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Abstract

Force fields form the basis for classical molecular simulations and their accuracy is crucial 

for the quality of, for instance, protein-ligand binding simulations in drug discovery. The huge 

diversity of small molecule chemistry makes it a challenge to build and parameterize a suitable 

force field. The Open Force Field Initiative is a combined industry and academic consortium 

developing a state-of-the-art small molecule force field. In this report industry members of the 

consortium worked together to objectively evaluate the performance of the force fields (referred 

to here as OpenFF) produced by the initiative on a combined public and proprietary dataset of 

19,653 relevant molecules selected from their internal research and compound collections. This 

evaluation was important because it was completely blind; at most partners, none of the molecules 

or data were used in force field development or testing prior to this work. We compare the 

Open Force Field “Sage” version 2.0.0 and “Parsley” version 1.3.0 with GAFF-2.11-AM1BCC, 

OPLS4 and SMIRNOFF99Frosst. We analyzed force field-optimized geometries and conformer 

energies compared to reference quantum mechanical data. We show that OPLS4 performs best, 

and the latest Open Force Field release shows a clear improvement compared to its predecessors. 

The performance of established force fields such as GAFF-2.11 was generally worse. While 

OpenFF researchers were involved in building the benchmarking infrastructure used in this 

work, benchmarking was done entirely in-house within industrial organizations and the resulting 

assessment is reported here. This work assesses the force field performance using separate 

benchmarking steps, external datasets, and involving external research groups. This effort may 

also be unique in terms of the number of different industrial partners involved, with 10 different 

companies participating in the benchmark efforts.

Graphical Abstract
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Introduction

The computational modeling of chemical and biological systems relies on an accurate 

assessment of the energetics and geometries of the systems. Methods range from more 

accurate, higher-cost quantum mechanical (QM) techniques to more approximate but 

efficient methods such as classical mechanics-based calculations. The latter have the 

advantage of being applicable to larger systems over longer timescales.1–4 Extended 

simulation timescales are particularly relevant for the calculation of thermodynamic 

properties such as protein-ligand binding affinity where the accurate treatment of entropy, 

desolvation, and other factors requires ensemble-based free energy approaches. The classical 

mechanical calculations use a force field that gives the energy of the system as a function 

of the coordinates, given a number of empirical parameters fit to describe this and other 

properties accurately.5,6

Force field development has an extensive history, and the approaches taken vary with respect 

to the chemical space covered, the data used for training, and the approach for parameter 

optimization.7–10 It is common to fit force fields using data from both experimental physical 

property measurements and reference QM calculations carefully chosen to represent the 

systems for which the force field is designed. The performance of the resulting force field 

is then assessed by its ability to reproduce either experimental observables, or QM data 

such as geometries and relative energies. Given that force field development is complex 

due to the diversity of training data, various functional forms, and approaches to chemical 

perception,11 it is expected that the resulting force fields vary in how accurately they 

reproduce the properties of interest.12–16

Force fields for proteins, based on the 20 common amino acids, have been refined over 

many years and are widely used and continue to be updated.17–25 A high quality general 

force field suitable for small, organic and drug-like molecules represents a bigger challenge 

due to the vast chemical space that must be considered. Furthermore, inherent to innovation 

is the search for novel chemical matter and a general force field should be suitable for 

application to as-yet undiscovered compounds. Popular current small molecule force fields 

include the General AMBER force field (GAFF),26,27 the CHARMM General force field 

(CGenFF),28 and the Optimized Potentials for Liquid Simulations force field (OPLS).29–33 

These approaches have undergone substantial improvement, with the latest versions of 

OPLS32,33 in particular showing impressive performance, but it is widely accepted that 

further improvements are possible.34

Begun in late 2018, the Open Force Field (OpenFF) Initiative is a relatively new 

effort to build and optimize a general force field using an automated and reproducible 

procedure, with all software, data, and workflows made freely available. Rather than 

traditional atom-typing, the approach builds on the SMIRKS-native Open Force Field 

(SMIRNOFF) parameter assignment formalism, which can incorporate increased chemical 

diversity without needlessly increasing the complexity of the underlying specification and 

parameterization. The first version of the new OpenFF started with SMIRNOFF99Frosst,35 

consisting of direct chemical perception typing rules and parameters from the prior AMBER 

parm99 force field and Merck-Frosst’s parm@frosst.36 Since then, nearly all of the 500 
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valence parameters have been optimized to improve agreement with quantum chemical 

optimized geometries, energetics, and vibrational frequencies. The first generation OpenFF 

1.X37–39 (”Parsley”) releases largely retained the Lennard-Jones and electrostatic parameters 

of SMIRNOFF99Frosst, whereas the more recent OpenFF 2.0.040 (”Sage”) release refit 

Lennard-Jones parameters as well. The OpenFF Initiative includes the OpenFF Consortium, 

a pre-competitive, network of academic and industry researchers working together to 

advance the required science and infrastructure. The shared goal is to develop automated 

and systematic data-driven techniques to parameterize and assess new generations of the 

force field.

In this report, academic and industrial partners of the OpenFF consortium worked together 

to assess the performance of recent OpenFF releases. The work is an extension of the 

recent article from Lim et al.41 Each industry partner selected compounds from their internal 

research or compound collections; a total set of 19,653 are studied. As part of this study, a 

large proportion of the compounds (10,121) were compiled and made publicly available on 

the QCArchive,42 while the rest of the compounds remained proprietary and were studied 

internally at each industry partner, with only overall performance statistics being released. 

The study was enabled by the development of a standard workflow that could be easily 

installed and run at the sites of each collaborator. The workflow enabled the running and 

analysis of both QM and force field-based calculations. The identical approach used by each 

partner allowed the sharing of analysis data without compromising the confidentiality of the 

proprietary sets of molecules.

Force fields belonging to three families were assessed: (i) the second generation General 

Amber Force Field GAFF-2.11-AM1BCC (hereafter simply referred as GAFF-2.1126,27); 

(ii) the latest version of OPLS (OPLS433); and (iii) the latest version of each generation 

of OpenFF force fields (SMIRNOFF99Frosst v1.135), OpenFF “Parsley” v1.3.039 and 

the newest release, OpenFF “Sage” v2.0.0.40 For a pruned dataset of 137,052 molecular 

conformations of 18,154 small molecules, we compared the structures and energetics of 

conformers optimized using force fields to those optimized using quantum mechanical 

methods. This work provides a general understanding of the strengths of different small 

molecule force fields and identifies areas of improvement for future force field development.

Methods

The dataset

Industry partners from the following companies were involved in this collaborative effort: 

BASF, Bayer, Bristol Myers Squibb, Boehringer Ingelheim, Janssen, Merck KGaA, Roche, 

Genentech, Vertex, and XtalPi. Partners were asked to choose the molecules most suited or 

best capturing their research interests, by selecting a set of molecules that could be made 

public, as well as proprietary compounds. As an example for the public set, one company 

chose compounds from recent patents being sure to remove intermediates, solvents, and 

reagents etc. Meanwhile, proprietary molecules from internal drug discovery projects were 

studied on-site at each partner organization. We believe that the internal data has added 

value because it shows the performance on the very latest chemistry of interest within the 

industry partners. The newest internal drug discovery projects may in some cases require 
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novel chemistry and therefore shows the relevance of the force fields on the cutting edge of 

medicinal chemistry.

All partners contributed proprietary molecules, while six of them also contributed with 

public molecules. In both cases, we recommended to each partner to keep the number of 

heavy atoms below 30-35 to avoid overly time consuming QM calculations. Overall, the set 

of molecules is likely to be highly representative of current small molecule drug discovery 

efforts. The compounds within the public dataset were deposited to the QCArchive43 (see 

the Supporting Information for an example of how to extract optimized records of the public 

dataset from QCArchive).

Assigning force field parameters

For the OpenFF force field family (SMIRNOFF99Frosst, Parsley and Sage) and GAFF-2.11, 

we assigned AM1 Mulliken-type partial charges with bond-charge corrections (AM1-BCC 

charges).44,45 Partial charges were generated using the antechamber software package 

provided within the AmberTools.27 Parameters for the OpenFF family were assigned using 

the Open Force Field toolkit, whereas for GAFF-2.11 force field, we used tleap27 via 

open-moltools.46

For OPLS4 charge and parameter assignment was performed using Schrödinger Maestro.47 

Available pre-computed general purpose (default) parameters were applied. Also, molecule 

specific custom parameters were derived using the default approach with the ff-builder 

tool. This approach checks for missing parameters and if necessary derives new ones 

based on QM calculations (B3LYP/6-31G* level geometry optimization followed by 

single-point M06-2X/cc-pVTZ(-f) calculations). Custom OPLS4 parameters were derived 

for 9057 dihedrals for the public set of 10,121 molecules, indicating the overall set 

of molecules is rather diverse. OpenFF 2.0.0 only contains 174 torsion parameters, 

whereas OPLS4 uses a library of 147K or more diverse torsions as reported for 

OPLS3e, before addition of these custom parameters. Upon recommendation of scientists 

from Schrödinger, we used the ffld_server command line tool to perform OPLS4 

optimizations (see Supporting Information for more details). This tool contains the latest 

version of the force field and includes features such as virtual sites. The command 

used was $SCHRODINGER/utilities/ffld_server -imae <input_structures> 

-omae <output_structures> -opt -OPLSDIR <path/to/oplsdir> -cutoff 

999 -min_verbose 1 to perform the optimization with custom OPLS4 parameters 

and $SCHRODINGER/utilities/ffld_server -imae <input_structures> -omae 

<output_structures> -opt -cutoff 999 -min_verbose 1 to perform the 

optimization with default parameters. All other geometry optimizations were completed in 

OpenMM48 with the same specifications previously used by Lim et al.41

Corresponding files containing QM geometries and energies, SMILES strings and depictions 

of the public dataset are deposited on GitHub49 (See section Data and code availability)
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Automation of our approach

Figure 1 depicts the automated workflow which was deployed at all partners and permitted 

consistent benchmarking of proprietary molecules between partners and with the public set. 

During the production runs, it was found that iodine-containing molecules gave unreliable 

QM results for our choice of basis set with density fitting. This has since been fixed in 

psi4 as of version 1.450 but they were removed from this study. An additional filter was 

applied to remove silicon- and boron-containing molecules, as these elements are currently 

unsupported by OpenFF.

The first step in the protocol performs the validation of the chosen molecules. This step 

checks that the OpenFF Toolkit can sufficiently interpret each molecule, and for molecules 

that it can, a unique identifier is then assigned to each. Conformers are aligned during 

this step, and if a subsequently-loaded conformer has an RMSD of less than 0.5 Å 

from an existing conformer, it will be discarded as a duplicate. In the Public OpenFF 

Industry Dataset 85 out of 10,226 initial molecules were filtered by validation, hence 10,141 

successfully passed this step.

The second step in the protocol generates additional conformers beyond those provided in 

the input set of molecules. This step attempts to generate up to 10 conformers per molecule 

in total, with selection based on minimum inter-conformer RMSD of 0.5 Å. Conformers 

provided by the user in the previous step are preserved.

The third step in the protocol creates a coverage report that gives the number of times each 

parameter in OpenFF 1.3.0 is exercised by the molecules in the dataset. Any molecules that 

could not be parameterized are discarded. All molecule conformers that could successfully 

be parameterized are exported as SDFs and used for the following geometry optimization. In 

this step, a total of 60 molecular structures (of which 40 from the proprietary and 20 from 

the public set) were not successfully parameterized, and were therefore removed from the 

combined dataset. Our pruned set going into QM minimization contained 19,653 molecules, 

of which 10,121 were from the public dataset, with unique chemical connectivity.

The fourth step in the protocol executes the optimizations required for benchmarking. 

There are two stages to this step: the first generates QM geometry-optimized structures 

and energies at the gas-phase, B3LYP-D3BJ/DZVP level of theory51–55 using psi4.56 This 

method and basis set were chosen by the Open Force Field initiative to provide reasonably 

accurate conformational energies and geometries at moderate computational cost37,57,58 

and are consistent with the method used previously.41 Molecular modeling approaches 

typically rely upon accurate assessment of low energy minima but there are cases where it 

is useful to predict higher-energy structures,.59,60 The protocol used here does not exclude 

conformers based on a cut-off for relative QM energy (ΔE) and indeed some higher-energy 

local minima were retrieved, < 0.06% for ΔE >20 kcal/mol. The second stage performs 

gas-phase MM optimizations using the different forcefields, starting from the minimized 

QM structures for each molecule conformation. Publicly available compounds on the 

QCArchive were minimized with the latest generation of each force field family, namely 

GAFF-2.11, OPLS4 with both custom (OPLS4CST) and default (OPLS4DEF) parameters, 

and OpenFF “Sage” v2.0.0.40 Proprietary compounds were minimized using each OpenFF 
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generation (SMIRNOFF, “Parsley”v1.3.0, “Sage”v2.0.0) and GAFF-2.11, as OPLS4 was 

not available at all the industry partners. The SMIRNOFF99Frosst version used here is 

SMIRNOFF99Frosst-1.1.0.offxml. Because QM geometry optimization can, in rare 

cases, change the connectivity of a molecule, the final QM geometries were assessed to 

ensure that their interatomic distances remained consistent with the connectivity of the input 

molecule, and any conformer that deviated from their original connectivity were discarded 

from further analysis.

From the pruned set, 18,154 molecular structures were successfully optimized during step 

(i) and subsequently went through step (ii), producing a different success rate in MM 

optimization than QM (see Table S2 and S1).

Once all optimizations are finished, in the final step the data produced are analyzed and the 

corresponding plots subsequently generated.

Energies and optimized geometries with respect to QM reference are finally compared 

by relative energy difference (ΔΔE), root-mean-square deviation of atomic positions 

(RMSD) and torsion fingerprint deviation (TFD),61–63 similar to our previous benchmark 

assessment.41 The ΔΔE energy accounts for the energy difference (ΔE MM) between each 

MM optimized conformer and the MM conformer with minimum energy, relative to the 

energy difference (ΔE QM) between each corresponding QM optimized conformer and the 

QM conformer with minimum energy (compare-forcefields).

In addition, to address any potential low agreement between force field and QM energies 

due to change in conformation after MM energy minimization, we performed a conformer 

matching process (match-minima) for each MM structure which considered the final 

optimized geometries and energy differences. In this case, the ΔΔE takes into account the 

energy difference between each MM optimized conformer and the MM conformer with 

lowest RMSD with respect to the QM minimum, relative to (ΔE QM). The equations used 

in compare-forcefields and match-minima to compute the ΔΔE between the MM and 

QM energy for the ith conformer of a specific molecule are reported in the SI Eq S1 and Eq 

S2, respectively).

The complete Python code used for the setup, minimizations, and analysis of this work 

is open source and available on GitHub 49 and the protocol used to run minimization on 

Confluence (See section Data and code availability).

Results and Discussion

Here, we present and discuss our results comparing several general small molecule force 

fields against reference QM data. We are interested in two major categories of comparison 

– energetic agreement and geometric agreement. An ideal force field will yield the same 

energy minima or optimized geometries as the QM energy landscape, with no additional 

or missed minima, and the energies of those minima will agree between QM and MM. 

However, with even minor energy errors, the relative ordering of the QM and MM 

minima could be different even if all minima are present in both landscapes. Thus, to 

assess performance in these two categories, we computed relative conformer energies and 
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compared these between MM and QM, as well as assessed geometric agreement of MM 

optimized geometries with those from QM.

Our study relies on the assumption that force field accuracy can be evaluated using gas 

phase energies and geometries. One of the greater goals of force field science, such as that of 

the Open Force Field Initiative, is building force fields that will work well in the condensed 

phase (e.g., small molecules in solution or binding to biomolecules). That being said, we 

make our assumption based on two key observations. First, force fields, especially those 

in the AMBER family, are usually fitted to reproduce gas phase conformational energies 

and geometries.26 This means that we are testing these force fields on properties they are 

fitted to reproduce. Second, bonded parameters are not expected to change significantly on 

transfer to the condensed phase. Rather, non-bonded interactions are particularly important 

in condensed phase simulations. Regarding the non-bonded interactions, electrostatics could 

be over polarized beyond what would be expected in the gas phase in order to reproduce 

condensed-phase properties, and Lennard-Jones parameters can be tuned to reproduce 

condensed phase properties (as has been a particular focus of the OPLS force fields30,64). 

Even when these are done, force fields retain bonded terms parameterized to reproduce QM 

geometries and energetics, further emphasizing the importance of testing in such a context. 

We therefore believe our assumption is reasonable and that this work warrants investigation.

We start our force field benchmark analysis by comparing MM energies to QM energies 

of the two different datasets, namely (i) the Public OpenFF Industry Dataset and (ii) the 

Proprietary OpenFF Industry Dataset. All the optimizations were performed consistently, 

using the same software installed and running identical workflows.

We found that 99.94% of the relative conformer energies of the molecular structures in the 

two datasets with the six force fields were within −55< ΔΔE <45 kcal/mol, according to 

Equation S1. However, 62 conformers in (i) and 24 in (ii) that had outlying energies beyond 

this range were treated as outliers and removed from the two datasets (Table S3 and S4).

After excluding these outliers, the ΔΔE energy histograms for datasets (i) and (ii) are shown 

in Figure 2a and Figure 2b, respectively. In density histograms, bin height is normalized 

so that the total area of the histogram is 1 and the unity of density is 1/kcal mol−1 

for ΔΔE (whereas for RMSD plots it is 1/Å). OPLS4 results were generated with the 

ffld_server tool, not macromodel as in previous work,41 (see section Methods and 

Supporting Information for more details). OPLS4 could not be calculated for the proprietary 

dataset (ii) because that force field was not available in house for some of the industry 

collaborators in this study. The difference between MM relative conformer energies and 

QM relative conformer energies exhibits very similar distributions for all force fields. All 

distributions appear asymmetric, having a skew towards more negative ΔΔE values than 

positive ones, indicating that the conformer energy differences may be underpredicted by 

MM compared to QM, though we have no clear explanation of this behaviour. In (i) 

the comparison between OPLS4, OpenFF-2.0.0 and GAFF-2.11 shows that the qualitative 

ordering of force fields from lowest to highest agreement with QM energies goes as 

GAFF-2.11 < OpenFF-2.0.0 < OPLS4DEF < OPLS4CST. In other words, the peak size 

around ΔΔE = 0 kcal/mol (the fraction of conformations with good agreement between QM 
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and MM relative energies) is greatest for OPLS4CST, closely followed by OPLS4DEF, then 

by OpenFF-2.0.0 and GAFF-2.11. OPLS4CST and OPLS4DEF predict 34.0±0.4% and 31.6 

± 0.4% of conformers within 1 kcal/mol of QM, respectively. OpenFF-2.0.0 predicts 26.2 

± 0.4% and GAFF-2.11 24.6 ± 0.3% (standard error with 95% CI calculated with 2000 

bootstrap iterations).

Figure 2b illustrates the progress made within the OpenFF family of force fields with 

respect to GAFF-2.11 in the benchmark of dataset (ii). Smirnoff99Frosst and GAFF-2.11 

almost overlap, performing worse than all other investigated force fields. Improvements can 

be noticed in OpenFF-1.3.0 and more so in the most recent release OpenFF-2.0.0, which 

clearly performs better than its predecessors. Indeed, OpenFF-2.0.0 predicts 29.6 ± 0.4% of 

conformers within 1 kcal/mol of QM, OpenFF-1.3.0 28.2 ± 0.4%, GAFF-2.11 27.8 ± 0.4% 

and Smirnoff99Frosst 26.8 ± 0.4%

We next examine agreement between MM-optimized geometries and those from QM, as 

calculated by each molecule’s root-mean-square deviation of atomic positions (RMSD) and 

Torsion Fingerprint Deviation (TFD) scores with reference to the parent QM-optimized 

geometry. While RMSD is the more common metric, it depends on the molecule size, 

complicating interpretation.65,66 In contrast, TFD was designed to be more independent 

of molecule size in order to compare molecular conformations more meaningfully.61 The 

TFD score between two molecular structures is evaluated by computing, normalizing, and 

Gaussian weighting the (pseudo-)torsion deviation for each bond and ring system. While 

TFD is normalized from 0 to 1, RMSD is unbounded. Both RMSD and TFD are similar in 

that a higher value signifies lower agreement between the geometries of two molecules. A 

FF which yields optimized geometries closer to those of QM would have generally smaller 

RMSD and TFD values. We calculated RMSD and TFD scores for all MM optimized 

geometries with respect to QM geometries. We plotted this data in histograms,in Figure 3.

In terms of geometry agreement, we observed similar results between the RMSD and TFD 

plots. The ranking of the force fields is mostly the same as with the ΔΔE rankings above, 

with OPLS4CST performing best, followed by OPLS4DEF, the latest Open Force Field 

release OpenFF-2.0.0 and finally GAFF-2.11. The use of the custom parameters made a 

notable improvement for OPLS4 compared to the default parameters in both the energetic 

and geometric comparisons. The OpenFF force fields show clear improvement with newer 

generations having higher densities close to zero and also by having tails successively 

reduced.

To understand how each forcefield scored in both energetics and geometries we reported 

in Figure 4 the percentage of conformers within certain threshold values of both |ΔΔE| and 

RMSD with respect to QM reference. The trend in scoring both metrics is consistent with 

that reported separately in Figure 2, 3a and 3c, showing that the qualitative ordering of force 

fields from highest agreement to both QM energies and geometries goes as OPLS4CST > 

OPLS4DEF > OpenFF-2.0.0 > GAFF-2.11 for the public dataset (i), and OpenFF-2.0.0 > 

OpenFF-1.3.0 > GAFF-2.11 > Smirnoff99Frosst for the proprietary dataset (ii).
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Ultimately, we assessed the performances of OpenFF-2.0.0, GAFF-2.11 and OPLS4 on 

charged and neutral molecules of the public dataset (i) (Figure S4 and Table S5). Overall, 

charged molecules feature a more negative ΔΔE mean distribution than neutral molecules 

according to all FFs. In OPLS4DEF this difference was largest (ΔΔE charged = −2.54±0.12 

kcal/mol, ΔΔE neutral = −0.78±0.02 kcal/mol). Training custom parameters in OPLS4CST 

reduces the discrepancy (ΔΔE charged = −2.08±0.11 kcal/mol, ΔΔE neutral = −0.63±0.02 

kcal/mol) to a comparable level with OpenFF-2.0.0 and GAFF-2.11 (ΔΔE charged = −2.07± 

0.12 kcal/mol, ΔΔE neutral = −1.00±0.03 kcal/mol and ΔΔE charged = −1.51±0.12 kcal/mol, 

ΔΔE neutral = −0.98± 0.03 kcal/mol, respectively). No major geometric differences were 

seen for charged versus neutral molecules, the greatest divergence in the RMSD mean 

distribution is only 0.1 Å for OPLS4DEF (Table S5).

Analysis of OpenFF-2.0.0 shortcomings

As mentioned in section Automation of our approach, our FF benchmark was performed 

running the MM optimization on top of QM-optimization and comparing results. Ideally, 

the conformer which is the global minimum on the QM potential energy surface should 

still be found as global minimum on the MM surface. Nevertheless, in practice, the MM 

optimization could lead to a structurally different conformer which is local rather than 

global MM minimum. Thus, to objectively identify these types of FF shortcomings, we 

computed the relative energy difference (ΔE) between the MM reference conformer with 

lowest RMSD with respect to the QM global minimum (MM,ref) and the MM conformer 

with the lowest energy (MM,min) according to Equation 1:

ΔE = E(MM, ref) − E(MM, min) (1)

Large energy differences in this metric are thereby indicative of suboptimal FF behaviour in 

terms of the MM force field’s ability to identify the same global minimum as QM does. We 

ran this analysis on the proprietary Roche set and inspected molecular structures with ΔE > 

2 kcal/mol. According to OpenFF-2.0.0, a total of 40 out of 809 molecules were identified. 

The low number of identified problematic issues indicates that Sage performed generally 

well in the Roche dataset. A selection of the problematic torsions compared to the QM 

reference geometry are shown in Figure 5 and Figure S5, including incorrect intramolecular 

hydrogen (Figure 5a) and chalcogen (5b) bonds, tendencies to form flipped ureas (5c), 

cis-amides (5d) and -amines (5e,f).

Motivated to identify systematic issues in torsion parameters, we developed a workflow to 

detect any dihedral deviation from a threshold value for each i-th MM optimized conformer 

with respect to the same i-th conformer optimized with QM. We performed the analysis 

on the public dataset (i) and counted all the torsion violations in MM structures that were 

off by more than 30° threshold for any dihedral bond angle (Figure 6). Some torsion 

parameters are more common than others, therefore we weighted by the number of times 

that it was used in the dataset. Most of the problematic parameters found by this analysis 

were also identified in the previous RCH set (Figure 5), namely t17, t64, t66, t67, and t74. 

Interestingly, other parameters that appeared more frequently among the most concerning 

cases (>50 counted violations and >1 weighted violations) include t18 (torsion comprised 
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by a tetra- and a trivalent C, Figure S6) and t105 (torsion formed by a trivalent C and 

bivalent O). Improvements resulting from this and further analysis, which are currently 

being performed, are expected to be incorporated in the next OpenFF force field reselase and 

will be part of our future report on this topic.

Improvements resulting from this and further analyses, which are currently being performed, 

are expected to be incorporated in the next OpenFF force field reselase and will be part of 

our future report on the topic

Conclusions

In this work, we presented a large-scale analysis of five small molecule force fields in terms 

of their relative conformer energies and geometries compared to QM data. Amongst the 

force fields (GAFF-2.11, OPLS4, SMIRNOFF99Frosst, OpenFF-1.3.0 and OpenFF-2.0.0), 

OPLS4CST performed best in terms of reproducing QM conformer energies and geometries. 

However, there is a higher computational cost to perform the DFT torsion fitting for 

generating the custom OPLS4 parameters (likely in part due to the diversity of the 

present molecule set), whereas with the other force fields, including OPLS4DEF, parameter 

assignment is immediate, because no new quantum chemical calculations are required.

As previously reported,41 the OpenFF showed improvements in both energetic and 

geometric metrics with each new version. We herein show that the latest OpenFF-2.0.0 

appears to be positioned as the best open source/free small molecule force field in this study.

In the view of the industry collaborators performing this benchmarking work, this study 

highlights the progress the Open Force Field Initiative has made towards its goal of 

producing high quality public, open force fields built with infrastructure which enables rapid 

parameterization. Particularly, the series of OpenFF force fields presented here demonstrate 

marked improvements in accuracy over a relatively short time, and these improved force 

fields are available to everyone. One key challenge going forward will be to continue 

improving the treatment of problematic areas of chemical space and expanding coverage. 

Future OpenFF updates are planned to include improved treatment of torsions (e.g. via 

Wiberg bond order-based parameter interpolation67 which was recently implemented in the 

OpenFF Toolkit), off-site charges and better handling of trivalent nitrogen geometries68 

(which we anticipate will boost performance further). Additionally, a tool for fitting bespoke 

torsion parameters for specific molecules/chemistries of interest is now available,69 likely 

further improving accuracy. In parallel, a biopolymer force field and an OpenFF software 

stack that will enable the conversion from OpenMM objects to file formats understood by 

other molecular simulation engines, like AMBER and GROMACS (OpenFF Interchange70), 

will soon be released.

Beyond these specific conclusions, we believe the general strategies employed here for 

benchmarking force field performance will be useful far more broadly than this specific 

study. Particularly, comparing performance by both geometric and energetic measures 

is particularly important, as the analysis we have done demonstrates. Additionally, the 
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availability of a large amount of public data in QCArchive facilitates straightforward large 

scale benchmarking of force fields in a way it has not been done previously.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The automated benchmark workflow was deployed in-house by all partners and allowed 

consistent benchmarking of proprietary datasets. After checking that the molecules are 

compatible with the OpenFF force field (”Validation”), it generates up to 10 conformers per 

molecule (”Conformer Generator”), optimizes the conformers first with a QM method (”QM 

Minimization (Psi4)”) and then with various MM methods (”MM Minimization”). Finally, 

the non-proprietary data is extracted and plots are generated for the comparison of results 

(”Analysis”).
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Figure 2: 
Histograms of the relative conformer energy differences as computed for compare-

forcefields (equation S1) for each force field relative to QM. Each molecular structure, 

including different conformers of the same molecule, is counted separately. Since the global 

minimum molecular structures were set to zero deliberately and add a constant offset to 

the central bin, they are removed from the counts. A force field having higher agreement 

with QM would have a higher bin centered at ΔΔE = 0 kcal/mol. (a) compares the latest 

release of all three force field families over the public dataset. (b) shows the three histograms 
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belonging to the OpenFF family of force fields and GAFF-2.11 over the proprietary set. 

OpenFF-1.3.0 (cyan) and GAFF-2.11 (orange) slightly overlap in the central bin of (b)
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Figure 3: 
Histograms of the RMSD (a, c) and TFD (b, d) values between force field structures as 

compared to QM structures. Values closer to zero indicate higher geometric similarity for 

both RMSD and TFD. Panels (a) and (b) compare the families of force fields (GAFF-2.11, 

OPLS4, and OpenFF-2.0.0) over the public dataset. Panels (c) and (d) compare the force 

fields of the OpenFF family (Smirnoff99Frosst, OpenFF-1.3.0, and OpenFF-2.0.0) and 

GAFF-2.11 over the proprietary set.
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Figure 4: 
Bar plots with percentages of conformations predicted by the different force fields matching 

both |ΔΔE| and RMSD given thresholds. (a) compares the force fields assessed on the public 

dataset. (b) compares the force fields assessed on the proprietary dataset.
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Figure 5: 
Molecular fragments of the Roche dataset containing concerning torsions. Global minima 

conformers optimized with QM and MM are shown with the concerning torsion(s) 

marked in brackets. Relative (ΔE) energies calculated according to equation 1 and torsion 

parameter(s) associated with corresponding concerning torsion(s) are reported.
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Figure 6: 
Analysis of torsion violations in the Public OpenFF Industry Dataset. Inset: 2D sketch 

chemistry match of selected torsion parameters. Elements in red color (bond, charge) may 

or may not exist, meaning that the corresponding atom can be either tri- or dicoordinated, 

respectively.
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