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An ultra energy-efficient hardware platform
for neuromorphic computing enabled by
2D-TMD tunnel-FETs

ArnabPal 1, ZichunChai 1, Junkai Jiang1,Wei Cao 1,MikeDavies2, VivekDe2&
Kaustav Banerjee 1

Brain-like energy-efficient computing has remained elusive for neuromorphic
(NM) circuits and hardware platform implementations despite decades of
research. In this work we reveal the opportunity to significantly improve the
energy efficiency of digital neuromorphic hardware by introducingNMcircuits
employing two-dimensional (2D) transition metal dichalcogenide (TMD)
layered channel material-based tunnel-field-effect transistors (TFETs). Our
novel leaky-integrate-fire (LIF) based digital NM circuit along with its Hebbian
learning circuitry operates at a wide range of supply voltages, frequencies, and
activity factors, enabling two orders of magnitude higher energy-efficient
computing that is difficult to achieve with conventional material and/or device
platforms, specifically the silicon-based 7 nm low-standby-power FinFET
technology. Our innovative 2D-TFET based NM circuit paves the way toward
brain-like energy-efficient computing that can unleash major transformations
in future AI and data analytics platforms.

Neuromorphic (NM) computing that mimicks certain neuro-biological
architectures of the human brain, is an alternative to the conventional
von Neumann computing architecture, and therefore, can be designed
to be highly parallel and very low power consuming with the potential
toperformcertain complexoperations faster and in a smaller footprint1.
This promise of NMcomputing in eventually enabling brain-like energy-
efficient computing, therefore, has led to explosive market growth
recently (estimated to reach $35 billion by 20292), particularly in
application spheres of—mobile computing, IoT (estimated to
produce an economic impact of up to $11 trillion by 2025; https://www.
mckinsey.com/mgi/overview/in-the-news/by-2025-internet-of-things-
applications-could-have-11-trillion-impact), and artificial intelligence
(AI) applications, including language processing, image recognition,
computer vision, robotics, etc., where NM can enable highly-efficient
computing involving ultra energy-efficient devices. Additionally, NM
computing, due to its integrated computational- andmemory units, can
also eradicate the memory wall3 problem, which has been estimated to
consume the majority of the energy and time in certain computation
tasks and is further going to intensify in the age of big data4.

Conventionally the most biologically plausible NM hardware
implementations are based on spiking neural nets (SNN)5–7, a third
generation of artificial neural nets (ANN)8,9, which represents biological
neurons and their related synaptic weights in hardware, and therefore,
by closely replicating the behavior of the human brain, are expected to
be highly suitable for implementing machine learning (ML) based AI
applications, which is of paramount importance in the current age of
big data (Supplementary Note 1, Supplementary Fig. 1). Figure 1a shows
such an interconnected biological connection of three neurons (A, B,
and C) along with their synaptic connections, where spikes generated
on the axons of neuron A(B) are transmitted across the synapse to the
dendrite terminal of the next neuron B(C), raising their membrane
potential and eventually causing themtofireonce thepotential exceeds
the firing threshold. The subsequently generated output spike drives
further firing events in other interconnected neurons, thereby repre-
senting the mechanism of neuronal communication.

However, despite decades of research into finding a suitable
hardware platform for efficiently implementing SSN-based NM com-
puting, the search has proved to be elusive. While NM computing can
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theoretically be implemented with single devices capable of demon-
strating both neuronal and synaptic behavior, the lack of any such
practical implementations to date without the need for additional
interface circuitry (degrades area- and energy-efficiency), makes
implementations with digital-circuit-based approaches the most pro-
mising. In fact, some of the most successful commercial implementa-
tions of NMcircuits to date, such as, Intel’s Loihi5 and IBM’s TrueNorth6

are digital-circuit-based approaches, realized with the ubiquitous
complementary-metal-oxide-semiconductor (CMOS) technology.
Furthermore, these digital circuits in scaled process nodes are suitable
for high-volume manufacturing exploiting the inherent variation/
noise-tolerance and easier programmability of digital circuits, as well
as affordable monolithic integration of billions of neurosynaptic ele-
ments in a compact form factor. Additionally, digital implementations
offer more flexibility and robust functionality at a system level that
must integrate billions of such elements in compact form factors to
reduce energy consumption related to signal transmissions across the
elements. Although these digital implementations are therefore sui-
table for the implementation of dense, ultra energy-efficient, and high-
performance NM systems, they are implemented with the ubiquitous
CMOS technology, whose high OFF-state leakage current and degra-
ded subthreshold swing (SS ≥ 60mV/decade; represents the ease with
which the ON-current can be modulated with the application of gate
voltage; more details in Supplementary Note 2, Supplementary Fig. 2)
prevents further improvement in the energy-efficiency of the imple-
mented NM circuit, and results in a best-case NM circuit energy con-
sumption that is still 5 orders of magnitude larger than that of the
human brain.

In this work, we show that the limited performance and energy
efficiency of digital NM circuits implemented with CMOS can be cir-
cumvented by implementations with low OFF-state current and small-
SS (<60mV/decade) tunneling field-effect-transistors (TFETs) (Sup-
plementary Note 2)10,11 that not only make them very promising for
implementations of low-power circuits (Fig. 1b, c), but the low fre-
quencyof operation of NMcircuits (~MHz) alongwith their low activity
factors (because of the sparse firing activity of the neurons), makes
TFETs highly desirable for these circuit applications. Particularly,
TFETs designed with atomically thin two-dimensional (2D)
materials12–16 exhibiting pristine interface12–17 and suppressed band-
tails18 offer excellent electrostatics and are relatively defect-free,

leading to steep turn-on characteristics19–21 (average 4-decade SS of 3119

and 2321 mV/decade) that are hard to achieve with conventional
materials. In this regard, the judicious choice of a staggered source-
channel heterojunction in well-designed lateral 2D-TFETs20, which is
also more large-scale manufacturable friendly w.r.t vertical 2D-
TFETs21–23, can simultaneously lead to large ON-current (>1mA/μm)
with small SS (<60mV/decade; can be as low as 20mV/decade20 over
4-decades of current swing), and is therefore, the best transistor
choice for implementation of high-performance and low-power NM
circuits. Therefore, the fully functional digital-NMcircuit, alongwith its
Hebbian learning circuitry introduced in this work, explores the ben-
efits of employing 2D-TFETs in the NM computing space, where the
digital nature of the circuit with its resilience to process variations,
device-to-device variability, and suitability for implementing memory
elements for storageof synapticweights, alsomakes it very suitable for
implementation of large-scale robust NM circuits. Comprehensive
performance evaluations carried out w.r.t commercial 7 nm low-
standby-power (LSTP) FinFET model24 for various magnitudes of sup-
ply voltages (VDD), activity factors (AFs), and under consideration of
appropriate device and Cu-interconnect parasitics from the corre-
sponding technology nodes25, show that the 2D-TFET outperforms the
CMOS at low AFs by close to two orders ofmagnitude and represents a
first such study of the application of 2D-TFETs in NM circuits. Besides
bringing forth a novel application of TFETs in realistic scenarios where
circuit performance is not hampered by their relatively lower ON-
current and higher Miller capacitance, this study introduces an alter-
nate hardware platform for designing high-performance, low-power
robust NM circuits, thereby enabling the next generation of energy-
efficient computing paradigm specifically targeted for applications
such as AI.

Results and discussion
The device design for implementing the NM circuit (Fig. 1c) is first
optimized by tuning the device’s physical parameters, and then its
corresponding analytical model is implemented in Verilog-A (essen-
tially a compact model that allows it to run smoother and faster
without any convergence issues) for subsequent circuit simulation in
HSPICE. The device design details and the circuit simulation metho-
dology, including the criteria for analyzing the results, are
discussed below.
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Fig. 1 | Introduction to neuromorphic computing. a Illustration showing the
sequence of three firing neurons (A, B, C) in the brain, and their synaptic con-
nections. The axon terminal of one neuron communicateswith the dendrites of the
other neuron through a small synaptic gap. b Operating power consumption of a
circuit as a function of clock frequency. Dynamic power dissipation is lower for
low-frequency neuromorphic circuits that mimic the neurons and synapses in the
brain. c Diagram (left) illustrating themechanism of a neuron firing in an integrate

and fire (IF) model where buildup of its action potential past the firing threshold
(VT) causes it to fire. IF circuitry (center) implementing neuron firing is imple-
mentedby a feedback loop adder and comparator circuit (with afiring thresholdof
N), while neural learning (right) through synaptic behavior implementation is
accomplished by a subtractor and a counter circuit (C+ refers to anup-counterwith
Qs being the output). The neural learning circuit evaluates the synaptic weight
between two firing neurons, allowing for the eventual training of the NM circuit.
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Device design
Lateral 2D-TFETs with a staggered 2D-transition metal dichalcogenide
(TMD) WTe2(source)-MoS2(channel) heterojunction (i.e., 2D-HTJ-
TFET)20,26, simultaneously exhibit large ON-OFF current ratio with
small SS characteristics, small leakage current, and a large ON-current
that maximizes circuit performance, thereby enabling optimal NM
circuit performance. Supplementary Fig. 3a in Supplementary Note 3
shows a double-gated (DG) variant of this device, where the DG
architecture further enhances the device electrostatics, i.e., perfor-
mance, and Supplementary Fig. 3b–f discusses the necessary physics
needed for its accurate physics-based modeling. The device char-
acteristics of the p- and n-2D-TFETs26 are complementary due to
equivalent electron- and hole masses and identical design parameters,
thereby alleviating the need for sizing. Both the n- and p-2D-TFETs are
designed to maximize source-channel electric field improving carrier
injection, and minimize contact and access resistances. Moreover,
both devices employ an intrinsic channel, a top- and bottom-gate
dielectric thickness of 1 nm effective oxide thickness (EOT), and a
channel length of 11 nm. The channel width has been chosen to yield
the same device capacitance as that of a 7 nm FinFET device and is
evaluated later.

The device capacitance, which is critical in regulating the circuit
performance, is comprehensively modeled by accounting for both its
intrinsic andparasitic components. Thepresenceof a tunnelingbarrier
at the source-channel junction of a TFET results in suppressed carrier
injection w.r.t FinFETs, thereby leading to a smaller gate-source (CGS)
capacitance, while the larger channel charge near the channel-drain
junction of the TFET leads to a larger gate-drain (CGD) capacitance.
Therefore, a 70-30 partition of the total 2D-TFET gate capacitance is
allocated to CGD and CGS

20,26, respectively.

Circuit simulation and analysis
The analytical model of the 2D-TFET26 is implemented in Verilog-A and
subsequently employed to study the performance, robustness, and
energy-efficiency of fundamental circuits employing 2D-TFETs: inver-
ter, ring oscillator, and SRAM, leading into the development of the LIF
NM circuit and its Hebbian learning circuitry. Operation of the NM
circuit demonstrates digital neuron firing, which is analogous to the
biological neuron firing in the human brain, along with the membrane
potential leakage and learning behavior of two firing neurons (which
is determined by their synaptic weight). Interconnect length of the
corresponding Cu-interconnects was carefully chosen to achieve a
capacitance equal to half of that of the total device capacitance,
in accordance with conventional IC design practices, and therefore,
to yield a realistic NM circuit performance. Performance projections
were conducted by evaluating the static leakage (Estatic) and
dynamic switching (Edynamic) energies at various VDD and AF ranging
from 0.2 V to 0.7 V and 1 to 10−6, respectively, from which
the total dissipated energy (Etotal) is evaluated. The Etotal is compared
against implementations of NM circuit with LSTP FinFET to
evaluate the magnitude of energy savings possible with 2D-TFET
implementations.

This section analyzes the design, performance, robustness, and
energy-efficiency of 2D-TFETs in fundamental circuits comprising
inverters, ring oscillators, and SRAMs, necessary for the development
of the LIF NM circuit as shown later in the “NM circuit” subsection.

Inverter implementation
The static and dynamic performance of 2D-TFETs in an inverter cir-
cuit driving a particular output capacitance is studied in this sub-
section, which seamlessly lends to the understanding of more
complex logic gates and circuits. However, the very performance of
the basic inverters is determined by the transfer characteristics of the
individual transistors (TFET and LSTP FinFET), which are described in
Supplementary Fig. 4 in Supplementary Note 4. Figure 2 shows the

simulation of the static (Fig. 2a) and dynamic (Fig. 2b) characteristics
of a unit-sized inverter, simulated by sweeping the input voltage (VIN)
and plotting the corresponding output voltage (VOUT). As seen from
Fig. 2a, although the transfer characteristics of both 2D-TFET and the
7 nm FinFET transistors are quite similar, the 2D-TFET inverter
demonstrates a slightly higher peak gain of ~18 compared to that
of ~12 in the latter, resulting from the better saturation of the drain
current in the former. This higher gain also leads to reduced short-
circuit and dynamic power consumption, as well as better noise
margins.

The dynamic characteristics of the inverters have been simulated
by varying the inverter output (load) capacitance (COUT), connected to
the inverter output across a 1000 nm long interconnect (assumed for
simulations of the NM circuit, described in “NM circuit” subsection),
from 1 aF to 1 fF. By evaluating the delay ðtpÞ of the input-to-output
transition, and the instantaneous current drawn from the supply dur-
ing this transition, the average power dissipation, and the energy-
delay-product (EDP), is evaluated for both the 2D-TFET and the FinFET
implementations. The higher delay of the 2D-TFET (due to its lower
ON-current) translates to higher EDP, and the EDPmetrics get worse as
the load capacitance is further increased. In fact, aswill be shown later,
the main advantages of TFETs are in implementations of sparse
switching circuits where its much lower OFF-current and small SS help
in lowering the static power dissipation, thereby improving the overall
performance.

Ring oscillator
Figure 2c shows an 11-stage ring oscillator, implemented considering
both interconnect and device parasitics, and designed with minimum
sized 2D-TFET and FinFET inverters. Figure 2d, e compares the tran-
sient characteristics of the FinFET and the 2D-TFET ring oscillators,
from which the frequency of oscillation is extracted to be 10GHz and
57MHz, respectively, corresponding to single-stagedelays of 10 ps and
1.6 ns. The delay of the 2D-TFET ring oscillator is larger due to its lower
ON-current. The effect of the enhanced Miller capacitance in creating
large overshoots and undershoots of the output voltage in TFETs is
also observed in Fig. 2e.

SRAM design
Static random-access memory (SRAMs), which occupy up to 70% of
the processor area are the main memory elements in designing CPU
cache memory offering fast memory access and can be used for
synapse weight retention in a designed NM system comprising of
several neurons. However, this large prevalence of SRAMs also results
in a large power consumption. In fact, SRAM data access in Intel’s
Loihi5 has been estimated to be more energy intensive than each
neuronal spike, necessitating the development of low-power SRAM
implementations. Although SRAM design with 2D-TFETs can improve
the energy-efficiency, the standard SRAM design utilizes two access
transistors for operation, which require bidirectional current flow,
and are therefore, ill-suited for implementation with unidirectional-
TFETs. This necessitates the development of amodified SRAMdesign,
which either uses a pass transistor network of TFETs, or solitary 2D-
FETs, for implementing the function of the access transistors
(Fig. 2f–l).

Figure 2f–h are SRAM designs implemented with 2D-FET access
transistors27with aVDDof 0.9 V.Non-ideal effects of source-drain series
resistance and mobility degradation are considered along with pre-
sence of interface traps for accurately modeling a realistic 2D-FET
device performance. Bit-line capacitances considering associated wire
capacitances of both BL and BL are assumed to be present, equivalent
to 25 fF. Similarly, Fig. 2i, j are SRAM designs implemented with a pass
transistor network of 2D-TFETs for the access transistors, and Fig. 2k, l
demonstrate the noise margins and the read operation of the all-2D-
TFET SRAM design. The channel width for all the 2D-TFETs has been
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assumed to be 21.25 nm in accordance with the device width chosen
for the NM circuit simulation, along with a channel length of 11 nm.
INV1 in Fig. 2g, j corresponds to transistors M1 and M2, while INV2
corresponds to transistors M3 and M4. The output of the first inverter
(INV1) is V2 while for INV2 it is V1.

As seen from Fig. 2h, the sharp transfer characteristics of the 2D-
TFET inverters with 2D-FET access transistors leads to an impressive
static noise margin (SNM) (or hold margin) of 0.35 V in a 0.9 V VDD

operation, which demonstrates the ruggedness of the SRAM during
data retention. The write margin is highest at 0.4 V, while the read
margin is 0.28 V. Likewise, the read, write and holdmargins for the all-
2D-TFET-SRAM cell, simulated with a VDD of 0.7 V, are 133mV, 304mV
and 296mV, respectively. The obtained noise margins are excellent,
thereby proving the merit of using 2D-TFET pass-transistor network
for the access transistors. Having demonstrated the performance of
2D-TFETs in basic inverter circuits and SRAMs, the next subsection
discusses the design of the NM circuit which utilizes the circuit com-
ponents discussed till now.

NM circuit
This subsection introduces and analyzes the performance of the fully
functional digital LIF-NMcircuit, implementedwith both 2D-TFETs and
LSTP-FinFETs. A sequence of digital firing neurons, each emulating a
neuron in the human brain, are designed such that the membrane
potential of each neuron increases with every clock cycle (typically
employed in a digital circuit to synchronize circuit operation) during
the ‘integrate’ operation, and subsequently decays during the ‘leakage’
operation. These neurons are separated from each other by digital
synapses—akin to the neuronal connections in the brain, and are
responsible for the learning behavior (Fig. 1a). While a higher synaptic
weight refers to stronger correlation between two neurons, a low
synaptic weight refers to uncorrelated neurons. In this work, the
synaptic weight varies from a minimum of -1 (uncorrelated) to a
maximum of 1 (correlated), with a synaptic of 0 referring to dis-
connected neurons. This synaptic weight update is governed by the
spike time-dependent learning plasticity (STDP) rule and is imple-
mented with Hebbian learning style28, which increases/decreases the

Fig. 2 | Design and implementation of standard logic gates. a Static character-
istics of a minimum sized 2D-TFET- and LSTP- inverter, implemented with tran-
sistors of the same effective width and channel length, and simulated at
VDD = 0.4 V. b Energy-Delay-Product (EDP) comparison of a 2D-TFET- and LSTP-
transistor driving an output capacitance varying from 1 aF to 1 fF. The delay
ðtp = t2 � t1Þ has been calculated from the time taken by the input signal to reach
VDD/2 ðt1Þ to the time taken for voltage at the output node (OUT) to drop to VDD/2
ðt2Þ. The average energy consumption is calculated by multiplying the average
power consumed during t1 to t2 with the transition time ðtpÞ. c Schematic of the 11-
stage ring oscillator considering interconnect parasitics and minimum-sized
inverters. Ring oscillator implemented with minimum sized d LSTP and e 2D-TFET
with an oscillation frequency of 10GHz and 57MHz, respectively. Enhanced Miller
overshoot is observed in e. f All-2D implementation of a 6T-SRAMdesign, with 2D-
FETs being the access transistors and 2D-TFETs being the inverters. Schematic

shows the Word Line (WL) and Bit Line (BL) signals. g Simplified schematic of
f showing probed node voltages V1 and V2. hNoisemargins of the simulated SRAM
circuit at VDD = 0.9 V. The static noise margin (hold margin) has been simulated by
sweeping V1 and V2, keeping M5 and M6 disconnected, while for read (Q=1) and
write (Q=1) margin simulations, BL and BL have been connected to VDD/VDD and 0/
VDD, respectively. Read margin is the lowest at 0.28 V. i All-2D-TFET-SRAM
designed completely with 2D-TFETs, which addresses the problem of uni-
directionality in TFET current transport. j Simplified sketch of i. kHold, read (Q=1),
and write (Q=0) margin simulations of the all-2D-TFET SRAM simulated with a VDD

of 0.7 V assuming the same bias conditions for the Bit Lines as in h. The noise
margins are similar as compared to those in h even with a reduced supply voltage
of 0.7 V w.r.t 0.9 V in h. l Simulation of node voltages during read operation of the
SRAM in i. Plot showsa small increase of the nodevoltageof �Q anda slight decrease
of the BL voltage, but below the inverter tripping voltage.
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synaptic weight for causal/non-causal firing events (causal/non-causal
firing events refer to the pre-synaptic neuron firing before/after the
post-synaptic neuron, respectively), with the magnitude of the weight
update being determined by the time difference between the two fir-
ing events. The implemented neuron membrane potential has been
assumed tobeof 8-bit resolution, therebyoffering agoodcompromise
between the simulation runtime and accuracy.

Neuromorphic circuit implementation
Figure. 3 shows the implemented NM circuit (corresponding to Fig. 1c)
with its associated LIF neuron and the learning circuitry (synapse),
involving a total of around3259 transistors andmore than 105 nets. The
LIF logic comprises an 8-bit full adder (FA) (see details on imple-
mentation of a digital FA in Supplementary Note 5), whose output
represents the membrane potential of the neuron. The FA (Supple-
mentary Figs. 5 and 6) has been configured such that it implements the
integrate function, with the integration loop going through a network
of D-flip flops (DFFs) and 2:1 MUXs (indicated in blue). While the DFFs
are chosen to retain the output of the full-adders from the previous
clock cycle, the MUXs are used to implement the reset operation
through their select line, which is the output of an 8-bit comparator
and is responsible for the spiking operation of the neuron. When the
select line (S) of a blueMUX is low, the adder output (S0S1..S7) from the
last clock cycle feeds back into the input terminal of the adder (inputs
B0B1..B7 shown with red lines), thereby implementing the integrate
functionality and increasing the neuron membrane potential. For high
value of the select line, however, the output of the MUX is shorted to
its input terminal of 1, which is grounded, thereby resetting the output
of the adder, andhence, the neuronmembranepotential. Although the
circuit in this work employs an 8-bit FA leading to an 8-bit membrane
potential, it can easily be extended to accommodate more bits if

higher accuracy is desired. The leakage operation of the NM circuit is
implemented with the ‘Leakage MUXs’ in green (Fig. 3) with their
outputs feeding into both the input terminals of the 8-bit FAs (A0A1…

A7) and carry terminal (Cin) of the input FA. These leakageMUXs either
accept inputs from the NM array (consisting of numerous circuit
blocks shown in Fig. 3 whose output is connected to input 0 of these
MUXs) for the low phase of the leakage clock ðλclk = 0Þ leading to
‘integrate’ operation (through the integration loop described earlier),
or the 1’s complement (i.e., complement of a binary number; more
details in Supplementary Note 6) of the membrane leakage signal
(λ0λ1::λ7, connected to input 1 of these MUXs) during the leakage
clock’s high phase λclk = 1

� �
leading to ‘leakage’ operation. This leakage

operation, i.e., subtraction of the leakage potential from the mem-
brane potential, is in fact, accomplished by adding the membrane
potential to the 1’s complement of the leakage potential along with an
additional input of binary 1 (accomplished through the input carry bit
of 1 to the FAduring λclk = 1), i.e., adding themembrane potential to the
2’s complement of the leakage potential, as described in detail in
Supplementary Note 6. The resulting output of the FA circuit (S0S1..S7)
during the leakage operation therefore, decreases by applied mem-
brane leakagepotential every clockcycle for thedurationduringwhich
λclk is high, thereby mimicking the neuronal membrane leakage
operation.

The neuron firing and membrane potential reset operation in the
circuit is accomplished by the 8-bit comparator implemented at the
bottom of the LIF circuit, which compares the membrane potential
(S0S1…S7) w.r.t the threshold (bits T0T1…T7, more details in the fol-
lowing subsection) and generates an output signal (goes high to VCC)
when the membrane potential exceeds the threshold. This phenom-
enon of the output of the comparator going high is akin to the firing of
the neuron, and it simultaneously causes the output of the blue MUXs
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Integrate-Fire (LIF) (left) and Hebbian learning circuitry (right). In the circuit block
to the left, “IF Spike” denotes the node where the neuron firing is observed. The
green MUX’s at the top of the LIF circuit (Leakage MUX) are responsible for
implementing the leakage operation of themembrane potential (S0S1…S7) once the
leakage clock (λclk) is asserted, subtracting the leakage potential (λ0λ1::λ7) from the
membrane potential (S0S1::S7) through the addition of the 2’s complement of the
leakage potential to themembrane potential. The full-adders (FAs) in the circuit are
indicated in purple, implementing the integrate operation of the membrane
potential through an integration loop, going through the D-Flip Flops (DFFs) and
the 2:1 MUXs in blue (also responsible for resetting the membrane potential after
successful neuron fire—Reset MUX). The comparator responsible for the neuronal
spike is shown at the bottom end of the figure, which generates the IF (integrate
fire) spike once the membrane potential exceeds the preset threshold (T0T 1::T7).

The circuit blockon the right implements theHebbian learning partof the circuitry,
where an up-counter is designed based on JK Flip-Flops (JK FF) that resets every
time the neuron spikes, thereby keeping track of the time elapsed since the last
neuronal spike. The counter value of the up-counter of the neuron is compared
against the complementary of the counter value of the secondary neuron
(Qð2Þ0Qð2Þ1::Qð2Þ7) through the adder circuit indicated in purple, generating a
signed output of L0L1::L7, which indicates both the causality (the sign bit) and the
timedifferenceof thefiring events of theprimary and secondaryneurons. This time
difference indicates the strength of the neuronal connection of the two neurons,
with a smaller time difference indicating a smaller time elapsed between the two
firing events, thereby indicating a strong neuronal connection. The counter circuit
is implemented by the JK FF, and the subtractor circuit is implemented with the FA
circuitry. For the second JK FF (which implements the output of Q1), the inputs to
the JK terminals are derived from Q0. For all subsequent JK FFs, the inputs are
generated by taking the AND product of the outputs from the preceding JK FFs.
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in the LIF circuit to be grounded (the output of the comparator is the
select line for theMUXs; therefore, for high value of the select line, the
output of theMUX is shorted to the input terminal 1 of theMUX, which
is in fact grounded). Furthermore, since the threshold for the com-
parator firing can be pre-programmed, it allows for fine-tuning the
firing threshold of each individual firing neuron separately, which
provides an additional knob for the synaptic weights to be tuned,
thereby increasing the training/learning efficiency of the circuit.
Additionally, to maximize the circuit operating frequency and to
ensure the correct circuit operation, it becomes imperative that the
comparator completes the computation (comparing the membrane
potential against the threshold) and resets the membrane potential
before the next clock pulse arrives at the FA and the membrane
potential is updated, thereby making the comparator along with the
integration loop the critical path of the circuit. Therefore, optimum
circuit operation is ensured by designing the comparator to deliver the
least computation delay, and is achieved such that it starts by com-
paring the most significant bits (MSB) of the two signals (membrane
potential and threshold; if the MSB of the membrane potential is
already larger than that of the threshold then the comparator readily
fires and there is no need to compare the other bits) and progresses
down to the least significant bit if all the higher bits are equal.

The output of the comparator is also connected to the learning
circuitry where it resets the ‘up counter’ (implemented with the reset
terminal in the JK flip-flops of the learning circuitry of Fig. 3; more
details on implementation in Supplementary Note 5B, Supplementary
Fig. 7), which counts up by (1)10 every clock cycle and resetting every
time the neuron fires (i.e., the Reset signal of the JK FFs is asserted).
Therefore, the up-counter is responsible for counting the number of
clock cycles elapsed since the last neuron spike. For evaluating the
operation of the learning circuit and simulating the STDP behavior of
two firing neurons, the counter value of a secondary neuron is also

assumed (Q 2ð Þ0Q 2ð Þ1::Q 2ð Þ7, shown on the bottom right of Fig. 3; the
LIF and learning circuitry for the secondaryneuron is not simulated for
simplicity). While the firing event of the primary neuron (the circuit on
the left shown in Fig. 3) is varied by either changing the input to the
integrator array (through the input terminal 0 of the green MUXs
feeding into the FAs of the LIF circuitry), or by modulating the com-
parator threshold, a constant firing event is assumed for the secondary
neuron. Therefore, this allows for simulating various time differences
between the firing events of the two neurons, necessary for simulation
of the eventual STDP behavior. This time difference in the firing events
is, in fact, obtained by subtracting the counter value (i.e., the output of
the JK FF array) of the secondary neuron from the counter value of the
primary neuron Q0Q1::Q7

� �
, and is accomplished by adding the 2’s

complement of the counter value of the secondary neuron to the
counter value of the primary neuron employing the FA (shown in
purple) of the learning circuitry. This operation is very similar to the
leakage operationdescribed earlier for the LIF circuit, andmore details
on the subtraction operation are provided in Supplementary Note 6.
Finally, the resulting sign-bit of the subtraction operation (bit C7)
determines the polarity of the result, i.e., a non-zero value ofC7 implies
that the difference of the counter values of the primary and secondary
neurons, i.e., output (L0L1..L7), is positive, while a zero value of C7

implies that the output is negative. Finally, the output L0L1..L7 is nor-
malized to themaximum value of a 8-bit number, and the STDP curves
are obtained, as described in detail in the following subsection.

Spike time-dependent plasticity and output spike simulation
Figure 4 shows the simulation of the output spike and the STDP
behavior of two firing neurons (the primary neuron in its entirety with
its learning circuitry is shown in Fig. 3, while only the counter value of
the secondaryneuron is shown in the bottomright of Fig. 3), simulated
for various instances of the primary neuron spiking. A clock frequency
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Fig. 4 | Demonstration of neuromorphic circuit operation. a Simulation of the
neuron spiking event at the output of the comparator in Fig. 3. Circuit has been
simulated under a clock frequency of 1MHz, an input of decimal 1 to the integrate
array and a comparator threshold of (32)10. Neuron spike happens at 32μs (cor-
responding to the clock frequency and waveform shown in bright red) after which
the circuit resets. b Shows the leakage operation of the membrane potential. The
assertion of the leakage clock (λclk) for 5 clock periods for a leakage potential
(λ0λ1::λ7) of (1)10 lead to the decay of the membrane potential from (1011)2 (before
assertion of λclk) to (0110)2 (after assertion of λclk), after which normal buildup of
the membrane potential continues. The clock frequency has been assumed to be
50MHz during the simulation. The decay in the membrane potential from (11)10 to
(6)10, i.e., a decrease of (5)10 corresponds to a decrease of (1)10 every clock cycle for
the 5 clock cycles that λclk is asserted for, and is due to the application of a leakage
potential of (1)10. The one clock delay in the leakage operation once the leakage
clock is asserted is due to the state retention in the DFFs of the integrator loop.
Also, the leakage operation is only shown for bits S0 to S3 (of the FA in the inte-
gration loop) since the higherorder bits donot change. c Long short-termplasticity
simulation (solid blue line) of the neural synapse and its comparison with the
biological model (dashed red line). The neuron firing time difference (tDIFF) has

been calculated by assuming a constant firing event for the secondary neuron
(post-synaptic neuron, firing event at t = tPOST) while varying the firing events of the
primary neuron (pre-synaptic neuron, firing event at t = tPRE). The firing of the pre-
synaptic neuron has been assumed to drive the firing event of the post-synaptic
neuron. Simulation assumes that the up-counter in the learning circuitry for the
neurons counts up by (1)10 every clock cycle. For a causal firing event where the
post-synaptic neuron fires after the firing of the pre-synaptic neuron (i.e., tDIFF is
negative), the synaptic weight is positive and it increases (to amaximum value of 1)
as tDIFF is reduced, i.e., when the timing difference between the firing events of the
pre- and post-synaptic neurons reduces, thereby, implying a strong synaptic con-
nection. Similarly, for an anti-causal firing event where the post-synaptic neuron
fires before the firing of the pre-synaptic neuron (i.e., tDIFF is positive), the synaptic
weight reduces (minimum value is −1) as tDIFF is reduced, thereby implying that the
post-synaptic neuron drives the firing events of the pre-synaptic neuron. Sharpness
of STDP curve depends on the increase in the counter value per clock cycle. Also
shown is the biological STDP curve, whose synaptic weight (W) is exponential with
time (t), and is a function of the response time τ (regulates the sharpness of the
synaptic weight decay).
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of 1MHz has been assumed for the simulations, with a membrane
threshold of (32)10 and an input of (1)10 to the integrator array of the
primary neuron. The neuron spike under these conditions thus hap-
pens at around 32 clock cycles, i.e., at t = 32μs (Fig. 4a) when the
neuron membrane potential equals the threshold (Fig. 1c) and the
leakage operation is absent (leakage clock is not asserted, i.e.,λclk = 0).
This neuron spiking event can, however, be hastened by using a faster
clock, having a lower firing (comparator) threshold, or by having an
input of higher magnitude (from the NM array through the input
terminal 0 of the green MUXs in LIF circuit) to the neuron integrator
array. Similarly, Fig. 4b shows the leakage operation (λclk = 1) of the
neuron where the membrane potential decreases from (11)10 to (6)10
upon the application of a leakage potential (λ7λ6::λ0) of (1)10 for five
clock cycles.Once the neuron, i.e., comparator of the LIF circuit spikes,
the Reset signal (Fig. 3) is generated at the output of the comparator
which resets the membrane potential, i.e., sets the output of the 8-bit
FA to zero. This reset signal is also fed to the reset input of the up-
counter array of the learning circuit (implemented with JK FFs) for
accomplishing the reset operation of the counter value of the primary
neuron every time the neuron fires, while the inverted output of the
comparator (implemented through the red inverter of the LIF circuit,
immediately following the comparator) ensures correct operation of
the up-counter. The output of this up-counter (Q7Q6::Q0) is fed to the
first input of a FA in the learning circuit (denoted in purple in Fig. 3),
while the 1’s complement of the counter value of the secondaryneuron
Q 2ð Þ7Q 2ð Þ6::Q 2ð Þ0
� �

is connected to its second input, which along with
the input carry of binary 1 to the FA in the learning circuitry evaluates
the difference in the counter values of the two neurons (see Supple-
mentary Note 6), i.e., evaluates the timing difference between the two
firing events (since the counter value resets every neuronal spike,
hence, the counter value at a particular timemeasures the timeelapsed
since the last neuronal spike) basedon themechanismdescribed in the
preceding subsection.

This subtraction operation generates a carry bit (at C7) which acts
as a sign bit and determines the causality of these two firing events
(Supplementary Fig. 8) (firing events for the neuron and the synapse),
i.e., for a zero-sign bit (C7=02) the difference is negative, which means
that the counter valueof the secondaryneuron is higher than that of the
primary neuron. Since this happens when the secondary (post-synaptic
neuron, since it is assumed that the primary neuron drives the firing
events of the secondary neuron) neuron fires before the spiking event
of the primary (pre-synaptic) neuron, this refers to an anti-causal rela-
tionship between these two firing events. Similarly, when the firing
event of the pre-synaptic neuron happens earlier than that of the post-
synaptic neuron, the counter value of the primary neuron is larger than

the counter valueof the secondaryneuronand theirdifference (L0L1..L7)
is positive, and therefore, theMSBof the subtractor is non-zero (C7 = 12).

The learning curve simulated in Fig. 4c for two firing neurons,
shows the change of their synaptic weight as the time difference
between their spiking events is varied. Since the output of the sub-
tractor (L0L1..L7) implemented employing the FA in the learning circuit
is a 8-bit output, disregarding the sign bit at C7, it has been normalized
w.r.t to the highest 8-bit number (11111111)2, (511)10, to yield a synaptic
weight varying between 1 (causal response) and -1 (anti-causal
response). The learning curves for both positive and negative tDIFF
(defined as tDIFF = tPRE−tPOST, tPRE and tPOST are firing events for the pre-
and post-synaptic neurons, respectively) are simulated by changing
the timing events for the pre-synaptic (primary) neuron. Although the
simulated STDP learning curve corresponds well with that of the bio-
logical counterpart as shown in Fig. 4c, our use of the subtractor cir-
cuits for STDP simulation only allows for a linear behavior of the
synaptic weight update with tDIFF. Use of more complex circuits can
introduce higher order polynomials into the behavior, and it may
approach the biological exponential behavior. Important to note
however, is that the steepness of the STDP response (rate of change of
synaptic weight with tDIFF) can be increased by increasing the number
of counts that the up-counter counts per clock cycle, which has been
assumed to be 1 in our simulations.

Maximum frequency of operation
The performance of any NM circuit is best given by the energy dis-
sipated per neuron spike 5,6, which depends on the circuit capacitance,
static/dynamic power dissipation, and the maximum frequency of
operation fmax

� �
of the circuit at a particular VDD. The fmax is deter-

mined by the net circuit capacitance and the ON-current of the tran-
sistors, with a smaller capacitance and a larger ON-current resulting in
a larger fmax and a correspondingly smaller energy dissipation,
assuming a constant static power dissipation (at a particular VDD).
Extraction of the fmax of the NM circuit with both TFET and FinFET
implementations at varying VDD ranging from 0.2V to 0.7 V in steps of
0.1 V in Fig. 5a, b shows an initial exponential increase (due to expo-
nential dependence of the ON-current with VDD in the subthreshold
regime, Supplementary Fig. 4) until it starts saturating at higher VDD

when the increase in the ON-current with VDD gets roughly linear.
Additionally, although the fmax of the TFET at a particular VDD is
smaller w.r.t the FinFET due to the limited ON-current of the former
(Supplementary Fig. 4), the smaller SS of the TFET results in a faster
increase of fmax with VDD (Fig. 5b), thereby allowing the TFET NM
implementation to span a larger frequency range of operation of
around 6 decades, compared to that of 4 decades for the FinFET.
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static power dissipation corresponding to the simulated VDD. While the fmax of the
TFET is lower than that of the LSTP-FinFET, its static power dissipation is orders of
magnitude lower, thereby improving the overall performance.
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However, for an accurate measure of the fmax, the net circuit
capacitances—including both interconnect and device (both parasitic
and intrinsic), of the two implementations must be made equal. While
the equivalence of the device capacitances is ensured by varying the
width of the TFET to result in an equal circuit capacitance with the
FinFET (without the presence of interconnect capacitance), the inter-
connect length connecting each logic gate (assumed to be same for
connections between all logic gates in both the implementations) is
varied to obtain a total interconnect capacitance equal to half of the
net device capacitance, in accordance with conventional design prac-
tices. The device (Supplementary Fig. 9a, b in Supplementary Note 7)-
and the interconnect (Supplementary Fig. 9c,d)-capacitances for both
the TFET and FinFET implementations (Supplementary Fig. 10) are
extracted from the slope of the power-frequency curve at a particular
VDD. Additionally, although the parasitic sidewall body-source/drain
capacitances present in thicker body FinFET devices (Supplementary
Fig. 9) are absent in the intrinsically thin-body 2D-TFET device, these
capacitances are set to zero in the FinFETNMcircuit for their best-case
circuit performance estimation. An average device capacitance of
46.4 fF for both TFET and FinFET implementations is extracted (Sup-
plementary Fig. 10, Supplementary Fig. 11), resulting in an interconnect
length of 1000 nm (between each logic block), for a net interconnect
capacitance of 23 fF (half of that of the device capacitance), and hence,
a total circuit capacitance of ~70 fF (Supplementary Fig. 10b). Further
details on the device and interconnect capacitance models are pro-
vided in Supplementary Note 7.

Calculating the static power dissipation
Since NM circuits are, in general, very sparse firing circuits where a
spike can happen as infrequently as with a frequency of several Hz, the
most dominant power dissipation mechanism in a NM circuit is the
static power dissipation component. Therefore, devices with a lower
OFF-current, i.e., TFETs (Supplementary Fig. 2,4) whose carrier dis-
tribution in the source is suppressed due to Boltzmann tail-cutoff11,
demonstrate an overall lower static power consumption of the entire
circuit. This benefit in energy-efficiency for TFETs is even more sig-
nificant in circuits with lower AFs, since a lower AF makes the static
power component more significant w.r.t the dynamic power compo-
nent, therefore determining the overall energy efficiency of these cir-
cuits. Figure 5c, d show the static power consumptionof theNMcircuit
with both 2D-TFET and FinFET implementations, simulated at VDD
varying from 0.2 V to 0.7 V. As seen from Fig. 5c, d, although the static
power increases exponentially with VDD for both 2D-TFET and FinFET
implementations, the static power consumption of the 2D-TFET circuit
is still orders of magnitude lower than that for the FinFET across the
entireVDD range.However, a lower staticpowerdissipationonly lowers
the overall energy dissipation if the corresponding fmax of the circuit is
comparatively higher, since such a circuit dissipates the static power
over a shorter time duration, thereby dissipating lower static
energy overall (simulations assume a duty factor of 0.5; duty factor is
defined as the tON/T, where tON is the time for which the signal is high
and T is the total time period). The net energy dissipation, which
depends on the static power dissipation and maximum frequency of
operation, which in turn depends on the net circuit capacitance, sup-
ply voltage, and the activity factor, is described in detail in the next
subsection.

Energy efficiency of 2D-TFET vs FinFET implementation
As already stated, the energy dissipation per neuron spike is the most
important metric determining the overall efficacy of the circuit
implementation. This net energy dissipation ðEtotalÞ in a circuit per
clock cycle has two components—Estatic and Edynamic, where the latter
depends on the AF of the circuit. If the static power dissipation of the
circuit at a particular VDD is Pstatic, the entire circuit capacitance is
CL, and the frequency is f , then the total energy dissipation can be

expressed as:

Etotal = Pstatic=f
� �

+AF :CLV
2
DD ð1Þ

From this expression, it is evident that the least energy dissipation
in the circuit happens when the frequency of operation is the highest
ðfmaxÞ, hence, for all eventual simulations, the energy dissipation at this
highest frequency of operation (Fig. 5) is evaluated. Additionally, the
energy dissipation is evaluated at AFs ranging from 1 to 10−6 in the
sparse firing NM circuits. Also, as seen from (1), although the dynamic
energy dissipation decreases with a decrease in VDD, however, both
Pstatic and fmax also decrease exponentially (Fig. 5). If the decrease in
fmax is steeper than that of Pstatic, the total energy dissipation in the
circuit will increase at lower VDD. However, this is only important at
very low AFs when the static energy component is larger than the
dynamic energy dissipation. Therefore, to find the ideal VDD, and
hence, the ideal frequency of operation of the circuit, the energy dis-
sipation of the circuit at various VDD ranging from 0.2V to 0.7 V and at
various AFs (ranging from 1 to 10−6) at corresponding fmax needs to be
evaluated, which is shown in Supplementary Fig. 12 (Supplementary
Note 8) for the FinFET, and in Supplementary Fig. 13 for the 2D-TFET
implementations. Also, as is apparent from Supplementary
Figs. 12 and 13, the energy dissipation—VDD curve has a minimum at a
particular VDD (depending on the activity factor), which therefore, is
the most optimum biasing condition for the circuit to work. Hence,
Supplementary Fig. 14 (Supplementary Note 9) compares the energy
consumption of both the 2D-TFET and the FinFET models at a parti-
cular AF, and at their respective optimal VDD of operation. Figure 6a
compares the energy dissipation at the lowestAFwhere the benefits of
the TFET implementation are highest w.r.t to the FinFET imple-
mentation,while Fig. 6b and Fig. 6c compares the energydissipation as
a function of VDD (at corresponding fmax) and activity factor, respec-
tively. Please note thatwhile Fig. 6a computes the energy consumption
of the circuit per clock cycle for both the TFET and the FinFET
implementations, the total energy consumption per neuron spike for
both these implementations can be computed by multiplying the
corresponding energy dissipation metric with the total number of
clock cycles elapsed between two successive neuron spikes, which is
32 in our case.

As seen from Fig. 6a, the energy dissipation of the 2D-TFET
implementation is lower than that of the FinFET circuit across the
entire frequency range forAFof 10−6, due to the total dissipated energy
being limited by the orders of magnitude lower static energy of the
TFET at this lowest AF. Also, interesting to note is that the minimum
energy dissipation is at two different frequencies (and corresponding
VDD) for the TFET and the FinFET, and happens due to the tradeoffs
between fmax and Pstatic for the two implementations. Particularly, as
the dynamic energy consumption remains independent of the opera-
tional frequency while the static energy is inversely related to it, an
increase in fmax leads to a decrease in the overall computational
energy. This holds true unless the increase in fmax is accompanied by a
corresponding increase in VDD, causing both static and dynamic
energies to increase linearly and quadratically, respectively, which is
why the minimum computational energy is obtained at an inter-
mediate operational frequency. Figure 6b shows the ratio of the energy
dissipation of the FinFET and the TFET implementations as a function
of the VDD, simulated at various activity factors. As is clearly observed,
the TFET outperforms the FinFET at lower AFs and VDD, with the
maximumbenefit coming frombiasing the circuits at0.3 V.Thebenefit
in TFET energy efficiency due to reduction in the AF is also seen from
Fig. 6c. This is due to a reduction in the contribution of the dynamic
energy dissipation component to the total energy dissipation. The
TFET performs better than the FinFET for all activity factors below
0.01, and the performance continues to improve as the AF is reduced
further. Interesting to note however, is that the energy dissipation in
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the TFET circuit is generally limited by its dynamic energy (since the
static energy is relatively smaller), which causes an almost linear
change of the energy dissipation with the AF. The comparable static
and dynamic power dissipation of the FinFET circuit, particularly at
smaller AFs, causes its energy dissipation to saturate at the lowest AF,
which is then limited by its static energy. A best-case difference in
energy consumption of 83-fold in favor of the TFET is observed at the
lowest AF.

In summary, the paper introduced and explored a fully functional
NM circuit, implemented with 2D lateral-HTJ TFETs, capable of
demonstrating a LIF neuron firing operation along with its Hebbian
learning circuitry. The circuit was designed to operate at a wide range
of supply voltages, ranging from 0.2 V to 0.7 V, and the corresponding
maximum frequency ofoperation ðfmaxÞ, static, anddynamic switching
energies were extracted to evaluate the total energy consumption of
the circuit at a wide range of activity factors. Comparative perfor-
mance projections carried out against 7 nm LSTP FinFET imple-
mentations, under consideration of appropriate interconnect
parasitics from the corresponding technology node demonstrated
that the 2D-TFET implementation of the NM circuit outperformed the
FinFET implementation at activity factors below 10−2, resulting in a
best-case energy dissipation metric of close to two orders of magni-
tude smaller than that of the latter. The comprehensive analysis and
performance projections help introduce an appropriate hardware
platform for the implementation of the next generation of high-
performance low-energy NM circuits.

Data availability
The data that support the findings of this study are present in the
article and Supplementary Information. Additional data related to this
study are available from the corresponding author upon request.
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Fig. 6 | Performance analysis—II. Comparison of the energy efficiency of the
designed NM circuit implemented with 2D-TFET and LSTP circuits. a The energy
dissipation per clock cycle as a function of frequency plotted for an activity factor
of 10−6. Frequencies correspond to fmax and is plotted for corresponding VDD. Plot
shows tremendous energy-efficiency benefits of implementing NM circuits with
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