models for control design are as simple as possible, for ex-

ample in the sense of model order, to ensure the feasibility of controllers and estimators

designed with that model.

In many practical engineering applications, implementation of open-loop experi-

ments can be prohibitively costly. This is particularly germane to industrial systems,

which are often intended for continuous operation, such as gas turbine engines used

for power generation. A loss of availability for such systems can result in significant

opportunity cost for the customer. The system of interest may also have dynamics or

operating constraints (due to safety, component health, or other factors) which require

closed-loop operation, even while conducting experiments in a dedicated testbed envi-

ronment. Additionally, it has been shown by [41] that closed-loop system identification

can yield superior models for control design than system identification using data gener-

ated from open-loop experiments. Hence, system identification experiments conducted

in closed-loop can be used to ensure availability and can produce superior models.

In a general system identification setup, we consider the discrete-time linear time-

invariant system

y(k) = G(z)u(k) + v(k),

where G denotes the input-output process dynamics, u is the input signal, y is the mea-

sured output signal, and v is an additive exogenous noise signal defined by v(k) =

H(z)e(k), where H is a linear filter and e is zero mean independent white noise. The

data
[
yT uT

]T
, used to fit models for G and H , must be obtained by experiments

on the process. If input u and exogenous noise e are uncorrelated, then the data is

said be open-loop identification data and was generated by an open-loop identification

experiment, and standard open-loop identification methods can be applied. If input u

and exogenous noise e are correlated, then the data is said be closed-loop identification

data and was generated by a closed-loop identification experiment, allowing closed-loop

identification methods must be used.

Block diagrams illustrating both types of system configurations are shown in Fig-

ure 4.1, where the closed-loop system is regulated by a controller C and measured ex-
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ogenous reference signal r. The controller C acts like a constraint which limits the

behavior of the signal it produces. During a closed-loop identification experiment, the

signal r functions not only as a reference signal, but can be used to inject excitation into

the system. Careful design of r is required to produce informative experimental data.

e

G

H

C

(a) (b)

e

H

G

vv
yy uru

Figure 4.1: Identification experimental setup for process G and noise shaping filter H
with data generated in either open-loop (a) or closed-loop with a controller C and refer-
ence signal r (b).

Closed-loop identification experiments are often necessary in practical applications

where conducting offline open-loop experiments are unsafe, such as when the process is

open-loop unstable; impractical, such as when the possibility of damaging components

is increased in open-loop operation; or expensive. In particular, the high-fidelity gas

turbine model leveraged in this work must be operated in closed-loop due to the bounded

nature of the lookup tables within the model, where open-loop operation has a tendency

to drive the system ‘off the map’, i.e. beyond the range of the lookup tables.

Several common closed-loop identification methods, and their advantages and dis-

advantages, are briefly described in the remainder of Section 4.3.
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4.3.1 Direct Approach

The direct approach to closed-loop system identification is the application of open-

loop system identification methods directly to closed-loop identification data. The ad-

vantages of this method include the fact that knowledge of the regulator or the character

of the feedback is not required, a wide variety of open-loop identification algorithms

can be used, and unstable open-loop systems can be handled provided the closed-loop

system is stable and the predictor is stable, which can be guaranteed with some technical

conditions (c.f. [42]). However, due to the well-known trade-off between bias error and

variance in model fitting, a good model for the noise filter H is required for the direct

approach to be successful. For more information, see [24].

4.3.2 Indirect Approach

In the indirect approach to closed-loop system identification, the closed-loop system

model is identified from measured signals y and r, and the open-loop process model

is obtained from knowledge of the (usually linear) controller. An advantage comes

from a special case of this approach called the dual Youla parameterization method,

which allows you to find all open-loop process models stabilized by the controller C,

as explained in [43]. A disadvantage of this approach is that the controller C must be

known, and any nonlinearities in the controller significantly complicate the approach.

4.3.3 Two-Stage and Projection Approach

The two-stage approach of closed-loop system identification involves, as the name

suggests, two stages. In the first stage, a modelGur from the measured exogenous signal

r to the controlled input signal u is identified, given by

u(k) = Ĝur(z)r(k) + Ĥure
′(k),

where e′(k) zero-mean independent white noise. A ’noise-free’ version of the input

signal is then generated by û(k) = Ĝur(z)r(k). In the second stage, a model is identified

from the data z =
[
ûT yT

]T
. This method was introduced in [44] for obtaining transfer

functions with prediction error techniques. A variant of this approach, introduced by
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[45], uses a non-causal FIR model to fit the first stage model from r to u obtained

using least squares, which can be done with a sufficient quantity of FIR parameters

so that any correlation between r and u can be ignored, and the difference u − û is

be uncorrelated with sequence r. An advantage of this variant is that the asymptotic

convergence results hold regardless of the true relationship between r and u, even if this

relationship nonlinear, or if the controller K is nonlinear.

4.4 Gas Turbine Operation and High-Fidelity Models

This section provides an overview of basic gas turbine operating principles and in-

troduces the high-fidelity gas turbine (HFGT) Simulink model, knowledge of which is

leveraged to construct linear gas turbine models suitable for control design.

4.4.1 Gas Turbines for Power Generation Overview

A gas turbine (GT) engine is comprised of several basic components, a multi-stage

axial compressor, which compresses ambient air to a suitable pressure; a combustion

chamber, where fuel and the high pressure air from the compressor outlet are mixed

and combusted; and a multi-stage axial power turbine, which receives the energy from

the expanding byproducts of combustion. A fraction of the energy transmitted to the

power turbine blades sustains the rotational motion of the compressor shaft, while the

majority of the remaining energy is converted into mechanical work for use by the driven

equipment output. A simplified diagram of gas turbine operation is illustrated in the

diagram in Figure 4.2.
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Figure 4.2: Simplified diagram of gas turbine operation.

Operating conditions vary throughout the engine. It is a common convention to label

the principal stages of the engine with a number, which is used to identify the location

the values of physical quantities, such as pressures and temperatures, at that position

in the engine. The principal stages of engine operation are traditionally labeled as in

shown Figure 4.2, where each numbered stage is associated with the following engine

component stations:

Stage (1) corresponds to the compressor inlet, where ambient air enters the compressor;

Stage (2) corresponds to the compressor outlet, where compressed air exits the com-

pressor;

Stage (3) corresponds to the combustion chamber, where fuel is injected, mixed with

the compressed air of Stage 2, and combusted;

Stage (5) corresponds to the power turbine blades, where the high-velocity byproducts

of combustion transfer energy to the power turbine blades to generate mechanical

output work and sustain the rotation of the engine shaft; and

Stage (7) corresponds to the exhaust section, where the waste fumes are ejected from

the engine.
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In this work, we consider a single-shaft dry low emission 5 MW Solar Turbines

TaurusTM 60 (T60) GT engine used for power generation. The engine is coupled with a

three-phase electrical generator which supplies power at a desired frequency and volt-

age. A diagram of the engine and generator is shown in Figure 4.3.

Figure 4.3: Solar Turbines TaurusTM 60 gas turbine engine coupled with a three-phase
electrical generator. Illustration adapted from [1]. GT engine stages are numbered in
magenta.

A detailed block diagram of the engine, generator, controller, and all relevant signals,

is illustrated in Figure 4.4. The physical of significance of the relevant signals is given in

Table 4.1. In this work, the controller which regulates the engine operation is termed the

Existing Controller, which produces control signals MVC, the main valve command

signal; PV C, the pilot valve command signal; GV C the command signal for the vari-

able inlet guide vanes; and BVD, the bleed valve command signal. Signals MVC and

PV C modulate the fuel flow rate WFI into the combustion chamber through the fuel

injectors. Air flow is primarily regulated by GV C and to a lesser extent by BVD. For

this particular engine model, the effect of BVD is neglected and its existing schedule

is not considered in potential control designs from models constructed here. The most

significant regulated output signals are NGP and T5, which must track their respective

reference signals to ensure performance and safety requirements of operation. However,

transients in the load KW act as a disturbance signal that causes NGP and T5 to de-

viate from their reference values, and the controller must reject the effect of changes in

KW . More information about gas turbine operation can be found in [46], [47].
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Figure 4.4: Detailed block diagram of GT engine, Existing Controller, and generator in
closed-loop configuration.

4.4.2 High-Fidelity Gas Turbine Model

The high-fidelity model used to generate transient simulation data in this work was

implemented in Simulink and its block diagram is shown in Figure 4.5. High-fidelity

representations of the TaurusTM 60 engine and the Existing Controller were placed in

a closed-loop configuration. In this work, the model of the engine is termed the high-

fidelity gas turbine (HFGT) model. The HFGT model is comprised of internal, intercon-

nected, modular subsystem blocks which represent the components and signals depicted

in Figure 4.4. The HFGT model was validated against transient data from in situ exper-

iments on a physical engine which were conducted in a highly instrumented dedicated

test facility.
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Figure 4.5: Simulink block diagram of the high-fidelity gas turbine (HFGT) model of
the TaurusTM 60 (T60) engine in closed-loop configuration with the Existing Controller
block.

Signal KW is an exogenous disturbance signal which is the sum of a nominal oper-

ating loadKW and an additive perturbation load dKW . The signals dWFI and dGV C

are exogenous excitation signals that were used for system identification. Fuel proper-

ties (such as Wobbe index, specific gravity, fuel temperature, etc.) are assumed to have

fixed values associated with San Diego natural gas (SDNG). The generator is excluded

from the modeling process.

The Existing Controller block generates signals {BVD,MV C, PV C,GV C}. Al-

though the goal is to obtain an open-loop engine model suitable for control design, the

Existing Controller block is needed for transient simulations due to the limits of the

look-up tables which are used within the HFGT model. Open-loop simulations with

only the engine will cause the system to operate on the map boundaries which can po-

tentially crash the simulation. Thus, closed-loop operation is required for generating

useful data. Additionally, a newly designed controller should not affect the steady state

operation of the engine, only the transient performance. Hence, the Existing Controller

block is a desirable regulator for closed-loop experiments.

The internal subsystem blocks within the HFGT model can be grouped into three

relevant major pieces, a grouping that provided key insight into the method used to con-

struct a model suitable for control design. Namely, we consider the Fuel Subsystem,
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which contains a high-fidelity model of the valve and fuel injector dynamics; the Rotor

Subsystem, which contains a high-fidelity model of the rotor dynamics and which cal-

culates NGP ; and the rest of the subsystems are grouped into a single block called the

Remainder Subsystem. A block diagram illustrating the internal subsystem structure of

the HFGT model is illustrated in Figure 4.6.
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Figure 4.6: Structural subsystem partition of the HFGT model in closed-loop configu-
ration with the existing controller block.

4.5 Obtaining a GT Model for Control Design

In this section, a control-design-oriented model is constructed for a single-shaft, dry

low emissions TaurusTM 60 gas turbine engine coupled with a three-phase electrical

generator, as described in Section 4.4.1. The high-fidelity HFGT engine model and

Existing Controller model introduced in Section 4.4.2 are available for use in closed-

loop transient simulations implemented using Simulink.

The constructed model consists of a single linear time-invariant state-space realiza-

tion for the GT engine, the LTI GT model. The LTI GT model is valid near a nominal

operating point characterized by a fixed nominal load value KW = KW . However, in

practice, the approach can be repeated at different nominal load values to yield a family

of LTI GT models which are amenable to control design and collectively characterize
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the engine dynamics over a practical range of KW values.

The remainder of Section 4.5 describes the modeling decisions used to construct the

LTI GT model. Discussion of how the internal subsystem structure of the HFGT model

was leveraged in the construction of the LTI GT model is discussed in Section 4.5.1. The

system identification design decision used to obtain a linear model of the Remainder

Subsystem is discussed in Section 4.5.2. Discussion of how a linear model of the Rotor

Subsystem was obtained from a steady state approximation of the high-fidelity dynamics

of that subsystem in given in Section 4.5.3. The formulation of the LTI GT model

as an augmented model which combines the identified linear model of the Remainder

Subsystem and the approximated linear model of the Rotor Subsystem is detailed in

Section 4.5.4. Following Section 4.5, a validation of the LTI GT engine model in closed-

loop transient simulations is demonstrated in Section 4.6.

4.5.1 Exploiting Internal Structure of the HFGT Model

The internal structure of the LTI GT engine model was selected to mirror that of the

HFGT engine model, as shown in Figure 4.6. A block diagram of the selected internal

subsystem structure of the LTI GT model is illustrated in Figure 4.7, with the exception

of the Fuel Subsystem, which was excluded from the LTI GT model.
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Figure 4.7: Block diagram of the selected internal structure of the LTI GT model.
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The LTI GT model was constructed as an augmented model comprised of two in-

terconnected linear time-invariant models, one model corresponding to the Remainder

Subsystem and the other model corresponding to the Rotor Subsystem. The linear model

of the Remainder Subsystem was obtained by the direct approach to closed-loop system

identification and the linear model of the Rotor Subsystem was obtained by a linear

approximation of the high-fidelity rotor dynamics.

The independent modeling of the Remainder Subsystem and Rotor Subsystem was

enabled by the fact that the HFGT model provides access to signals which are unavail-

able during in situ experiments with a physical engine. Specifically the lossless net

engine power PWR. ‘Pulling out’ the rotor dynamics from the identified portion of the

model reduced the model order necessary to capture the identified dynamics.

Fuel flow rate through the injectors WFI was used as a controlled input signal for

the LTI GT model instead of valve commands MVC and PV C, which not only re-

duced the number of controlled input signals, but also also excluded the Fuel Subsystem

from the modeling process. The exclusion of the Fuel Subsystem ensures that the LTI

GT model can be paired with any valve models during control design. Signal WFI is

calculated in the PLC during online engine operation and all signals driving the Fuel

Subsystem are known, including P3 and T3 which are measured outputs of the identi-

fied model for the Remainder Subsystem. Thus, the selection of WFI as a controlled

input is appropriate due to its availability during real-time engine operation.

Since the LTI GT model was constructed so that the interconnections of its internal

subsystem models mirrors the subsystem interconnections within the HFGT model, the

LTI GT model can be validated in closed-loop transient experiments with the Existing

Controller block and the Fuel Subsystem block.

4.5.2 Remainder Subsystem Model: Identification

A linear time-invariant model for the Remainder Subsystem was obtained from sys-

tem identification using closed-loop transient simulation data. In this section, the system

identification design points and results are presented. The nominal operating point of

the identified model, around which the model is valid, was selected to be 75% of the

total rated load of the GT. That is, KW = (0.75)KWrated, where KWrated is the 100%
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rated load for the TaurusTM 60 engine.

The transient simulation used to generate data for system identification, termed here

as the identification experiment, was implemented in Simulink as shown in the block

diagram in Figure 4.5, with the HFGT engine model in closed-loop with the Existing

Controller block. The bounds of the lookup tables within the HFGT engine model ne-

cessitated the use of closed-loop transient simulations to generate experimental data for

system identification. The simulation was solved with a variable-step solver.

The Wobbe index of the fuel was fixed to correspond with the composition of San

Diego natural gas (SDNG), ambient conditions were chosen as an ISO standard day.

The sample period was selected to be ts = 0.090 s, which is three times faster than

the scan time of the PLC used to control the physical engine, i.e. the duration of a

single iteration of the software recursion. Due to the momentum of the gas turbine at

operational speeds, the low frequency behavior of the system dynamics was of primary

interest. The bandwidth of interest spanned a frequency range of approximately 0 Hz to

1-2 Hz, which was well within the Nyquist frequency of the sample period. Thus, the

selected sample period effectively oversampled the system dynamics, reducing potential

anti-aliasing and improving resolution.

Experiment Design

In the design of the closed-loop transient simulation used to generate data for iden-

tification of a linear model of the Remainder Subsystem, the HFGT model was affected

by three exogenous signals, dKW , dWFI , and dGV C, which required careful design

in order to yield sufficiently informative data. The Simulink blocks constructed to gen-

erate the exogenous signals are represented by the magenta colored blocks depicted in

Figure 4.5.

The exogenous signals were injected into the closed-loop system as illustrated in

Figure 4.6. Exogenous signal dKW functioned as a disturbance affecting the engine

by additively perturbing the total load KW around the nominal load KW , i.e. the total

exogenous load signal KW was defined by

KW (t) = KW (t) + dKW (t).
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The signals dWFI and dGV C were injected as additive excitations to the controlled

input signals generated by the Existing Controller block. The sum of each injected signal

with its associated controller-generated counterpart formed the control signals which

impinged upon the engine, fuel flowWFI and guide vane commandGV C respectively.

Exogenous signals, dKW , dWFI , and dGV C were selected as independent, iden-

tically distributed, zero-mean white noise signals over respective uniform distributions.

Realizations of the exogenous signals were generated in Simulink using the built-in

‘Uniform Random Number’ block, which generates a uniformly distributed random sig-

nal value at a fixed ‘sample time’. For the realization of disturbance signal dKW , a

sample time of 5 s was selected, which is faster than the the fluctuations used during

typical load acceptance tests of an engine. For the realizations of both dWFI and

dGV C, a sample time of 0.09 s was selected, which was equal to the sample period ts,

but filtering was applied to these signals during the transient experiments, prior to their

impingement upon the engine.

Figure 4.8: Bode plot of the 4th-order Butterworth lowpass filter used in the identifica-
tion experiment to shape the frequency content of excitation signals dWFI and dGV C.

The control excitation signals, dWFI and dGV C, were independently filtered with

a 4th-order Butterworth lowpass filter possessing a−3 dB frequency at 1.25 Hz. A Bode
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plot of the excitation signal filter is given in Figure 4.8.

The normalized single-sided amplitude spectra of the exogenous signals. are plotted

in Figure 4.10. The slower sample time of dKW focused the power of the disturbance

at lower frequencies, which is realistic due to the intermittent nature of load switching

in power generation applications. The filtering caused the power of excitation signals

dWFI and dGV C to be focused in the 0-1 Hz frequency range, as desired. The exoge-

nous signals were persistently exciting up to order 50, which insured a model could be

identified for the gas turbine engine, which are typically of much lower order.

Figure 4.9: Normalized, single-sided amplitude spectra of exogenous signals used in the
experiment to generate data for system identification.

The exogenous signals used in the identification experiment are plotted in the time

domain in Figure 4.10, where dKW , dWFI , and dGV C have been scaled to a percent-

age of KWrated, max |WFI|, and max |GV C| respectively.
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Figure 4.10: Exogenous signals applied to the high-fidelity engine model in experiments
used for system identification of a linear model for the Remainder Subsystem.

The identification experiment had a total duration of 351.91 s and a total of 4000 data

points were recorded for each signal. In order to provide sufficient time for the closed-

loop high-fidelity system to nullify the effects of the initial conditions, the exogenous

signals were set to zero values until time t = 50 s of the experiment, after which they

behaved as previously described.

For each recorded signal, a subset of the data consisting of 3100 data points–with

a time stamp values of 45 s ≤ t ≤ 323.91 s–were used for identification of the linear

model (colored blue in Figure 4.10), denoted here as the identification data subset, and

the remaining 400 data points–with a time stamp values of 324 s < t ≤ 351.91 s–was

used for open-loop validation of the identified model (colored red in Figure 4.10), de-

noted here as the open-loop validation data subset. The exogenous signals were given

zero-order holds, with sample times equal to ts, in order to satisfy typical system iden-
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tification assumptions, and to synchronize the recorded data.

Identification Experiment Results

The normalized time domain plots of the measured output signals of the Remainder

Subsystem are shown in Figures 4.11-4.15. For each signal, the subset of data used for

identifying the linear model is colored blue and the subset of data used for open-loop

validation of the model is colored red. The rotational shaft speed NGP , which is an

input signal of the Remainder Subsystem, is plotted in Figure 4.16.

Figure 4.11: Normalized time-domain PWR signal generated by the HFGT model in
the identification experiment.
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Figure 4.12: Normalized time-domain T5 signal generated by the HFGT model in the
identification experiment.

Figure 4.13: Normalized time-domain P2 signal generated by the HFGT model in the
identification experiment.
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Figure 4.14: Normalized time-domain P3 signal generated by the HFGT model in the
identification experiment.

Figure 4.15: Normalized time-domain T3 signal generated by the HFGT model in the
identification experiment.
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Figure 4.16: Normalized time-domain NGP signal generated by the HFGT model in
the identification experiment.

The normalized single-sided amplitude spectra of the measured output signals of

the Remainder Subsystem, and NGP , are plotted in Figure 4.17, which show that the

engine dynamics were excited in the desired frequency band of 0− 1 Hz.
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Figure 4.17: Normalized Single-Sided Amplitude Spectra of Measured Output Signals.

Data Pre-Processing

After the identification experiment was conducted, the data was pre-processed be-

fore being subjected to identification techniques. Each signal was transformed with a

centering and scaling operation as demonstrated with signal KW (k) in the following

example:

KW

∧

(k) = sKW
−1 (KW (k)−KW

)
, (4.1)
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where k(= 0, 1, 2, . . . ) is an arbitrary instant of discrete-time, KW

∧

(k) denotes the cen-

tered and scaled signal, KW is the centering parameter, and sKW is the scaling param-

eter. The centering parameter and scaling parameter are constants calculated from the

identification data subset and are defined by

KW = mean (KW (k)) , (4.2)

sKW = max
∣∣KW (k)−KW

∣∣ . (4.3)

In the remainder of this work, the notation of the preceding example extends to

all other signals, where the transformed signal is denoted by a check accent ( · ∧), the

centering parameter is denoted by an over line accent ( · ), and the scaling parameter is

denoted by the variable ‘s’ with a subscript corresponding to the signal name
(
s(·)
)
.

Since the dynamics of the Remainder Subsystem were excited at the desired band-

width, as evidenced by Figure 4.17, pre-filtering of the data, prior to identification, was

unnecessary.

System Identification Design Decisions

After the experimental signal data was pre-processed, a model for the Remainder

Subsystem was identified. The input-output signals were chosen to reflect the structure

of the Remainder Subsystem, as illustrated in Figure 4.7. Since the HFGT model did

not have any noise, there was no need to identify a noise model, and the direct approach

of closed-loop identification was applied.

The SSARX subspace identification technique was directly applied to the centered

and scaled input-output data using the built-in MATLAB command ‘n4sid.m’, which was

introduced by [48]. The SSARX algorithm was used because it is better suited to handle

closed-loop data (see [49]). The built-in MATLAB command ‘pem.m’ was used to refine

the parameters of the initial identified model, obtained with the SSARX technique, with

respect to the identification data subset.

The order of the identified model of the Remainder Subsystem was selected by iden-

tifying and comparing a 3rd-order model, a 4th-order model, and a 5rd-order model. All

three identified models were open-loop stable. The Hankel singular values of the three

identified models are plotted in Figure 4.18. A significant difference between the 3rd and



73

4th ordered Hankel singular values was observed in all three identified models. Thus,

the 3rd-order linear identified model of the Remainder Subsystem was selected.

Figure 4.18: Hankel singular values of 3rd-order, 4th-order, and 5th-order identified mod-
els of the Remainder Subsystem.

Additionally, the 3rd-order model had no negative real poles, whereas the 4th-order

and 5rd-order identified models both had a negative real pole. A negative real pole in

the discrete-time complex frequency plane has no unique counterpart in the continuous-

time complex frequency domain. Hence, the 3rd-order model could be consistently con-

verted to a continuous-time model without increasing model order, unlike the 4th-order

and 5rd-order models. The ability to convert the identified model to a continuous-time

representation enabled the LTI GT model to be validated in closed-loop via transient

simulation, which required a variable step solver.
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Open-Loop Model Validation

The identified model of the Remainder Subsystem was validated in open-loop, the

results of which are plotted in Figure 4.19. Experimental signal data belonging to the

open-loop validation data subset (324 s < t ≤ 351.91 s) was used in order to mitigate

the risk of over-fitting. The identified model of the Remainder Subsystem generated

output signals PWR, T5, P2, P3, and T3 from open-loop experimental data with input

signalsNGP ,WFI , andGV C. In Figure 4.19, the model-generated signals are colored

in gray. The corresponding open-loop experimental output signals of the HFGT model

are colored blue. The model-predicted signals and experimental data were compared

with the normalized root means square error (NRMSE) goodness of fit, expressed as a

percentage in the plot legends.
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Figure 4.19: Open-loop validation of identified model of the Remainder Subsystem.

Posing the Identified Model of the Remainder Subsystem

We pose the identified model of the Remainder Subsystem with the discrete-time

state-space realization

x(k + 1) = Ax(k) +Buu

∧

(k) +BNGPNGP

∧

(k), (4.4)

y

∧

(k) = Cx(k), (4.5)

where the state of the identified model of the Remainder Subsystem is denoted by

x(k) ∈ R3, the model output signal is denoted by y∧∈ R5, the controlled input signal is

denoted by u∧∈ R2, and the identified model matrices are denoted by {A,Bu, BNGP , C}.
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Signals u∧and y∧are defined by

u

∧

(k) =

[
WFI

∧

(k)

GV C

∧

(k)

]
, y

∧

(k) =




PWR

∧

(k)

T5

∧

(k)

P2

∧

(k)

P3

∧

(k)

T3

∧

(k)




. (4.6)

Note that the input and output signals of the identified model correspond to the scaled

and centered (i.e. pre-processed) signals.

4.5.3 Rotor Subsystem Model: Linear Approximation

The high-fidelity model of the Rotor Subsystem takes the form of the continuous-

time nonlinear dynamical system

d [NT (t)]

dt
=

(
α

NT (t)

)[
PWR(t)− Sloss

(
NT, P2

)

...−GBloss
(
PWR,Sloss

(
NT, P2

))

...−GENloss

(
PWR,Sloss

(
NT, P2

)
,GBloss

(
PWR,Sloss

(
NT, P2

)))

...− k0KW (t)

]
, (4.7)

NGP (t) = c5NT (t), (4.8)

where the state of the model is denoted by NT , which is proportional to the model

outputNGP , and the constant parameter α is proportional to the inertia of the rotor. The

functions Sloss, GBloss, and GENloss are loss functions which serve a dissipative

role and, together with the contribution ofKW , act against the lossless net engine power

PWR. Together, these signals balance the torque on the rotor.

The loss functions are static look-up maps which take analog engine signals as ar-

guments, which themselves depend on time, but for the sake of notational simplicity the

dependence of the loss functions on time t is not explicitly written.
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The radial loss function Sloss : R× R→ R is defined by

Sloss
(
NT, P2

)
= k1P2(t)− k2P0 + frad

(
NT

)
, (4.9)

with associated lookup table frad : R → R and constant parameters P0, k1, and k2.

Additionally, the lookup table frad is dependent on internal constant parameters k3 and

k4.

The gearbox loss function GBloss : R× R→ R is the defined by

GBloss
(
PWR,Sloss

(
NT, P2

))
= fgb

(
PWR(t)− Sloss

(
NT, P2

))
, (4.10)

with associated lookup table fgb : R→ R.

The generator loss function GENloss : R× R× R→ R is defined by

GENloss

(
PWR,Sloss

(
NT, P2

)
,GBloss

(
PWR,Sloss

(
NT, P2

)))
=

...k5fgen

(
PWR(t)− Sloss

(
NT, P2

)

...−GBloss
(
PWR,Sloss

(
NT, P2

)))
, (4.11)

with associated lookup table fgen : R→ R and constant parameter k5.

Linear Approximate Model Construction

A linear approximation of the high-fidelity Rotor Subsystem model was constructed

based on the values of signals in the model at a steady-state operating point. In steady-

state operation at the nominal load KW = KW , and with no external excitations, i.e.

dWFI ≡ 0 and dGV C ≡ 0 for all times t, we define steady state values

NT = NT, GBloss = GBloss. GENloss = GENloss, (4.12)

In order to obtain an LTI rotor model, the steady-state values of (4.12) were selec-

tively substituted into the right-hand side of the nonlinear rotor dynamics of (4.7) as

follows:

d [NT (t)]

dt
=

(
α

NT

)[
PWR(t)− Sloss

(
NT, P2

)
−GBloss−GENloss

]
.

(4.13)



78

From the definition of Sloss in (4.9), the preceding substitution yields a continuous-time

linear approximate rotor model given by

d [NT (t)]

dt
= ArcNT (t) +Br

c




PWR(t)

P2(t)

KW (t)


+ c4, (4.14)

NGP (t) = Cr
cNT (t), (4.15)

where the system matrices are defined by

Arc = 0, Br
c =

[
c1 c2 c3

]
, Cr

c = c5. (4.16)

with the constant parameters

c1 =
α

NT
,

c2 = −k1c1,
c3 = −k0c1,
c4 = c1

(
k2P0 − frad

(
NT

)
−GBloss−GENloss

)
.

For a sample period ts, and denoting an instant of discrete-time by k, where t = tsk,

the corresponding discrete-time linear approximate rotor model is given by

NT (k + 1) = ArdNT (k) +Br
d




PWR(k)

P2(k)

KW (k)


+ c4, (4.17)

NGP (k) = Cr
dNT (k), (4.18)

where the system matrices are defined by

Ard = 1, Br
d =

[
br1 br2 br3

]
= tsB

r
c , C

r
d = c5. (4.19)

Note that the linear approximate rotor model is a 1st-order system which is marginally

stable.

This rotor model is defined with respect to the nominal loadKW at which the steady

state values used to simplify the high-fidelity dynamics are defined. A simulation ex-

periment with the HFGT model was conducted with a constant KW = 0.75 ·KWrated,
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and the steady state values were recorded. A model of the Rotor Subsystem can be

just as easily obtained at any other operating point by conducting a similar experiment

at the desired nominal load value and recording the appropriate steady state values in

(4.12). Thus, in practice, construction of a family of linear approximate rotor models,

defined with respect to KW , can be readily acquired. Furthermore, it is worth noting

that the necessary steady state values in (4.12) are not directly measurable during in situ

experiments with a physical rotor, but were readily available in the HFGT model.

Moreover, the parameters {c1, c2, c3, c4, c5} contain the original parameters of the

high-fidelity model of the Rotor Subsystem. Therefore, the constructed linear rotor

model can be used to characterize a wide range of rotor models by adjusting these pa-

rameters to different values. This feature of the model gives it significant generality. If

the Rotor Subsystem had not been separated from the Remainder Subsystem, then a sin-

gle model characterizing both subsystems would be obtained by system identification,

and the resulting identified model would only be able to accommodate the exact rotor

used in the identification experiments.

4.5.4 Augmented LTI Gas Turbine Model for Control Design

The discrete-time LTI GT model is constructed by augmenting the identified model

of the Remainder Subsystem, obtained in Section 4.5.2 (see (4.4)-(4.5)), with the lin-

ear approximate model of the Rotor Subsystem, obtained in Section 4.5.3 (see (4.17)-

(4.19)). In order to ensure dimensional consistency, the identified model of the Remain-

der Subsystem was re-written with input-output signals in the same units as the raw

signal data (without pre-processing), and to this end we define the constant quantities

Su =

[
sWFI 0

0 sGV C

]
, u =

[
WFI

GV C

]
, (4.20)

Sy =




sPWR 0 0 0 0

0 sT5 0 0 0

0 0 sP2 0 0

0 0 0 sP3 0

0 0 0 0 sT3




, y =




PWR

T5

P2

P3

T3




. (4.21)
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For convenience, we also define

brot =
[
br1 0 br2 0 0

]
, Iy =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



. (4.22)

LTI GT Model: Augmented State-Space Realization

A discrete-time state-space realization of the LTI GT model is given by

xa(k + 1) = Aaxa(k) +Bau(k) +BKWKW (k) +Gin, (4.23)

ya(k) = Caxa(k) +Gout, (4.24)

where the augmented state is denoted by xa ∈ R4, the augmented measured output sig-

nal is denoted by ya ∈ R5, and where Gin and Gout are constant matrices, where

xa(k) =

[
x(k)

NT (k)

]
, ya(k) =




NGP (k)

T5(k)

P2(k)

P3(k)

T3(k)




, (4.25)

Gin =

[
−BuS

−1
u u−BNGP s

−1
NGPNGP

broty + c4

]
, Gout =

[
0

Iyy,

]
; (4.26)

and where the LTI GT model matrices, denoted by Aa, Ba, BKW , and Ca are defined by

Aa =

[
A BNGP s

−1
NGPC

r
d

brotSyC Ard

]
, Ba =

[
BuS

−1
u

0

]
, (4.27)

BKW =

[
0

br3

]
, Ca =

[
0 Cr

d

IySyC 0

]
. (4.28)

Note that signal PWR is not present within the LTI GT model, and thus does not

need to be measured or known by a controller designed using the LTI GT model. The

LTI GT model was converted to an equivalent continuous-time representation for closed-

loop validation transient simulations, which require the use of a variable step solver.
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4.6 Closed-Loop Validation of the LTI GT Model

The LTI GT model was validated using a closed-loop transient simulation imple-

mented in Simulink, termed the validation experiment in this work. The performance of

the LTI GT model was measured with respect to its ability to reproduce the output sig-

nals NGP , T5, P2, P3, and T3, in closed-loop with the Existing Controller block and

the high-fidelity model of the Fuel Subsystem. Signals NGP and T5 were of particular

importance due to their significance in potential GT controllers designed using the LTI

GT model.

Two closed-loop systems were simultaneously simulated, one containing the LTI

GT model (shown in Figure 4.20) and the other containing the HFGT model (depicted

in Figure 4.5), which generated output signals used as reference data for comparison

with the output signals produced by the LTI GT model.

Figure 4.20: Closed-loop validation system with LTI GT model regulated by the Exist-
ing Controller block.

Both closed-loop systems were simulated with identical initial conditions, constant

ambient conditions (ISO standard day), constant Wobbe index (SDNG fuel), and exoge-

nous load signal KW , which is plotted in Figure 4.21. The nominal load KW was set

to 75 % of the rated load value. In order to reduce the transient effects of initial condi-

tions, dKW was set to a value of zero for the first 50 s of the validation experiment. For

the remainder of the validation experiment (t ≥ 50 s) the perturbation load dKW was

implemented as zero-mean uniform white noise distributed on the load interval ±10 %
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of the rated load value and a sample time of 5 s. No control excitation was used, i.e.

dWFI and dGV C were set identically to zero for the entire simulation.

Figure 4.21: Closed-loop validation data for KW. On the time interval 0 s ≤ t < 50 s,
the load had constant value KW = 0.75×KWrated.

The total duration of the validation experiment was 449.91 s. Data was sampled at

ts = 0.09 s and a total of 5000 data points were recorded per signal. For the initial 10

s of the simulation, (0 s ≤ t < 10 s) the closed-loop system containing the LTI GT

model was simulated in open-loop, using endogenous signals NGP , T5, P2, P3, T3,

PFMM , and PFMP taken from the closed-loop system containing the HFGT model,

which mitigated the transient effects due to the initial conditions. For the remaining

duration of the simulation (t ≥ 10 s), the system containing the LTI GT model was

simulated in closed-loop and was operated independently of the closed-loop system

containing the HFGT model.

Closed-Loop Validation Results: Measured Output Signal Comparison

Figures 4.22-4.31 contain plots comparing the measured output signals generated by

the HFGT model and those generated by the LTI GT model. The plots are presented in

pairs. The first plot of each pair contains data in the time interval t ≥ 49 s, i.e. the
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time interval when both systems are operating as independent closed-loop systems and

when the load excitation is active. The title of the first plot of each pair also contains the

normalized root mean square error (NRMSE) between the signal generated by the LTI

GT model and the corresponding signal generated by the HFGT model, which quantifies

the goodness of fit of the output signals of the LTI GT model. The second plot of each

pair contains the same signals as its preceding plot, but on a zoomed-in time interval for

visual clarity. These time intervals were selected during particularly dynamic sections

of the data. All plotted signals are centered and scaled with the same centering and

scaling parameters associated with the LTI GT model.

Figure 4.22: Closed-loop validation data for NGP.
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Figure 4.23: Zoomed-In plot of closed-loop validation data for NGP in Figure 4.22.

Figure 4.24: Closed-loop validation data for T5.
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Figure 4.25: Zoomed-In plot of closed-loop validation data for T5 in Figure 4.24.

As previously stated, signals NGP and T5 were of particular interest for control

design, and the LTI GT model shows good agreement with the closed-loop signal data

from the HFGT model.

Figure 4.26: Closed-loop validation data for P2.
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Figure 4.27: Zoomed-In plot of closed-loop validation data for P2 in Figure 4.26.

Figure 4.28: Closed-loop validation data for P3.
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Figure 4.29: Zoomed-In plot of closed-loop validation data for P3 in Figure 4.28.

Figure 4.30: Closed-loop validation data for T3.
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Figure 4.31: Zoomed-In plot of closed-loop validation data for T3 in Figure 4.30.

The closed-loop validation data and NRMSE values, as plotted in Figures 4.22-4.31,

indicate that the LTI GT model is acceptable for control design, and is capable of repro-

ducing the output signals of the HFGT model with good agreement.

Closed-Loop Validation Results: Controlled Input Signal Comparison

Although the primary objective of the closed-loop validation experiment was to re-

produce the measured engine output signals, the controlled input signals and their as-

sociated NRMSE values showed surprisingly close agreement. The controlled input

signals are plotted in Figures 4.32-4.35.
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Figure 4.32: Closed-loop validation data for WFI.

Figure 4.33: Zoomed-In plot of closed-loop validation data for WFI in Figure 4.32.
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Figure 4.34: Closed-loop validation data for GVC.

Figure 4.35: Zoomed-In plot of closed-loop validation data for GVC in Figure 4.34.
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4.7 Summary

A linear time-invariant gas turbine model suitable for control design was constructed

by leveraging a high-fidelity model of the gas turbine engine and associated prior knowl-

edge of the structure and signals made available via the high-fidelity model. The struc-

tural knowledge of the high-fidelity model enabled a modular grouping of its internal

subsystem blocks into three categories, the Fuel Subsystem, which was excluded from

the modeling process and thereby rendered modularly generalizable in potential control

designs; the Remainder Subsystem, which was obtained via system identification using

closed-loop transient data generated by the high-fidelity model; and the Rotor Subsys-

tem, for which a linear model was constructed which preserved the physical significance

of its model parameters, enabling modular generalization of the subsystem in potential

control design. The constructed linear rotor model was successfully validated in closed-

loop transient simulation and the output signals of the linear rotor model displayed a

high degree of agreement with those generated by the high-fidelity engine model under

comparable experimental conditions.

Potential future directions of this work include are numerous. Validation of the open-

loop LTI GT model with batch data from in situ testing of a physical engine is a natural

next step. Likewise, LTI GT models obtained with the methods of this work can be

applied to control design and estimator design problems with various Fuel Subsystem

models, rotors, and nominal loads spanning the entire operational envelop. The result-

ing controllers and estimators can be validated via transient simulation experiments in

Simulink or even with in situ experiments on a physical engine, if available, and the

performance of new controller and estimator designs can be benchmarked against the

existing controller. Another potential direction of inquiry is the exploration of the limits

of a given LTI GT model in terms of how the quality of the model, or of controllers and

estimators designed with the model, degrades as KW deviates from the KW . Further

development can also incorporate health parameter estimation, fault detection, and other

augmented functionality similar to approaches in [50], [51], [52], and [53].
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