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A Computer Model of the Neural Substrates of
Classical Conditioning in the Aplysia

Mark A. Gluck & Richard F. Thompson
Stanford Universsty

“In ezperiments eztending over the past thirty years, I have been trying to
trace conditioned reflez paths through the brasn or to find the locus of
specific memory traces’’ -- Karl Lashley

When the essential neural circuit of a memory trace has been defined in sufficient
detail as a biological system, it becomes necessary to determine if the circuit will in fact
generate the phenomena of learning and memory that it is presumed to model. Even in
elementary circuits, it is not always evident what the outcome of a given set of stimulus
and training conditions will be at a qualitative-logical level of analysis. We report here an
initial attempt at such modeling, utilizing the general approach of associative network
modeling from cognitive science. We utilize the circuit of the Aplysia that exhibits ele-
mentary associative learning as identified by Kandel and associates (Hawkins, Castelluci,
and Kandel, 1981; Kandel and Schwartz, 1982; Carew, Hawkins, Abrams, and Kandel,
1985).

The immediate goal of our research was to implement a computational model of
the basic Aplysia circuit. By doing so, we hoped to arrive at an appropriate level of
analysis in terms of the degree to which the biological properties of the neurons in the cir-
cuit are described that will allow realistic characterization of the behavior of the circuit.
Our long-term goal is to utilize this level of computational analysis to account for the
phenomena of learning and memory exhibited by the more complex memory trace circuits
in the mammalian brain, particularly the cerebellar circuit that appears to be the essential
memory trace circuit for the learning of discrete, adaptive behavioral responses (McCor-
mick & Thompson, 1984a, 1981b; Clark, McCormick, Lavond & Thompson, 1984; Lavond,
McCormick & Thompson, 1984)

The basic reflex studied in the Aplysia is withdrawal of the siphon, mantle shelf
and gill to tactile stimulation of the siphon or mantle shelf. If weak stimulation of the
sensory nerves (CS) is followed by strong shock to the tail (US), the synaptic potential of
the motor neurons to the CS is facilitated. If repeated paired trials are given, this
enhancement persists, yielding the basic phenomenon of classical conditioning, a persisting
associatively induced increase in response of motor neurons to the CS. This conditioning
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depends critically on the time between presentation of the CS and the US, as noted above.
The tail shock US pathway involves interneurons which are thought to exert the US
presynaptic action on the sensory nerve terminals. Hawkins and Kandel (1984) propose
that conditioning results from the interplay of habituation and sensitization in a manner

very similar to the dual-process view of habituation suggested by Groves and Thompson
(1970).

Level of Analysis

Our primary focus in this modeling effort was on the behavioral conditioning data.
We began by specifying the level of description of the data in which we were interested, as
opposed to specifying, a priori, what level of biological detail we wanted to include in the
model. Our basic goal was to account for the effects of the temporal relations between
input events (CS and US) on the magnitude of output events (MN). In this paper we
focus only on short-term learning and exclude longer-term effects. Our strategy is to be
only as biologically precise as necessary in order to explain the relevant behavioral
phenomena. We began by starting with the simplest possible representation of the circuit.
After implementing this, and understanding what behavioral phenomena it did--and did
not—account for, we added complexity, constrained by the neurobiological data.

Components of basic model

The initial circuit is composed of three neurons and three synapses, as represented
in Figure 1(a). The neurons include: a (to be) conditioned stimulus: (CS), an uncondi-
tioned stimulus (US) and a motor neuron (MN). One fiber originates at the conditioned
stimulus and terminates as a synpase on the motor neuron (CS—MN synapse). Two
fibers originate at the unconditioned stimulus; one terminates as a synapse on the motor
neuron (US—MN synapse), and one terminates as a synapse on the CS—MN synapse
(US— {CS—MN} synapse).

Neurons are represented continuously by an Activation which ranges from 0 to 1.
This value is interpreted discretely during each time cycle as a binary value --fired or not
fired-- determined probabilistically from the activation. Synapses are represented continu-
ously by a Strength, which ranges from 0 to 1 and also has a probabilistic interpretation.
It represents the probability of a synaptic terminal passing a ‘‘pulse’ to the post-synaptic
neuron if the pre-synaptic neuron has fired. Each CS synaptic terminal has the potential
to be modified in a pairing specific manner which peaks some time after the synapse
receives a pulse. The time course of this potential determines the possible Inter-Stimulus-
Intervals. At this level of modeling we assumed that the CS synaptic terminals have this
temporal information without specifying the chemical or biological source.

The simulation begins by reading the input activation levels of the CS and US
neurons. From these activations the states of the neurons (e.g. fired or not fired) are pro-
babilistically determined. If an input neuron has fired, then with a probability determined
by the appropriate synaptic strengths, a pulse is received by the MIN. Thus, if the MN
receives a pulse from either input neuron, then MIN Activation increases exponentially,
proportional to 1 minus the current Activation, at a rate determined by the Activation
Increment Rate. If no pulse is received by the MIN, its Activation decreases exponentially
towards 0, at a rate determined by the Activation Decrement Rate. Every time a synaptic
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terminal passes a pulse, the strength of that synapse decreases exponentially at a rate
determined by the Habstuation Rate. If the US—{CS—MN} synaptic terminal passed a
pulse, then with probability CS-Plasticity-Potential (as determined by the Plasticity
Parameter) it will sensitize the CS—MN proportional to 1 - CS.Strength.

Stmple Associative Learning

The model successfully models the basic associative learning phenomena: In the
initial state, the US produces a large amount of activity in the MIN compared to only a
small amount produced by the CS. After repeated presentations of the CS followed by
the US at an optimal Inter-Stimulus Interval (ISI), the MN response produced by the CS
increased significantly. Following the removal of the US, both the CS—MN strength and
the MN activity during presentation of the CS decay back to their initial state, resulting
in the behavioral phenomena of extinction.

With simultaneous presentation of CS and US (e.g. ISI=0), little or no learning
occurs because the Sensitization Potential of the CS—MN synapse is at 0 when the US
fires. With an ISI that is longer than optimal, some learning occurs, but less learning than
with an optimal ISI.

More Complez Associative Learning

In addition to simple conditioning, we would like to model the mechanisms respon-
sible for differential conditioning, second order conditioning, and blocking. In differential
conditioning an animal learns to respond specifically to one conditioned stimulus and not
to another unconditioned stimulus. In the Aplysia, a CS+ is presented to the siphon
paired with a US while an unpaired C'S- is presented to the mantle (or visa versa). In
second-order conditioning a CS is first conditioned via pairing with the US. After this
training is complete, the CS; can serve as a reinforcing stimulus to condition a new
stimulus CS,. Blocking is a process whereby an animal learns not only about the con-
tiguity of stimuli, but also about their predictive contingency. If the CS, is conditioned
to predict the US then the addition of a second stimulus CS,, simultaneous with the CS;,
does not produce conditioning to the CS, alone.

Following Hawkin & Kandel (1984) we added a second CS and a Facilitator
Interneuron--see Figure 1(b}-whose behavior mimics the MN and which sensitizes all
CS—MN synapses. Given these additions, the circuit model produces successful simula-
tions of second order conditioning of CS2 to CS1, but fails to produce a blocking effect.

To produce blocking, we needed a mechanism to turn off the US's ability to sensi-
tize when it has already been predicted by some CS. Hawkins and Kandel (1984) suggest
that the interneuron goes into a refractory period after being activated, which is longer
than the possible ISI. This was implemented computationally by creating an additional
variable, the Refractory State, which is set to a constant when the interneuron activa-
tion exceeds a threshold (.9 in the simulations shown), and then decays towards zero
according to an ogive (e.g. S-shaped) function. The Refractory State affects the inter-
neuron by probabilistically governing the growth of interneuron activation in the following
manner: if any synapse passes a pulse to the interneuron, then activation increases with
probability equal to the lesser of 0 and 1 minus the Refractory State. To produce the
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appropriate blocking behavior the decay of the Refractory State was set so that the
refractory period would be longer than than the potential ISI. If, however, the interneu-
ron is in a refractory period when the US fires, a direct US—MN connection is needed in
order to get an appropriate unconditioned response. Repeated attempts, however, to get
this circuit simulation to produce blocking, failed to do so.

We were initially convinced that the circuit really should produce blocking. We
tried, without success, to vary all the parameters in an attempt to produce blocking. This
highlights a methodological difficulty inherent in the use of computer models for making
claims about circuitry: By simulating a circuit, one can demonstrate what a circuit can do,
but one cannot prove, based solely on the inability to ssmulate a desired behavior, that
the real circuit is unable to produce this behavior. If, however, the insights gained from
the “hands on" experience of building the circuit can be translated into a convincing logi-
cal demonstration of the circuit's information processing limitations, then a simulation can
contribute to making an argument about a particular circuit. We outline below why we
believe that the circuit simulation will not produce blocking.

The Blocking Paradoz

If the activity of the F. Int determines both the acquisition of new conditioned
pathways and the retention of previously learned pathways, then the F. Int must, during
the presentation of a ‘“‘predicted” US, have a differential effect on the CS #1 and the CS
#2 for it to sensitize the CS #1 sufliciently to retain the previously learned association
but not sensitize the CS #2 enough to acquire this new association. The current formula-
tion of the blocking mechanism is not sufficiently detailed to give rise to these behaviors.
This is not to say, however, that the current circuit could not generate blocking. Rather,
the interaction between the mechanisms for blocking and habituation is more subtle than
previously realized. The paradox exists not so much in the circuit, but in the current level
of detail at which the circuit's mechanisms are specified, at least in our simulation.

The locus of the paradox lies in the fact that no special mechanism for the decay
of a learned response is proposed. Instead, following the Groves and Thompson model,
decay of learned responses during CS alone trials is controlled by the background
phenomena of habituation. Previous theoretical models, such as Sutton and Barto (1981),
have missed this paradox because--following Rescorla and Wagner (1972)--they propose an
active process which extinguishes the learned association during CS alone trials.

Possible Solutions

A resolution of this paradox will involve specifying mechanisms of pairing specific
sensitizitization which robustly predict the blocking of the CS #2 and yet at the same
time, retain the CS #1 association. We consider here two alternatives: the first involves
modeling the current circuit anatomy at a more detailed level, and the second involves
postulating additional circuitry described at the current level of detail. We emphasize
that these extensions are not predictions for the Aplysia circuit, rather they are an
attempt to understand the limitations of the current circuit by exploring what extensions
to the circuit might, in theory, produce blocking.
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If both retention and acquisition are governed by the same Interneuron--as Haw-
kins and Kandel suggest--then the activity of the F. Int, during the presentation of a
‘“predicted” US, must be sufficient to retain the CS #1 association, but insufficient to
acquire the CS #2 association. A learning mechanism which required a stronger pulse to
acquire an association than to retain an association could perhaps give rise to the desired
circuit behavior. An implementation of this mechanism produced successfull, but weak,
blocking.

An alternate method for differentiating between retention and acquisition is to
posit different neural mechanisms governing retention and acquistion. Consider the addi-
tion to the circuit of a second interneuron which does not go into a refractory period (i.e.
mimics the MIN) and which sensitizes proportional to the current learned association. This
interneuron would counteract the effect of the habituation of an already learned associa-
tion but would would have no effect on an unlearned association. We implemented this
possibility and the resulting circuit exhibited a strong blocking effect.

CONCLUSIONS

Our computational model of the basic neural circuit of the Aplysia, as proposed by
Kandel and colleagues, is sufficient to produce basic associative learning phenomena,
namely acquisition, extinction, differential conditioning, and second-order conditioning.
There are, however, problems with the computational circuit in accounting for blocking.
The mechanisms proposed for blocking are not sufficiently detailed to explain both block-
ing and the habituation (extinction) of learned responses.

Our analysis illustrates the complexities that arise in trying to understand a simple
circuit involving only four neurons that generates phenomena of associative learning. Our
results illustrate the need for computationally implemented quantitative theories of neu-
ronal circuit function. If the functioning of even this simple circuit is not evident at a
logical-qualitative level of analysis, then the more complex circuits that code, store and
retrieve memories in the mammilian brain will certainly require quantitative modeling.
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