
UCLA
UCLA Electronic Theses and Dissertations

Title
Nonlocal Variational Methods in Image and Data Processing

Permalink
https://escholarship.org/uc/item/1b16b6q7

Author
Zhu, Wei

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b16b6q7
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Nonlocal Variational Methods in Image and Data Processing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Wei Zhu

2017



© Copyright by

Wei Zhu

2017



ABSTRACT OF THE DISSERTATION

Nonlocal Variational Methods in Image and Data Processing

by

Wei Zhu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Stanley J. Osher, Chair

In this dissertation, two nonlocal variational models for image and data processing are pre-

sented: nonlocal total variation (NLTV) for unsupervised hyperspectral image classification,

and low dimensional manifold model (LDMM) for general image and data processing prob-

lems. Both models utilize the nonlocal patch-based structures in natural images and data,

and modern optimization techniques are used to solve the corresponding variational prob-

lems. The proposed algorithms achieve state-of-the-art results on various image and data

processing problems, in particular unsupervised hyperspectral image classification and image

or data interpolation.

First, a graph-based nonlocal total variation method is proposed for unsupervised classi-

fication of hyperspectral images (HSI). The variational problem is solved by the primal-dual

hybrid gradient (PDHG) algorithm. By squaring the labeling function and using a stable

simplex clustering routine, an unsupervised clustering method with random initialization can

be implemented. The effectiveness of the proposed algorithm is illustrated on both synthetic

and real-world HSI, and numerical results show that the proposed algorithm outperforms

other standard unsupervised clustering methods such as spherical K-means, nonnegative

matrix factorization (NMF), and the graph-based Merriman-Bence-Osher (MBO) scheme.

Next, we present a novel low dimensional manifold model for general image processing

problems. LDMM is based on the fact that the patch manifolds of many natural images

have low dimensional structures. Based on this observation, the dimension of the patch
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manifold is used as a regularization to recover the image. The key step in LDMM is to

solve a Laplace-Beltrami equation over a point cloud, and it is tackled by the point integral

method (PIM). The point integral method enforces the sample point constraints correctly

and yields better results than the standard graph Laplacian. LDMM can be used for various

image processing problems, and it achieves state-of-the-art results for image inpainting from

random subsampling.

Lastly, we present an alternative way to solve the Laplace-Beltrami equation in LDMM.

Although the point integral method correctly enforces the sample point constraints and

achieves excellent results for image inpainting, the resulting linear system is on the patch

domain, and hundreds of linear systems need to be solved each iteration. This causes LDMM

to be computationally infeasible for large images and high dimensional data. An alterna-

tive way is to discretize the Laplace-Beltrami operator with the weighted graph Laplacian

(WGL). After such discretization, we only need to solve one symmetric sparse linear system

per iteration of manifold update for image inpainting. Moreover, semi-local patches that in-

corporate coordinate information of the patches are used in the weight update, which leads

to a faster convergence of LDMM. Numerical experiments on normal image, hyperspectral

image, and high dimensional scientific data interpolation demonstrate the effectiveness of

the algorithm.
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CHAPTER 1

Introduction

Most image processing problems, whether they be denoising, inpainting, segmentation, or

deblurring, are ill-posed in nature since there could be infinitely many solutions from partially

observed information. In order to solve these ill-posed problems, some prior knowledge of

the given image is required. Usually this prior information is given as the regularization

in a variational model. Therefore, an important task in the field of mathematical image

processing is to devise a proper regularizer for a wide class of natural images.

Among all variational models in the realm of image processing, total variation (TV)

is probably the most pioneering and widely used technique. Total variation is originally

introduced in [ROF92] by Rudin, Osher, and Fatemi for image denoising:

min
u
E(u) = ‖∇u‖L1 + λ‖u− f‖2

2,

where ‖∇u‖L1 is the TV semi-norm of the image u, and f is the observed noisy image. The

parameter λ can be adjusted to give higher priority to the TV-regularizing term, or the data

fidelity term ‖u− f‖2
2. It is well known that total variation has the advantage of preserving

edges, which is always preferable because edges are significant features in the image, and

usually indicate boudaries of objects. Despite its good performance of restoring “cartoon”

part of the image, TV based methods fail to achieve satisfactory results when texture, or

repetative structures, are present in the image.

Nonlocal patch-based methods are proposed to address the aforementioned problem.

These methods were first introduced by Buades, Coll, and Morel [BCM05] as a nonlocal filter

for image denoising. They were later formulated in a variational framework by Gilboa and

Osher [GO09a]. Patch-based techniques exploiting similarity and redundancy of local patches
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have also been extensively studied in [PBC08, FAC09] for general image processing problems.

Nonlocal image processing produces much better results than its local counterpart because

theoretically any pixel in the image can interact with any other, which better preserves

texture and fine details.

Among different patch-based nonlocal methods, the manifold model is attracting more

and more attention, along with the development of manifold learning algorithms. The basic

assumption in the manifold model is that the patches concentrate around a low dimensional

smooth manifold. This assumption is verified in studies in image processing and computer

vision [Pey08, Pey09, LPM03]. The fact that the patch set of a natural image samples

a smooth low dimensional manifold makes the dimension of the patch manifold a perfect

candidate for the regularizer in a variational model.

This dissertation consists of the study and application of various nonlocal variational

models in different image processing tasks. It is organized as follows.

In Chapter 2, a graph-based nonlocal total variation (NLTV) method is proposed for

unsupervised classification of hyperspectral images (HSI). The variational problem, which

involves a NLTV regularizer and a fidelity term, is solved by the primal-dual hybrid gra-

dient (PDHG) algorithm. By squaring the labeling function in the fidelity term and using

a stable simplex clustering routine, an unsupervised clustering method with random pixel

initialization is implemented. Numerical experiments demonstrate that the proposed algo-

rithm consistenly outperforms other standard unsupervised clustering methods on various

datasets. This chapter is based on the work [ZCT17].

In Chapter 3, a low dimensional manifold model (LDMM) is presented for general image

processing problems. The key observation for LDMM is that the patch set of a natural

image samples an underlying low dimensional patch manifold. As a result, the dimension of

the patch manifold is used as a regularizer in variational forms for various image processing

problems. The key step in the algorithm involves solving a Laplace-Beltrami equation on

an unstructured point cloud, which is solved via the point integral method (PIM). Numer-

ical results show that LDMM achieves state-of-the-art results for various image processing

2



problems, especially image inpainting from random sampling with a significant number of

missing pixels. This chapter is mainly based on [OSZ16].

The goal of Chapter 4 is to present a faster way of solving the Laplace-Beltrami equation

on the point cloud so that the algorithm is more feasible for large-scale image and high

dimensional data interpolation. The way to do that is to discretize the Laplace-Beltrami

operator using the weighted graph Laplacian (WGL). Unlike the traditional graph Laplacian,

WGL does not sacrifice the continuity of the interpolating function on the sampled sets,

therefore propagating the sampled pixel information corretly into its vicinity. Moreover,

semi-local patches incorporating the pixel coordinate information are used so that much

fewer iterations of manifold update are required for convergence. Numerical experiments

showing the reconstruction of normal images, hyperspectral images, and high dimensional

scientific data from subsampling are presented to illustrate the effectiveness of the method.

This chapter is based on [SOZ17, SOZ16, SZO16, ZWB].
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CHAPTER 2

Nonlocal Total Variation in Unsupervised

Hyperspectral Image Classification

2.1 Introduction

Hyperspectral imagery (HSI) is an important domain in the field of remote sensing with

numerous applications in agriculture, environmental science, mineralogy, and surveillance

[Cha03]. Hyperspectral sensors capture information of intensity of reflection at different

wavelengths, from the infrared to ultraviolet. They take measurements 10-30nm apart, and

up to 200 layers for a single image. Each pixel has a unique spectral signature, which can

be used to differentiate objects that cannot be distinguished based on visible spectra, for

example: invisible gas plumes, oil or chemical spills over water, or healthy from unhealthy

crops.

The majority of HSI classification methods are either unmixing methods or clustering

methods. Unmixing methods extract the information of the constitutive materials (the

endmembers) and the abundance map [BPD12, GV14, JQ09, GKP15]. Clustering methods

do not extract endmembers; instead, they return the spectral signatures of the centroids of

the clusters. Each centroid is the mean of the signatures of all the pixels in a cluster. However,

when it is assumed that most of the pixels are dominated mostly by one endmember, i.e. in

the absence of partial volume effects [SBB07], which is usually the case for high-resolution

HSI, these two types of methods are expected to give similar results [GKP15]. The proposed

nonlocal total variation (NLTV) method for HSI classification in this chapter is a clustering

method.
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Much work has been carried out in the literature in both the unmixing and the clustering

categories. HSI unmixing models can be characterized as linear or nonlinear. In a linear un-

mixing model (LUM), each pixel is approximated by a linear combination of the endmembers.

When the linear coefficients are constrained to be nonnegative, it is equivalent to nonneg-

ative matrix factorization (NMF), and good unsupervised classification results have been

achieved in [JQ09, GV14, GKP15] using either NMF or hierarchical rank-2 NMF (H2NMF).

Despite the simplicity of LUM, the assumption of a linear mixture of materials has been

shown to be physically inaccurate in certain situations [DTR14]. Researchers are starting

to expand aggressively into the much more complicated nonlinear unmixing realm [HPG14],

where nonlinear effects such as atmospheric scattering are explicitly modeled. However, most

of the work that has been done for nonlinear unmixing so far is supervised in the sense that

prior knowledge of the endmember signatures is required [BPD12]. Discriminative machine

learning methods such as support vector machine (SVM) [MB04, CB05, FBC08] and rele-

vance vector machine (RVM) [DE07, Foo08, MZ11] based approaches have also been applied

to hyperspectral images, but they are also supervised methods since a training set is needed

to learn the classifiers.

On the contrary, graph-based clustering methods implicitly model the nonlinear mixture

of the endmembers. This type of method is built upon a weight matrix that encodes the

similarity between the pixels, which is typically a sparse matrix constructed using the dis-

tances between the spectral signatures. Graph-cut problems for graph segmentation have

been well-studied in the literature [SM00, SW97, SB09, BS10]. In 2012, Bertozzi and Flen-

ner proposed a diffuse interface model on graphs with applications to classification of high

dimensional data [BF12]. This idea has been combined with the Merriman-Bence-Osher

(MBO) scheme [MBO94] and applied to multi-class graph segmentation [GMB14, mul14]

and HSI classification [HSB15, MSB14]. The method in [BF12] minimizes a graph version of

the Ginzburg-Landau (GL) functional, which consists of the Dirichlet energy of the labeling

function and a double-well potential, and uses Nyström extension to speed up the calculation

of the eigenvectors for inverting the graph Laplacian. This graph-based method performed

well compared to other algorithms in the detection of chemical plumes in hyperspectral video
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sequences [HSB15, MSB14]. However, the GL functional is non-convex due to its double-

well term, which may cause the algorithm to get stuck in local minima. This issue can be

circumvented by running the algorithm multiple times with different initial conditions and

hand-picking the best result.

The two methods presented in this chapter are unsupervised graph-based clustering tech-

niques. Instead of minimizing the GL functional, which has been proved to converge to the

total variation (TV) semi-norm, these algorithms minimize the NLTV semi-norm of the label-

ing functions ‖∇wul‖L1 directly. A detailed explanation of the nonlocal operator ∇w and the

labeling function ul will be provided in Section 2.2 and Section 2.3. The L1 regularized con-

vex optimization problem is solved by the primal-dual hybrid gradient (PDHG) algorithm,

which avoids the need to invert the graph Laplacian. We also introduce the novel idea of

the quadratic model and a stable simplex clustering technique, which ensures that anomalies

converge to their own clusters and makes random endmember initialization possible in the

proposed algorithm. The direct usage of the NLTV semi-norm makes the proposed cluster-

ing methods more accurate than other methods when evaluated quantitatively on HSI with

ground-truth labels, and the quadratic model with stable simplex clustering is a completely

new addition to the field of HSI classification.

The following of this chapter is organized as follows: in Section 2.2 background is provided

on total variation and nonlocal operators. Two NLTV models (linear and quadratic) and a

stable simplex clustering method are presented in Section 2.3. Section 2.4 provides a detailed

explanation on the application of the PDHG algorithm to solving the convex optimization

problems in the linear and quadratic models. Section 2.5 presents the numerical results and

a sensitivity analysis on the key model parameters. Section 2.6 presents the conclusions.

2.2 Total Variation and Nonlocal Operators

Total variation (TV) method was introduced by Rudin et al in 1992 [ROF92] and has been

applied to various image processing tasks [CEP05]. Its advantage is that one can preserve

the edges in the image when minimizing ‖∇u‖L1 (TV semi-norm). The total variation model
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is:

min
u
E(u) = ‖∇u‖L1 + λS(u).

The parameter λ can be adjusted to give higher priority to the TV-regularizing term, or the

data fidelity term S(u).

Despite its huge success in image processing, the total variation method is still a local

method. More specifically, the gradient of a pixel is calculated using its immediate adjacent

pixels. It is known that local image processing techniques fail to produce satisfactory results

when the image has repetitive structures, or intrinsically related objects in the image are

not spatially connected. To address this problem, Buades et al proposed a nonlocal means

method based on patch distances for image denoising [BCM05]. Gilboa and Osher [GO09a]

later formalized a systematic framework for nonlocal image processing. Nonlocal image

processing produces much better results because theoretically any pixel in the image can

interact with any other, which better preserves texture and fine details.

In HSI classification, clusters can have elements that are not spatially connected. Thus

it is necessary to develop a nonlocal method of gradient calculation. We provide a review

of nonlocal operators in the rest of this section. Note that the model is continuous, and the

weights are not necessarily symmetric [ZTO15].

Let Ω be a region in Rn, and u : Ω → R be a real function. In the model for HSI

classification, Ω is the domain of the pixels, and u : Ω → [0, 1] is the labeling function of a

cluster. The larger the value of u(x), the more likely that pixel x would be classified in that

cluster. The nonlocal derivative is:

∂u

∂y
(x) :=

u(y)− u(x)

d(x, y)
, for all x, y ∈ Ω,

where d is a positive distance between x and y. In the context of hyperspectral images, d(x, y)

provides a way to measure the similarity between pixels x and y. Smaller d(x, y) implies more

resemblance between these two pixels. The nonlocal weight is defined as w(x, y) = d−2(x, y).

The nonlocal gradient ∇wu for u ∈ L2(Ω) can be defined as the collection of all partial
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derivatives, which is a function from Ω to L2(Ω), i.e. ∇wu ∈ L2(Ω, L2(Ω)):

∇wu(x)(y) =
∂u

∂y
(x) =

√
w(x, y)(u(y)− u(x)).

The standard L2 inner products on Hilbert spaces L2(Ω) and L2(Ω, L2(Ω)) are used in the

definition. More specifically, for u1, u2 ∈ L2(Ω) and v1, v2 ∈ L2(Ω, L2(Ω)),

〈u1, u2〉 :=

∫
Ω

u1(x)u2(x)dx,

〈v1, v2〉 :=

∫
Ω

∫
Ω

v1(x)(y)v2(x)(y)dydx.

The nonlocal divergence divw is defined as the negative adjoint of the nonlocal gradient:

divwv(x) :=

∫
Ω

√
w(x, y)v(x)(y)−

√
w(y, x)v(y)(x)dy.

At last, a standard L1 and L∞ norm is defined on the space L2(Ω, L2(Ω)):

‖v‖L1 :=

∫
Ω

‖v(x)‖L2dx =

∫
Ω

∣∣∣∣∫
Ω

|v(x)(y)|2 dy
∣∣∣∣ 12 dx,

‖v‖L∞ := sup
x
‖v(x)‖L2 .

2.3 Two NLTV Models for Unsupervised HSI classification

In this section, two NLTV models are explained for unsupervised classification of HSI. The

linear model runs faster in each iteration, but it requires a more accurate centroid initial-

ization. The quadratic model runs slower in each iteration, but it is more robust with

respect to the centroid initialization. Moreover, the quadratic model converges faster if the

initialization is not ideal.

2.3.1 Linear Model

We extend the idea from [CP10] to formulate a linear model for classification on HSI. The

linear model seeks to minimize:

E1(u) = ‖∇wu‖L1 + 〈u, f〉

=
k∑
l=1

‖∇wul‖L1 +
k∑
l=1

∫
ul(x)fl(x)dx, (2.1)
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where u = (u1, u2, . . . , uk) : Ω → Kk is the labeling function, k is the number of clus-

ters, Kk = {(x1, x2, . . . , xk)|
∑k

i=1 xi = 1, xi ≥ 0} is the unit simplex in Rk, and ∇wu =

(∇wu1, . . . ,∇wuk) such that ‖∇wu‖L1 =
∑k

l=1 ‖∇wul‖L1 . fl(x) is the error function defined

as fl(x) = λ
2
|g(x)− cl|2µ, where g(x) and cl are the spectral signatures of pixel x and the l-th

centroid, which is initially either picked randomly from the HSI or generated by any fast

unsupervised centroid extraction algorithm (e.g. H2NMF, K-means.) The distance in the

definition of fl(x) is a linear combination of cosine distance and Euclidean distance:

|g(x)− cl|µ = 1− 〈g(x), cl〉
‖g(x)‖2‖cl‖2

+ µ‖g(x)− cl‖2, µ ≥ 0.

In HSI processing, the cosine distance is generally used because it is more robust to atmo-

spheric interference and topographical features [ZZW12]. The reason why the Euclidean

distance is also used is that sometimes different classes have very similar spectral angles, but

vastly different spectral amplitudes (e.g. “dirt” and “road” in the Urban dataset, which is

illustrated in Section 2.5.) This is called the linear model since the power of the labeling

function ul in (2.1) is one.

The intuition of the model is as follows: In order to minimize the fidelity term in (2.1),

a small ul(x) is required if fl(x) is large, while no such requirement is needed if fl(x) is

relatively small. This combined with the fact that (u1(x), . . . , ul(x)) lies on a unit simplex

implies that ul(x) would be the largest term if pixel x is mostly similar to the l-th centroid

cl. Meanwhile, the NLTV regularizing term
∑k

l=1 ‖∇wul‖L1 ensures that pixels similar to

each other tend to have analogous values of u. Therefore a classification of pixel x can be

obtained by choosing the index l that has the largest value ul(x).

Now we discuss how to discretize (2.1) for numerical implementation.

2.3.1.1 Weight Matrix

Following the idea from [GO09a], the patch distance is defined as:

dσ(x, y) =

∫
Ω

Gσ(t) |g(x+ t)− g(y + t)|2 dt,
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where Gσ is a Gaussian of standard deviation σ. To build a sparse weight matrix, we take

a patch Pi around every pixel i, and truncate the weight matrix by constructing a k-d tree

[FBF77] and searching the m nearest neighbors of Pi. k-d tree is a space-partitioning data

structrue that can significantly reduce the time cost of nearest neighbor search [Bro14]. We

employ a randomized and approximate version of this algorithm [ML09] implemented in the

open source VLFeat package 1. The weight is binarized by setting all nonzero entries to

one. In the experiments, patches of size 3 × 3 are used, and m is set to 10. Note that

unlike RGB image processing, the patch size for HSI does not have to be very large. The

reason is that while low dimensional RGB images require spatial context to identify pixels,

high dimensional hyperspectral images already encode enough information for each pixel in

the spectral dimension. Of course, a larger patch size that is consistent with the spatial

resolution of the HSI will still be preferable when significant noise is present.

2.3.1.2 The Labeling Function and the Nonlocal Operators

The labeling function, u = (u1, u2, . . . , uk), is discretized as a matrix of size r× k, where r is

the number of pixels in the hyperspectral image, and (ul)j is the l-th labeling function at j-th

pixel; (∇wul)i,j =
√
wi,j((ul)j−(ul)i) is the nonlocal gradient of ul; (divwv)i =

∑
j

√
wi,jvi,j−

√
wj,ivj,i is the divergence of v at i-th pixel; and the discrete L1 and L∞ norm of ∇wul are

defined as: ‖∇wul‖L1 =
∑

i

(∑
j(∇wul)

2
i,j

) 1
2
, and ‖∇wul‖L∞ = maxi

(∑
j(∇wul)

2
i,j

) 1
2
.

The next issue to address is how to minimize (2.1) efficiently. The convexity of the energy

functional E1 allows us to consider using convex optimization methods. First-order primal-

dual algorithms have been successfully used in image processing with L1 type regularizers

[CP10, ZC08, ZWC08, EZC10]. We use the primal-dual hybrid gradient (PDHG) algorithm.

The main advantage is that no matrix inversion is involved in the iterations, as opposed to

general graph Laplacian methods. The most expensive part of the computation comes from

sparse matrix multiplications, which are still inexpensive due to the fact that only m = 10

nonzero elements are kept in each row of the nonlocal weight matrix.

1http://www.vlfeat.org
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Algorithm 1 Linear Model

1: Initialization of centroids: Choose (cl)
k
l=1 (randomized or generated by unsupervised

centroid extraction algorithms).

2: Initialization of parameters: Choose τ, σ > 0 satisfying στ‖∇w‖2 ≤ 1, θ = 1

3: Initial iterate: Set u0 ∈ Rr×k and p0 ∈ R(r×r)×k randomly, set ū0 = u0, uhard =

threshold(u0)

4: while not converge do

5: Minimize energy E1 using PDHG algorithm

6: uhard = threshold(u)

7: Update (cl)
k
l=1

8: end while

We then address centroid updates and stopping criteria for the linear model. The concept

of centroid updates is not uncommon; in fact, the standard K-means algorithm consists of

two steps: first, it assigns each point to a cluster whose mean yields the least within-cluster

sum of squares, then it re-calculates the means from the centroids, and terminates when

assignments no longer change[Mac03]. Especially for data-based methods, re-calculating the

centroid is essential for making the algorithm less sensitive to initial conditions and more

likely to find the “true” clusters.

After solving (2.1) using the PDHG algorithm, the output u will be thresholded to uhard.

More specifically, for every i ∈ {1, 2, . . . , r}, the largest element among ((u1)i, (u2)i, · · · , (uk)i)
is set to 1, while the others are set to 0, and we claim the i-th pixel belongs to that partic-

ular cluster. Then the l-th centroid is updated by taking the mean of all the pixels in that

cluster. The process is repeated until the difference between two consecutive uhard drops

below a certain threshold. The pseudocode for the proposed linear model on HSI is listed in

Algorithm 1.

Before ending the discussion of the proposed linear model, we point out its connection

to the piecewise constant Mumford-Shah model for multi-class graph segmentation [MS89].

Assume that the domain Ω of the HSI is segmented by a contour Φ into k disjoint regions,
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Ω = ∪kl=1Ωl. The piecewise constant Mumford-Shah energy is defined as:

EMS(Φ, {cl}kl=1) = |Φ|+ λ

k∑
l=1

∫
Ωl

|g(x)− cl|2 dx, (2.2)

where |Φ| is the length of the contour. To illustrate the connection between (2.1) and

(2.2), consider the “local” version of (2.1), which essentially replaces the NLTV regularizer

‖∇wul‖L1 with its local counterpart :

Eloc
1 (u) =

k∑
l=1

‖∇ul‖L1 +
k∑
l=1

∫
ul(x)fl(x)dx. (2.3)

Assume that the labeling function ul is the characteristic function of Ωl. Then
∫
ul(x)fl(x)dx

is equal to
∫

Ωl
|g(x)− cl|2 dx up to a multiplicative constant. Moreover, the total variation

of a characteristic function of a region equals the length of its boundary, and hence |Φ| =∑k
l=1 ‖∇ul‖L1 . So the linear model (2.1) can be viewed as a nonlocal convex-relaxed version

of Mumford-Shah model. We also note that the linear energy (2.1) has been studied in

[HSB15]. But in their work, the authors used a graph-based MBO method to minimize (2.1)

instead of the PDHG algorithm, and the difference of the numerical performances can be

seen in Section 2.5.

2.3.2 Quadratic Model

2.3.2.1 Intuition

The aforementioned linear model performs very well when the centroids are initialized by

accurate centroid extraction algorithms. As shown in Section 2.5, the linear model can have

a significant boost to the accuracy of other algorithms if the centroid extraction algorithm

is reasonable, without sacrificing speed. However, if centroids are not extracted accurately,

or if random initialization is used, the segmenting results are no longer reliable, and the

algorithm takes far more iterations to converge to a stable classification.

To reduce the times of centroid updates and merge similar clusters automatically and

simultaneously, the following quadratic model is proposed:

E2(u) =
k∑
l=1

‖∇wul‖L1 +
k∑
l=1

∫
u2
l (x)fl(x)dx. (2.4)
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δ

Figure 2.1: The first figure shows the “pushing” mechanism of the quadratic model. The horizontal line

represents the unit simplex in R2. Signatures from cluster A1 are colored blue, and signatures from cluster

A2 are colored brown. The vertical dashed bar is generated by a stable simplex clustering method, and it

thresholds the points on the simplex into two categories.

The second figure shows the stable simplex clustering. Every grid point δ on the simplex generates a simplex

clustering. We want to choose a δ such that there are very few data points falling into the “Y-shaped region”.

Similar as before, u = (u1, u2, . . . , uk) : Ω→ Kk is the labeling function, k is the number

of clusters, Kk is the unit simplex in Rk, and fl(x) is the error function.

Note that the only difference between (2.1) and (2.4) is that the power of the labeling

function ul here is two. The intuition for this is as follows:

Consider for simplicity a hyperspectral image with a ground truth of only two clusters,

A1 and A2. Suppose the randomized initial centroids are chosen such that c1 ≈ c2 ∈ A1; or,

that the two random initial pixels are of very similar spectral signatures and belong to the

same ground truth cluster.

Let x be a pixel from A2. Then 0 � |g(x)− c1|2 ≈ |g(x)− c2|2. When (2.1) is applied,

the fidelity term 〈u, f〉 does not change when u(x) moves on the simplex in R2, and thus

pixels of A2 will be scattered randomly on the simplex. After thresholding, an approximately

equal number of pixels from cluster A2 will belong to clusters C1 and C2, so the new centroids

c̃1 and c̃2 that are the means of the spectral signatures of the current clusters will once again

be approximately equal.

This situation changes dramatically when (2.4) is minimized:

• Observe that the fidelity term in E2 is minimized for a pixel x ∈ A2 when u1(x) ≈
13



u2(x) ≈ 1
2
. Therefore, the pixels of cluster A2 will be “pushed” toward the center of

the simplex once E2 is minimized.

• With a stable simplex clustering method (explained in Section 2.3.2.2), the clusters are

divided such that all of these pixels in the center belong to either C1 or C2; without loss

of generality suppose they belong to C2. Then the updated centroid c̃1 is essentially

c1, while the updated centroid c̃2 is a linear combination of the spectral signature of

members belonging to A1 and A2, and thus quite different from the original c2.

• After minimizing the energy E2 again, pixels from A1 will be clustered in C1, and pixels

from A2 will be pushed to C2. Therefore, the clustering will be finished in just two

steps in theory. See Figure 2.1 for a graphical illustration.

The quadratic model not only reduces the number of iterations needed to find the “true”

clustering because of its capability of anomaly detection, but it allows for random initializa-

tion as well, making it a more robust technique.

2.3.2.2 Stable Simplex Clustering

As mentioned above, the quadratic model pushes anomalies into the middle of the unit

simplex. Therefore it would be ill-conceived to simply classify the pixels based on the

largest component of the labeling function u(x) = (u1(x), u2(x), . . . , uk(x)). Instead, a stable

simplex clustering method has to be used.

The concept behind the stable simplex clustering is to choose a division that puts all the

data points in the “middle” of the unit simplex into a single cluster. Figure 2.1 demonstrates

this in the simple two-cluster case. Also refer to section 2.3.2.1 for explanation of the

“pushing” process. The idea to accomplish this goal is inspired by [GKP15]. We first create

a grid on a k -dimensional simplex, where k is the number of clusters, and each grid point δ

generates a simplex clustering. Then a δ is searched to minimize the energy g(δ):

g(δ) = − log(
k∏
l=1

Fl(δ)) + η exp(G(δ)),
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Figure 2.2: Quadratic model and stable simplex clustering on the plume dataset. The chemical plume

(brown) is perfectly detected in 12 iterations.

Linear, iter=1 Linear, iter=16 Linear, iter=32 Linear, iter=50

Quadratic, iter=1 Quadratic, iter=2 Quadratic, iter=3 Quadratic, iter=4

Figure 2.3: Linear vs Quadratic Model on the Urban dataset with the same centroid initialization. To

produce essentially identical results, the Linear model (first row) took 50 iterations of centroid updates, and

the Quadratic model (second row) took just 4 iterations.

where Fl(δ) is the percentage of data points in cluster l, and G(δ) is the percentage of data

points on the edges near the division, i.e. the “Y-shaped region” in Figure 2.1. The first

term in g(δ) rewards keeping clusters approximately of the same size, ensuring no skewed

data from clusters far too small. And the second term rewards sparsity of points in the

intermediate region. The constant η is chosen to be large enough such that stability has a

bigger weight in the energy.

Algorithm 2 shows the quadratic model using stable simplex clustering. Figure 2.2

15



Algorithm 2 Quadratic Model with Stable Simplex Clustering

1: Initialization of centroids: Choose (cl)
k
l=1 (randomized or generated by unsupervised

centroid extraction algorithms).

2: Initialization of parameters: Choose τ, σ > 0 satisfying στ‖∇w‖2 ≤ 1, θ = 1

3: Initial iterate: Set u0 ∈ Rr×k and p0 ∈ R(r×r)×k randomly, set ū0 = u0,

4: while not converge do

5: Minimize energy E2 using PDHG algorithm

6: uhard = threshold(u) with stable simplex clustering

7: Update (cl)
k
l=1

8: end while

demonstrates how this detected the chemical plumes in a frame with background centroids

pre-calculated and random initialization for the final centroid. Notice that no plume is de-

tected in the first iteration. But by the twelfth iteration, the gas plume is nearly perfectly

segmented.

Finally, we present the comparison between the results of the linear model and the

quadratic model on the Urban dataset with identical random pixel initialization in Fig-

ure 2.3. The linear model took about 50 iterations to converge, and the quadratic model

only took 4 iterations.

2.4 Primal-Dual Hybrid Gradient Algorithm

In this section, a detailed explanation is provided on the application of the PDHG algorithm

[CP10, ZC08, ZWC08, EZC10] to minimizing E1 (2.1) and E2 (2.4) in the previous section.

A review of the algorithm is provided in a more general setting to contextualize the extension

to nonlocal model for hyperspectral imagery.
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Algorithm 3 Primal-Dual Hybrid Gradient (PDHG) Algorithm

1: Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X × Y , and set x̄0 = x0

2: while not converge do

3: yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

4: xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

5: x̄n+1 = xn+1 + θ(xn+1 − xn)

6: n = n+ 1

7: end while

2.4.1 A Review of PDHG Algorithm

Consider the following convex optimization problem:

min
x∈X
{F (Kx) +G(x)}, (2.5)

where X and Y are finite-dimensional real vector spaces, F and G are proper convex lower

semi-continuous functions F : Y → [0,∞], G : X → [0,∞], and K : X → Y is a continuous

linear operator with the operator norm ‖K‖ = sup{‖Kx‖ : x ∈ X, ‖x‖ ≤ 1}. The primal-

dual formulation of (2.5) is the saddle-point problem:

min
x∈X

max
y∈Y
{〈Kx, y〉 − F ∗(y) +G(x)}, (2.6)

where F ∗ is the convex conjugate of F defined as F ∗(y) = supx 〈x, y〉 − F (x).

The saddle-point problem (2.6) is then solved using the iterations of Algorithm 3 from

[CP10].

In Algorithm 3, (I + λ∂f)−1(x) is the proximal operator of f , which is defined as:

(I + λ∂f)−1(x) = proxλf (x) = arg min
y
f(y) +

1

2λ
‖y − x‖2

2.

It has been shown in [CP10] that O(1/N) (where N is the number of iterations) conver-

gence can be achieved as long as σ, τ satisfy στ‖K‖2 ≤ 1.
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2.4.2 Primal-Dual Iteraions to Minimize E1 and E2

Recall from Section 2.3 that the discretized linear and quadratic energy E1 and E2 are:

E1(u) =
k∑
l=1

‖∇wul‖L1 +
k∑
l=1

r∑
i=1

(ul)i(fl)i,

= ‖∇wu‖L1 + 〈u, f〉,

E2(u) =
k∑
l=1

‖∇wul‖L1 +
k∑
l=1

r∑
i=1

(ul)
2
i (fl)i,

= ‖∇wu‖L1 + 〈u, f � u〉,

where u = (u1, u2, . . . , uk) is a nonegative matrix of size r × k, with each row of matrix u

summing to one, and f � u denotes the pointwise product between two matrices f and u.

After adding an indicator function δU , minimizing E1 and E2 are equivalent to solving (2.7)

and (2.8):

min
u
‖∇wu‖L1 + 〈u, f〉+ δU(u), (2.7)

min
u
‖∇wu‖L1 + 〈u, f � u〉+ δU(u) (2.8)

where U = {u = (u1, u2, . . . , uk) ∈ Rr×k :
∑k

l=1(ul)i = 1,∀i = 1, . . . , r, (ul)i ≥ 0}, and δU is

the indicator function on U . More specifically:

δU(u) =


0 if u ∈ U,

∞ otherwise.

(2.9)

By comparing (2.7), (2.8) and (2.5), we can set K1 = K2 = ∇w, F1(q) = F2(q) = ‖q‖L1 ,

G1(u) = 〈u, f〉 + δU(u), and G2(u) = 〈u, f � u〉 + δU(u). The convex conjugate of F1 (and

F2) is F ∗1 (p) = F ∗2 (p) = δP (p), where the set P = {p ∈ R(r×r)×k : ‖pl‖∞ ≤ 1}.

Next, we derive the closed forms of the proximal operators (I + σ∂F ∗1,2)−1 and (I +

τ∂G1,2)−1 so that Algorithm 3 can be implemented efficiently to minimize E1 and E2.

(I + σ∂F ∗1,2)−1(p̃) = (I + σ∂δP )−1(p̃)

= arg min
p
δP (p) +

1

2σ
‖p− p̃‖2

2 = projP (p̃), (2.10)
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Algorithm 4 Primal-Dual Iterations for the Linear Model

1: while not converge do

2: pn+1 = projP (pn + σ∇wū
n)

3: un+1 = projU(un + τdivwp
n+1 − τf)

4: ūn+1 = un+1 + θ(un+1 − un)

5: n = n+ 1

6: end while

where projP (p̃) is the projection of p̃ onto the closed convex set P .

(I + τ∂G1)−1(ũ) = arg min
u
〈u, f〉+ δU(u) +

1

2τ
‖u− ũ‖2

2

= arg min
u∈U
‖u− ũ+ τf‖2

2 = projU(ũ− τf). (2.11)

(I + τ∂G2)−1(ũ) = arg min
u

〈
u,
τ

2
Au
〉

+ τδU(u) +
1

2
‖u− ũ‖2

2

= arg min
u∈U

1

2
〈u, (I + τA)u〉 − 〈u, ũ〉+

1

2

〈
ũ, (I + τA)−1ũ

〉
= arg min

u∈U

1

2
‖(I + τA)

1
2u− (I + τA)−

1
2 ũ‖2

2, (2.12)

where A : Rr×k → Rr×k is a linear operator defined as 1
2
Au = f�u. Therefore A is a positive

semidefinite diagonal matrix of size rk×rk. It is worth mentioning that the matrix (I+τA)

is diagonal and positive definite, and hence it is trivial to compute its inverse and square

root. Problem (2.12) can be solved as a preconditioned projection onto the unit simplex Kk,

and the solution will be explained in Section 2.4.3.

Combining (2.10,2.11,2.12) and Algorithm 3, we have the primal-dual iterations for min-

imizing E1 (Algorithm 4) and E2 (Algorithm 5).

Before moving on to explaining how to solve (2.12), we specify the two orthogonal pro-

jections projP and projU in Algorithm 4: Let p̃ = projP (p), where p = (pl)
k
l=1 ∈ R(r×r)×k.

Then for every i ∈ {1, 2, . . . , r} and every l ∈ {1, 2, . . . , k}, the i-th row of p̃l is the projection

of the i-th row of pl on to the unit ball in Rr. Similarly, if ũ = projU(u), then for every

i ∈ {1, 2, . . . , r}, ((ũ1)i, (ũ2)i, . . . , (ũk)i) is the projection of ((u1)i, (u2)i, . . . , (uk)i) onto the

unit simplex Kk in Rk.

19



Algorithm 5 Primal-Dual Iterations for the Quadratic Model

1: while not converge do

2: pn+1 = projP (pn + σ∇wū
n)

3: Update un+1 as in (2.12), where ũ = un + τdivwp
n+1

4: ūn+1 = un+1 + θ(un+1 − un)

5: n = n+ 1

6: end while

2.4.3 Preconditioned Projection onto the Unit Simplex

This section is dedicated to solving (2.12). It is easy to see that the rows of u in (2.12) are

decoupled, and the only problem that needs to be solved is:

min
u∈Rk

δKk(u) +
1

2
‖Au− y‖2, (2.13)

where A = diag(a1, a2, . . . , ak) is a positive definite diagonal matrix of size k × k, Kk is the

unit simplex in Rk, and y ∈ Rk is a given vector.

Theorem 2.4.1. The solution u = (u1, u2, . . . , uk) of (2.13) is:

ui = max

(
aiyi − λ
a2
i

, 0

)
, (2.14)

where λ is the unique number satisfying:

k∑
i=1

max

(
aiyi − λ
a2
i

, 0

)
= 1 (2.15)

Proof. Problem (2.13) is equivalent to:

min∑k
i=1 ui=1

δRk+(u) +
1

2
‖Au− y‖2

2, (2.16)

where Rk
+ = {u ∈ Rk : ui ≥ 0} is the nonnegative quadrant of Rk. The Lagrangian of (2.16)

is:

L(u, λ) =
k∑
i=1

(
1

2
|aiui − yi|2 + δR+(ui) + λui

)
− λ.
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If u∗ is a soluton of (2.16), KKT conditions [BV04] imply that there exists a λ such that:

u∗ = arg min
u
L(u, λ) = arg min

ui≥0

k∑
i=1

1

2
a2
i

(
ui +

λ− aiyi
a2
i

)2

.

Therefore u∗i = max
(
aiyi−λ
a2i

, 0
)

. Meanwhile, the primal feasibility requires:

k∑
i=1

u∗i =
k∑
i=1

max

(
aiyi − λ
a2
i

, 0

)
= 1.

The most computationally expensive part of solving (2.15) is sorting the sequence (aiyi)1≤i≤k

of length k, which is trivial since k, the number of clusters, is typically a small number.

2.5 Numerical Results

2.5.1 Comparison Methods and Experimental Setup

All experiments were run on a Linux machine with Intel core i5, 3.3Hz with 2GB of DDR3

RAM. The following unsupervised algorithms have been tested:

1. (Spherical) K-means: Built in MatLab Code.

2. NMF: Non-negative Matrix Factorization [KP11].

3. H2NMF: Hierarchical Rank-2 Non-negative Matrix Factorization [GKP15].

4. MBO: Graph Merriman-Bence-Osher scheme [MSB14, HSB15]. The code is run for

10 times on each dataset, and the best result is chosen.

5. NLTV2: Nonlocal Total Variation, quadratic model with random pixel initialization.

6. NLTV1(H2NMF/K-means): Nonlocal Total Variation, linear model with endmem-

bers/centroids extracted from H2NMF/K-means.
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Every algorithm can be initialized via the same procedure as that in “K-means++”[AV07],

and the name “Algorithm++” is used if the algorithm is initialized in such a way. For ex-

ample, “NLTV2++” means nonlocal total variation, quadratic model with “K-means++”

initialization procedure.

The algorithms are compared on the following datasets:

1. Synthetic Dataset: This dataset2 contains five endmembers and 162 spectral bands.

The 40,000 abundance vectors were generated as a sum of Gaussian fields. The dataset

was generated using a Generalized Bilinear Mixing Model (GBM):

y =

p∑
i=1

aiei +

p−1∑
i=1

p∑
j=i+1

γijaiajei � ej + n,

where γij are chosen uniformly and randomly in the interval [0, 1], n is the Gaussian

noise, with an SNR of 30 dB, and ai satisfies: ai ≥ 0, and
∑p

i=1 ai = 1.

2. Salinas-A Dataset: Salinas-A scene3 was a small subscene of Salinas image, which

was acquired by the AVIRIS sensor over Salinas Valley. It contains 86× 83 pixels and

204 bands. The ground truth includes six classes: broccoli, corn, and four types of

lettuce.

3. Urban Dataset: The Urban dataset4 is from HYperspectral Digital Imagery Collec-

tion Experiment (HYDICE), which has 307×307 pixels and contains 162 clean spectral

bands. This dataset only has six classes of material: road, dirt, house, metal, tree, and

grass.

4. San Diego Airport Dataset: The San Diego Airport (SDA) dataset5 is provided

by the HYDICE sensor. It comprises 400× 400 pixels and contains 158 clean spectral

2Available at http://www.math.ucla.edu/~weizhu731/

3Available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral\_Remote\_Sensing\

_Scenes

4Available at http://www.agc.army.mil/.

5Available at http://www.math.ucla.edu/~weizhu731/
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bands. There are seven types of material: trees, grass, three types of road surfaces,

and two types of rooftops [GKP15]. The RGB image with cluster labels are shown in

Figure 2.7.

5. Chemical Plume Dataset: The chemical plume dataset6 consists of frames taken

from a hyperspectral video of the release of chemical plumes provided by the John

Hopkins University Applied Physics Laboratory. The image has 128 × 320 pixels,

with 129 clean spectral bands. There was no ground truth provided for this data,

so a segmentation of four classes is assumed: chemical plume, sky, foreground, and

mountain. A fifth cluster is added so that the noise pixels would not interfere with the

segmentation [HSB15].

6. Pavia University Dataset: The Pavia University dataset is collected by the ROSIS

sensor. It contains 103 clean spectral bands and 610 × 340 pixels, and comprises 9

classes of material.

7. Indian Pines Dataset: The Indian Pines dataset was acquired by AVIRIS sensor

and consists of 145× 145 pixels, with 200 clean spectral bands. The available ground

truth is labeled into 16 classes.

8. Kennedy Space Center Dataset: This dataset was gathered by the NASA AVIRIS

sensor over the Kennedy Space Center, Florida. A subscene of the western shore of

the center is used in the numerical experiment. 12 classes of different materials are

reported in the datacube of size 512× 365× 176.

K-means and NMF are non-parametric, and the parameter setups of H2NMF and the

MBO scheme are described in [GKP15] and [HSB15, MSB14]. The key parameters λ and µ

in the NLTV models are determined in the following way:

1. λ is chosen such that the data fidelity term is around 10 times larger than the NLTV

regularizing term ‖∇wu‖L1 .

6Available at http://www.math.ucla.edu/~weizhu731/
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Table 2.1: Key parameters used for different datasets

Datasets λ µ Datasets λ µ

Synthetic 10−1 10−4 Plume 107 10−2

Urban 106 10−5 Pavia 106 10−8

Salinas-A 104 10−4 Pines 106 10−9

SDA 106 10−7 KSC 106 10−8

2. µ is chosen such that the Euclidean distances between different endmembers are roughly

10 times smaller than the cosine distances.

Table 2.1 displays the parameters chosen for the numerical experiments. The large vari-

ance of the parameter scales results from the variety of image sizes and scales. A sensitivity

analysis over the parameters is presented in Section 2.5.7.

2.5.2 Synthetic Dataset and Salinas-A Dataset

All the algorithms are first tested on the synthetic dataset. The classification results are

shown in Table 2.2 and Figure 2.4. Both NLTV algorithms have better overall accuracy

than all of the other methods, although they took a longer time to converge. The qudratic

model classified the image almost perfectly.

The visual classification results and overall accuracies of the Salinas-A dataset are shown

in Figure 2.5 and Table 2.2. Both NLTV methods performed at higher accuracy compared

to other methods. The linear model improved the result of K-means by incorporating spatial

information of the dataset, and the quadratic model only took 4 iterations to converge.

2.5.3 Urban DataSet

There was no ground-truth provided for the Urban HSI. A structured sparse algorithm

[ZWX14] (which is different from all of the testing algorithms) has been used to initialize a
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Table 2.2: Comparison Of Numerical Results on the Synthetic and Salinas-A Datasets

Algorithm
Synthetic Salinas-A

Run-Time Accuracy Run-Time Accuracy

K-means++ 2s 90.98% 0.9s 79.92%

NMF++ 9s 80.99% 1.0s 64.47%

H2NMF 2s 72.02% 1.5s 70.08%

MBO++ 21s 84.49% 7.8s 68.62%

NLTV2++ 29s 99.93% 1.6s 83.69%

NLTV1(K-means) 29s 95.96% 3.4s 83.75%

Table 2.3: Comparison of Numerical Results on the Urban Dataset

Algorithm Run-Time Accuracy

K-means 7s 75.20%

NMF 87s 55.70%

H2NMF 7s 85.96%

MBO 92s 78.86%

NLTV2 96s 92.14%

NLTV1(H2NMF) 17s 91.56%

ground truth, which is then corrected pixel by pixel to provide a framework for numerical

analysis of accuracy. As this “ground truth” was hand-corrected, it does not necessarily

represent the most accurate segmentation of the image; however, it provides a basis for

quantitative comparison.

After running all the algorithms that are compared to create six clusters, we noticed
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Ground Truth

K-means++ NMF++ H2NMF

MBO++ NLTV2++ NLTV1(K-means)

Figure 2.4: Clustering results for the synthetic dataset generated by 5 endmembers. The first image on

the left is the ground truth, and the remaining six images are the clustering results of the corresponding

algorithms.

that they all split “grass” into two different clusters (one of them corresponds to a mixture

of grass and dirt), while treating “road” and “metal” as the same. To obtain a reliable

overall accuracy of the classification results, the two “grass” clusters are combined in every

algorithm, hence obtaining the classification results for 5 clusters, which are “grass”, “dirt”,

“road+metal”, “roof”, and “tree”.

The overall classification accuracies and run-times are displayed in Table 2.3. As can be

seen, the proposed NLTV algorithms performed consistently better with comparable run-

time. It is easier to see visually in Figure 2.6 that the NLTV algorithm performed best of

the five algorithms tested; specifically, the NLTV algorithm alone distinguished all of the
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Ground Truth

K-means++ NMF++ H2NMF

MBO++ NLTV2++ NLTV1(K-means)

Figure 2.5: Clustering results for the Salina-A dataset. The first image on the left is the ground truth, and

the remaining six images are the clustering results of the corresponding algorithms.

dirt beneath the parking lot and the intricacies of the road around the parking lot. The

total variation regularizer also gives the segmented image smoother and more distinct edges,

allowing easier human identification of the clusters.

2.5.4 San Diego Airport Dataset

The classification results and computational run-times are shown in Figure 2.7 and Table

2.4. No ground truth classification is available for this HSI, but after examining the spectral

signatures of various pixels in the scene, we managed to pinpoint some errors that were com-

mon for each algorithm. We will not go into detail about the NMF and H2NMF algorithms,

which clearly do not perform well on this dataset. K-means obtained some decent results,
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Ground Truth

K-means NMF H2NMF

MBO NLTV2 NLTV1(H2NMF)

Figure 2.6: Clustering results for the Urban dataset. Five clusters including rooftops, grass, trees, dirt,

and “road+metal” are generated by the algorithms.

but splitted the rooftops of the four buildings on the bottom right of the image into two

distinct clusters, and failed to separate two different road types (cluster 5 and 6). The MBO

scheme failed on two accounts: it did not properly segment two different road surfaces (clus-

ter 6 and 7), and did not account for the different rooftop types (cluster 3 and 4). The linear

NLTV model with H2NMF initialization is significantly more accurate than H2NMF and

MBO. It successfully picked out two different types of roof (cluster 3 and 4), two different

types of road (cluster 6 and 7), although the other type of road (cluster 5) is mixed with one

type of roof (cluster 3). The best result was obtained by using the NLTV quadratic model

with random initialization, with the only problem that tree and grass (clusters 1 and 2) are

mixed together. However, the mixing of grass and tree is actually the case for all the other
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Table 2.4: Run-Times for the San Diego Airport (SDA), Chemical Plume (Plume), Pavia University

(Pavia), Indian Pines (Pines), and Kennedy Space Center (KSC) Datasets

Algorithm SDA Plume Pavia Pines KSC

K-means 9s 2s 26s 10s 47s

NMF 4s 2s 120s 19s 135s

H2NMF 13s 2s 12s 4s 24s

MBO 329s 18s 1020s 198s 754s

NLTV2 43s 23s 299s 64s 561s

NLTV1(H2NMF) 17s 18s 132s 21s 188s

algorithms. This means that NLTV quadratic model alone was able to identify six of the

seven clusters correctly.

2.5.5 Chemical Plume Dataset

Analyzing images for chemical plumes is more difficult because of its diffusive nature. All the

algorithms are run on the image before it was denoised and the results are shown in Figure

2.8. The unmixing methods such as NMF and H2NMF do not perform satisfactorily on

this dataset. MBO++, K-means++, and NLTV2++ can all properly identify the chemical

plume. Note that NLTV with H2NMF as centroid initialization outperforms H2NMF as

a classification method. We have to point out that the NLTV quadratic model is not so

robust with respect to the centroid initialization even with a “K-means++” type procedure

on this dataset. But this is also the case for all the other testing algorithms. The MBO

scheme, which was specifically designed for this dataset [HSB15], does seem to have the

highest robustness among all the algorithms.
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RGB Image

K-means NMF H2NMF
H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF

MBO NLTV2 NLTV1(H2NMF)

H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF

Figure 2.7: Clustering results for the San Diego Airport dataset. The first image on the left is the RGB

image, and the remaining six images are the clustering results of the corresponding algorithms.

2.5.6 Pavia University, Indian Pines, and Kennedy Space Center Dataset

The Pavia University (9 clusters), Indian Pines (16 clusters), and Kennedy Space Center

(12 clusters) datasets are frequently used to test supervised classification algorithms. To

save space, we only report the numerical overall accuracies in Table 2.5. As can be seen, all

the competing unsupervised algorithms performed poorly on these three datasets. Different

clusters were merged and same clusters were splitted in various fashions by all the algorithms,

which rendered the numerical accuracies no longer reliable.

The computational run-times of these three datasets are listed in Table 2.4. Unfor-
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K-means++ NMF++ H2NMF
K-means++ NMF++ H2NMF

MBO++ NLTV++ NLTV, H2NMF init

K-means++ NMF++ H2NMF

MBO++ NLTV++ NLTV, H2NMF init

K-means++ NMF++ H2NMF

MBO++ NLTV++ NLTV, H2NMF initMBO++ NLTV2++ NLTV1(H2NMF)

K-means++ NMF++ H2NMF

MBO++ NLTV++ NLTV, H2NMF init

K-means++ NMF++ H2NMF

MBO++ NLTV++ NLTV, H2NMF init

K-means++ NMF++ H2NMF

MBO++ NLTV++ NLTV, H2NMF init

Figure 2.8: Clustering results for the Chemical Plume dataset.

Table 2.5: Comparison of Overall Accuracies on the Pavia University, Indian Pines, and Kennedy Space

Center Datasets

Algorithm Pavia Pines KSC

K-means++ 42.31% 38.99% 41.73%

NMF++ 54.97% 38.84% 37.07%

H2NMF 43.75% 36.78% 37.07%

MBO++ 50.04% 36.49% 41.85%

NLTV, H2NMF init 42.83% 36.22% 41.41%

NLTV++ 44.01% 42.35% 41.48%

tunately, when the number of clusters is increasing, the computational complexity of the

quadratic model grows exponentially. The reason is that the number of grid points (δ in Fig-

ure 2.1) on the unit simplex grows exponentially as the dimension of the simplex increases.

Therefore, when the number of clusters is large enough (greater than 10), the stable simplex

clustering will become the most time-consuming part of the quadratic model. On these three

datasets, we sacrificed the accuracy of the quadratic model by creating a coarser mesh on

the unit simplex.
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The reason why NLTV, as well as all the other competing unsupervised algorithms, per-

formed poorly on these three datasets is two-fold. First, when the number of classes is too

large in a HSI covering a large geographic location, the variation of spectral signatures within

the same class cannot be neglected when compared to the difference between the constitu-

tive materials, especially when the endmembers themselves are similar. As a result, the

unsupervised algorithms tend to split a ground-truth cluster with large variation in spectral

signatures and merge clusters with similar centroids or endmembers. Second, there might

exist more distinct materials in the image than reported in the ground truth. Therefore the

algorithms might detect those unreported materials because no labeling has been used in

these unsupervised algorithms. Thus we can conclude that NLTV, as well as other unsu-

pervised methods reported in this chapter, is not suitable for such images at current stage.

Modifying the NLTV algorithm to work for such datasets would be the direction of future

work.

2.5.7 Sensitivity Analysis over Key Model Parameters

Finally, a sensitivity analysis is provided over the parameters λ and µ in the NLTV models.

As mentioned in Section 2.5.1, λ and µ are chosen to balance the scale of the regularizing and

fidelity terms or the cosine and Euclidean distances. Figure 2.9 displays the robustness of

the NLTV algorithm on the Synthetic, Urban, and Salinas-A datasets with respect to λ and

µ within the variance of two magnitudes. Centroid initialization remains identical as λ and

µ are changing. It is clear that the NLTV algorithm is fairly robust with respect to λ on all

three datasets. The algorithm is also relatively robust with respect to µ on the Synthetic and

Salinas-A datasets. As for the Urban dataset, a significant decay in accuracy can be observed

as µ increases. This phenomenum is due to the fact that larger µ causes Euclidean distance

to be the dominant one, which is not ideal with the presence of atmospheric interference

in the Urban dataset. Smaller µ also leads to lower accuracy in the Urban dataset, which

results from the similarity of “road” and “dirt” clusters measured in cosine distance. Overall,

a reasonable robustness with respect to the key parameters λ and µ can be concluded on

these three tests.
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Figure 2.9: This figure shows the robustness of the NLTV algorithm with respect to λ and µ. Centroid

initialization remains identical as λ and µ are changing. λ0 and µ0 are the optimal values specified in Section

2.5.1. The overall accuracies of the Synthetic, Urban, and Salinas-A datasets are displayed.
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Figure 2.10: The sensitivity of the NLTV algorithm with respect to µ in the plume dataset. All the tests

used the same centroid initialization (H2NMF).

Similar robustness can be observed on other datasets except for the Chemical Plume.

Figure 2.10 shows the sensitivity of the result with respect to µ. All the centroids are

initialized using H2NMF, and vastly different results occurred as µ changes. This could be

due to the presence of significant noise.
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2.6 Conclusion

In this chapter we present the framework for a nonlocal total variation method for unsuper-

vised HSI classification, which is solved with the primal-dual hybrid gradient algorithm. A

linear and a quadratic version of this model are developed; the linear version updates more

quickly and can refine results produced by a centroid extraction algorithm, and the quadratic

model with stable simplex clustering method provides a robust means of classifying HSI with

randomized pixel initialization.

The algorithm is tested on both a synthetic and seven real-world datasets, with promis-

ing results. The proposed NLTV algorithm consistently performed with highest accuracy on

synthetic and urbanized datasets such as Urban, Salinas-A, and the San Diego Airport, both

producing smoother results with easier visual identification of segmentation, and distinguish-

ing classes of material that other algorithms failed to differentiate. The NLTV algorithm

also performed well on anomaly detection scenarios like the Chemical Plume datasets; with

proper initialization, it performed on par with the Merriman-Bence-Osher scheme developed

specifically for this dataset. However, NLTV, as well as other unsupervised algorithms, failed

to achieve satisfactory results on datasets with a relatively large number of clusters. The

run-times of the NLTV algorithms are generally comparable to the other methods, and the

consistent higher accuracy on different types of datasets suggests that this technique is a

more robust and precise means of classifying hyperspectral images with a moderate number

of clusters.
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CHAPTER 3

Low Dimensional Manifold Model in Image Processing

3.1 Introduction

Many image processing problems can be formalized as the recovery of an image f ∈ Rm×n

from a set of noisy linear measurements

y = Φf + ε (3.1)

where ε is the noise, and the operator, Φ, typically accounts for some degradation to the

image, for instance, blurring, missing pixels or downsampling, so that the measured data

y only captures partial information of the original image f . It is an ill-posed problem to

recover the original image from partial information. In order to solve this ill-posed problem,

one needs to have some prior knowledge of f . Usually, this prior information comes in the

form of different regularizations. With the help of regularizations, many image processing

problems are formulated as variational problems.

One of the most widely used regularizations is the total variation mentioned in the pre-

vious chapter. In the TV model, the following optimization problem is solved:

min
f
‖f‖TV +

µ

2
‖y − Φf‖2

L2 , (3.2)

where ‖f‖TV =
∫
|∇f(x)|dx. It is well known that TV based model can restore the “cartoon”

part of the image very well, while the performance on the texture part of the image is not

ideal.

The nonlocal methods are another class of techniques widely used in image processing. In

nonlocal methods, the local derivatives are replaced by their nonlocal counterpart explained
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in Chapter 2:

∇wu(x, y) =
√
w(x, y)(u(x)− u(y)) (3.3)

where w is a weight function defined as

w(x, y) = exp

(
−
∫
G(s)|u(x+ s)− u(y + s)|2ds

)
, (3.4)

where G is a Gaussian. Using the nonlocal derivatives, the nonlocal total variation model is

given as following

min
f
‖∇wf‖L1 +

µ

2
‖y − Φf‖2

L2 , (3.5)

where

‖∇w(f)‖L1 =
∑
x

(∑
y

w(x, y)(f(x)− f(y))2

)1/2

. (3.6)

As mentioned in Chapter 2, the nonlocal model recovers textures very well.

In this chapter, inspired by the nonlocal method and the manifold model of image [Pey09],

we present a low dimensional manifold model (LDMM) for image processing. Consider an

image f ∈ Rm×n. For any pixel (i, j), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, let this pixel constitute

the left-top pixel in an s1 × s2 patch and denote this patch as pij. Let P(f) denote the

collection of all such patches, i.e.,

P(f) = {pi,j : (i, j) ∈ Θ ⊂ {1, 2, · · · ,m} × {1, 2, · · · , n}} . (3.7)

where Θ is an index set such that the union of the patch set P(f) covers the whole image.

There are many ways to choose Θ. For example, we can choose Θ = {1, 2, · · · ,m} ×
{1, 2, · · · , n} or Θ = {1, s1 + 1, 2s1 + 1, · · · ,m} × {1, s2 + 1, 2s2 + 1, · · · , n}. This freedom

may be used to accelerate the computation in LDMM.

Notice that the patch set P(f) can be seen as a point set in Rd with d = s1s2. The

basic assumption in LDMM is that P(f) samples a low-dimensional smooth manifoldM(f)

embedded in Rd, which is called the patch manifold of f . It was revealed that for many

classes of images, this assumption holds true [Pey08, Pey09]. Based on this assumption, one
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natural regularization involves the dimension of the patch manifold. We want to recover the

original image such that the dimension of its patch manifold is as small as possible. This

idea formally gives the following optimization problem:

min
f

dim(M(f)) + λ‖y − Φf‖2
2. (3.8)

For a natural image, the patch manifold usually is not a single smooth manifold. It may be a

set of several manifolds with different dimensions, corresponding to different patterns of the

image. In this case, the dimension of the patch manifold, dim(M(f)), becomes a function

and we use the integration of dim(M(f)) over M as the regularization,

min
f

∫
M

dim(M(f))(x)dx+ λ‖y − Φf‖2
2, (3.9)

where dim(M(f))(x) is the dimension of the patch manifold of f at x. Here x is a point in

M(f) which is also a patch of f .

The remaining problem is how to compute dim(M(f))(x) for a given image f at given

patch Pf(x). Fortunately, using some basic tools in differential geometry, we find that the

dimension of a smooth manifold embedded in Rd can be calculated by a simple formula

dim(M)(x) =
d∑
j=1

|∇Mαi(x)|2

where αi is the coordinate function. That is, for any x = (x1, · · · , xd) ∈M ⊂ Rd,

αi(x) = xi. (3.10)

Using this formula, the optimization problem (3.8) can be reformulated as

min
f∈Rm×n,
M⊂Rd

d∑
i=1

‖∇Mαi‖2
L2(M) + λ‖y − Φf‖2

2, subject to: P(f) ⊂M. (3.11)

where

‖∇Mαi‖L2(M) =

(∫
M
‖∇Mαi(x)‖2dx

)1/2

. (3.12)

The optimization problem (3.11) is solved by an alternating direction iteration. First, we

fix the manifold M, and update the image f . Then the image is fixed and we update the
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manifold. This process is repeated until convergence. In this two-step iteration, the second

step is relatively easy. It is done by directly applying the patch operator on the image f .

The first step is more difficult. To update the image, we need to solve the following

Laplace-Beltrami equations over the manifold. −∆Mu(x) + µ
∑

y∈Ω δ(x− y)(u(y)− v(y)) = 0, x ∈M
∂u
∂n

(x) = 0, x ∈ ∂M.
(3.13)

where M is a manifold, ∂M is the boundary of M, n is the out normal of ∂M. δ is the

Dirac-δ function in M, and v is a given function in M.

The explicit form of the manifold M is not known. We only know a set of unstructured

points which samples the manifold M in high dimensional Euclidean space. It is not easy

to solve this Laplace-Beltrami equation over this unstructured high dimensional point set.

A graph Laplacian is usually used to approximate the Laplace-Beltrami operator on point

cloud. However, from the point of view of numerical PDE, the graph Laplacian was found

to be an inconsistent method due to the lack of boundary correction. This is also confirmed

by our numerical simulations, e.g. (Figure 3.2(d)).

Instead, in this chapter, we use the point integral method (PIM) [LSS, SSa, SSb] to solve

the Laplace-Beltrami equation over the point cloud. In PIM, the discretized linear system

of the Laplace-Beltrami equation (3.13) is given as:

|M|
N

N∑
j=1

Rt(xi,xj)(ui − uj) + µt
N∑
j=1

R̄t(xi,xj)(uj − vj) = 0 (3.14)

where {x1, · · · ,xN} samples M, vj = v(xj) and |M| is the volume of the manifold M. Rt

and R̄t are kernel functions to be explained in Section 3.4.1.

Compared with the graph Laplacian which is widely used in the machine learning and

nonlocal methods, a boundary term is added in PIM based on an integral approximation of

the Laplace-Beltrami operator. With the help of this boundary term, the values in the re-

tained pixels correctly spread to the missing pixels which gives much better recovery (Figure

3.2(c)).

The rest of the chapter is organized as follows. The patch manifold is analyzed in Section
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2. Several examples are given to show that it usually has a low dimensional structure.

In Section 3, we introduce the low dimensional manifold model. The numerical methods

including the point integral method are discussed in Section 4. In Section 5, we compare the

performance of LDMM and classical nonlocal methods and carefully explain the differences

between the two methods. Numerical results are shown in Section 6. Concluding remarks

are made in Section 7.

3.2 Patch manifold

In this section, we analyze the patch manifold and show several examples. We consider a

discrete image f ∈ Rm×n. For any (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}, we define a patch

pij(f) as a 2D patch of size s1× s2 of the original image f , and the pixel (i, j) is the top-left

corner of the rectangle of size s1 × s2. The patch set P(f) is defined as the collection of all

patches:

P(f) = {pij(f) : (i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}} ⊂ Rd, d = s1 × s2. (3.15)

The patch set P(f) has a trivial 2D parameterization which is given as (i, j) 7→ pij(f).

In this sense, the patch set is locally a 2D sub-manifold embedded in Rd. However, this

parameterization is globally not injective and typically leads to high curvature variations

and self-intersections in real applications.

For a given image f , the patch set P(f) gives a point cloud in Rd. Many studies reveal

that this point cloud is usually close to a smooth manifold M(f) embedded in Rd. This

underlying smooth manifold is called the patch manifold associated with f , denoted asM(f).

Figure 3.1 gives a diagram shows the relation between patch set, trival parameterization and

the patch manifold.

The patch set and patch manifold have been well studied in the literature. Lee et al.

studied the patch set for discretized images with 3× 3 patches [LPM03]. Their results were

refined later by Carlsson et al. in [CIS08] where they perform a simplicial approximation of

the manifold. Peyré studied several models of local image manifolds for which an explicit

39



MP

Figure 3.1: Diagram of patch set P (black points), trivial parameterization (red curve) and patch manifold

M.

parameterization is available [Pey08, Pey09]. One of the most important feature of the patch

manifold is that it is close to a low-dimensional manifold for many natural images. This can

be demonstrated through the following examples.

If f is a C2 function which corresponds to a smooth image. Using Taylor’s expansion,

px(f) can be well approximated by a linear function

px(f)(y) ≈ f(x) + (y − x) · ∇f(x). (3.16)

This fact implies that M(f) is close to a 3D manifold.

If f is a piecewise constant function which corresponds to a cartoon image, then, any

patch, px(f), is well approximated by a straight edge patch. Each patch is parametrized

by the location and the orientation of the edge. This suggests that for a piecewise constant

function, M(f) is also close to a 2D manifold.

If f is a oscillatory function corresponding to a texture image. We assume that f can be

represented as

f(x) ≈ a(x) cos θ(x), (3.17)

where a(x) and θ(x) are both smooth functions. For each pixel x, the patch px(f) can be

well approximated by

px(f) ≈ aL(y) cos θL(y), (3.18)
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where aL(x) and θL(x) are linear approximations of a(x) and θ(x) at x, i.e.,

aL(y) = a(x) + (y − x) · ∇a(x), θL(y) = θ(x) + (y − x) · ∇θ(x).

This means that the patch manifold M(f) is approximately a 6-dimensional manifold.

These simple examples show that for many images, smooth, cartoon and texture, the

patch manifold is approximately a low dimensional manifold. Then one natural idea is to

recover the original image by looking for the patch manifold with the lowest dimension. This

idea leads to the low dimensional manifold model introduced in the next section.

3.3 Low dimensional manifold model

Based on the discussion in the previous section, we know that an important feature of the

patch manifold is its low dimensionality. One natural idea is to use the dimension of the

patch manifold as the regularization to recover the original image. In the low dimensional

manifold model, we want to recover the image f such that the dimension of its patch manifold

M(f) is as small as possible. This idea formally gives an optimization problem:

min
f∈Rm×n,
M⊂Rd

dim(M), subject to: y = Φf + ε, P(f) ⊂M (3.19)

where dim(M) is the dimension of the manifold M.

However, this optimization problem is not mathematically well defined, since we do not

know how to compute dim(M) with given P(f). Next, we will derive a simple formula for

dim(M) using some basic knowledge of differential geometry.

3.3.1 Calculation of dim(M)

Here we assume M is a smooth manifold embedded in Rd. First, we introduce some no-

tations. Since M is a smooth submanifold isometrically embedded in Rd, it can be locally

parametrized as,

x = ψ(γ) : U ⊂ Rk →M⊂ Rd, (3.20)
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where k = dim(M), γ = (γ1, · · · , γk)t ∈ Rk and x = (x1, · · · , xd)t ∈M.

Let ∂i′ = ∂
∂γi′

be the tangent vector along the direction γi
′
. SinceM is a submanifold in

Rd with induced metric, ∂i′ = (∂i′ψ
1, · · · , ∂i′ψd) and the metric tensor is:

gi′j′ =< ∂i′ , ∂j′ >=
d∑
l=1

∂i′ψ
l∂j′ψ

l. (3.21)

Let gi
′j′ denote the inverse of gi′j′ , i.e.,

k∑
l′=1

gi′l′ g
l′j′ = δi′j′ =

 1, i′ = j′,

0, i′ 6= j′.
(3.22)

For any function u on M, let ∇Mu denote the gradient of u on M,

∇Mu =
k∑

i′,j′=1

gi
′j′∂j′u ∂i′ . (3.23)

We can also view the gradient ∇Mu as a vector in the ambient space Rd and let ∇j
Mu denote

the u component of the gradient ∇Mu in the ambient coordinates, i.e.,

∇j
Mu =

k∑
i′,j′=1

∂i′ψ
jgi
′j′∂j′u, j = 1, · · · , d. (3.24)

Let αi, i = 1, · · · , d be the coordinate functions on M, i.e.

αi(x) = xi, ∀x = (x1, · · · , xd) ∈M (3.25)

Then, we have the following formula

Theorem 3.3.1. Let M be a smooth submanifold isometrically embedded in Rd. For any

x ∈M,

dim(M) =
d∑
j=1

‖∇Mαj(x)‖2
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Proof. First, following the definition of ∇M, we have

d∑
j=1

‖∇Mαj‖2 =
d∑

i,j=1

∇i
Mαj∇i

Mαj

=
d∑

i,j=1

(
k∑

i′,j′=1

∂i′ψ
igi
′j′∂j′αj

)(
k∑

i′′,j′′=1

∂i′′ψ
igi
′′j′′∂j′′αj

)

=
d∑
j=1

k∑
i′,j′,i′′,j′′=1

(
d∑
i=1

∂i′ψ
i∂i′′ψ

i

)
gi
′j′gi

′′j′′∂j′αj∂j′′αj

=
d∑
j=1

k∑
j′,i′′,j′′=1

(
k∑

i′=1

gi′i′′g
i′j′

)
gi
′′j′′∂j′αj∂j′′αj

=
d∑
j=1

k∑
j′,i′′,j′′=1

δi′′j′g
i′′j′′∂j′αj∂j′′αj

=
d∑
j=1

k∑
j′,j′′=1

gj
′j′′∂j′αj∂j′′αj.

The second equality comes from the definition of the gradient on M, (3.24). The third and

fourth equalities are due to (3.21) and (3.22) respectively.

Notice that

∂j′αj =
∂

∂γj′
αj(ψ(γ)) = ∂j′ψ

j. (3.26)

It follows that

d∑
j=1

‖∇Mαj‖2 =
d∑
j=1

k∑
j′,j′′=1

gj
′j′′∂j′ψ

j∂j′′ψ
j

=
k∑

j′,j′′=1

gj
′j′′

(
d∑
j=1

∂j′ψ
j∂j′′ψ

j

)

=
k∑

j′,j′′=1

gj
′j′′gj′j′′

=
k∑

j′=1

δj′j′ = k = dim(M) (3.27)
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Using Theorem 3.3.1 , the optimization problem (3.19) can be rewritten as

min
f∈Rm×n,
M⊂Rd

d∑
i=1

‖∇Mαi‖2
L2(M) + λ‖y − Φf‖2

2, subject to: P(f) ⊂M. (3.28)

where

‖∇Mαi‖L2(M) =

(∫
M
‖∇Mαi(x)‖2dx

)1/2

. (3.29)

This is the optimization problem we need to solve.

3.4 Numerical method

The optimization problem (3.28) is highly nonlinear and nonconvex. We propose an iterative

method to solve it approximately. In the iterations, first the manifold is fixed, the image

and the coordinate functions are computed. Then the manifold is updated using the new

image and coordinate functions. More specifically:

• With a guess of the manifoldMn and a guess of the image fn satisfying P(fn) ⊂Mn,

compute the coordinate functions αn+1
i , i = 1, · · · , d and fn+1,

(fn+1, αn+1
1 , · · · , αn+1

d ) = arg min
f∈Rm×n,

α1,··· ,αd∈H1(Mn)

d∑
i=1

‖∇Mnαi‖2
L2(Mn) + λ‖y − Φf‖2

2,

(3.30)

subject to: αi(px(f
n)) = pix(f),

where pix(f) is the ith element of patch px(f).

• Update M by setting

Mn+1 =
{

(αn+1
1 (x), · · · , αn+1

d (x)) : x ∈Mn
}
. (3.31)

• Repeat these two steps until convergence.

In the above iteration, the manifold is easy to update. The key step is to solve (3.30), which

is an optimization problem with linear constraints. We use the Bregman iterations [OBG05]

to enforce the constraints in (3.30) which gives the following algorithm:

44



• Update (fn+1,k+1,αn+1,k+1) by solving

(fn+1,k+1, αn+1,k+1
1 , · · · , αn+1,k+1

d )

= arg min
α1,··· ,αd∈H1(Mn),

f∈Rm×n

d∑
i=1

‖∇αi‖2
L2(Mn) + µ‖α(P(fn))− P(f) + dk‖2

F + λ‖y − Φf‖2
2,

where

α(P(fn)) =


α1(P(fn))

α2(P(fn))
...

αd(P(fn))

 ∈ Rd×N , N = |P(fn)|,

and αi(P(fn)) = (αi(x))x∈P(fn), i = 1 · · · , d are N dimensional row vectors. P(f) is

also a d × N matrix, with each column represents one patch in P(f). ‖ · ‖F is the

Frobenius norm.

• Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1).

To further simplify the algorithm, we use the idea of split Bregman iteration [GO09b] to

update f and αi sequentially.

• Solve αn+1,k+1
i , i = 1, · · · , d with fixed fn+1,k,

(αn+1,k+1
1 , · · · , αn+1,k+1

d ) (3.32)

= arg min
α1,··· ,αd∈H1(Mn)

d∑
i=1

‖∇αi‖2
L2(Mn) + µ‖α(P(fn))− P(fn+1,k) + dk‖2

F.

• Update fn+1,k+1,

fn+1,k+1 = arg min
f∈Rm×n

λ‖y − Φf‖2
2 + µ‖αn+1,k+1(P(fn))− P(f) + dk‖2

F. (3.33)

• Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1).
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Algorithm 6 LDMM Algorithm - Continuous version

Require: Initial guess of the image f 0, d0 = 0.

Ensure: Restored image f .

1: while not converge do

2: while not converge do

3: With fixed manifold Mn, for i = 1, · · · , d, solving

αn+1,k+1
i = arg min

αi∈H1(Mn)
‖∇Mnαi‖2

L2(Mn) + µ‖αi(P(fn))− Pi(fn+1,k) + dki ‖2.

(3.35)

4: Update fn+1,k+1,

fn+1,k+1 = arg min
f∈Rm×n

λ‖y − Φf‖2
2 + µ‖αn+1,k+1(P(fn))− P(f) + dk‖2

F (3.36)

5: Update dk+1,

dk+1 = dk +αn+1,k+1(P(fn))− P(fn+1,k+1).

6: end while

7: Set fn+1 = fn+1,k, αn+1 = αn+1,k

8: Update M

Mn+1 =
{

(αn+1
1 (x), · · · , αn+1

d (x)) : x ∈Mn
}
. (3.37)

9: end while

Notice that in (3.32), αn+1,k+1
i , i = 1, · · · , d can be solved separately,

αn+1,k+1
i = arg min

αi∈H1(Mn)
‖∇αi‖2

L2(Mn) + µ‖αi(P(fn))− Pi(fn+1,k) + dki ‖2 (3.34)

where Pi(fn) is the ith row of matrix P(fn).

Summarizing the discussion above, we have Algorithm 6 to solve the optimization problem

(3.28) in LDMM.

In Algorithm 6, the most difficult part is to solve the following type of optimization
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problem

min
u∈H1(M)

‖∇Mu‖2
L2(M) + µ

∑
y∈P

|u(y)− v(y)|2, (3.38)

where u can be any αi, M =Mn, P = P(fn) and v(y) is a given function on P .

By a standard variational approach, we know that the solution of (3.38) can be obtained

by solving the following PDE −∆Mu(x) + µ
∑

y∈P δ(x− y)(u(y)− v(y)) = 0, x ∈M
∂u
∂n

(x) = 0, x ∈ ∂M,
(3.39)

where ∂M is the boundary of M and n is the out normal of ∂M. If M has no boundary,

∂M = ∅.

The remaining problem is to solve the PDE (3.39) numerically. Notice that, we do not

know the analytical form of the manifold M. Instead, we know P(fn) is a sample of the

manifold M, and we need to solve (3.39) on this unstructured point set P(fn). We use the

point integral method (PIM) [LSS, SSa, SSb] to solve (3.39) on P(fn).

3.4.1 Point Integral Method

The point integral method was recently proposed to solve elliptic equations over a point

cloud. For the Laplace-Beltrami equation, the key observation in the point integral method

is the following integral approximation:∫
M

∆Mu(y)R̄t(x,y)dy ≈ −1

t

∫
M

(u(x)− u(y))Rt(x,y)dy + 2

∫
∂M

∂u(y)

∂n
R̄t(x,y)dτy,

(3.40)

where t > 0 is a parameter and

Rt(x,y) = CtR

( |x− y|2
4t

)
. (3.41)

R : R+ → R+ is a positive C2 function integrable over [0,+∞), and Ct is the normalizing

factor

R̄(r) =

∫ +∞

r

R(s)ds, and R̄t(x,y) = CtR̄

( |x− y|2
4t

)
. (3.42)
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We usually set R(r) = e−r, then R̄t(x,y) = Rt(x,y) = Ct exp
(
|x−y|2

4t

)
are Gaussians.

Next, we give a brief derivation of the integral approximation (3.40) in the Euclidean

space. Here we assume M is an open set in Rd. For a general submanifold, the derivation

follows from the same idea but is technically more involved. Interested readers are referred

to [SSa]. Thinking of R̄t(x,y) as test functions, and integrating by parts, we have∫
M

∆u(y)R̄t(x,y)dy (3.43)

=−
∫
M
∇u · ∇R̄t(x,y)dy +

∫
∂M

∂u

∂n
R̄t(x,y)dτy

=
1

2t

∫
M

(y − x) · ∇u(y)Rt(x,y)dy +

∫
∂M

∂u

∂n
R̄t(x,y)dτy.

The Taylor expansion of the function u tells us that

u(y)− u(x) =(y − x) · ∇u(y)− 1

2
(y − x)THu(y)(y − x) +O(‖y − x‖3),

where Hu(y) is the Hessian matrix of u at y. Note that
∫
M ‖y − x‖nRt(x,y)dy = O(tn/2).

We only need to estimate the following term:

1

4t

∫
M

(y − x)THu(y)(y − x)Rt(x,y)dy (3.44)

=
1

4t

∫
M

(yi − xi)(yj − xj)∂iju(y)Rt(x,y)dy

= −1

2

∫
M

(yi − xi)∂iju(y)∂j
(
R̄t(x,y)

)
dy

=
1

2

∫
M
∂j(yi − xi)∂iju(y)R̄t(x,y)dy +

1

2

∫
M

(yi − xi)∂ijju(y)R̄t(y,x)dy

−1

2

∫
∂M

(yi − xi)nj∂iju(y)R̄t(x,y)dτy

=
1

2

∫
M

∆u(y)R̄t(x,y)dy − 1

2

∫
∂M

(yi − xi)nj∂iju(y)R̄t(x,y)dτy +O(t1/2).

The second summand in the last line is O(t1/2). Although its L∞(M) norm is of constant

order, its L2(M) norm is of the order O(t1/2) due to the fast decay of wt(x,y). Therefore,

we have Theorem 3.4.1 from combining equations (3.43) and (3.44).

Theorem 3.4.1. If u ∈ C3(M) is a function on M, then we have for any x ∈M,

‖r(u)‖L2(M) = O(t1/4). (3.45)
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where

r(u) =

∫
M

∆u(y)R̄t(x,y)dy +
1

t

∫
M

(u(x)− u(y))Rt(x,y)dy − 2

∫
∂M

∂u(y)

∂n
Rt(x,y)dτy.

The detailed proof can be found in [SSa].

Using the integral approximation (3.40), we get an integral equation to approximate the

original Laplace-Beltrami equation (3.39),∫
M

(u(x)− u(y))Rt(x,y)dy + µt
∑
y∈P

R̄t(x,y)(u(y)− v(y)) = 0 (3.46)

This integral equation has no derivatives, and is easy to discretize over the point cloud.

3.4.2 Discretization

Next, we discretize the integral equation (3.46) over the point set P(fn). To simplify the

notation, we denote the point cloud as X. Notice that the point cloud X = P(fn) in the

n-th iteration.

Assume that the point set X = {x1, · · · ,xN} samples the submanifold M and it is

uniformly distributed. The integral equation can be discretized very easily as:

|M|
N

N∑
j=1

Rt(xi,xj)(ui − uj) + µt
N∑
j=1

R̄t(xi,xj)(uj − vj) = 0 (3.47)

where vj = v(xj) and |M| is the volume of the manifold M.

We can rewrite (3.47) in the matrix form.

(L+ µ̄W̄ )u = µ̄W̄v. (3.48)

where v = (v1, · · · , vN) and µ̄ = µtN
|M| . L is a N ×N matrix which is given as

L = D −W , (3.49)

whereW = (wij), i, j = 1, · · · , N is the weight matrix andD = diag(di) with di =
∑N

j=1wij.

W̄ = (w̄ij), i, j = 1, · · · , N is also a weight matrix. From (3.47), the weight matrices are

wij = Rt(xi,xj), w̄ij = R̄t(xi,xj), xi,xj ∈ P(fn), i, j = 1, · · · , N. (3.50)
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Remark 3.4.1. The discretization (4.25) is based on the assumption that the point set

P(fn) is uniformly distributed over the manifold such that the volume weight of each point is

|M|/N . If P(fn) is not uniformly distributed, PIM actually solves an elliptic equation with

variable coefficients [Shi] where the coefficients are associated with the distribution.

Combining the point integral method within Algorithm 6, finally we get the algorithm

in LDMM, Algorithm 7. In Algorithm 7, the number of split Bregman iterations is set to be

1 to simplify the computation.

3.5 Comparison with nonlocal methods

At first sight, LDMM is similar to nonlocal methods such as NLTV. But actually, they

are very different. First, LDMM is based on minimizing the dimension of the patch mani-

fold. The dimension of the patch manifold can be used as a general regularization in image

processing. In this sense, LDMM is more systematic than nonlocal methods.

The other important difference is that the formulation of LDMM is continuous while the

nonlocal methods use a graph based approach. In a graph based approach, a weighted graph

is constructed which links different pixels x, y over the image with a weight w(x, y). On this

graph, the discrete gradient is defined.

∀x, y, ∇wf(x, y) =
√
w(x, y)(f(y)− f(x)). (3.51)

Typically, in the nonlocal method, the following optimization problem is solved.

min
f∈Rm×n

1

2
‖y − Φf‖2 + λJw(f)(f). (3.52)

where Jw(f) is a regularization term related with the graph. Most frequently used Jw(f) are

the L2 energy

Jw(f) =

(∑
x,y

w(x, y)(f(x)− f(y))2

)1/2

(3.53)

and the nonlocal total variation

Jw(f) =
∑
x

(∑
y

w(x, y)(f(x)− f(y))2

)1/2

. (3.54)

50



Algorithm 7 LDMM Algorithm

Require: Initial guess of the image f 0, d0 = 0.

Ensure: Restored image f .

1: while not converge do

2: Compute the weight matrix W = (wij) from P(fn), where i, j = 1, · · · , N and N =

|P(fn)| is the total number of points in P(fn),

wij = Rt(xi,xj), w̄ij = R̄t(xi,xj), xi,xj ∈ P(fn), i, j = 1, · · · , N.

And assemble the matrices L, W and W̄ as following:

L = D −W , W = (wi,j), W̄ = (w̄i,j), i, j = 1, · · · , N.

3: Solve following linear systems

(L+ µ̄W̄ )U = µ̄W̄V .

where V = P(fn)− dn.

4: Update f by solving a least square problem.

fn+1 = arg min
f∈Rm×n

λ‖y − Φf‖2
2 + µ̄‖U − P(f) + dn‖2

F

5: Update dn,

dn+1 = dn +U − P(fn+1)

6: end while

The nonlocal methods provide powerful tools in image processing and were widely used in

many problems. However, from the continuous point of view, the graph based approach has

an intrinsic drawback.

Figure 3.2 (d) shows one example of subsample image recovery computed with an L2

energy norm. The image of Barbara (Figure 3.2 (a)) is subsampled. Only 10% of the pixels

are retained at random (Figure 3.2 (b)). It is clear that in the recovered image, some pixels

are not consistent with their neighbors. From the zoomed in image, it is easy to see that these
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(a) (b) (c) (d)

 

 

 

 

(a’) (b’) (c’) (d’)

Figure 3.2: Subsampled image recovery of Barbara based on low dimensional manifold model (LDMM)

and nonlocal method. (a): original image; (b): subsampled image (10% pixels are retained at random); (c):

recovered image by LDMM; (d): recovered image by Graph Laplacian. The bottom row shows the zoom in

image of the red box enclosed area.

pixels are just the retained pixels. This phenomenon shows that in the graph based approach,

the value at the retained pixels do not spread to their neighbours properly. Compared with

the graph based approach, the result given by LDMM method is much better (Figure 3.2

(c)).

This phenomenon can be explained by using a simple model problem, Laplace-Beltrami

equation with the Dirichlet boundary condition, ∆Mu(x) = 0, x ∈M,

u(x) = g(x), x ∈ ∂M.
(3.55)

whereM is a smooth manifold embedded in Rd and ∂M is its boundary. Suppose the point

cloud X = {x1, · · · ,xN} samples the manifold M, and B ⊂ X samples the boundary ∂M.

Using the graph based method, the solution of the Dirichlet problem (3.55) is approxi-
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mately obtained by solving the following linear system
∑N

j=1 w(xi,xj)(u(xi)− u(xj)) = 0, xi ∈ X\B,
u(xi) = g(xi), xi ∈ B.

(3.56)

In the point integral method, we know that the Dirichlet problem can be approximated by

an integral equation 1
t

∫
M(u(x)− u(y))Rt(x,y)dy − 2

∫
∂M

∂u(y)
∂n

R̄t(x,y)dτy = 0, x ∈M,

u(x) = g(x), x ∈ ∂M.
(3.57)

Comparing these two approximations, (3.56) and (3.57), we can see that in the graph based

method, the boundary term, −2
∫
∂M

∂u(y)
∂n

R̄t(x,y)dτy, is dropped. However, it is easy to

check that this term is not small. Since the boundary term is dropped, the boundary

condition is not enforced correctly in the graph based method.

Another difference between LDMM and the nonlocal methods is that the choice of patch

is more flexible in LDMM. In nonlocal methods, for each pixel there is a patch and the patch

has to be centered around this pixel. In LDMM, we only require that patches have the same

size and cover the whole image. This feature gives us more freedom to choose the patches.

3.6 Numerical results

In the numerical simulations, the weight function we used is the Gaussian weight

Rt(x,y) = exp

(
−‖x− y‖

2

σ(x)2

)
(3.58)

σ(x) is chosen to be the distance between x and its 20th nearest neighbour, To make the

weight matrix sparse, the weight is truncated to the 50 nearest neighbors.

The patch size is 10× 10 in the denoising and inpainting examples and is 20× 20 in the

super-resolution examples.

For each point in X, the nearest neighbors are obtained by using an approximate nearest

neighbor (ANN) search algorithm. We use a k-d tree approach as well as an ANN search

algorithm to reduce the computational cost. The linear system in Algorithm 7 is solved by

GMRES.
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PSNR defined as following is used to measure the accuracy of the results

PSNR(f, f ∗) = −20 log10(‖f − f ∗‖/255) (3.59)

where f ∗ is the ground truth.

3.6.1 Inpainting

In the inpainting problems, the pixels are removed from the original image and we want to

recover the original image from the remaining pixels. The corresponding operator, Φ, is

(Φf)(x) =

 f(x), x ∈ Ω,

0, x /∈ Ω,
(3.60)

where Ω ⊂ {0, · · · ,m} × {0, · · · , n} is the region where the image is retained. The pixels

outside of Ω are removed. In our simulations, Ω is selected at random.

We assume that the original images do not have noise. In this noise free case, the

parameter λ in the least-squares problem in Algorithm 7 is set to be ∞. Then, the least-

squares problem can be solved as

fn+1(x) =

 f(x), x ∈ Ω,

(P∗P)−1(P∗(U + dn)), x /∈ Ω
(3.61)

where P∗ is the adjoint operator of P . Notice that P∗P is a diagonal operator. So fn+1 can

be solved explicitly without inverting a matrix.

The initial guess of f is obtained by filling the missing pixels with random numbers satisfy

Gauss distribution, N(µ0, σ0), where µ0 is the mean of Φf and σ0 is the standard deviation

of Φf . The parameter µ̄ = 0.5.

In our simulations, the original images are subsampled. Only 10% of the pixels are

retained. The retained pixels are selected at random. From these 10% subsampled images,

the LDMM method is employed to recover the original images. The recovery of several

different images are shown in Figure 3.3. In this example, we compare the performance of

LDMM with NLTV (3.6) and BPFA [ZCP12]. As we can see in Figure 3.3, the LDMM
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original 10% subsample LDMM NLTV BPFA

24.74 dB 23.35 dB 23.44 dB

25.49 dB 23.66 dB 24.72 dB

32.12 dB 28.38 dB 30.41 dB

Figure 3.3: Examples of subsampled image recovery.

achieves the best results. LDMM recovers the image very well both in the cartoon part

and the texture part. NLTV works well in the cartoon part, but the reconstruction of the

texture is not satisfactory. BPFA has problems to recover sharp edges which makes the

results visually less comfortable, although PSNR given by BPFA is better than NLTV.

In NLTV, we use the nonlocal gradient (3.3) to discretize the gradient operator, which

may introduce inconsistency as we have pointed out in Section 5. In Figure 3.4, we show the

zoomed in results given by NLTV. It can be clearly seen that there are many inconsistent

pixels in the reconstructed images. If we zoom in the recovered images of Lena and pepper,

we can also see similar phenomena.
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Figure 3.4: Restored image from 10% subsample image by NLTV.

3.6.2 Super-resolution

Super-resolution is the recovery of a high-definition image from a low resolution image.

Usually, the low resolution image is obtained by filtering and sub-sampling from a high

resolution image.

Φf = (f ∗ h) ↓k (3.62)

where h is a low-pass filter, ↓k is the down-sampling operator by a factor k along each axis.

Here, we consider a simple case in which the filter h is the identity, i.e.,

Φf = (f) ↓k (3.63)

This downsample problem can be seen as a special case of subsample. However, in this

problem, the pixels are retained over regular grid points which makes the recovery much more

difficult than that in the random subsample problem considered in the previous example.

(Φf)(x) =

 f(x), x ∈ Ω,

0, x /∈ Ω,
(3.64)
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original downsample Bi-cubic NLTV LDMM

21.82 dB 22.21 dB 22.42 dB

26.45 dB 26.63 dB 26.48 dB

Figure 3.5: Example of image super-resolution with downsample rate k = 8.

where Ω = {1, k + 1, 2k + 1, · · · } × {1, k + 1, 2k + 1, · · · }.

Here, we also assume the measure is noise free and use the same formula (3.61) to update

the image f . The parameter µ̄ = 0.5 in the simulation. The initial guess is obtained by

Bi-cubic interpolation.

Figure 3.5 shows the results for two images. The downsample rate is set to be 8. In

terms of PSNR, compared with Bi-cubic interpolation, the improvement in LDMM is not

substantial. However, the images given by LDMM are visually more pleasing than those

given by Bi-cubic since the edges are reconstructed much better. The results of LDMM and

NLTV are very close, except the edges in LDMM are a little sharper than those in NLTV.

3.6.3 Denoising

In the denoising problem, the operator Φ is the identity operator. In this case, the least-

squares problem in Algorithm 7 has a closed form solution.

fn+1 = (λ Id + µ̄P∗P)−1 (λy + µ̄P∗(U + dn)) (3.65)
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original noisy LDMM NLTV BPFA

8.12 dB 22.63 dB 21.82 dB 22.19 dB

8.13 dB 23.21 dB 22.11 dB 22.76 dB

8.15 dB 26.44 dB 26.53 dB 26.13 dB

Figure 3.6: Example of image denoising with standard deviation σ = 100.

where P∗ is the adjoint operator of P .

In the denoising tests, Gaussian noise is added to the original images. The standard

deviation of the noise is 100. Parameter µ̄ = 0.5 and λ = 0.2 in the simulation.

Figure 4.9 shows the results obtained by LDMM, NLTV, and BPFA. The results given

by LDMM are a little better in terms of PSNR. However, LDMM is much better visually

since edges are reconstructed better.

Another very powerful image denoising method is BM3D [DFK07], which is also based

on patches of images. In image denoising, we have to admit that the results of the LDMM

model presented in this chapter are not as good as those obtained in BM3D. Some better

results of LDMM using other numerical procedures will be reported in Chapter 4.
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At the end of this section, we want to make some remarks on the computational speed

of LDMM. As shown in this section, LDMM achieves good results for inpainting, super-

resolution and denoising problems. On the other hand, the computational cost of LDMM is

relatively high. For the example of Barbara (256×256) in inpainting problem, LDMM needs

about 18 mins while BPFA needs about 15 mins. For Barbara (512× 512) in the denoising

problem, LDMM spends about 9 mins (about 25 mins in BPFA). Both of the tests are run

with matlab code in a laptop equiped with CPU intel i7-4900 2.8GHz.

3.7 Conclusion

In this chapter, we presented a novel low dimensional manifold model (LDMM) for image

processing. In the LDMM, instead of the image itself, we study the patch manifold of

the image. Many studies reveal that the patch manifold has low dimensional structure for

various classes of images. In LDMM, we just use the dimension of the patch manifold as

the regularization to recover the original image from the partial information. The point

integral method (PIM) also plays a very important role. It gives a correct way to solve the

Laplace-Beltrami equation over the point cloud. We show the performance of the LDMM in

subsample, downsample and denoising problems. LDMM achieves better results compared

to the competing algorithms, especially in image inpainting problems. On the other hand,

the dimension of the manifold can be used as a general regularization not only in image

processing problems. The application of LDMM on hyperspectral image processing and

large-scale scientific data will be presented in the next chapter.
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CHAPTER 4

Low Dimensional Manifold Model with Weighted

Graph Laplacian and Semi-local Patches

4.1 Introduction

The low dimensional manifold model presented in Chapter 3 performs very well in many

image processing problems. However, the algorithm is fairly computationally expensive in

two aspects: the computation of the weight, and solving over 100 linear systems every

iteration on the patch domain. These two problems cause LDMM to be computationally

infeasible when dealing with large images and high dimensional data. In this chapter, we

will present two numerical techniques, weighted graph Laplacian and semi-local patches to

solve the problems mentioned above. The rest of the chapter is organized as follows:

Section 4.2 explains the two numerical techniques, weighted graph Laplacian and semi-

local patches, to speed up the computation. Section 4.3 illustrates the detailed implementa-

tion for the inpainting and denoising problems. Section 4.4 presents the numerical results.

Finally, we draw our conclusion in Section 4.5.

4.2 Weighted Graph Laplacian and Semi-local Patches

4.2.1 Weighted Graph Laplacian

The weighted graph Laplacian (WGL) was proposed in [SOZ17] to smoothly interpolate

functions on a point cloud. Let P = {p1, p2, . . . , pn} be a set of points in Rd, and a function

g is given on a subset S = {s1, s2, . . . , sn} of P . The goal is to find a function u on P that
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extends g smoothly.

The widely used graph Laplacian model seeks to solve the interpolation problem via

minimizing the following energy:

J (u) =
∑
x,y∈P

w(x, y) (u(x)− u(y))2 , subject to: u(x) = g(x) on S, (4.1)

where w(x, y) is some weight function, e.g. w(x, y) = exp
(
−‖x−y‖2

σ2

)
. It is easy to check

that J (u) = ‖∇Mu‖2 when the manifold gradient is discretized by the nonlocal gradient:

∇Mu(x)(y) =
√
w(x, y) (u(x)− u(y)) .

As mentioned in Chapter 3, minimizing the energy J in (4.1) would fail to achieve

satisfactory results when the sample rate |S|/|P | is very low. The reason is that the minimizer

u of (4.1) does not ensure continuity of u on the labeled set S, or the information of g on

S is not properly propagated to its vicinity. More specifically, after rewriting (4.1) in the

following form:

J (u) =
∑
x∈S

∑
y∈P

w(x, y) (u(x)− u(y))2 +
∑
x∈P\S

∑
y∈P

w(x, y) (u(x)− u(y))2 , (4.2)

one can see that the first term in (4.2) is much smaller than the second term when |S| � |P |.
As a result, the minimizing procedure would prioritize the second term, and therefore sacrifice

the continuity of u on the sampled set S. An easy remedy for this scenario is to add a large

weight µ = |P |/|S| in front of the first term in (4.2) to balance the two terms:

JWGL(u) = µ
∑
x∈S

∑
y∈P

w(x, y) (u(x)− u(y))2 +
∑
x∈P\S

∑
y∈P

w(x, y) (u(x)− u(y))2 . (4.3)

It is readily checked that JWGL generalizes the graph Laplacian J in the sense that JWGL =

J when |S| = |P |. The generalized energy functional JWGL is called the weighted graph

Laplacian.

The corresponding Euler-Lagrange equation of the variational model with the weighted

graph Laplacian JWGL is:
∑
y∈P

2w(x, y)(u(x)− u(y)) + (µ− 1)
∑
y∈S

w(y, x)(u(x)− g(y)) = 0, x ∈ P \ S,

u(x) = g(x), x ∈ S.
(4.4)

61



On the other hand, if we use the point integral method to solve the interpolation problem,

the resulting linear system would be:

∑
y∈P

Rt(x, y)(u(x)− u(y)) +
2

λ

∑
y∈S

Rt(x, y)(u(y)− g(y)) = 0, (4.5)

where λ� 1 is a positive parameter, Rt(x, y) = exp(− |x−y|2
4t

) is the Gaussian weight function.

By comparing (4.4) and (4.5), it is clear that WGL can also be derived by replacing

u(y) in the second term of (4.5) by u(x). This simplification is also quite intuitive: since u

is supposed to be a smooth function on M, u(x) should be similar to u(y) if the distance

between x and y is small, i.e. w(x, y) is large.

4.2.2 Semi-local Patches

The semi-local patches are obtained by adding local coordinates to the nonlocal patches in

Chapter 3 with a weight λ, i.e.

(P̄f)(x) = [(Pf)(x), λx] ∈ Rd+2, (4.6)

and the semi-local patch set is

P̄f = {(P̄f(x) : x ∈ Ω̄ = {1, 2, . . . ,m} × {1, 2, . . . , n}}. (4.7)

where f ∈ Rm×n is the image, x ∈ Ω̄ = {1, 2, . . . ,m}×{1, 2, . . . , n} is the index of the pixel.

The weight λ is used to get different locality in the semi-local patch. If λ = 0, the semi-local

patch is tbe same as the nonlocal patch. If λ→∞, the patches are completely determined

by local coordinates.

The semi-local patches have been successfully applied to many image processing problems

[Pey08, TM98, SB97, SKS07]. In the geometrical point of view, if λ → ∞, the patch set

P̄(f) is parametrized by a local 2D coordinate, x 7→ P̄(u)(x). However, as mentioned in

Chapter 3, this parameterization is globally not injective and typically leads to high curvature

variations and self-intersections. With this parametrization, the dimension of the manifold

is very low, while the regularity is poor. If λ = 0, the underlying patch manifold may have

62



higher dimension, however the manifold becomes smoother. The idea in this chapter is to

find a good compromise between the dimension and the regularity of the patch manifold

by choosing a proper weight λ. With a proper λ, our experiments show that LDMM is

accelerated significantly.

4.3 Numerical Implementation

4.3.1 Inpainting

We provide a detailed explaination of the numerical implementation of LDMM with WGL

in inpainting. Recall from Chapter 3 that the variational problem is:

min
f∈Rm×n,
M⊂Rd

d∑
i=1

‖∇Mαi‖2
L2(M), subject to: b = ΦΩf, P(f) ⊂M, (4.8)

where ΦΩ is the projection onto the sampled set Ω ⊂ Ω̄ = {1, 2, . . . ,m} × {1, 2, . . . , n}, and

b is the observed data.

The variational problem (4.8) is solved by alternating minimization with respect to M
and f . More specifically, given Mk and fk at step k satisfying P(fk) ⊂Mk:

• With fixed Mk, update the data fk+1 by solving:

min
f∈Rm×n

d∑
i=1

‖∇Mkαi‖2
L2(Mk), (4.9)

subject to: αi(P(fk)(x)) = Pif(x), x ∈ Ω, i = 1, · · · , d,

f(x) = b(x), x ∈ Ω ⊂ Ω,

where Pif(x) is the i-th element in the patch at the voxel x.

• Update the manifold Mk+1 by setting:

Mk+1 = α(Mk)

Using the terminology introduced in Section 4.2.1, the functions to be interpolated in

(4.9) are αi, the point cloud P is P(fk), and the sampled set for αi is

Si =
{
Pfk(x) : Pifk(x) is sampled

}
.
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Based on the discussion in Section 4.2.1, (4.9) can be discretized into the following problem:

min
f∈Rm×n

d∑
i=1

 ∑
x∈Ω\Ωi

∑
y∈Ω

w(x,y)((Pif)(x)− (Pif)(y))2 (4.10)

+
|Ω̄|
|Ω|

∑
x∈Ωi

∑
y∈Ω

w(x,y)((Pif)(x)− (Pif)(y))2

 ,

Subject to: f(x) = b(x), x ∈ Ω ⊂ Ω,

where Ωi =
{
x ∈ Ω̄ : Pifk(x) is sampled

}
, w̄(x,y) = w(P̄f(x), P̄f(y)), and w is a sym-

metric sparse weight function computed from the point cloud P̄fk with semi-local patches.

More specifically,

w(x,y) = exp

(
−‖x− y‖

2

σ(x)σ(y)

)
, (4.11)

where σ(x) is the normalizing factor. In the numerical experiments, the weight w has been

truncated to 20 nearest neighbors, and the normalizing factor is chosen as the distance

between x and its 10th nearest neighbor.

It is readily checked by standard variational techniques that the Euler-Lagrange equation

of (4.10) is: 
[

d∑
i=1

P∗i (hi) + µ
d∑
i=1

P∗i (gi)

]
(x) = 0, x ∈ Ω̄ \ Ω

f(x) = b(x), x ∈ Ω

(4.12)

where µ = |Ω̄|
|Ω| − 1, P∗i is the adjoint operator of Pi, and

hi(x) =
∑
y∈Ω̄

2w̄(x,y)(Pif(x)− Pif(y))

gi(x) =
∑
y∈Ωi

w̄(x,y)(Pif(x)− Pif(y))

(4.13)

Recall that Pif(x) is the i-th element of the patch Pf(x). We use the notation x
î−1

to

denote the (i − 1)-th element after x in the a patch, and a periodic padding is used when
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patches exceed the domain of the image. It is easy to verify that Pif(x) = f(x
î−1

), and

P∗i = P−1
i .

Using such notation, one can deduce that:

P∗i hi(x) = hi(x1̂−i) =
∑
y∈Ω̄

2w̄(x
1̂−i,y)

(
Pif(x

1̂−i)− Pif(y)
)

=
∑
y∈Ω̄

2w̄(x
1̂−i,y)

(
f(x)− f(y

î−1
)
)

=
∑
y∈Ω̄

2w̄(x
1̂−i,y1̂−i) (f(x)− f(y))

Therefore

d∑
i=1

P∗i (hi)(x) =
d∑
i=1

∑
y∈Ω̄

2w̄(x
1̂−i,y1̂−i) (f(x)− f(y)) (4.14)

Similarly,

d∑
i=1

P∗i (gi)(x) =
d∑
i=1

∑
y∈Ω

w̄(x
1̂−i,y1̂−i) (f(x)− f(y)) (4.15)

Combining (4.12)(4.14)(4.15), the Euler-Lagrange equation becomes:

∑
y∈Ω̄

(
d∑
i=1

2w̄(x
1̂−i,y1̂−i)

)
(f(x)− f(y))

+ µ
∑
y∈Ω

(
d∑
i=1

w̄(x
1̂−i,y1̂−i)

)
(f(x)− f(y)) = 0, x ∈ Ω̄ \ Ω

f(x) = b(x), x ∈ Ω

Let w̃(x,y) =
∑d

i=1 w̄(x
1̂−i,y1̂−i), i.e. W̃ is assembled from translated versions of the

original matrix W̄ , then
2
∑
y∈Ω̄

w̃(x,y) (f(x)− f(y)) + µ
∑
y∈Ω

w̃(x,y) (f(x)− f(y)) = 0, x ∈ Ω̄ \ Ω

f(x) = b(x), x ∈ Ω

(4.16)

Define the graph Laplacian matrix L̃ associated with the new weight matrix W̃ as

L̃ = D̃−W̃ , where D̃ is the diagonal matrix with diagonal entries D̃(x,x) =
∑

y∈Ω̄ w̃(x,y).
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Figure 4.1: A visual illustration of the matrix/vector definitions. The matrices W̃ , L̃ and f are partitioned

into sampled (Ω) and unsampled (Ω̄\Ω) blocks. For example, W̃12 is the matrix corresponding to the weights

between unsampled and sampled points.

It is easy to check that (4.16) can be written in the matrix form:

2L̃11v + 2L̃12b+ µ(∆v − W̃12b) = 0

⇐⇒ (2L̃11 + µ∆)v = µW̃12b− 2L̃12b (4.17)

where W̃ij and L̃ij are submatrices corresponding to unsampled (i, j = 1) or sampled (i, j =

2) parts of W̃ and L̃, v and b correspond to unsampled and sampled parts of f , and ∆ is the

diagonal matrix with its diagonal entries equaling the sums of the rows of W̃12. See Figure

4.1 for a visual illustration of the definitions of the matricies. The final LDMM algorithm

with WGL for image inpainting is shown in Algorithm 8.

4.3.2 Denoising

LDMM with WGL can also be applied to image denoising. The observed data b in denoising

is:

b(x) = f(x) + ε(x), x ∈ Ω = {1, 2, . . . ,m} × {1, 2, . . . , n}, (4.18)

where f ∈ Rm×n is the original image, b ∈ Rm×n is the noisy image, ε is the Gaussian noise.

Following the algorithm of LDMM in Chapter 3, we need to solve the following optimiza-

tion problem:

min
f∈Rm×n,
α1,··· ,αd

d∑
i=1

‖∇Mαi‖2
L2(M) + γ

∑
x∈Ω

|b(x)− f(x)|2, (4.19)

subject to: αi(P̄(fk)(x)) = (Pif)(x), x ∈ Ω, i = 1, · · · , d.
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Algorithm 8 LDMM with WGL for image inpainting

Require: A subsampled data f |Ω = b.

Ensure: Reconstructed data f .

Initial guess f 0.

while not converge do

1. Compute the patch set P(fk) from the current iterate fk.

2. Compute the weight function

w(x,y) = w(P̄fk(x), P̄fk(y)), x,y ∈ Ω.

3. Assemble the new weight function

w̃(x,y) =
d∑
i=1

w̄(x
1̂−i,y1̂−i)

4. Update the data fk+1 by solving equation (4.17).

5. k ← k + 1.

end while

f = fk.

where γ is a penalty weight related to the variance of the noise.

Or equivalently, we can impose the penalty on the patches,

min
f∈Rm×n,
α1,··· ,αd

d∑
i=1

‖∇Mαi‖2
L2(M) + γ

d∑
i=1

∑
x∈Ω

|αi(P̄(fk)(x))− (Pib)(x)|2, (4.20)

subject to: αi(P̄(fk)(x)) = (Pif)(x), x ∈ Ω, i = 1, · · · , d.

Next, we split f and α1, · · · , αd, and solve them separately.

• Compute αk+1
i , i = 1, · · · , d by solving

min
α1,··· ,αd

d∑
i=1

‖∇Mαi‖2
L2(M) + γ

d∑
i=1

∑
x∈Ω

|αi(P̄(fk)(x))− (Pib)(x)|2 (4.21)
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• Update the image fk+1 by solving the least-squares problem

(Pif)(x) = αi(P̄(fk)(x)), i = 1, · · · , d, x ∈ Ω. (4.22)

α1, · · · , αd are decoupled in (4.21). For each αi, we need to solve the following type of

problem:

min
u∈H1(M)

‖∇Mu‖2
L2(M) + γ

∑
y∈P̄

|u(y)− v(y)|2, (4.23)

where u can be any αi, P̄ = P̄(fk) is the semi-local patch set of fk and v(y) is a given

function on P̄ (fk) corresponding to (Pib)(x).

By a standard variational approach, we know that the solution of (4.23) can be obtained

by solving the following PDE −∆Mu(x) + γ
∑

y∈P̄ δ(x− y)(u(y)− v(y)) = 0, x ∈M
∂u
∂n

(x) = 0, x ∈ ∂M.
(4.24)

where ∂M is the boundary of M and n is the out normal of ∂M. If M has no boundary,

∂M = ∅.

Using the point integral method, the above Laplace-Beltrami equation is discretized as

follows:

∑
y∈P̄

w(x,y)(u(x)− u(y)) + γ̄
∑
y∈P̄

w(x,y)(u(y)− v(y)) = 0, x ∈ P̄ .

γ̄ is a parameter related to γ. We only need to set γ̄ in the computation.

Based on the discussion in Section 4.2.1, the above equation is modified to get the equa-

tion in WGL approach,

∑
y∈P̄

w(x,y)(u(x)− u(y)) + γ̄
∑
y∈P̄

w(x,y)(u(x)− v(y)) = 0, x ∈ P̄ , (4.25)

Based on the above derivation, we get an iterative algorithm (Algorithm 9) for image

denoising.
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Algorithm 9 Image Denoising

Require: A noisy image b.

Ensure: A denoised image f .

Let f 0 = b.

while not converge do

1. Generate semi-local patch set P̄(fk) from current image fk with the weight λ in the

semi-local patch.

2. Compute the weight function w(x,y), x,y ∈ P̄ (fk).

3. Compute αi, i = 1, · · · , d by solving (4.25) with P = P̄(fk), v = (Pib)(x).

3. Update the image fk+1 by

fk+1 =

(
d∑
i=1

P∗i Pi
)−1( d∑

i=1

P∗i αk+1
i

)

where P∗i is the adjoint operator of Pi.
4. k ← k + 1.

end while

f = fk.

4.4 Numerical Results

4.4.1 Image and HSI Inpainting

4.4.1.1 Normal Image Inpainting

The numerical performance of LDMM with WGL in image inpainting is compared to that of

the exemplar-based interpolation (EBI) [FAC09] and the piecewise linear estimator (PLE)

[YSM12] in the case of random sampling interpolation. In all of the tests, the weight matricies

built from semi-local patches are truncated to the 20 nearest neighbors, and the patch size

is 10×10. PSNR defined in Chapter 3 is used to evaluate the results. The inpainting results

from 5%, 10%, and 20% random subsamples are shown in Figure 4.2, Figure 4.3, Figure

4.4, and Table 4.1. It is easy to see both visually and numerically that LDMM consistently
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Original Subsample PLE (19.72dB) EBI (20.66dB) LDMM (23.37dB)

Original Subsample PLE (20.54dB) EBI (20.55dB) LDMM (23.17dB)

Original Subsample PLE (20.78dB) EBI (20.54dB) LDMM (21.94dB)

Original Subsample PLE (21.98dB) EBI (22.47dB) LDMM (24.32dB)

Figure 4.2: Comparison of image inpainting with 95% missing pixels.

outperforms the competing algorithms, and the superiority of LDMM is more predominant

when the sample rate is low. Moreover, Figure 4.5 shows the convergence of the algorithm in

PSNR. It can be seen that the algorithm typically converges in less than 10 iterations, which

is much less than the LDMM algorithm introduced in the previous chapter (100 iterations).
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Original Subsample PLE (22.48dB) EBI (23.91dB) LDMM (26.16dB)

Original Subsample PLE (24.19dB) EBI (23.74dB) LDMM (25.94dB)

Original Subsample PLE (22.93dB) EBI (22.05dB) LDMM (23.57dB)

Original Subsample PLE (25.65dB) EBI (24.83dB) LDMM (26.52dB)

Figure 4.3: Comparison of image inpainting with 90% missing pixels.

4.4.1.2 Hyperspectral Image Inpainting

The original LDMM introduced in the previous chapter is too computationally expensive

for high dimensional data such as hyperspectral images. The algorithm explained in this

chapter is considerably faster and more suitable for hyperspectral image inpainting. Three

datasets are used for testing:
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Original Subsample PLE (25.70dB) EBI (25.29dB) LDMM (28.85dB)

Original Subsample PLE (28.14dB) EBI (26.02dB) LDMM (28.07dB)

Original Subsample PLE (25.15dB) EBI (23.72dB) LDMM (25.85dB)

Original Subsample PLE (27.91dB) EBI (25.99dB) LDMM (28.50dB)

Figure 4.4: Comparison of image inpainting with 80% missing pixels.

• Urban dataset: almost linear mixed HSI with moderate noise.

• Synthetic dataset: generated by bilinear mixing model with moderate noise.

• Kiwi dataset: hyperspectral image with significant noise.

The inpainting results for these three datasets are displayed in Figure 4.6 and Figure

4.7. It is clear to see that the recovering results from only 5% subsample are almost indis-
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5% 10% 20%

EBI PLE LDMM EBI PLE LDMM EBI PLE LDMM

Barbara 20.66 19.72 23.37 23.91 22.48 26.16 25.29 25.70 28.85

Boat 20.55 20.54 23.17 23.74 24.19 25.94 26.02 28.14 28.07

Castle 20.54 20.78 21.94 22.05 22.93 23.57 23.72 25.15 25.85

Man 22.47 21.98 24.32 24.83 25.64 26.52 25.99 27.91 28.50

Table 4.1: PSNR of EBI, PLE, LDMM with 5%, 10% and 20% sample rate.

Iterations
2 4 6 8 10 12 14
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N
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17

18

19
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21

22

23

24
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barbara_10\%
barbara_5\%
boat_10\%
boat_5\%
castle_10\%
castle_5\%
man_10\%
man_5\%

Figure 4.5: Convergence of LDMM for image inpainting in PSNR

tinguishable from the original images with little noise, and Figure 4.7 shows that LDMM

with a penalty instead of hard constraint can reconstruct the image from significant noise

and missing voxels.

4.4.2 Image Denoising

We use the same weight given in Section 4.4.1. The patch size is 10 × 10. The number

of iterations is 3. The weight λ in the semi-local patches is 5. In our tests, the noise ε is

Gaussian noise with the standard deviation σ = 100. γ̄ = 0.5 in (4.25).

The denoising results are shown in Figure 4.9. The performance of LDMM is compared
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Original Subsampled (5%) Recovered Error (PSNR = 37.9)

Original Subsampled (5%) Recovered Error (PSNR = 38.2)

Figure 4.6: HSI reconstruction from 95% missing voxels.

Original at 50th band Subsampled (10%) Recovered

Original at 100th band Subsampled (10%) Recovered

Figure 4.7: HSI reconstruction from 95% missing voxels and significant noise.

to the method of block-matching with 3D collaborative filtering (BM3D) [DFK07], which is

known to achieve state-of-the-art results in image denoising. As we can see in Figure 4.9,

the results of BM3D is better in PSNR except for the image of Barbara. LDMM seems
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LDMM BM3D

Figure 4.8: Fragment of the denoised image of Barbara using LDMM and BM3D.

to reconstruct the edges and textures sharper than BM3D as shown in Figure 4.8. This

difference can also be found in the result of the image of the house. LDMM seems to recover

the edges of the house smoother and sharper, although the PSNR is lower than that of

BM3D.

4.4.3 Interpolation of Scientific Data

In this section, we present the numerical results of LDMM on various 2D and 3D scientific

data interpolation from either regular or irregular samplings. The performance of LDMM

is compared to that of the exemplar-based interpolation (EBI) [FAC09] and the piecewise

linear estimator (PLE) [YSM12] in the case of random sampling interpolation. As pointed

out in [YSM12], PLE fails to work on regular sampling interpolation without a proper

initialization (bicubic interpolation in their case). We also noticed in our experiment that

the result of EBI on regular sampling interpolation is inferior to that of the simple cubic

spline interpolation. Therefore, in the case of regular sampling interpolation, we instead

compare the results of LDMM to the standard methods including cubic spline interpolation,

discrete Fourier transform (DFT), discrete cosine transform (DCT), and wavelet transform.

Moreover, we also examine the effectiveness of LDMM as a data compression technique and

compare it to other standard compression methods including DFT, DCT, wavelet transform,

and tensor decomposition. As for the tensor decomposition methods, we use the singular

75



original noisy image LDMM BM3D

512× 512 8.14 dB 23.91 dB 23.71 dB

512× 512 8.12 dB 23.47 dB 23.86 dB

512× 512 8.14 dB 24.41 dB 24.61 dB

256× 256 8.16 dB 25.50 dB 25.92 dB

Figure 4.9: Results of image denoising.

value decomposition (SVD) for 2D data, and the Tucker decomposition [BK15, BK06] for

3D data. The Tucker decomposition is a form of higher-order SVD, which decomposes a

tensor into a core tensor multiplied by a matrix along each mode.

4.4.3.1 Description of the Testing Data and Parameter Setup

The algorithms are tested on six scientific datasets, three of which are three-dimensional.

See Figure 4.10 and Figure 4.11 for visual illustrations of the data.
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• 3D plasma (magnetic field): The data set is taken from a gyrokinetic simulation

of Alfvénic turbulence in 5D phase space (3D real space plus 2D velocity space, with

the fast gyroangle dependence removed) [TJT15], carried out with the GENE code

[JDK00]. It represents a snapshot of the magnitude of magnetic field fluctuations in

real space during the statistically quasi-stationary state of fully developed turbulence.

In this simulation, the focus is on the dissipation range of this weakly collisional turbu-

lent plasma which cannot be described adequately by magnetohydrodynamics (MHD).

Gyrokinetics offers an efficient description of the very tail of the MHD cascade. The

size of this data is 256× 256× 32.

• 3D/2D lattice: The lattice benchmark problem, originally due to Brunner [Bru02,

BH05], is a two-dimensional cartoon of a nuclear reactor assembly that has become

a common test problem of angular discretization methods for kinetic equations of

radiation transport [HM13, MH10a, MH10b, SFL09].

The simulated quantity is a distribution function that depends on five independent

variables: two spatial, two angular, plus time. The data used here was generated

using the algorithm described in [CCHed] which combines a third-order space-time

discretization (discontinuous Galerkin in space and integral deferred correction in time)

and an angular discretization based on a tensor product collocation scheme.

We consider for this problem two quantities of interest. The first (2D lattice) is the

angular average of the distribution function at a fixed time; this is a two-dimensional

data set of size 896× 896. The second is the distribution function at a fixed time and

fixed vertical location along the line y = 4.5. This is a three dimensional data set of

size 188× 64× 32. Both sets of data are given in log scale.

• 3D/2D plasma (distribution function): This data set is again taken from a gy-

rokinetic simulation of Alfvénic turbulence in 5D phase space (3D real space plus 2D

velocity space, with the fast gyroangle dependence removed) described in [TJT15].

The 3D data set describes the distribution function for the ion species as a function of

the two spatial coordinates perpendicular to the background magnetic field and of the
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(a) (b) (c)

Figure 4.10: Visual illustrations of the 3D data sets. The two figures in column (a) are 2D spatial cross

sections of the 3D plasma (magnetic field) data set at different z coordinates. The figures in column (b) are

2D cross sections of the 3D lattice data set correspongding to angular flux at x = 0.24 and x = 1.18. The

figures in column (c) are 2D spatial cross sections of the 3D plasma (distribution function) data set.

velocity parallel to this guide field at a given value of perpendicular velocity and time.

Meanwhile, the 2D data set describes a snapshot of the same distribution function for

the ion species as a function of the two perpendicular spatial coordinates integrated

over velocity space. The sizes of the 3D and 2D data sets are 256 × 256 × 32 and

256× 256 respectively.

• 2D vortex: This data set comes from a numerical solution of the Orszag-Tang vortex

system [OT79], which provides a model of complex flow with many features of mag-

netohydrodynamics systems. Starting from a smooth state, the system evolves into

turbulance, generating complex interactions between different shock waves. The data

used in this paper is the numerical solution at time t = 2 of the density component ob-

tained with the third order Chebyshev polynomial approximate Osher-Solomon scheme

[CGM16] on a 256× 256 uniform mesh.

For irregular sampling interpolation, the algorithms are tested to reconstruct the original

data from 5% and 10% random subsamples. For the regular aliased sampling, the original

2D data are decimated by a factor of 4 in both directions; for 3D data, we consider two types
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(a) (b) (c)

Figure 4.11: Visual illustrations of the 2D data sets. (a) 2D lattice. (b) 2D plasma (distribution function).

(c) 2D vortex.

of sampling procedures: downsampling by a factor of 2 in all directions, or by a factor of 4

in only the first two dimensions.

For all the datasets listed above, the weight matrices in LDMM are truncated to 20 nearest

neighbors, and the normalizing factor σ(x) in (4.11) is chosen as the distance between x and

its 10th nearest neighbor. The patch sizes chosen for different datasets are listed in Table

4.2. The reason why the 2D plasma (distribution function) dataset uses a much larger patch

size, 16×16 instead of 6×6, is that the structures in this dataset are much more complicated

than the other datasets. This complexity implies a much higher intrinsic dimension of the

patch manifold. Therefore a larger patch size is chosen so that the manifold dimension can

be still smaller than that of the embedding space. Notice also that 6 × 6 × 1 patch size is

chosen for the 3D plasma (magnetic field) dataset. This is because of the low resolution of

the data in the third dimension. However, 6 × 6 × 4 patches are chosen in the 2 × 2 × 2

regular down sampling. This is because we want to avoid patches that do not contain any

sampled voxels.

The quality of the reconstruction f̂ of the original data f ∈ Rm×n×B is evaluated in the

following three norms:

‖e‖1 =
1

mnB

∑
i,j,k

|ei,j,k/R|, (4.26)

‖e‖2 =

(
1

mnB

∑
i,j,k

|ei,j,k/R|2
) 1

2

, (4.27)

‖e‖∞ = max
i,j,k
|ei,j,k/R|, (4.28)

79



5% 10% 4× 4 4× 4× 1 2× 2× 2

2D lattice 6× 6 6× 6 6× 6 N/A N/A

2D plasma (D) 16× 16 16× 16 16× 16 N/A N/A

2D vortex 6× 6 6× 6 6× 6 N/A N/A

3D plasma (M) 6× 6× 1 6× 6× 1 N/A 6× 6× 1 6× 6× 4

3D lattice 4× 4× 4 4× 4× 4 N/A 4× 4× 4 4× 4× 4

3D plasma (D) 6× 6× 4 6× 6× 4 N/A 6× 6× 4 6× 6× 4

Table 4.2: Patch sizes for different datasets. The first row of the table indicates the different types of

downsampling procedures. 3D/2D plasma (D) stands for 3D/2D plasma (distribution function), and 3D

plasma (M) stands for 3D plasma (magetic field).

where e = f − f̂ is the error of the reconstruction, R = maxi,j,k f̂i,j,k − mini,j,k f̂i,j,k is the

numerical range of the data. Moreover, PSNR is also given to measure the performance of

the algorithms.

4.4.3.2 Interpolation with Random Sampling

The visual results of the interpolation with 10% and 5% are shown in Figure 4.12 ∼ Figure

4.19. The errors of the reconstruction in different norms are displayed in Table 4.3 ∼ Talbe

4.8. It can be observed that LDMM consistently performs at a higher accuracy than EBI and

PLE either visually or numerically. The superiority of LDMM is more dramatic when the

sample rate is very low (5%), in which case PLE fails to achieve reasonable results. LDMM

also manages to yield smoother results, whereas EBI tends to create artificial patchy patterns.

We point out that the reconstruction of the 3D data with PLE and EBI are obtained by

applying the algorithms to 2D cross sections because of a lack of 3D implementations of

both algorithms. Therefore it is not entirely fair to compare LDMM to PLE and EBI on the

3D data. This is especially clear on the 3D lattice dataset, where values change smoothly

on each direction. Nonethelss, the vast superiorty of LDMM on 2D examples illustrates its

advantage over the competing algorithms.
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Original EBI (36.32dB) PLE (40.01dB) LDMM (42.55dB)

Subsample Error Error Error

Original EBI (26.77dB) PLE (28.48dB) LDMM (29.56dB)

Subsample Error Error Error

Original EBI (43.62dB) PLE (42.32dB) LDMM (47.98dB)

Subsample Error Error Error

Figure 4.12: Interpolation of 2D scientific data from 10% random sampling. The figures in the first column

are the original and subsampled data. The figures in the other three columns are the results and errors of

the competing algorithms.

4.4.3.3 Interpolation with Regular Sampling

Unlike the random sampling interpolation in the previous section, reasonable initializations

of LDMM can be obtained from other standard algorithms for regular sampling interpolation.
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Original EBI (37.88dB) PLE (37.96dB) LDMM (44.18dB)

Subsample Error Error Error

Original EBI (37.88dB) PLE (37.96dB) LDMM (44.18dB)

Subsample Error Error Error

Figure 4.13: Interpolation of the 3D plasma (magnetic field) data from 10% random sampling. The figures

in the first column are two spatial cross sections of the original and subsampled data. The figures in the

other three columns are the results and errors of the competing algorithms.

10% EBI PLE LDMM 5% EBI PLE LDMM

L1 0.0082 0.0053 0.0034 L1 0.0148 0.0296 0.0056

L2 0.0153 0.0100 0.0075 L2 0.0270 0.0573 0.0111

L∞ 0.2280 0.1232 0.1376 L∞ 0.3327 0.7872 0.1102

PSNR 36.32 40.01 42.55 PSNR 31.36 24.84 39.09

Table 4.3: Errors of the interpolation of the 2D vortex dataset from 10% and 5% random sampling.

In the numerical experiments on all the datasets, the results of DCT and cubic spline have

been used as the initial iterates for LDMM, and the final results of LDMM initialized with

DCT (LDMM (D)) and cubic spline (LDMM (C)) are obtained after three iterations of

manifold updates.
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Original EBI (30.24dB) PLE (35.60dB) LDMM (48.43dB)

Subsample Error Error Error

Original EBI (30.24dB) PLE (35.60dB) LDMM (48.43dB)

Subsample Error Error Error

Figure 4.14: Interpolation of the 3D lattice data from 10% random sampling. The figures in the first

column are the original and subsampled angular flux at x = 0.24 and x = 1.18 . The figures in the other

three columns are the results and errors of the competing algorithms.

10% EBI PLE LDMM 5% EBI PLE LDMM

L1 0.0335 0.0272 0.0243 L1 0.0393 0.0535 0.0303

L2 0.0459 0.0377 0.0333 L2 0.0522 0.0805 0.0401

L∞ 0.3782 0.2158 0.1882 L∞ 0.2588 0.7148 0.2063

PSNR 26.77 28.48 29.56 PSNR 25.65 21.88 27.93

Table 4.4: Errors of the interpolation of the 2D plasma (distribution function) dataset from 10% and 5%

random sampling.

The visual rsults of the interpolation with regular sampling (4× 4 for 2D data, 4× 4× 1

and 2× 2× 2 for 3D data) are shown in Figure 4.20 ∼ Figure 4.26. The errors in different

norms are displayed in Table 4.9 ∼ Table 4.14. It can be observed that the results of
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Original EBI (35.54dB) PLE (37.20dB) LDMM (39.54dB)

Subsample Error Error Error

Original EBI (35.54dB) PLE (37.20dB) LDMM (39.54dB)

Subsample Error Error Error

Figure 4.15: Interpolation of the 3D plasma (distribution function) data from 10% random sampling. The

figures in the first column are two spatial cross sections of the original and subsampled data . The figures

in the other three columns are the results and errors of the competing algorithms.

10% EBI PLE LDMM 5% EBI PLE LDMM

L1 0.0033 0.0030 0.0013 L1 0.0048 0.0187 0.0022

L2 0.0066 0.0077 0.0040 L2 0.0124 0.0442 0.0062

L∞ 0.2172 0.2889 0.1979 L∞ 0.8758 0.6156 0.2097

PSNR 43.62 42.32 47.98 PSNR 38.16 27.08 44.15

Table 4.5: Errors of the interpolation of the 2D lattice dataset from 10% and 5% random sampling.

LDMM are significantly more accurate than the DCT and cubic spline initializations, and

the accuracy of the result does not depend on the choice of the initialization. Moreover,

LDMM consistently outperforms all the other competing algorithms on every dataset.

84



Original EBI (31.36dB) PLE (24.84dB) LDMM (39.09dB)

Subsample Error Error Error

Original EBI (25.65dB) PLE (21.88dB) LDMM (27.93dB)

Subsample Error Error Error

Original EBI (38.16dB) PLE (27.08dB) LDMM (44.15dB)

Subsample Error Error Error

Figure 4.16: Interpolation of 2D scientific data from 5% random sampling. The figures in the first column

are the original and subsampled data. The figures in the other three columns are the results and errors of

the competing algorithms.
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Original EBI (33.93dB) PLE (25.80dB) LDMM (40.07dB)

Subsample Error Error Error

Original EBI (33.93dB) PLE (25.80dB) LDMM (40.07dB)

Subsample Error Error Error

Figure 4.17: Interpolation of the 3D plasma (magnetic field) data from 5% random sampling. The figures

in the first column are two spatial cross sections of the original and subsampled data . The figures in the

other three columns are the results and errors of the competing algorithms.

10% EBI PLE LDMM 5% EBI PLE LDMM

L1 0.0075 0.0053 0.0038 L1 0.0115 0.0285 0.0062

L2 0.0128 0.0126 0.0062 L2 0.0201 0.0513 0.0099

L∞ 0.3510 0.9432 0.1330 L∞ 0.3740 0.7531 0.2012

PSNR 37.88 37.96 44.18 PSNR 33.93 25.80 40.07

Table 4.6: Errors of the interpolation of the 3D plasma (magnetic field) dataset from 10% and 5% random

sampling.
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Original EBI (29.48dB) PLE (20.93B) LDMM (45.82dB)

Subsample Error Error Error

Original EBI (29.48dB) PLE (20.93B) LDMM (45.82dB)

Subsample Error Error Error

Figure 4.18: Interpolation of the 3D lattice data from 5% random sampling. The figures in the first

column are the original and subsampled angular flux at x = 0.24 and x = 1.18 . The figures in the other

three columns are the results and errors of the competing algorithms.

10% EBI PLE LDMM 5% EBI PLE LDMM

L1 0.0094 0.0062 0.0008 L1 0.0112 0.0545 0.0013

L2 0.0308 0.0166 0.0038 L2 0.0336 0.0899 0.0051

L∞ 0.5291 0.6635 0.4262 L∞ 0.4768 0.0.8595 0.4530

PSNR 30.24 35.60 48.43 PSNR 29.48 20.93 45.82

Table 4.7: Errors of the interpolation of the 3D lattice dataset from 10% and 5% random sampling.
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Original EBI (34.87dB) PLE (20.96dB) LDMM (37.72dB)

Subsample Error Error Error

Original EBI (34.87dB) PLE (20.96dB) LDMM (37.72dB)

Subsample Error Error Error

Figure 4.19: Interpolation of the 3D plasma (distribution function) data from 5% random sampling. The

figures in the first column are two spatial cross sections of the original and subsampled data . The figures

in the other three columns are the results and errors of the competing algorithms.

10% EBI PLE LDMM 5% EBI PLE LDMM

L1 0.0098 0.0085 0.0060 L1 0.0108 0.0593 0.0075

L2 0.0167 0.0138 0.0105 L2 0.0181 0.0895 0.0130

L∞ 0.2005 0.2912 0.1181 L∞ 0.1865 0.9093 0.1793

PSNR 35.54 37.20 39.54 PSNR 34.87 20.96 37.72

Table 4.8: Errors of the interpolation of the 3D plasma (distribution function) dataset from 10% and 5%

random sampling.
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Original Cubic Spline (42.98dB) DCT (42.88dB)

DFT (43.19dB) Wavelet (40.48dB) LDMM (44.40dB)

Original Cubic Spline (26.81dB) DCT (27.68dB)

DFT (27.43dB) Wavelet (27.34dB) LDMM (29.66dB)

Original Cubic Spline (46.97dB) DCT (45.77dB)

DFT (45.20dB) Wavelet (44.31dB) LDMM (47.43dB)

Figure 4.20: Interpolation of 2D scientific data from regular sampling with spacing 4 × 4. The original

data are shown on the upper left corners for each dataset. The results of cubic spline, DCT, DFT, wavelet,

and LDMM are shown in the remaining five figures.
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Original Cubic Spline (41.38dB) DCT (43.76dB)

DFT (33.99dB) Wavelet (42.15dB) LDMM (44.53dB)

Original Cubic Spline (41.38dB) DCT (43.76dB)

DFT (33.99dB) Wavelet (42.15dB) LDMM (44.53dB)

Figure 4.21: Interpolation of the 3D plasma (magnetic field) data from regular sampling with spacing

4× 4× 1. Two spatial cross sections of the original data are shown in the first figures on the first and third

row. The results of cubic spline, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Cubic Spline (24.54dB) DCT (30.69dB)

DFT (27.25dB) Wavelet (31.03dB) LDMM (32.64dB)

Original Cubic Spline (24.54dB) DCT (30.69dB)

DFT (27.25dB) Wavelet (31.03dB) LDMM (32.64dB)

Figure 4.22: Interpolation of the 3D lattice data from regular sampling with spacing 4×4×1. The original

angular flux at x = 0.24 and x = 1.18 are shown in the first figures on the first and third row. The results

of cubic spline, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Cubic Spline (36.47dB) DCT (37.35dB)

DFT (32.45dB) Wavelet (37.02dB) LDMM (39.18dB)

Original Cubic Spline (36.47dB) DCT (37.35dB)

DFT (32.45dB) Wavelet (37.02dB) LDMM (39.18dB)

Figure 4.23: Interpolation of the 3D plasma (distribution function) data from regular sampling with spacing

4× 4× 1. Two spatial cross sections of the original data are shown in the first figures on the first and third

row. The results of cubic spline, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Cubic Spline (22.93dB) DCT (24.54dB)

DFT (23.99dB) Wavelet (24.25dB) LDMM (25.43dB)

Original Cubic Spline (22.93dB) DCT (24.54dB)

DFT (23.99dB) Wavelet (24.25dB) LDMM (25.43dB)

Figure 4.24: Interpolation of the 3D plasma (magnetic field) data from regular sampling with spacing

2× 2× 2. Two spatial cross sections of the original data are shown in the first figures on the first and third

row. The results of cubic spline, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Cubic Spline (30.01dB) DCT (38.49dB)

DFT (32.51dB) Wavelet (38.15dB) LDMM (39.93dB)

Original Cubic Spline (30.01dB) DCT (38.49dB)

DFT (32.51dB) Wavelet (38.15dB) LDMM (39.93dB)

Figure 4.25: Interpolation of the 3D lattice data from regular sampling with spacing 2×2×2. The original

angular flux at x = 0.24 and x = 1.18 are shown in the first figures on the first and third row. The results

of cubic spline, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Cubic Spline (30.97dB) DCT (33.91dB)

DFT (31.88dB) Wavelet (32.81dB) LDMM (35.01dB)

Original Cubic Spline (30.97dB) DCT (33.91dB)

DFT (31.88dB) Wavelet (32.81dB) LDMM (35.01dB)

Figure 4.26: Interpolation of the 3D plasma (distribution function) data from regular sampling with spacing

2× 2× 2. Two spatial cross sections of the original data are shown in the first figures on the first and third

row. The results of cubic spline, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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4× 4 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0025 0.0038 0.0035 0.0049 0.0029 0.0028

L2 0.0071 0.0072 0.0069 0.0095 0.0060 0.0061

L∞ 0.1789 0.0937 0.0940 0.1122 0.0961 0.1005

PSNR 42.98 42.88 43.19 40.48 44.40 44.33

Table 4.9: Errors of the interpolation of the 2D vortex dataset from regular sampling with spacing 4× 4.

4× 4 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0302 0.0310 0.0314 0.0326 0.0249 0.0248

L2 0.0456 0.0413 0.0425 0.0430 0.0329 0.0329

L∞ 0.7629 0.2411 0.3776 0.2514 0.1779 0.1741

PSNR 26.81 27.68 27.43 27.34 29.64 29.66

Table 4.10: Errors of the interpolation of the 2D plasma (distribution function) dataset from regular

sampling with spacing 4× 4.

4× 4 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0009 0.0015 0.0016 0.0020 0.0013 0.0012

L2 0.0045 0.0051 0.0055 0.0061 0.0044 0.0041

L∞ 0.1461 0.1547 0.2202 0.1892 0.1393 0.1278

PSNR 46.97 45.77 45.20 44.31 47.18 47.43

Table 4.11: Errors of the interpolation of the 2D lattice dataset from regular sampling with spacing 4× 4.

4.4.3.4 Data Compression

Finally, we compare the performance of LDMM as a data compression technique to other

standard compression methods including singular value/ Tucker Decomposition, DFT, DCT,

and the wavelet transformations. We point out that, unlike the other testing methods which

usually involve hard thresholding the transformed data under certain bases, LDMM does not

require access to the original full data. Therefore we do not expect LDMM to perform equally

well compared to other data compression methods. However, using sampling-based method
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4× 4× 1 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0038 0.0040 0.0071 0.0052 0.0037 0.0036

L2 0.0085 0.0065 0.0200 0.0078 0.0059 0.0065

L∞ 0.9649 0.1366 0.6449 0.1357 0.1259 0.1911

PSNR 41.38 43.76 33.99 42.15 44.53 43.73

2× 2× 2 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0356 0.0334 0.0352 0.0439 0.0305 0.0313

L2 0.0714 0.0593 0.0632 0.0613 0.0535 0.0559

L∞ 0.8770 0.4073 0.5203 0.4283 0.3711 0.4060

PSNR 22.93 24.54 23.99 24.25 25.43 25.05

Table 4.12: Errors of the interpolation of the 3D plasma (magnetic field) dataset from regular sampling

with spacing 4× 4× 1 and 2× 2× 2.

4× 4× 1 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0094 0.0072 0.0168 0.0066 0.0058 0.0056

L2 0.0593 0.0292 0.0434 0.0281 0.0233 0.0254

L∞ 1.1890 0.4223 0.5405 0.4245 0.4164 0.4362

PSNR 24.54 30.69 27.25 31.03 32.64 31.90

2× 2× 2 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0039 0.0027 0.0069 0.0045 0.0017 0.0015

L2 0.0316 0.0119 0.0237 0.0124 0.0101 0.0101

L∞ 0.7459 0.4109 0.4282 0.4233 0.4078 0.4096

PSNR 30.01 38.49 32.51 38.15 39.93 39.92

Table 4.13: Errors of the interpolation of the 3D lattice dataset from regular sampling with spacing 4×4×1

and 2× 2× 2.

as a data compression technique has the advantage of easy implementation during the data

compressing step. Moreover, it is also faster for sampling-based method to reconstruct a

small portion of the data if only that part of the data is required. LDMM with random
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4× 4× 1 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0076 0.0078 0.0103 0.0083 0.0064 0.0064

L2 0.0150 0.0136 0.0238 0.0141 0.0110 0.0111

L∞ 0.8851 0.1551 0.4805 0.1469 0.1093 0.1417

PSNR 36.47 37.35 32.45 37.02 39.18 39.13

2× 2× 2 Cubic DCT DFT Wavelet LDMM (D) LDMM (C)

L1 0.0109 0.0098 0.0127 0.0139 0.0089 0.0092

L2 0.0283 0.0202 0.0255 0.0229 0.0178 0.0181

L∞ 0.7388 0.2976 0.3438 0.2993 0.2088 0.2097

PSNR 30.97 33.91 31.88 32.81 35.01 34.85

Table 4.14: Errors of the interpolation of the 3D plasma (distribution function) dataset from regular

sampling with spacing 4× 4× 1 and 2× 2× 2.

sampling has been used in all the numerical experiments.

The visual and numerical results of the competing methods are reported in Figure 4.27

∼ Figure 4.34 and Table 4.15 ∼ Table 4.20. As expected, the performance of LDMM in data

compression is usually inferior compared to the other competing methods. However, it does

outperform SVD in two of the more complicated 2D datasets (2D vortex and 2D plasma

(distribution)) and the wavelet transform in the 3D plasma (magnetic field) dataset. DCT

almost consistently yields the best result among all the methods, and it can also be observed

that tensor decomposition methods tend to achieve better results when the dimension of the

data becomes larger.

We point out that although LDMM does not perform equally well in data compression

when compared to other methods that assume full access to the entire data, there is still

much room for improvement for LDMM. For instance, instead of randomly sampling the

data in the physical domain, we may strategically choosing pixels to sample if certain prior

information is available. Moreover, if the original data is known to the user, we can also

modify the LDMM algorithm by sampling gradient values or certain entries in the weight

matrices. Modifing LDMM for it to work as a data compression method will be the focus of
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10% SVD DCT DFT Wavelet LDMM

L1 0.0152 0.0003 0.0010 0.0005 0.0034

L2 0.0208 0.0005 0.0014 0.0007 0.0075

L∞ 0.1357 0.0056 0.0132 0.0067 0.1376

PSNR 33.65 66.87 57.03 63.01 42.55

5% SVD DCT DFT Wavelet LDMM

L1 0.0295 0.0011 0.0024 0.0016 0.0056

L2 0.0385 0.0015 0.0035 0.0021 0.0111

L∞ 0.1964 0.0154 0.0314 0.0149 0.1102

PSNR 28.29 56.36 49.12 53.36 39.09

Table 4.15: Errors of the compression of the 2D vortex dataset.

10% SVD DCT DFT Wavelet LDMM

L1 0.0345 0.0131 0.0147 0.0145 0.0243

L2 0.0437 0.0165 0.0190 0.0182 0.0333

L∞ 0.2597 0.0844 0.1499 0.0861 0.1882

PSNR 27.19 35.63 34.44 34.78 29.56

5% SVD DCT DFT Wavelet LDMM

L1 0.0494 0.0189 0.0206 0.0202 0.0303

L2 0.0624 0.0238 0.0263 0.0253 0.0401

L∞ 0.2794 0.1121 0.1920 0.1057 0.2063

PSNR 24.10 32.47 31.59 31.94 27.93

Table 4.16: Errors of the compression of the 2D plasma (distribution) dataset.

our future work.
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Original SVD (33.65dB) DCT (66.87dB)

DFT (57.03dB) Wavelet (63.01dB) LDMM (42.55dB)

Original SVD (27.19dB) DCT (36.63dB)

DFT (34.44dB) Wavelet (34.78dB) LDMM (29.56dB)

Original SVD (57.24dB) DCT (75.73dB)

DFT (61.94dB) Wavelet (80.33dB) LDMM (47.98dB)

Figure 4.27: Compression of 2D scientific data with a 10% data compression rate. The original data are

shown on the upper left corners for each dataset. The results of SVD, DCT, DFT, wavelet, and LDMM are

shown in the remaining five figures.
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Original Tucker (50.91dB) DCT (54.90dB)

DFT (48.42dB) Wavelet (41.01dB) LDMM (44.18dB)

Original Tucker (50.91dB) DCT (54.90dB)

DFT (48.42dB) Wavelet (41.01dB) LDMM (44.18dB)

Figure 4.28: Compression of the 3D plasma (magnetic field) data with a 10% data compression rate. Two

spatial cross sections of the original data are shown in the first figures on the first and third row. The results

of Tucker decomposition, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.

4.5 Conclusion

This chapter presents two numerical procedures to speed up the implementation of LDMM,

making it feasible to deal with large images and high dimensional data. Solving the Laplace-

Beltrami equation using the weighted graph Laplacian instead of the point integral method

avoids solving over 100 linear systems in the patch domain every iteration, and the semi-

local patches make the algorithm converge much faster in the first few iterations of the

weight updates. Numerical experiments on (hyperspectral) image inpainting, denoising, and

high dimensional data interpolation demonstate that LDMM is a powerful tool with much
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Original Tucker (97.43dB) DCT (65.44dB)

DFT (52.96dB) Wavelet (72.61dB) LDMM (48.43dB)

Original Tucker (97.43dB) DCT (65.44dB)

DFT (52.96dB) Wavelet (72.61dB) LDMM (48.43dB)

Figure 4.29: Compression of the 3D lattice data with a 10% data compression rate. The original angular

flux at x = 0.24 and x = 1.18 are shown in the first figures on the first and third row. The results of Tucker

decomposition, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.

potential in image and data processing.
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Original Tucker (43.89dB) DCT (45.65dB)

DFT (44.26dB) Wavelet (45.17dB) LDMM (39.54)

Original Tucker (43.89dB) DCT (45.65dB)

DFT (44.26dB) Wavelet (45.17dB) LDMM (39.54)

Figure 4.30: Compression of the 3D plasma (distribution function) data with a 10% data compression rate.

Two spatial cross sections of the original data are shown in the first figures on the first and third row. The

results of Tucker decomposition, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original SVD (28.29dB) DCT (56.36dB)

DFT (49.12dB) Wavelet (53.36dB) LDMM (39.09dB)

Original SVD (24.10dB) DCT (32.47dB)

DFT (31.59dB) Wavelet (31.94dB) LDMM (27.93dB)

Original SVD (47.17dB) DCT (67.59dB)

DFT (55.49dB) Wavelet (68.34dB) LDMM (44.15dB)

Figure 4.31: Compression of 2D scientific data with a 5% data compression rate. The original data are

shown on the upper left corners for each dataset. The results of SVD, DCT, DFT, wavelet, and LDMM are

shown in the remaining five figures.
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Original Tucker (45.36dB) DCT (49.70dB)

DFT (43.56dB) Wavelet (32.74dB) LDMM (40.07dB)

Original Tucker (45.36dB) DCT (49.70dB)

DFT (43.56dB) Wavelet (32.74dB) LDMM (40.07dB)

Figure 4.32: Compression of the 3D plasma (magnetic field) data with a 5% data compression rate. Two

spatial cross sections of the original data are shown in the first figures on the first and third row. The results

of Tucker decomposition, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Tucker (78.28dB) DCT (60.52dB)

DFT (50.22dB) Wavelet (61.25dB) LDMM (45.82dB)

Original Tucker (78.28dB) DCT (60.52dB)

DFT (50.22dB) Wavelet (61.25dB) LDMM (45.82dB)

Figure 4.33: Compression of the 3D lattice data with a 5% data compression rate. The original angular

flux at x = 0.24 and x = 1.18 are shown in the first figures on the first and third row. The results of Tucker

decomposition, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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Original Tucker (40.75dB) DCT (42.29dB)

DFT (41.28dB) Wavelet (40.97dB) LDMM (37.72)

Original Tucker (40.75dB) DCT (42.29dB)

DFT (41.28dB) Wavelet (40.97dB) LDMM (37.72)

Figure 4.34: Compression of the 3D plasma (distribution function) data with a 5% data compression rate.

Two spatial cross sections of the original data are shown in the first figures on the first and third row. The

results of Tucker decomposition, DCT, DFT, wavelet, and LDMM are shown in the remaining five figures.
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10% SVD DCT FFT Wavelet LDMM

L1 0.0009 0.0001 0.0004 0.0006 0.0013

L2 0.0014 0.0002 0.0008 0.0001 0.0040

L∞ 0.0186 0.0101 0.0603 0.0011 0.1979

PSNR 57.24 75.73 61.94 80.33 47.98

5% SVD DCT DFT Wavelet LDMM

L1 0.0029 0.0003 0.0010 0.0002 0.0022

L2 0.0044 0.0004 0.0017 0.0004 0.0062

L∞ 0.0539 0.0244 0.0743 0.0049 0.2097

PSNR 47.17 67.59 55.49 68.34 44.15

Table 4.17: Errors of the compression of the 2D lattice dataset.

10% Tucker DCT DFT Wavelet LDMM

L1 0.0021 0.0014 0.0024 0.0068 0.0038

L2 0.0028 0.0018 0.0038 0.0089 0.0062

L∞ 0.0613 0.0433 0.1757 0.0739 0.1330

PSNR 50.91 54.90 48.42 41.01 44.18

5% Tucker DCT DFT Wavelet LDMM

L1 0.0040 0.0025 0.0043 0.0183 0.0062

L2 0.0054 0.0033 0.0066 0.0231 0.0099

L∞ 0.0911 0.0698 0.2141 0.1558 0.2012

PSNR 45.36 49.70 43.56 32.74 40.07

Table 4.18: Errors of the compression of the 3D plasma (magnetic field) dataset.
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10% Tucker DCT DFT Wavelet LDMM

L1 9× 10−6 0.0002 0.0007 0.0002 0.0008

L2 1× 10−5 0.0005 0.0022 0.0002 0.0038

L∞ 0.0002 0.1338 0.2843 0.0020 0.4262

PSNR 97.43 65.44 52.96 72.61 48.43

5% Tucker DCT DFT Wavelet LDMM

L1 0.0001 0.0004 0.0010 0.0006 0.0013

L2 0.0001 0.0009 0.0031 0.0008 0.0051

L∞ 0.0042 0.2053 0.4266 0.0095 0.4530

PSNR 78.28 60.52 50.22 61.25 45.82

Table 4.19: Errors of the compression of the 3D lattice dataset.

10% Tucker DCT DFT Wavelet LDMM

L1 0.0042 0.0039 0.0045 0.0042 0.0060

L2 0.0064 0.0052 0.0061 0.0055 0.0105

L∞ 0.0637 0.0644 0.0837 0.0373 0.1181

PSNR 43.89 45.65 44.26 45.17 39.54

5% Tucker DCT DFT Wavelet LDMM

L1 0.0060 0.0057 0.0063 0.0067 0.0075

L2 0.0092 0.0077 0.0086 0.0089 0.0130

L∞ 0.0890 0.0766 0.1018 0.0660 0.1793

PSNR 40.75 42.29 41.28 40.97 37.72

Table 4.20: Errors of the compression of the 3D plasma (distribution function) dataset.
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