
UC San Diego
Technical Reports

Title
Abstract Semantics for Module Composition

Permalink
https://escholarship.org/uc/item/1b09665j

Author
Rosu, Grigore

Publication Date
2000-05-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b09665j
https://escholarship.org
http://www.cdlib.org/

Abstract Semantics for Module Composition

Grigore Ro�su

1

Department of Computer Science & Engineering,

University of California at San Diego

grosu@cs.ucsd.edu

1 Introduction

Technology is evolving unexpectedly fast. Software requirements tend to be exponentially higher every

year and thus huge software systems are needed. Failure-safe systems are required not only in armies or

governmental institutions, but also in many branches of industry. It is not a new thing that most failures

in big systems are due either to
aws in requirements and incipient formal or informal speci�cations, or

to exceptions which are not treated in implementations. In this light, good speci�cation languages and

automatic code generators seem to be indispensable, and modularization is becoming a crucial methodology.

Programmers and software engineers agree in unanimity that a useful characteristic of the programming

languages they use for implementations (C++, Java, etc.) is their support for both public and private

features (types, functions). The public features are often called interfaces. The private part is not visible

outside the module (class, package) that declares it, but it can be used internally to de�ne the visible part.

Such distinction helps software engineers abstract their work and ignore details which are a main source of

confusion and errors.

We claim that the distinction between private and public features might also be a desirable characteristic

of formal speci�cations, not only from the practical point of view, because of the increased level of abstraction,

but also because of at least two important theoretical reasons. One is the possibility to specify �nitely some

theories which do not admit �nite standard presentations. For example, Bergstra and Tucker [2] showed that

any recursive �-algebra can be speci�ed as the �-restriction of an initial �

0

-algebra presented by a �nite

number of �

0

-equations, for some � � �

0

(see [15] for a summary on this subject). The other theoretical

reason is that it allows the user to specify behavioral properties of systems, in the sense that every behavioral

speci�cation [8, 18, 9] is equivalent to hiding some operators (making them private) in a usual speci�cation

[9].

Inspired by Goguen and Tracz's work [10], we introduce the notion of module speci�cation as a gener-

alization of the standard speci�cation, having both public (or visible) and private features, and then we

explore their properties at an abstract level, categorical, to make sure that our results are general enough

to include the di�erent concrete examples we know. To formalize the notion of \logical system" we use

institutions, an intensively used abstract concept introduced by Goguen and Burstall [7]. The institution in

which we work (we call it the working institution) is enriched with inclusions (of signatures) formulated in

a categorical setting, an abstraction of the natural notion of inclusion of signatures from particular logics.

A module speci�cation in such an institution is a triple (';�; A), where ' is a subsignature of �, called the

visible signature (or the public signature), and A is a set of �-sentences; � is called the working signature

and it stands for both the public and the private symbols of that module. The visible theorems (or the visible

consequences) of a module (';�; A) are exactly the '-sentences satis�ed by A over �, and a model of that

module is a '-model of its visible consequences.

The �rst interesting result in the paper is that the category of module speci�cations is equivalent to the

category of theories. This does not surprise; informally, it says that module speci�cations represent a way

to specify more elegantly some theories.

Five basic operations on module speci�cations are explored: renaming, hiding, enriching, aggregation

and parameterization. An internal property of the module, called conservativeness, seems to have a decisive

role in giving semantics for module composition. A module (';�; A) is conservative i� every '-model of

its visible theorems can be extended to a �-model of A. We show that under conservatism, many of the

1

Fundamentals of Computer Science, Faculty of Mathematics, University of Bucharest, Romania.

1

standard speci�cations' properties also hold for modules. For example, Theorem 78 says that the module

given by an instantiation of a parameterized module is a pushout, as long as both the parameterized module

and the actual parameter module are conservative.

Testing the conservatism of a a module (';�; A) is a di�cult task and it is dependent on the underlying

logic. In many-sorted equational logics, for example, the technique consists in enriching a '-algebra with

some new carriers for the private sorts (in � � '), and also with some new private operations, and then

to show that the new �-algebra veri�es the axioms in A. Of course, the fewer private features are added,

the easier the job of testing the conservatism is. For this reason, we prefer to reduce the conservatism of a

module with visible signature and working signature �, to the conservatism of other two modules: one

of them with visible signature and working signature ', for some ,! ' ,! �, and the other one with

visible signature ' and working signature � (see Propositions 59 and 64).

We consider the work in this paper as a bridge between the work by Goguen and Tracz [10] on imple-

mentation oriented semantics for module composition and the work by Diaconescu, Goguen and Stefaneas

[6] on semantics for composition of speci�cations and theories.

2 Preliminaries

This section presents notations, de�nitions and properties useful later in the paper. First, some basic notions

of category theory are exposed; then we introduce the concept of inclusions in a categorical setting, and then

we remind the reader the basics of institutions, an abstract concept introduced by Goguen and Burstall to

formalize the notion of \logical system".

2.1 Category Theory

The reader is supposed to be acquainted with some basic notions of category theory, such as categories and

subcategories, products and coproducts, pullbacks and pushouts, functors and adjoints; we �nd [13] and [11]

very good references on category theory.

jCj denotes the class of objects of a category C, and for any two objects A;B in C, C(A;B) denotes the

set of morphisms from A to B. We write the composition of morphisms in diagrammatic order, that is

f ; g : A ! C is the composition of f : A ! B with g : B ! C. Let Cat denote the category of categories,

having small categories as objects and functors as morphisms. A functor F : C ! D is full (faithful) if its

hom-set restriction F : C(A;B) ! D(F(A);F(B)) is a surjective (injective) function for any objects A;B

in C. The functor F is said to be dense provided that for each D 2 jDj there is some C 2 jCj such that

F(C) is isomorphic to D. A full subcategory is a subcategory such that the inclusion functor is full. A

category C is called skeletal if isomorphic objects are identical. A skeleton of a category C is a maximal full

skeletal subcategory of C; it can be readily seen that any two skeletons of a category are isomorphic in Cat.

A category C is said to be equivalent to a category D if and only C and D have isomorphic skeletons. The

following result is used in section 3 to show that the category of module speci�cations is equivalent to the

category of theories in any institution:

Proposition 1 Categories C and D are equivalent if and only if there exists a functor F : C ! D which is

full, faithful and dense. 2

A very special kind of pullbacks are the pullbacks in Cat. They have the following important property:

Proposition 2 If the pair of functors F

1

: P ! C

1

and F

2

: P ! C

2

) is a pullback in Cat of G

1

: C

1

! D

and G

2

: C

2

! D, and if C

1

2 jC

1

j and C

2

2 jC

2

j such that G

1

(C

1

) = G

2

(C

2

), then there is a unique object P

in P such that F

1

(P) = C

1

and F

2

(P) = C

2

. 2

2.2 Inclusions

It is well-known that a small category can be associated to any partially ordered set: there exists exactly

one object A for each element a in that set and there exists a morphism from A to B, written A ,! B, if

and only if a � b. Furthermore, there is a bijection between partially ordered sets and small categories in

2

which there is at most one morphism from A to B for every objects A and B (partiality), and if there is a

morphism from A to B and a morphism from B to A then A = B (anti-symmetry). The correspondents of

in�mum and supremum are the product and the coproduct, respectively. Generalizing all these to categories

which are not required to be small, we get:

De�nition 3 A category I is called a category of inclusions if and only if

� I(A;B) has at most one element, and

� I(A;B) 6= ; and I(B;A) 6= ; implies A = B.

for every pair of objects A and B. If I(A;B) 6= ; then let A ,! B denote the unique morphism in I(A;B).

It is called an inclusion and A is called a subobject of B. We say that I has (�nite) intersections i�

I has (�nite) products and we say that I has (�nite) unions i� I has (�nite) coproducts. For every pair

of objects A, B, let A \ B denote their product (also called their intersection) and let A [B denote their

coproduct (also called their union). 2

A small category with �nite intersections and �nite unions corresponds to nothing else than a lattice.

Consequently, many properties of lattices hold in categories with inclusions. The following are only a few:

Fact 4 For any category of inclusions I and any objects A, B and C (assume that I has �nite intersections

and/or �nite unions whenever \=[appear),

1. A ,! A [B and A \B ,! A,

2. A ,! B implies A [B = B and A \ B = A,

3. A \ (A [B) = A [(A \B) = A,

4. A ,! B implies A [C ,! B [C and A \ C ,! B \ C,

5. The union and intersection are commutative, associative and idempotent,

6. (A \B) [(A \ C) ,! A \ (B [C),

7. A [(B \ C) ,! (A [B) \ (A [C),

2

Since the union and intersection are associative, we take the liberty to use the natural notation

S

n

j=1

A

j

for the union of n objects A

1

; :::; A

n

.

Fact 5 The following are equivalent:

1. A \ (B [C) = (A \ B) [(A \ C) for all A;B;C 2 jIj,

2. A [(B \ C) = (A [B) \ (A [C) for all A;B;C 2 jIj.

2

De�nition 6 I is distributive i� the equalities in Fact 5 hold. 2

The notion of inclusion we introduced above is similar to the one of (weak) inclusion systems (see

[6, 12, 4, 3] and also [17]) except that the factorization property is no longer required. In the present paper,

we do not need the whole technical engine provided by (weak) inclusion systems.

The potential value of inclusion systems was suggested in [7], and a �rst de�nition was given in [6] in

the context of modularization for standard speci�cations. The papers [12] and [4, 3] further simplify and

generalize inclusion systems. Inclusion systems are an alternative of factorization systems (e.g., see [11, 16]).

They can be preferred because the proofs tend to be smoother than using factorization systems, still having

the same power of expressiveness.

De�nition 7 A category of inclusions I which is a broad subcategory

2

of C is called a subcategory of

inclusions of C (alternatively, we can say that C has inclusions I). I is a subcategory of strong inclusions

of C (or C has strong inclusions I) i� I is a subcategory of inclusions of C, I has �nite intersections and

unions, and for every pair of objects A, B, their union in I is a pushout in C of their intersection in I. C is

I-distributive i� I is distributive. 2

2

In the sense that it has the same objects as C.

3

Fact 8 In any category C with strong inclusions I,

1. The family of n inclusions A

i

,!

S

n

j=1

A

j

for all i 2 1::n is epimorphic, and

2.

S

n

j=1

A

j

is a colimit in C of the diagram given by the pairs of inclusions A

i

\A

j

,! A

i

and A

i

\A

j

,! A

j

for all i; j 2 1::n.

2

The next de�nition introduces the notion of union of morphisms in a category with inclusions:

De�nition 9 If C is a category with inclusions I then the morphisms h

1

: A

1

! B

1

; :::; h

n

: A

n

! B

n

in C

admit unions i� there are some morphisms h :

S

n

j=1

A

j

!

S

n

j=1

B

j

such that

(A

i

,!

S

n

j=1

A

j

);h = h

i

; (B

i

,!

S

n

j=1

B

j

)

for each i 2 1::n. If the morphism h above is unique then we say that h

1

; :::; h

n

admit union, and we let

S

n

j=1

h

j

denote the unique morphism. 2

Fact 10 If I is a subcategory of strong inclusions then h in the de�nition above is unique. 2

De�nition 11 If C has an initial object ; then A

1

; :::; A

n

are disjoint w.r.t. ; i� A

i

\ A

j

= ; for all

i 6= j 2 1::n. We say that A

1

; :::; A

n

are disjoint whenever ; can be unambiguously inferred from the

context. 2

The following proposition shows conditions under which unions of morphisms exist:

Proposition 12 Let C be a category having strong inclusions I and let h

1

: A

1

! B

1

; :::; h

n

: A

n

! B

n

be

morphisms in C. Then h

1

; :::; h

n

admit union whenever at least one of the following holds:

1. (A

i

\ A

j

,! A

i

);h

i

; (B

i

,! B

i

[B

j

) = (A

i

\ A

j

,! A

j

);h

j

; (B

j

,! B

i

[B

j

) for every i; j 2 1::n, or

2. C has an initial object ; and A

1

; :::; A

n

are disjoint.

2

The following de�nition plays an important technical role in the present paper. It formalizes categorically

a crucial property of signatures:

De�nition 13 A category with inclusions has pushouts which preserve inclusions i� for any pair of

arrows (A ,! B;A! A

0

) there are some pushouts of the form (A

0

,! B

0

; B ! B

0

). 2

Example 14 Sets: The category of sets has pushouts which preserve inclusions. Indeed, let A ,! B be

an inclusion and h : A! A

0

be a function; then let B

0

denote the set A

0

`

(B �A), where

`

stands for the

disjoint union. There are many di�erent ways in which the disjoint sum can be done; however, we consider

that it is done by providing copies of the elements in B�A which are not in A

0

, such that A

0

is a pure subset

of A

0

`

(B �A) (let b be the corresponding copy of b in B �A). Let h

0

: B ! B

0

be the function de�ned as

h

0

(b) = h(b) for b 2 A and h

0

(b) = b for b 2 B �A. Then the pair of functions A

0

,! B

0

and h

0

: B ! B

0

is

a pushout preserving the inclusion A ,! B. Notice that more pushouts that preserve the inclusion A ,! B

exist.. 2

Example 15 Signatures: The category of signatures also has pushouts which preserve inclusions. Con-

sider a signature inclusion (R;') ,! (S;�) and a signature morphism (f; g) : (R;') ! (R

0

; '

0

). Let

(R

0

,! S

0

; f

0

: S ! S

0

) be a pushout in the category of sets (as in the example above) of the pair

(R ,! S; f : R! R

0

), and let �

0

be '

0

`

f

0

(��'), where the disjoint union is done by eventually renaming

the elements in f

0

(�� ') = f� : f

0

(w)! f

0

(s) j � : w ! s 2 �� 'g. It is left to the reader to check that

((R

0

; '

0

) ,! (S

0

;�

0

); (f

0

; g

0

) : (S;�) ,! (S

0

;�

0

)) is a pushout, where g

0

(� : w ! s) = � : f

0

(w)! f

0

(s). 2

4

We consider that any speci�cation language which is designed to o�er support for modularization, in-

cluding renaming and parameterizations, should o�er a way to do pushouts which preserve inclusions at the

signatures level. This is in our opinion the unique consistent way to extend the renaming of a subsignature

' of � to the whole signature �. Even if OBJ does not o�er full support for our modularization approach

3

,

it is able to do pushouts preserving the inclusions; the following example shows how it does that:

Example 16 Let us consider the following OBJ program which de�nes a signature

4

PHI with one sort S and

one unary operation a : S ! S, an extension SIGMA

5

of PHI which adds a new sort S

0

and a new operation

a : S ! S

0

, and another signature PHI' which de�nes another sort S

0

and an operation a : S

0

! S

0

. To get

the pushout, we use the instantiation operation provided by OBJ's module system.

th PHI is

sort S .

op a : S -> S .

endth

th SIGMA[X :: PHI] is

sort S' .

op a : S -> S' .

endth

th PHI' is

sort S' .

op a : S' -> S' .

endth

show SIGMA[PHI'] .

When OBJ calculates the instantiation SIGMA[PHI'], a default view (morphism) from PHI to PHI' is

considered, which takes S to S

0

and a : S ! S to a : S

0

! S

0

. The output is:

theory SIGMA[view to PHI' is sort S to S' . op a(v0) to (a(v0)).PHI' .

endv] is

protecting PHI' .

sorts S'.(SIGMA[view to PHI' is sort S to S' . op a(v0) to (a(v0)).

PHI' . endv]) S'.PHI' Bool .

op a : S'.PHI' -> S'.PHI' .

op a : S'.PHI' -> S'.(SIGMA[view to PHI' is sort S to S' . op a(v0)

to (a(v0)).PHI' . endv]) .

endth

Observe that OBJ automatically renamed the sort S

0

from SIGMA in order to avoid the con
ict with S

0

from

PHI'. It is straightforward that the new signature is a pushout which preserves the inclusion. 2

The problem with pushouts which preserve inclusions is that there can be more pushouts preserving the

inclusion. For example, the operation a from S'.PHI' to S'.(SIGMA[view to PHI' is sort S to S' .

op a(v0) to (a(v0)).PHI' . endv]) in the theory above, could have been very well renamed as b with

the same source and target as a, and the new signature is still a pushout which preserves the inclusion.

Notation 17 We do neither impose any particular algorithm for doing such pushouts in particular examples,

nor ask any additional property they have to respect; but for notational sake, we assume a �xed pushout

which preserves the inclusion for any diagram (A ,! B; h : A ! A

0

). Let (A

0

,! B

h

; h

B

: B ! B

h

) denote

this special pushout. 2

3

Everything declared into a module is public in OBJ, unlike in our approach where modules may have some private sorts

and operations.

4

We use theories to embed signatures in order to take advantage of the OBJ's module system operations.

5

We use a parameterized theory for this extension; actually, the parameterized theories are stronger than this example shows.

5

Open Problem: We would like to �nd an algorithm able to calculate the pushout above for standard

signatures, such that to be closed to horizontal and/or vertical composition of pushouts, that is, if (' ,!

�; h : ' ! '

0

) is a pair of signature morphisms then �

0

(h

�

)

= �

0

h

for each inclusion of signatures � ,! �

0

,

and/or respectively (�

h

)

g

= �

h;g

for each signature morphism g having the source '

0

.

De�nition 18 A functor between two categories with inclusions preserves inclusions i� it takes inclusions

in the source category to inclusions in the target category. 2

2.3 Institutions

The concept of institution was introduced by Goguen and Burstall [7] to formalize the abstract notion of

"logical system". Having as basic idea the Tarski's classic semantic de�nition of truth, institutions have the

possibility of translating sentences and models along signature morphisms, with respect to an axiom called

the satisfaction condition, which says that truth is invariant under change of notation.

De�nition 19 An institution consists of a category Sign whose objects are called signatures, a func-

tor Sen : Sign ! Set giving for each signature a set whose elements are called �-sentences, a functor

Mod : Sign ! Cat

op

giving for each signature � a category of �-models, and a �-indexed relation

j= = fj=

�

j � 2 Signg, where j=

�

� jMod(�)j �Sen(�), such that for each signature morphism h : �! �

0

,

the following Satisfaction Condition

m

0

j=

�

0

Sen(h)(a) i� Mod(h)(m

0

) j=

�

a

holds for each m

0

2 jMod(�

0

)j and each a 2 Sen(�). 2

We sometimes write only h instead of Sen(h) and �

h

instead of Mod(h); the functor �

h

is called

the reduct functor associated to h. With these notations, the satisfaction condition becomes m

0

j=

�

0

h(a) i� m

0

�

h

j=

�

a. The satisfaction notation, j=

�

, is also used for a set of sentences in the right side,

that is we write m j=

�

A for A a set of �-sentences, meaning that m satis�es each sentence in A. Moreover,

we extend this notation for sets of sentences on both sides: A j=

�

A

0

means that m j=

�

A

0

for any �-model

m with m j=

�

A. We forget the subscript � in j=

�

whenever it can be inferred unambiguously from the

context. The closure of a set of �-sentences A is the set denoted A

�

which contains all a in Sen(�) such

that A j=

�

a. The sentences in A

�

are often called the theorems of A. Obviously the closure operation is a

closure operator, that is it is extensive, monotonic and idempotent.

Closure Lemma: For any signature morphism h : � ! �

0

and any set of �-sentences A, h(A

�

) � h(A)

�

.

2

Fact 20 For any sets of �-sentences A and A

0

, and any signature morphism h : �! �

0

,

� h(A

�

)

�

= h(A)

�

, and

� (A

�

[A

0

)

�

= (A [A

0

)

�

.

2

De�nition 21 A speci�cation or presentation is a pair (�; A) where � is a signature and A is a set

of �-sentences. A speci�cation morphism from (�; A) to (�

0

; A

0

) is a signature morphism h : � ! �

0

such that h(A) � A

0�

. Speci�cations and speci�cation morphisms give a category denoted Spec. A theory

(�; A) is a speci�cation with A = A

�

; the full subcategory of theories in Spec is denoted Th. 2

It can be readily seen that the categories Th and Spec are equivalent. The equivalence functor is just

the inclusion of categories U

s

: Th ! Spec. It has a left-adjoint-left-inverse F

s

: Spec ! Th, given by

F

s

(�; A) = (�; A

�

) on objects and identity on morphisms; note that F

s

is also a right adjoint of U

s

, so Th

is a re
ective and core
ective subcategory of Spec.

It is known (see [7]) that Th is cocomplete whenever Sign is cocomplete; in particular, Th has pushouts

whenever Sign has pushouts. We remind the reader how pushouts are built in Th:

6

Proposition 22 If h

1

: (�; A) ! (�

1

; A

1

) and h

2

: (�; A) ! (�

2

; A

2

) are two theory morphisms and

(h

0

1

: �

1

! �

0

; h

0

2

: �

2

! �

0

) a pushout of (h

1

; h

2

) in Sign, then (h

0

1

: (�

1

; A

1

)! (�

0

; A

0

); h

0

2

: (�

2

; A

2

)!

(�

0

; A

0

)) is a pushout in Th of h

1

and h

2

, where A

0

= (h

0

1

(A

1

) [h

0

2

(A

2

))

�

. 2

De�nition 23 A theory morphism h : (�; A) ! (�

0

; A

0

) is conservative if for any (�; A)-model m there

are some (�

0

; A

0

)-models m

0

such that m

0

�

h

= m. The signature morphism h : �! �

0

is conservative if it is

conservative as a morphism of void theories, i.e. h : (�; ;

�

)! (�

0

; ;

0

�

). 2

Proposition 24 If h : �! �

0

and a 2 Sen(�) and A � Sen(�) then

1. A j=

�

a implies h(A) j=

�

0

h(a).

2. If h is conservative then A j=

�

a i� h(A) j=

�

0

h(a).

Proof: The �rst assertion follows directly from the closure lemma, and for the second let m j=

�

A. Because

h is conservative, there are some �

0

-models m

0

such that m

0

�

h

= m; thus m

0

�

h

j=

�

A, that is m

0

j=

�

0

h(A).

Therefore m

0

j=

�

0

h(a), and so m j=

�

a. 2

De�nition 25 An institution has (strong) inclusions, or it is an institution with (strong) inclusions

i� its category of signatures has inclusions and Sen preserves them. It is distributive i� its category of

signatures is distributive. An institution is called semiexact if the functor Mod : Sign! Cat

op

preserves

the pushouts

6

, i.e. it takes pushouts in Sign to pullbacks in Cat. 2

The term semiexactness was introduced by Diaconescu, Goguen and Stefaneas [6] as a weakening of

exactness. The property of exactness, which says that Mod preserves the general colimits, seems to have

�rst appeared in [19] and then used by Tarlecki [20] on abstract algebraic institutions and by Meseguer

[14] on categorical logic. Many sorted logics tend to be exact, but their unsorted variants tend to be only

semiexact.

Fact 26 If A and A

0

are sets of � and �

0

-sentences, respectively, then (A

�

[A

0

�

)

�

= (A [A

0

)

�

, where the

outermost closures are done over � [�

0

-sentences. 2

The category of theories, Th, tends to have many of the properties of Sign. One of the most important

properties was pointed above, and it says that Th is cocomplete as long as Sign is cocomplete. In our

framework with inclusions, we get:

Proposition 27 In any institution with (strong) inclusions,

1. Th has (strong) inclusions.

2. Th has pushouts which preserve inclusions whenever Sign has pushouts which preserve inclusions.

Proof:

1. The category of inclusions I

Th

in Th contains exactly the morphisms denoted (�; A) ,! (�

0

; A

0

), where

� ,! �

0

is an inclusion in Sign and A � A

0

as sets of �

0

-sentences. It is easy to check that I

Th

is a

partial order and that it has the same objects as Th, i.e. it veri�es the �rst conditions in De�nition 3.

De�ne the union of two theories (�; A) and (�

0

; A

0

), by (�; A) [(�

0

; A

0

) = (� [�

0

; (A [A

0

)

�

) where

the closure is done over �[�

0

-sentences, and their intersection by (�; A)\ (�

0

; A

0

) = (�\�

0

; A\A

0

).

The correctness of these de�nitions is obvious, and the strongness condition is also respected by I

Th

because of the construction of pushouts in Th (see Proposition 22).

2. Let (�; A) ,! (�

1

; A

1

) be an inclusion in Th and h : (�; A) ! (�

2

; A

2

) be a morphism in Th. Take

(�

2

,! �

0

; h

�

0

: �

1

! �

0

) a pushout of (� ,! �

1

; h : � ! �

2

) in Sign which preserves the inclusion.

We claim that ((�

2

; A

2

) ,! (�

0

; A

0

); h

�

0

: (�

1

; A

1

) ! (�

0

; A

0

)) is the desired pushout in Th, where

A

0

= (A

2

[h

�

0

(A

1

))

�

; it follows immediately from Proposition 22.

2

Sometimes, we say theory extension instead of inclusion of theories .

6

Actually, we are interested only in pushouts of inclusions, but we try to avoid introducing a new concept.

7

3 Module Speci�cations

Information hiding is an important technique in modern computer science, both in programming and

algebraic speci�cations. There are some interesting examples of '-theories which cannot have �nite '-

presentations, but they have �nite �-presentations for a larger signature �, that is, the restriction of the

�nite �-presented theory to ' is exactly the in�nite '-presented theory (see Example 30).

Our de�nition of module speci�cations extend the usual algebraic speci�cations, letting them to have

visible (or public) features and also private features; the private part is useful to express the visible part.

Only the visible consequences (theorems) of a module characterize the semantics of the module speci�cation,

and any implementation of the module has to respect them.

Assumption: From now on in the paper, suppose that we work in an institution with inclusions; we call

it the working institution.

3.1 Visible Theorems

The visible consequences of a module play an important role in our approach.

De�nition 28 For { : ' ,! � an inclusion in Sign and A a set of �-sentences, we let Th

�

'

(A) denote the

set {

�1

(A

�

) of '-sentences, and we call it the '-visible theorems

7

of A. 2

In other words, Th

�

'

(A) contains all the sentences a 2 Sen(') such that A j=

�

a, i.e. it contains all the

'-sentences which are consequences of A. When { is an identity, we simply get Th

�

�

(A) = A

�

, that is the

�-visible theorems of A are exactly the theorems of A.

Example 29 The following module has a private operation, aux, which is an auxiliary operation helping to

de�ne the main operation, rev, which reverses lists:

obj REV[X :: TRIV] is pr LIST[X] .

op rev : List -> List . *** public

op aux : List List -> List . *** private

var E : Elt . vars L P : List .

eq rev(L) = aux(L, nil) .

eq aux(nil, P) = P .

eq aux(E L, P) = aux(L, E P) .

endo

Then the following are only a few visible theorems:

� rev(nil) = nil,

� (8E : Elt; L : List) rev(E L) = rev(L) E,

� (8E : Elt; L : List) rev(L E) = E rev(L),

� (8L : List) rev(rev(L)) = L.

The �rst property is immediate, but the second one is more complicated. We advice the curios reader �rst

to prove the lemma (8L

1

; L

2

: List) aux(L

1

; L

2

) = (aux(L

1

; nil) L

2

) by induction on the length of L

1

.

The third follows from the �rst two by induction on L, and the fourth follows from the �rst three also by

induction on L.

A natural question here is why to de�ne rev so complicatedly, instead of de�ning it much easier as in

the following module with no private operations:

obj REV[X :: TRIV] is pr LIST[X] .

op rev : List -> List .

var E : Elt . var L : List .

eq rev(nil) = nil .

eq rev(E L) = rev(L) E .

endo

7

Sometimes, we call the set {

�1

(A

�

) the '-visible theorems over �, if � is not clear from the context.

8

The answer is: because of e�ciency reasons, the �rst module using tail recursion. A list of 25 elements is

reversed more than 5 times faster using the �rst module than using the second one (under both OBJ3 and

CafeOBJ). Thus, the �rst module REV should be viewed as a re�nement of the second. 2

Example 30 This example is inspired from [8]. It shows how stacks can be speci�ed with the help of arrays.

The sorts Stack and NeStack together with the operations empty, top, push and pop are public and the

other operations which are related to arrays are private:

th STACK[X :: TRIV] is pr NAT .

*** the public signature

sorts Stack NeStack .

subsort NeStack < Stack .

op empty : -> Stack .

op top : NeStack -> Elt .

op push : Elt Stack -> NeStack .

op pop : NeStack -> Stack .

*** the private signature and equations of arrays:

sort Array .

op nil : -> Array .

op put : Elt NzNat Array -> Array .

op _[_] : Array NzNat -> Elt .

vars J K : NzNat . var E : Elt . var A : Array .

cq put(E,J,A)[K] = E if J == K .

cq put(E,J,A)[K] = A[K] if J =/= K .

*** the private constructors of the sorts Stack and NeStack:

op _||_ : Nat Array -> Stack .

op _||_ : NzNat Array -> NeStack .

*** equations defining the public operations:

var I : Nat .

eq empty = 0 || nil .

eq top(J || A) = A[J] .

eq push(E, I || A) = s I || put(E, s I, A) .

eq pop(s I || A) = I || A .

endth

Then the following expressions are visible theorems:

� (8E : Elt; S : Stack) top(push(E; S)) = E,

� (8E : Elt; S : NeStack) top(pop(push(E; S))) = top(S),

.

.

.

� (8E

1

; : : : ; E

n

: Elt; S : NeStack) top(pop(: : : pop(push(E

1

; : : : ; push(E

n

; S))))) = top(S).

.

.

.

where the number of pop's is equal to the number of push's is equal to n in the last expression. To prove

them, one needs to consider that the two operations || are constructors for the sorts NeStack and Stack.

Notice that the expression (8E : Elt; S : Stack) pop(push(E; S)) = S is not a visible theorem. Therefore,

the module above does not re�ne the following well-known Stack module (with no private symbols):

th STACK[X :: TRIV] is

sorts Stack NeStack .

subsorts NeStack < Stack .

op empty : -> Stack .

op top : NeStack -> Elt .

op push : Elt Stack -> NeStack .

op pop : NeStack -> Stack .

9

var E : Elt . var S : Stack .

eq top(push(E, S)) = E .

eq pop(push(E, S)) = S .

endth

Actually, the expression (8E : Elt; S : Stack) pop(push(E; S)) = S is not desired as a property of stacks

at all. This is because almost no real implementation (i.e., model) of stacks respects it, including the one

with pointer in array following the idea of the �rst module in this example. We claim that the visible

theorems above together with many similar others having top as uppermost operation

8

are exactly the

desired properties of every implementation of stacks. The internal data structure is most often hidden in

implementations, the only way to \observe" a stack being to apply a top after a chain of push's and/or

pop's. In this light, the �rst STACK module can be viewed as a �nite speci�cation of an in�nite abstract data

type. Notice that this thing would have not been possible without hiding some operations, making them

private.

A di�erent technique to specify �nitely an in�nite ADT is based on behavioral speci�cations, in which

the models (or hidden algebras) are allowed to satisfy behaviorally the properties, i.e., with respect to

observations (attributes) following actions (methods). A behavioral speci�cation of stacks would be similar

to the second STACK module in this example, except that the last equation is behavioral. We are not going

to talk about behavioral speci�cations and hidden algebra, but we refer the interested reader to [8]). 2

Truth is preserved under extensions of signatures in any logical system. The following proposition says

that this also holds in any institution with inclusions.

Proposition 31 If ' ,! � and a 2 Sen(') and A � Sen(') then

1. A j=

'

a implies A j=

�

a.

2. A j=

'

a i� A j=

�

a if the inclusion ' ,! � is conservative.

Proof: It follows immediately from Proposition 24 where h is the inclusion ' ,! �. 2

The following fact presents properties of visible theorems; they will be often tacitly used later in the

paper.

Fact 32 Suppose the inclusions ,! ' ,! � in Sign and A � A

0

� Sen(�) and B � Sen('). Then

1. B � Th

�

'

(B).

2. Th

'

(B) � Th

�

(B).

3. Th

'

(B) = Th

�

(B) if the inclusion ' ,! � is conservative.

4. Th

�

(A) � Th

�

'

(A).

5. Th

�

'

(A) � Th

�

'

(A

0

).

6. Th

�

(A) � Th

�

'

(Th

�

(A)).

7. Th

�

(Th

�

'

(A)) � Th

�

(A).

8. Th

�

'

(Th

�

'

(A)) = Th

�

'

(A).

9. Th

'

'

(Th

�

'

(A)) = Th

�

'

(A).

10. Th

'

(Th

�

'

(A)) = Th

�

(A).

Proof: Let {

0

: ! ' and { : '! � be the two inclusions.

1. Straightforward, because if b 2 B then B j=

�

b, that is b 2 Th

�

'

(B).

2. This is because of 1. in Proposition 31.

3. It is exactly 2. in Proposition 31.

4. Straightforward, because Sen is a morphism of inclusion systems, and so, a is in Sen(') whenever a

is in Sen().

5. It is equivalent to {

�1

(A

�

) � {

�1

(A

0

�

), which is true because A

�

� A

0

�

.

6. It follows from 1. with Th

�

(A) instead of B.

8

For example, (8E

1

; E

2

; E

3

: Elt; S : NeStack) top(pop(pop(push(E

1

; pop(push(E

2

; push(E

3

; S))))))) = top(S)

10

7. It is equivalent to ({

0

; {)

�1

({

�1

(A

�

)) � ({

0

; {)

�1

(A

�

), which is true because {

�1

(A

�

) � A

�

.

8. It follows from 6. and 7., for = '.

9. From 1., we deduce that Th

�

'

(A) � Th

'

'

(Th

�

'

(A)). On the other hand, Th

'

'

(Th

�

'

(A)) � Th

�

'

(Th

�

'

(A))

by 2., and furthermore Th

'

'

(Th

�

'

(A)) � Th

�

'

(A) by 8..

10. It is equivalent to {

0

�1

({

�1

(A

�

)) = ({

0

; {)

�1

(A

�

), which is true in any weak inclusion system, in particular

in Sets.

2

The following lemma is a generalization of the Closure Lemma for an institution with inclusions.

Lemma 33 Generalization of the Closure Lemma: If { : ' ,! � and {

0

: '

0

,! �

0

are two inclusions

and h : '! '

0

, g : �! �

0

are two morphisms such that {; g = h; {

0

, then h(Th

�

'

(A)) � Th

�

0

'

0

(g(A)).

Proof: Let a be a '-sentence in Th

�

'

(A), that is A j=

�

a. Then by Proposition 24, we get g(A) j=

�

0

g(a).

But g(a) = h(a) because Sen preserves the inclusions, and so h(a) belongs to Th

�

0

'

0

(g(A)). 2

The standard Closure Lemma can be obtained from the previous lemma when { and {

0

are identities, that is,

when there are no private features.

3.2 Motivation

We have already shown in Example 30 that the module speci�cations help us �nitely specify in�nite data

structures. Moreover, Ro�su and Goguen [18] showed that a (�nite) equivalent module speci�cation can be

built for any (�nite) behavioral speci�cation, so in some way, the module speci�cations are more general

than the behavioral speci�cations.

The next example presents a possible scenario in a software project in which hiding information prove to

be an elegant solution to avoid capturing operation symbols:

Example 34 Example 29 showed a re�nement of the REV module, in which an auxiliary operation aux was

introduced in order to transform the slow recursion in a more e�cient tail recursion. It is often the case

that some modules are real bottle-necks in big software projects, so their re�nement can produce a serious

improvement over the whole program. However, the re�nement of a particular module should not a�ect the

functionality of the other modules. Let us assume the following scenario in a software project.

� X writes the module REV using the ine�cient recursion (the second REV module in Example 29).

� Many other programmers import the REV module. Among them, Y writes the code:

obj Y is pr REV[NAT] .

op zip : List -> List .

op aux : List List -> List .

vars L P : List . vars N M : Nat .

eq zip(L) = aux(L, rev(L)) .

eq aux (nil, nil) = nil .

eq aux (N L, M P) = N M aux(L, P) .

endo

Y's intention is to zip a list with its reverse. For example, zip(1 2 3 4 5) gives (1 5 2 4 3 3 4 2

5 1). Y's choice (very natural, anyway) is to de�ne an auxiliary operation aux which zips two lists of

the same length and then to de�ne the zip operation using the auxiliary function as above.

� X receives many complains from other members in the team that the module REV is not e�cient, so he

decides to re�ne it using tail recursion, as in the �rst REV module in Example 29, making it �ve times

faster.

11

If aux cannot be declared private in REV, then the functionality of the module Y is unexpectedly damaged.

This is because REV captured an operation in Y which happened to have the same name, aux. The result of

zip(1 2 3 4 5) is now (5 4 3 2 1 5 4 3 2 1).

Overloading resolution might seem to solve this kind of problems, but unfortunately this is not the case

as long as order sorted speci�cations and polymorphism are desired. For example, a supersort List? of List

can be introduced in the module Y and aux can be declared as aux : List List? -> List, and still the

same wrong result is obtained.

Consequently, a local re�nement damaged the whole program instead of producing a global re�nement as

expected. If there is no mechanism to allow hiding operations, then discussion between programmers seems

to be the only solution to avoid con
icts on re�nements. 2

3.3 De�nition and Properties of Module Speci�cations

This subsection �rst introduces the very intuitive notion of module speci�cation, and then shows that the

associated category is equivalent to Th. Finally, the conservatism of a module, which says that the public

features of that module together with the private ones give a conservative extension of the public features,

is presented as a basic property of module speci�cations.

De�nition 35 A module speci�cation is a triple (';�; A), where ';� 2 Sign such that ' ,! � and

A is a set of �-sentences. The signature ' is called the visible (or public) signature and � is called

the working signature. A morphism h : (';�; A) ! ('

0

;�

0

; A

0

) of module speci�cations is a signature

morphism h : '! '

0

such that h(Th

�

'

(A)) � Th

�

0

'

0

(A

0

). 2

Notation 36 We let upper-case letters like M;N;P; : : : denote module speci�cations. For a module M =

(';�; A), let Th(M) denote the set Th

�

�

(A) and call it the set of working theorems of M , and by V th(M)

the set of '-visible theorems of A, and call it the set of visible theorems of M . 2

Fact 37 The module speci�cations together with the morphisms of module speci�cations give a category.

2

Notation 38 Let MSpec denote the category of module speci�cations with morphisms of module speci�-

cations. 2

De�nition 39 We de�ne an application M from Th to MSpec, by M(�; A) = (�;�; A) for any theory

(�; A), and M(h) = h for any morphism of theories h. 2

Proposition 40 M : Th!MSpec is an equivalence of categories.

Proof: According to Proposition 1, it su�ces to show that M is a full, faithful and dense functor. First,

observe that M is well-de�ned; this is because for any morphism h : (�; A)! (�

0

; A

0

) in Th we have

h(Th

�

�

(A)) = h(A

�

)

= h(A)

� A

0

�

= Th

�

0

�

0

(A

0

)

that is M(h) is a morphism in MSpec. It is left to the reader to check that M is a functor and that it is

full and faithful.

Now, let (';�; A) be a module speci�cation and consider the theory ('; Th

�

'

(A)). We claim that (';�; A)

and M('; Th

�

'

(A)) = ('; '; Th

�

'

(A)) are isomorphic, and that the signature identity 1

'

is the desired

isomorphism. Indeed, 1

'

: (';�; A)! ('; '; Th

�

'

(A)) is obviously a morphism of module speci�cations, and

its inverse 1

'

: ('; '; Th

�

'

(A)) ! (';�; A) is also a morphism because Th

'

'

(Th

�

'

(A)) � Th

�

'

(A) (see Fact

32). 2

12

Corollary 41 M is part of an adjoint equivalence, where its left adjoint T : MSpec ! Th is de�ned

as T (';�; A) = ('; Th

�

'

(A)) on objects and identity on morphisms; the unit of adjunction is the identity

1

'

: (';�; A)! ('; '; Th

�

'

(A)).

Proof: It follows from Theorem 1, pg. 91 in [13]. 2

Notation 42 Let U : MSpec ! MSpec denote the functor T ;M, taking modules (';�; A) to modules

('; '; Th

�

'

(A)). 2

Thus the categoriesTh andMSpec are equivalent. Notice that T is also a right adjoint ofM. Therefore,

Th can be (modulo an isomorphism) viewed as a re
ective and core
ective subcategory of MSpec.

Proposition 43 MSpec is cocomplete if Sign is cocomplete.

Proof: It is known that Th is cocomplete if Sign is cocomplete (see [7]); because MSpec and Th are

equivalent, we deduce that MSpec is cocomplete, too. 2

Moreover, since the two categories are equivalent, every \categorical property" (see [11]) of Th is a property

of MSpec, too. In particular, the pushouts are preserved and re
ected by the functors M and T .

As we have already said, only the visible consequences of a module speci�cation has to be respected by

any implementation of a module:

De�nition 44 We say that a '-model m satis�es the module speci�cation M = (';�; A) if and only if

m j=

'

V th(M), and write m j= M . 2

Proposition 45 Let M = (';�; A) and M

0

= ('

0

;�

0

; A

0

) be two module speci�cations, h : M ! M

0

be a

morphism of module speci�cations, and let m

0

be a '

0

-model such that m

0

j= M

0

. Then m

0

�

h

j= M .

Proof: It follows from the following:

m

0

j= ('

0

;�

0

; A

0

) i� m

0

j=

'

0

Th

�

0

'

0

(A

0

) (De�nition 44)

implies m

0

j=

'

0

h(Th

�

'

(A)) (h is a morphism in MSpec)

i� m

0

�

h

j=

'

Th

�

'

(A) (Satisfaction Condition)

i� m

0

�

h

j= (';�; A) (De�nition 44)

2

The proposition above proves that, for any institution with inclusions, the model functor Mod extends to

MSpec, by mapping a module speci�cation M to the full subcategory Mod(M) of Mod(') formed by the

'-models that satisfy M .

Now we are ready to introduce a very important concept, the conservatism of a module speci�cation, which

plays a central role in the basic module operations. But �rst, let us discuss about syntactic conservatism, a

notion that appears often in the literature:

De�nition 46 A theory extension (�; A) ,! (�

0

; A

0

) is syntactically conservative i� A = A

0

\ Sen(�).

2

Fact 47 If M = (';�; A) is a module speci�cation then ('; V th(M)) ,! (�; Th(M)) is syntactically con-

servative.

Proof: This is because

V th(M) = Th

�

'

(A)

= fa 2 Sen(') j A j=

�

ag

= fa 2 Sen(') j a 2 Th(M)g

= Th(M) \ Sen('):

2

As it is argued in [6], the syntactic conservatism is a necessary but insu�cient condition for true conser-

vatism. Therefore, it is not surprising that we need a stronger form of conservatism for module speci�cations:

13

De�nition 48 A module speci�cationM = (';�; A) is conservative if and only if the inclusion of theories

('; V th(M)) ,! (�; Th(M)) is conservative (see De�nition 23). 2

It can be easily seen that a module which has only public features (or, in other words, a standard

speci�cation) is conservative.

4 Operations on Module Speci�cations

We formulate the usual operations on modules, which often appear in the literature, in our modularization

approach. Two special points are emphasized: one of them regards the visible theorems of the composed

module in terms of the visible theorems of the modules involved in the operation, and the other one regards

the conservatism of the composed module (see the Propositions 54, 59, 64, 71 and 77).

Many of the results exposed in this section require some modules to be conservative; the most important

one, Theorem 78, says that the instantiation of a parameterized module is a pushout in MSpec, as long as

the body of the parameterized module and the interpretation module of the interface of the parameterized

module are conservative. This justi�es our pervasive care of conservatism.

4.1 Renaming

In the standard algebraic speci�cations, the renaming operation is very natural: all what a renaming by a

morphism h : � ! �

0

does to a speci�cation (�; A), is to rename each �-expression in A accordingly, the

result being (�; A) � h = (�

0

; h(A)). In our framework, the renaming operation is more complicated and it

is strictly dependent on the pushouts in Sign.

Assumption: Within this subsection, suppose that the working institution is semiexact and that Sign has

pushouts which preserve inclusions.

De�nition 49 Let M = (';�; A) be a module speci�cation and h : ' ! '

0

be a morphism in Sign. The

renaming of M by h, written M � h, is the module speci�cation ('

0

;�

h

; h

�

(A)) (see Notation 17). 2

The operation above is well de�ned because '

0

,! �

h

and h

�

(A) is a set of �

h

-sentences. The morphism

h which is able to rename the visible signature ' of M to '

0

is �rst extended to the morphism h

�

on the

whole working signature, and then A is renamed by h

�

.

Proposition 50 In the context above, h : M !M � h is a morphism of module speci�cations.

Proof: It follows from the generalized closure lemma, which says that h(Th

�

'

(A)) � Th

�

h

'

0

(h

�

(A)). 2

Corollary 51 For any '

h

-model m, if m j= M � h then m�

h

j= M .

Proof: It follows from Proposition 45. 2

It is known and easy to prove that (�; A) � h � g = (�; A) � (h; g) for standard speci�cations. This is not

necessary true for module speci�cations, because the pushouts preserving the inclusions can be chosen in

many di�erent ways in Sign. But,

Proposition 52 If the pushouts of inclusions in Sign are chosen in such a way that they can be composed

vertically (see section 2.2), then M � h � g = M � (h; g) where M = (';�; A) is a module speci�cation and

h : '! '

0

and g : '

0

! '

00

are two signature morphisms.

Proof: It follows from the following:

(';�; A) � h � g = ('

0

;�

h

; h

�

(A)) � g (De�ntion 49)

= ('

00

; (�

h

)

g

; g

(�

h

)

(h

�

(A))) (De�ntion 49)

= ('

00

;�

h;g

; (h; g)

�

(A)) (by hypothesis)

= (';�; A) � (h; g) (De�ntion 49):

2

14

In the standard theory of institutions [7], the equality h(A

�

)

�

= h(A)

�

holds for each speci�cation (�; A)

and each signature morphism h of source �. It can also be formulated for module speci�cations:

Lemma 53 If (';�; A) is a conservative module speci�cation and h : '! '

0

is a signature morphism, then

Th

'

0

'

0

(h(Th

�

'

(A))) = Th

�

h

'

0

(h

�

(A)):

Proof: From the generalized closure lemma (Lemma 33), h(Th

�

'

(A))) � Th

�

h

'

0

(h

�

(A)). Applying Th

'

0

'

0

to

the inclusion above, we obtain Th

'

0

'

0

(h(Th

�

'

(A))) � Th

�

h

'

0

(h

�

(A)) (because of Fact 32).

Conversely, let a 2 Sen('

0

) such that h

�

(A) j=

�

h

a and let m

0

be a '

0

-model such that m

0

j=

'

0

h(Th

�

'

(A)). Our goal is to show that m

0

j=

'

0

a. From Satisfaction Condition we get m

0

�

h

j=

'

Th

�

'

(A). Since

(';�; A) is conservative, it follows that there are some �-modelsm, such thatm�

'

= m

0

�

h

andm j=

�

Th

�

�

(A).

Since the working institution is semiexact and considering how pullbacks behave in Cat (see Proposition

2), there is a �

h

-model, let us say m

h

, such that m

h

�

h

�

= m and m

h

�

'

0

= m

0

. Then m

h

�

h

�

j=

�

A (because

m j=

�

Th

�

�

(A) and A � Th

�

�

(A)), and so m

h

j=

�

h

h

�

(A). Furthermore, m

h

j=

�

h

a because h

�

(A) j=

�

h

a.

Finally, m

h

j=

�

h

{

0

(a), and so m

h

�

{

0

j=

'

0

a; therefore m

0

j=

'

0

a. 2

The following proposition says that, under some hypotheses, the visible consequences (theorems) of a

renamed module are given by the closure (over the target visible signature) of the image (by the renaming

morphism) of the visible theorems of the initial module; also, it says that conservatism is preserved under

renaming:

Proposition 54 If M = (';�; A) is a conservative module speci�cation, then

1. V th(M � h) = h(V th(M))

�

where the closure in the right-hand side is done over '

0

-sentences.

2. M � h is conservative.

Proof: The �rst assertion is a direct consequence of the Lemma 53. For the second one, let m be a '

0

-model

of Th

�

h

'

0

(h

�

(A)), that is m j=

'

0

('

0

; V th(M � h)). This is also equivalent to saying that m is a model of

M � h. By Corollary 51, m�

h

is a '-model of Th

�

'

(A). Then by the conservatism of (';�; A), there is a

�-model m

�

of A such that m

�

�

'

= m�

h

. But the pair of morphisms h

�

and '

0

,! �

h

is a pushout of h

and ' ,! �; therefore, by semiexactness and the construction of pullbacks in Cat, there is a �

h

-model m

0

such that m

0

�

(h

�

)

= m

�

and m

0

�

'

0

= m. Then by the Satisfaction Condition, m

0

j=

�

h

h

�

(A), that is m

0

is a �

h

-model of Th

�

h

�

h

(h

�

(A)). Therefore, for a '

0

-model m of V th(M � h) we found a �

h

-model m

0

of

Th(M � h) such that m

0

�

'

0

= m; this certi�es that M � h is conservative. 2

Corollary 55 If M = (';�; A) is a conservative module speci�cation, then m j= M � h i� m�

h

j= M for

any '

h

-model m.

Proof: It follows from the following chain of equivalences:

m�

h

j= M i�

m�

h

j=

'

V th(M) i� (Satisfaction Condition)

m j=

'

h

h(V th(M)) i�

m j=

'

h

h(V th(M))

�

i� (Proposition 54)

m j=

'

h

V th(M � h) i�

m j= M � h

Observe that one implication is exactly the Corollary 51, and it does not need the conservatism of M . 2

4.2 Hiding

The information hiding, a very important technique in modern computing, can be very naturally handled

by our module speci�cations. To hide some features (sorts and operations) of a module, is the same thing

as to allow only a reduced signature to be visible:

15

De�nition 56 If M = (';�; A) is a module speci�cation and is a subsignature of ', then de�ne 2M

as being the module speci�cation (;�; A). 2

Bergstra, Heering and Klop [1] called 2 the \export operator", and Diaconescu, Goguen and Stefaneas [6]

called it the \information hiding operator". We prefer the second variant for our approach.

Proposition 57 If we let { denote the inclusion ,! ' in the de�nition above, then { : 2M ! M is a

morphism of module speci�cations.

Proof: The Fact 32 yields Th

�

(A) � Th

�

'

(A), that is { is a morphism of module speci�cations. 2

Corollary 58 For any '-model m, if m j= M then m�

j= 2M .

Proof: It follows from Proposition 45. 2

Of course, only a reduced number of visible theorems remain visible after an information hiding operation.

The following proposition shows the relation between the visible theorems of 2M and the visible theorems

of M ; also, it presents a su�cient condition under which 2M is conservative:

Proposition 59 Let M = (';�; A) be a module speci�cation, ,! ' be an inclusion of signatures, and let

N be the module (; '; V th(M)). Then:

1. V th(2M) = V th(N).

2. 2M is conservative if M and N are conservative.

Proof: First, observe that N = (; '; V th(M)) is a well-de�ned module speci�cation because ,! ' and

V th(M) � Sen(').

1. The equality is equivalent to Th

�

(A)) = Th

'

(Th

�

'

(A)), which is true (see Fact 32).

2. Consider a -model m of Th

�

(A)). Since Th

�

(A)) = Th

'

(Th

�

'

(A)), then by the conservatism of

(; '; Th

�

'

(A)), there are some '-models m

0

of Th

'

'

(Th

�

'

(A)) = Th

�

'

(A) such that m

0

�

= m. Then

by the conservatism of (';�; A) there are some �-models m

00

of Th

�

�

(A) with m

00

�

'

= m

0

. Therefore

m

00

�

= m, that is (';�; A) is conservative.

2

4.3 Enriching

Sometimes, we need to enrich a module speci�cation by adding new operations and new sentences to the

initial ones. The language lileana [22] implements this operation by adding a partial signature to the initial

signature, obtaining a new signature, and then adding some sentences over the enriched signature to the

initial ones. We do not o�er support for partial signatures in our approach, but we can consider directly the

extended signatures. A module speci�cation can be enriched both with visible and with private features:

De�nition 60 If M = (';�; A) is a module speci�cation and ('

0

;�

0

; A

0

) is another module speci�cation

such that ' ,! '

0

and � ,! �

0

, then de�neM � (add '

0

;�

0

; A

0

) as being the module speci�cation ('

0

;�

0

; A[

A

0

). 2

It can be readily seen that the de�nition above is correct.

Proposition 61 If { is the inclusion ' ,! '

0

above, then { : M ! M � (add '

0

;�

0

; A

0

) is a morphism of

module speci�cations.

Proof: We have to show that Th

�

'

(A) � Th

�

0

'

0

(A [A

0

); this follows from 2., 4. and 5. in Fact 32. 2

Corollary 62 For any '

0

-model m, if m j= M � (add '

0

;�

0

; A

0

) then m�

'

j= M . 2

16

Enriching is a technique which appears often both in computing and mathematics. In computing, it

can be met mostly in re�nement, when a formal speci�cation is enriched with (eventually implementation)

details. In mathematics, there are well-known situations in which a result cannot be proved as easily into

only one theory (geometry, algebra, analysis, etc.) as into an enriched theory. For example, many geometry

problems admit straightforward and neat proofs making use of trigonometry, complex numbers or algebraic

tools (or combination of them), but they admit very di�cult and awful proofs using only pure geometry.

The visible segment of these enriched theories is still the pure geometry.

Lemma 63 If (�;�

0

; A

0

) is a conservative module speci�cation and A is a set of �-sentences, then

Th

�

0

�

(A [A

0

) = Th

�

�

(A [Th

�

0

�

(A

0

)):

Proof: Since A � Th�

�

0

(A [A

0

) and Th

�

0

�

(A

0

) � Th

�

0

�

(A [A

0

), by Fact 32 it follows that Th

�

�

(A [

Th

�

0

�

(A

0

)) � Th

�

0

�

(A [A

0

). Conversely, let a be a �-sentence in Th

�

0

�

(A [A

0

). In order to prove that a

is in Th

�

�

(A [Th

�

0

�

(A

0

)), take a �-model m of A [Th

�

0

�

(A

0

). Since (�;�

0

; A

0

) is conservative, there is a

�

0

-model m

0

of A

0

such that m

0

�

�

= m. But m j=

�

A, that is m

0

�

�

j=

�

A; then by the Satisfaction Condition

we get m

0

j=

�

0

A. Therefore, m

0

j=

�

0

A [A

0

, and so m

0

j=

�

0

a, because we supposed that A [A

0

j=

�

0

a.

Consequently, by the Satisfaction Condition we obtain that m

0

�

�

j=

�

a, that is m�

�

a, which certi�es that

a is in Th

�

�

(A [Th

�

0

�

(A

0

)). 2

A special case of enrichment arises often in practice, namely, the one in which a module needs to be

enriched only with some private features; within our formalism (De�nition 60), this means that ' = '

0

.

The following proposition shows a way to express the visible theorems of such an enriched module; also it

presents a su�cient condition under which the enriched module is conservative:

Proposition 64 Let M = (';�; A) be a module speci�cation which is going to be enriched with some new

sentences A

0

over an extension �

0

of �, such that the module M

0

= (�;�

0

; A

0

) is conservative. Then

1. V th(M � (add ';�

0

; A

0

)) = V th((';�; A [V th(M

0

))),

2. M � (add ';�

0

; A

0

) is conservative whenever (';�; A [V th(M

0

)) is conservative.

Proof: Taking the '-visible theorems of the two sides in the equality given by Lemma 63, we get:

Th

�

0

'

(A [A

0

) = Th

�

'

(A [Th

�

0

�

(A

0

)):

1. It follows from the following equalities:

V th(M � (add ';�

0

; A

0

)) = V th((';�

0

; A [A

0

))

= Th

�

0

'

(A [A

0

)

= Th

�

'

(A [Th

�

0

�

(A

0

))

= V th((';�; A [V th(M

0

))):

2. Letm be a '-model of V th(M �(add ';�

0

; A

0

)). Thenm is also a '-model of V th((';�; A[V th(M

0

))).

Since (';�; A[V th(M

0

)) is conservative, there is a �-model m

�

of A[V th(M

0

) such that m

�

�

'

= m.

Now, becauseM

0

is conservative, there is a �

0

-modelm

0

of A

0

such thatm

0

�

�

= m

�

. By the Satisfaction

Condition, it follows that m

0

j=

�

0

A. Therefore, m

0

j=

�

0

A [A

0

and, of course, m

0

�

'

= m.

2

The following two subsections are dedicated to two of the most important module operations, the ag-

gregation and the parameterization. Because of their complexity, the working institution needs one more

property; even if not all of the results need it, we make the following assumption in order to get a simpler

presentation:

Assumption: From now on in the paper, suppose that the working institution is semiexact.

17

4.4 Aggregation

Module aggregation is the
at combination of modules. In practical examples, usually the modules have

some common inherited modules; these inherited modules are shared in the aggregation (i.e., they appear

only once), but all the symbols introduced in a module are tagged with the name of that module to avoid

con
icts of symbol names in the aggregations. Because of this strategy, the operation of \putting together"

two or more modules reduces to ordinary unions of signatures and sentences; only the symbols in the shared

inherited modules overlap. This allows us to formalize this concept at institutional level:

De�nition 65 For any two module speci�cations M = (';�; A) and M

0

= ('

0

;�

0

; A

0

), we de�ne their

aggregation M +M

0

as being the module speci�cation (' ['

0

;� [�

0

; A [A

0

). 2

Notice that the de�nition above is correct because ' ['

0

,! � [�

0

by Fact 4, and A [A

0

is a set of

� [�

0

-sentences as Sen preserves inclusions.

Fact 66 Aggregation is commutative, associative and idempotent. 2

Enriching is a special case of aggregation in our institutional approach, because M � (add '

0

;�

0

; A

0

) =

M + ('

0

;�

0

; A

0

). But this is only a syntactic issue, because the theory we develop for aggregation suppose

that the modules involved do not have any common private symbols; this does not happen for enriching

viewed as a special kind of aggregation.

Proposition 67 If one lets { and {

0

denote the inclusions ' ,! ' ['

0

and '

0

,! ' ['

0

in the de�nition

above, then { : M !M +M

0

and {

0

: M

0

!M +M

0

are morphisms of module speci�cations.

Proof: This is because Th

�

'

(A) � Th

�[�

0

'['

0

(A [A

0

) and Th

�

0

'

0

(A

0

) � Th

�[�

0

'['

0

(A [A

0

) (see 2., 4. and 5. in

Fact 32). 2

Corollary 68 If m j= M +M

0

then m�

'

j= M and m�

'

0

j= M

0

. 2

We call the following result \theorem" because of its crucial role in what follows. Informally, it says that

if two conservative modules have no common private symbols, then each model (over the union of the visible

signatures) of both sets of the visible theorems can be extended to a model (over the working signatures) of

both sets of working theorems:

Theorem 69 If M = (';�; A) and M

0

= ('

0

;�

0

; A

0

) are two conservative module speci�cations such that

' \ '

0

= � \ �

0

, then for any ' ['

0

-model m of both V th(M) and V th(M

0

) as sets of ' ['

0

-sentences,

there is a � [�

0

-model m

0

of both Th(M) and Th(M

0

) as sets of � [�

0

-sentences, such that m

0

�

'['

0

= m.

Proof: By the Satisfaction Condition, m�

'

j=

'

Th

�

'

(A) and m�

'

0

j=

'

0

Th

�

0

'

0

(A

0

). Since (';�; A) and

('

0

;�

0

; A

0

) are conservative, there are some �-models m

�

of A and some �

0

-models m

�

0

of A

0

such that

m

�

�

'

= m�

'

and m

�

0

�

'

0

= m�

'

0

.

'

� � //
q�

""❋
❋❋

❋❋
❋❋

❋❋ �

� r

$$❏
❏❏

❏❏
❏❏

❏❏
❏

� \ �

0

=

' \ '

0

-

<<①①①①①①①①①

q�

""❊
❊❊

❊❊
❊❊

❊❊
' ['

0

� � //
� [�

0

'

0

-

<<②②②②②②②②②
�� //

�

0

�
,

::✉✉✉✉✉✉✉✉✉✉

Then by the functoriality of the reducts,

m

�

�

'\'

0

= (m

�

�

'

)�

'\'

0

= (m�

'

)�

'\'

0

= m�

'\'

0

= (m�

'

0

)�

'\'

0

= (m

�

0

�

'

0

)�

'\'

0

= m

�

0

�

'\'

0

18

Since � \ �

0

= ' \ '

0

, by strongness, semiexactness and the construction of pullbacks in Cat, there is a

(unique) � [�

0

-model m

0

such that m

0

�

�

= m

�

and m

0

�

�

0

= m

�

0

; thus m

0

�

�

j=

�

A and m

0

�

�

0

j=

�

0

A

0

. Then

by the Satisfaction Condition, m

0

j=

�[�

0

A [A

0

; it is left to the reader to observe that this is similar to

saying that m

0

is a model of both Th(M) and Th(M

0

). It can be readily checked that (m

0

�

'['

0

)�

'

= m�

'

and (m

0

�

'['

0

)�

'

0

= m�

'

0

; therefore m

0

�

'['

0

veri�es the conditions which are uniquely veri�ed by m (because

the union of ' and '

0

is a pushout of their intersection, and because of the strongness and semiexactness of

the institution and the construction of pullbacks in Cat). Thus m

0

�

'['

0

= m. 2

The relation (A [A

0

)

�

= (A

�

[A

0

�

)

�

holds for any standard speci�cations (�; A) and (�

0

; A

0

). It does

not necessarily hold for module speci�cations. But,

Lemma 70 Let (';�; A) and ('

0

;�

0

; A

0

) be two conservative module speci�cations such that '\'

0

= �\�

0

.

Then

Th

�[�

0

'['

0

(A [A

0

) = Th

'['

0

'['

0

(Th

�

'

(A) [Th

�

0

'

0

(A

0

)):

Proof: Obviously, Th

�

'

(A) � Th

�[�

0

'['

0

(A [B) and also Th

�

0

'

0

(B) � Th

�[�

0

'['

0

(A [B), so Th

'['

0

'['

0

(Th

�

'

(A) [

Th

�

0

'

0

(B)) � Th

�[�

0

'['

0

(A [B).

Conversely, let us consider a ' ['

0

-sentence a such that A [A

0

j=

�[�

0

a, and let m be a ' ['

0

-

model for Th

�

'

(A) and Th

�

0

'

0

(A

0

). According to Theorem 69, there exists a � [�

0

-model m

0

of A [A

0

such that m

0

�

'['

0

= m. Then m

0

j=

�[�

0

a, and so by the Satisfaction Condition, m

0

�

'['

0

j=

'['

0

a, that

is m j=

'['

0

a. Consequently, a is in Th

'['

0

'['

0

(Th

�

'

(A) [Th

�

0

'

0

(A

0

)) and it certi�es that Th

�[�

0

'['

0

(A [A

0

) �

Th

'['

0

'['

0

(Th

�

'

(A) [Th

�

0

'

0

(A

0

)). 2

In terms of aggregations, we get:

Proposition 71 Let M = (';�; A) and M

0

= ('

0

;�

0

; A

0

) be two conservative module speci�cations, such

that ' \ '

0

= � \ �

0

. Then

1. V th(M +M

0

) = (V th(M) [V th(M

0

))

�

, where the closure in the right-hand side is done over ' ['

0

-

sentences.

2. M +M

0

is conservative.

Proof:

1. It follows immediately from Lemma 70.

2. Take a ' ['

0

-model m of Th

�[�

0

'['

0

(A [A

0

). Then m is also a ' ['

0

-model of Th

�

'

(A) and Th

�

0

'

0

(A

0

),

and by Theorem 69 there is a � [�

0

-model m

0

of A [A

0

such that m

0

�

'['

0

= m. Therefore, m

0

is a

� [�

0

-model of Th

�[�

0

�[�

0

(A [A

0

); this certi�es that (';�; A) + ('

0

;�

0

; A

0

) is conservative.

2

Corollary 72 In the context of the proposition above, ifm is a '['

0

model thenm j= M +M

0

i�m�

'

j= M

and m�

'

0

j= M

0

Proof: It follows from the following equivalences:

m j= M +M

0

i�

m j=

'['

0

V th(M +M

0

) i� (Proposition 71)

m j=

'['

0

(V th(M) [V th(M

0

))

�

i�

m j=

'['

0

V th(M) [V th(M

0

) i�

m j=

'['

0

V th(M) and m j=

'['

0

V th(M

0

) i�

m�

'

j=

'

V th(M) and m�

'

0

j=

'

0

V th(M

0

) i�

m�

'

j= M and m�

'

0

j= V th(M

0

)

Only one implication is interesting in this corollary, the other one being the Corollary 68 which needs neither

conservatism nor ' \ '

0

= � \ �

0

. 2

19

Corollary 73 If the working institution is distributive andM

j

= ('

j

;�

j

; A

j

) for j 2 1::n are n conservative

module speci�cations such that �

i

\ �

j

= '

i

\ '

j

for all i; j 2 1::n with M

i

6=M

j

, then:

1. V th(M

1

+� � �+M

n

) = (V th(M

1

)[:::[V th(M

n

))

�

, where the closure is done over '

1

[:::['

n

-sentences,

2. M

1

+ � � �+M

n

is conservative, and

3. m j= M

1

+ � � �+M

n

i� m�

'

j

j= M

j

for all j 2 1::n, where m is a '

1

[::: ['

n

-model.

2

4.5 Parameterization

One of the most e�ective ways to reuse software is parameterization.

Assumption: Within this subsection, suppose

9

that the category Sign in the working institution has

pushouts which preserve inclusions, and an initial object ;.

De�nition 74 A parameterized module speci�cation M [�

1

:: P

1

; :::; �

n

:: P

n

] is a set of morphisms of

module speci�cations �

j

; {

j

: P

j

!M where M = (';�; A) and P

j

= (�

j

;�

j

; B

j

) for j 2 1::n, such that:

� �

j

: �

j

! '

j

are isomorphisms of signatures,

� {

j

: '

j

,! ' are inclusions of signatures, and

� '

1

; :::; '

n

are disjoint.

We say that M is parameterized by �

1

; :::; �

n

. P

1

; :::; P

n

are called interfaces and M body. 2

This de�nition implies automatically that �

j

(V th(P

j

) � V th(M) for all j 2 1::n.

De�nition 75 Given a parameterized module M [�

1

:: P

1

; :::; �

n

:: P

n

] as above and morphisms of module

speci�cations h

j

: P

j

! M

j

with M

j

= (

j

;

j

; A

j

) for all j 2 1::n, the instantiation of M by h

1

; :::; h

n

,

written M [h

1

; :::; h

n

], is the module

('

h

;�

(h

'

)

[

S

n

j=1

j

; (h

'

)

�

(A) [

S

n

j=1

A

j

);

where h =

S

n

j=1

�

�1

j

;h

j

(see De�nition 9 and Proposition 12, and also Notation 17):

'

i

� � //

�

�1

i

;h

i

��

S

n

j=1

'

j

� � //

h

��

'

� � //

h

'

��

�

(h

'

)

�

��

i

� � //
S

n

j=1

j

� � //
'

h

� � //
�

(h

'

)

2

Notice that since '

1

; :::; '

n

are disjoint, by 2. in Proposition 12 h =

S

n

j=1

�

�1

j

;h

j

exists and it is well

de�ned. Therefore, the instantiation module M [h

1

; :::; h

n

] is obtained renaming M by h

'

and then adding

all modules M

j

.

Proposition 76 In the context of De�nition 75,

1. h

'

: M !M [h

1

; :::; h

n

] is a morphism of module speci�cations.

2.

S

n

j=1

j

,! '

h

is a morphism of module speci�cations, from M

1

+ � � �+M

n

to M [h

1

; :::; h

n

].

3. M [h

1

; :::; h

n

] =M � h

'

+M

1

+ � � �+M

n

.

Proof: 1. h

'

: M !M [h

1

; :::; h

n

] is a morphism of module speci�cations because:

h

'

(V th(M)) = h

'

(Th

�

'

(A))

� Th

�

(h

'

)

'

h

((h

'

)

�

(A)) (Lemma 33)

� Th

�

(h

'

)

[

S

n

j=1

j

'

h

((h

'

)

�

(A) [

S

n

j=1

A

j

) (2: and 5: in Fact 32)

= V th(M [h

1

; :::; h

n

])

9

In addition to semiexactness.

20

2. It is straightforward, since Th

S

n

j=1

j

S

n

j=1

j

(

S

n

j=1

A

j

) � Th

�

(h

'

)

[

S

n

j=1

j

'

h

((h

'

)

�

(A) [

S

n

j=1

A

j

) by 2., 4. and

5. in Fact 32.

3. It follows from the following equalities:

M � h

'

+M

1

+ � � �+M

n

=

= (';�; A) � h

'

+ (

1

;

1

; A

1

) + � � �+ (

n

;

n

; A

n

)

= ('

h

;�

(h

'

)

; (h

'

)

�

(A)) + (

1

;

1

; A

1

) + � � �+ (

n

;

n

; A

n

) (De�nition 49)

= ('

h

[

S

n

j=1

j

;�

(h

'

)

[

S

n

j=1

j

; (h

'

)

�

(A) [

S

n

j=1

A

j

) (De�nition 65)

= ('

h

;�

(h

'

)

[

S

n

j=1

j

; (h

'

)

�

(A) [

S

n

j=1

A

j

) (2: in Fact 4)

= M [h

1

; :::; h

n

] (De�nition 75)

2

The following proposition expresses the visible theorems of the instantiation module in terms of the

visible theorems of the modules involved; it also shows that the instantiated module can be conservative

even if the interface of the parameterized module is not conservative:

Proposition 77 In the same context of De�nition 75, if the working institution is distributive and

� M;M

1

; :::;M

n

are conservative,

� �

(h

'

)

\

j

=

j

for all j 2 1::n, and

�

i

\

j

=

i

\

j

for all i; j 2 1::n, with M

i

6=M

j

,

then

1. V th(M [h

1

; :::; h

n

]) = (h

'

(V th(M)) [

S

n

j=1

V th(M

j

))

�

, where the closure is done over '

h

-sentences,

and

2. M [h

1

; :::; h

n

] is conservative, and

3. m j= M [h

1

; :::; h

n

] i� m�

h

'

j= M and m�

'

j

j= M

j

for all j 2 1::n, where m is a '

h

-model.

Proof: By Proposition 54, V th(M � h

'

) = h

'

(V th(M))

�

and M � h

'

is conservative, where the closure is

done over '

h

-sentences. Since M [h

1

; :::; h

n

] =M � h

'

+M

1

+ � � �+M

n

, iteratively applying Proposition 71

we get that V th(M [h

1

; :::; h

n

]) = (h

'

(V th(M))

�

[

S

n

j=1

V th(M

j

))

�

and M [h

1

; :::; h

n

] is conservative, where

the closures are over '

h

-sentences. The rest follows from 2. in Fact 20.

3 follows immediately from the Corollaries 55 and 72. 2

The hypothesis �

(h

'

)

\

j

=

j

in the proposition above is not restrictive at all. It says that the private

symbol names in M should be eventually changed in the instantiated module, to avoid con
icts with private

symbols in M

j

.

A very important property of parameterization says that the instantiatiated module is a colimit:

Theorem 78 In the context of De�nition 75, if S

ij

are

i

\

j

-modules such that V th(S

ij

) � V th(M

i

) \

V th(M

j

) (we think of S

ij

as being the shared features of M

i

and M

j

) for all i; j 2 1::n, then M [h

1

; :::; h

n

]

is a colimit of the diagram:

M

1

P

1

h

1oo

�

1

;{

1

✵✵
✵✵
✵✵
✵

��✵
✵✵
✵✵
✵✵M

i

P

i

h

ioo

�

i

;{

i

❆❆
❆

 ❆
❆❆

❆

S

ij

{

i

ij

==④④④④④④④④

{

j

ij !!❇
❇❇

❇❇
❇❇

❇ M

M

j

P

j

h

joo

�

j

;{

j⑦⑦⑦

>>⑦⑦⑦⑦

M

n

P

n

h

noo

�

n

;{

n

✍✍✍✍✍✍✍

GG✍✍✍✍✍✍✍

21

where {

i

ij

is the inclusion

i

\

j

,!

i

, for all i; j 2 1::n.

Proof: Notice that {

i

ij

: S

ij

! M

i

are morphisms of modules. Also, notice that a cocone of the diagram

above is equivalent to giving a module C, a morphism f : M ! C, and morphisms g

j

: M

j

! C such that:

� h

i

; g

i

= �

i

; {

i

; f for all i 2 1::n, and

� {

i

ij

; g

i

= {

j

ij

; g

j

for all i; j 2 1::n.

The following �gure might help the reader follow the rest of the proof:

'

i

� � //

�

�1

i

;h

i

��

S

n

j=1

'

j

h

��

� � //
'

h

'

��
f

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳

i

� � //

g

i

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱

S

n

j=1

j

� � //

g

((

'

h

r

��

First, let us show that h

'

: M !M [h

1

; :::; h

n

] and

i

,! '

h

: M

i

!M [h

1

; :::; h

n

] for i 2 1::n is a cocone:

� Let i 2 1::n. Then,

h

i

; (

i

,! '

h

) = (�

i

;�

�1

i

);h

i

; ((

i

,!

S

n

j=1

j

); (

S

n

j=1

j

,! '

h

))

= �

i

; ((�

�1

i

;h

i

); (

i

,!

S

n

j=1

j

)); (

S

n

j=1

j

,! '

h

)

= �

i

; (('

i

,!

S

n

j=1

'

j

);h); (

S

n

j=1

j

,! '

h

)

= �

i

; ('

i

,!

S

n

j=1

'

j

); (h; (

S

n

j=1

j

,! '

h

))

= �

i

; ('

i

,!

S

n

j=1

'

j

); ((

S

n

j=1

'

j

,! ');h

'

)

= �

i

; (('

i

,!

S

n

j=1

'

j

); (

S

n

j=1

'

j

,! '));h

'

= �

i

; {

i

;h

'

:

� It is straightforward that {

i

ij

; (

i

,! '

h

) = {

j

ij

; (

j

,! '

h

), because there is only one inclusion

i

\

j

,!

'

h

.

Now, let f : M ! C and g

i

: M

i

! C for all i 2 1::n be another cocone, with C = (;
; B). Then

together with the morphisms of signatures g

i

:

i

! for i 2 1::n form a cocone in Sign for the diagram

given by the pairs of inclusions

i

i

\

j

� � //? _oo

j

for all i; j 2 1::n, so by 2 in Fact 8 there is a unique morphism of signatures, let us call it g :

S

n

j=1

j

! ,

such that (

i

,!

S

n

j=1

j

); g = g

i

. Since

('

i

,!

S

n

j=1

'

j

); ((

S

n

j=1

'

j

,! '); f) = (('

i

,!

S

n

j=1

'

j

); (

S

n

j=1

'

j

,! ')); f

= {

i

; f

= (�

�1

i

;�

i

); {

i

; f

= �

�1

i

; (�

i

; {

i

; f)

= �

�1

i

; (h

i

; g

i

)

= (�

�1

i

;h

i

); g

i

= (�

�1

i

; ;h

i

); ((

i

,!

S

n

j=1

j

); g)

= ((�

�1

i

; ;h

i

); (

i

,!

S

n

j=1

j

)); g

= (('

i

,!

S

n

j=1

'

j

);h); g

= ('

i

,!

S

n

j=1

'

j

); (h; g);

by 1 in Fact 8, one gets (

S

n

j=1

'

j

,! '); f = h; g. But the rightmost square in the �gure at the beginning of

the proof is a pushout, so there is a unique r : '

h

! such that h

'

; r = f and (

S

n

j=1

j

,! '

h

); r = g.

22

We claim that r is a morphism of module speci�cations, from M [h

1

; :::; h

n

] to C. Indeed,

r(V th(M [h

1

; :::; h

n

])) = r((h

'

(V th(M)) [

S

n

j=1

V th(M

j

))

�

) (1 in Proposition 77)

� r(h

'

(V th(M)) [

S

n

j=1

V th(M

j

))

�

(Closure Lemma)

= (r(h

'

(V th(M))) [

S

n

j=1

r(V th(M

j

)))

�

= (f(V th(M)) [

S

n

j=1

g

j

(V th(M

j

)))

�

� V th(C)

�

= V th(C):

The uniqueness of r : M [h

1

; :::; h

n

] ! C follows from the uniqueness of r : '

h

! ' as a morphism of

signatures. Indeed, let r

0

: M [h

1

; :::; h

n

]! C be another morphism such that h

'

; r

0

= f and (

i

,! '

h

); r

0

=

g

i

for all i 2 1::n. Since the inclusions

i

,!

S

n

j=1

j

are an epimorphic family and

(

i

,!

S

n

j=1

j

); ((

S

n

j=1

j

,! '

h

); r

0

) = ((

i

,!

S

n

j=1

j

); (

S

n

j=1

j

,! '

h

)); r

0

= (

i

,! '

h

); r

0

= g

i

= (

i

,!

S

n

j=1

j

); g;

by 1 in Fact 8, (

S

n

j=1

j

,! '

h

); r

0

= g. Because of the uniqueness of r : '

h

! with h

'

; r = f and

(

S

n

j=1

j

,! '

h

); r = g, it follows that r

0

= r. 2

In practical examples, very often modules are parameterized by only one parameter. If this is the case,

then sharing between actual parameters is not a problem anymore, so a simpler result can be obtained:

Corollary 79 If M [�

1

:: P

1

] is a parameterized module and if h

1

: P

1

! M

1

is a morphism of module

speci�cations, then the square:

P

1

�

1

;{

1 //

h

1

��

M

h

'

��
M

1

{

//
M [h

1

]

is a pushout in MSpec, where h = �

�1

;h

1

and { =

1

,! '

h

.

Proof: It follows from Theorem 78, taking S

11

=M

1

. 2

5 Conclusions and Future Research

We introduced the module speci�cations as a generalization of the standard speci�cations, having both public

and private features, and then we showed that their category is equivalent to the category of theories. Basic

module composition operations were investigated, showing that under an intrinsic module condition called

conservatism, many properties of standard speci�cations can be lifted to module speci�cations. Our aim

was to obtain general results related to module composition; as far as we know, most special cases of logic

paradigms for programming languages verify the hypotheses of the results presented here.

One interesting area of further research is to explore how the results in the present paper can be extended

to a multi-institutional framework (e.g., see [5, 21]), as an abstract formalism for multi-paradigm speci�cation

languages. Distributivity laws and re�nement are other interesting areas open to further investigation in our

approach.

Another direction

10

could be to associate to any institution with inclusions and pushouts which preserve

inclusions a special institution where the category of signatures has inclusions of signatures as objects and

pairs of morphisms given by the pushouts which preserves inclusions as morphisms. This could allow us to

make use of the whole theory developed for standard speci�cations.

10

Thanks to R�azvan Diaconescu for suggesting that.

23

References

[1] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Association for Computing Machinery,

37(2):335{372, 1990.

[2] Jan Bergstra and John Tucker. Characterization of computable data types by means of a �nite equational

speci�cation method. In Jaco de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming,

Seventh Colloquium, pages 76{90. Springer, 1980. Lecture Notes in Computer Science, Volume 81.

[3] Virgil Emil C�az�anescu and Grigore Ro�su. Weak inclusion systems; part 2. Submitted for publication.

[4] Virgil Emil C�az�anescu and Grigore Ro�su. Weak inclusion systems.Mathematical Structures in Computer Science,

7(2):195{206, 1997.

[5] R�azvan Diaconescu. Extra theory morphisms in institutions: logical semantics for multi-paradigm languages.

Applied Categorical Structures, 6(4):427{453, 1998.

[6] R�azvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modularization. In Gerard Huet

and Gordon Plotkin, editors, Logical Environments, pages 83{130. Cambridge, 1993.

[7] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci�cation and programming. Jour-

nal of the Association for Computing Machinery, 39(1):95{146, January 1992.

[8] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, to appear. Also UCSD

Dept. Computer Science & Eng. Technical Report CS97{538, May 1997.

[9] Joseph Goguen and Grigore Ro�su. Hiding more of hidden algebra. In FM'99 { Formal Methods, pages 1704{1719.

Springer, 1999. Lecture Notes in Computer Sciences, Volume 1709, Proceedings of World Congress on Formal

Methods, Toulouse, France.

[10] Joseph Goguen and Will Tracz. An implementation-oriented semantics for module composition, 1997. In prepa-

ration.

[11] Horst Herrlich and George Strecker. Category Theory. Allyn and Bacon, 1973.

[12] Hendrik Hilberdink. Inclusion systems, 1996. Unpublished paper.

[13] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.

[14] Jos�e Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic Colloquium 1987, pages

275{329. North-Holland, 1989.

[15] Jos�e Meseguer and Joseph Goguen. Initiality, induction and computability. In Maurice Nivat and John Reynolds,

editors, Algebraic Methods in Semantics, pages 459{541. Cambridge, 1985.

[16] Istv�an N�emeti. On notions of factorization systems and their applications to cone-injective subcategories. Peri-

odica Mathematica Hungarica, 13(3):229{335, 1982.

[17] Grigore Ro�su. Axiomatizability in inclusive equational logic, 1996. Submitted to publication.

[18] Grigore Ro�su and Joseph Goguen. Hidden congruent deduction. In Ricardo Caferra and Gernot Salzer, editors,

Automated Deduction in Classical and Non-Classical Logics, pages 252{267. Springer, 2000. Lecture Notes in

Arti�cial Intelligence, Volume 1761; papers from a conference held in Vienna, November 1998.

[19] Donald Sannella and Andrzej Tarlecki. Speci�cations in an arbitrary institution. Information and Control,

76:165{210, 1988.

[20] Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David Pitt, Samson Abramsky, Axel Poign�e, and

David Rydeheard, editors, Proceedings, Summer Workshop on Category Theory and Computer Programming,

pages 334{360. Springer, 1986. Lecture Notes in Computer Science, Volume 240.

[21] Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors,

Recent Trends in Data Type Speci�cation, volume 1130 of Lecture Notes in Computer Science, pages 478{502.

Springer, 1996. Proceedings of 11th Workshop on Speci�cation of Abstract Data Types. Oslo, Norway, September

1995.

[22] William Tracz. lileanna: a parameterized programming language. In Proceedings, Second International Work-

shop on Software Reuse, pages 66{78, March 1993. Lucca, Italy.

24

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Category Theory . 2

2.2 Inclusions . 2

2.3 Institutions . 6

3 Module Speci�cations 8

3.1 Visible Theorems . 8

3.2 Motivation . 11

3.3 De�nition and Properties of Module Speci�cations . 12

4 Operations on Module Speci�cations 14

4.1 Renaming . 14

4.2 Hiding . 15

4.3 Enriching . 16

4.4 Aggregation . 18

4.5 Parameterization . 20

5 Conclusions and Future Research 23

25

