UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Neural lateralization during number line estimation differentially predicts numerical and spatial capacity

Permalink

https://escholarship.org/uc/item/19z9b9pk

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Kaicher, Caroline Aulet, Lauren Cantlon, Jessica

Publication Date

2024

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Neural lateralization during number line estimation differentially predicts numerical and spatial capacity

Caroline Kaicher

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

Lauren Aulet

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

Jessica Cantlon

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

Abstract

Numerical and spatial skills are highly interrelated, and both contribute to mathematical cognition. Spatial-numerical associations are frequently examined using number line estimation (NLE); however, there is considerable debate about the relative contributions of number-specific and domain-general (i.e., working memory) processing involved in this task. Here, we used functional neuroimaging to examine the processes supporting NLE in adults (n = 47). Participants completed an in-scanner NLE task and number localizer. We found that within left and right parietal number regions, neural activity during the in-scanner NLE task differentially predicted out-of-scanner behavioral measures. Specifically, activity in the left (but not right) posterior intraparietal sulcus (IPS) predicted visuo-spatial working memory, and activity in the left (but not right) anterior IPS predicted performance on an out-of-scanner NLE task. These findings suggest that NLE relies on both spatial-numerical and domain-general capacities supported by left-hemisphere parietal regions, challenging hypotheses about right-lateralized visuo-spatial contributions to number processing.