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Replication study of SNP associations for colorectal cancer in
Hong Kong Chinese
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T-k Yau6, CC Chung7, CC Yau8, SM Hui9, PY Lau10, C-h Yuen11, Y-w Wong12, S Ho1, SS Fung1, IP Tomlinson3,
RS Houlston13, KK Cheng14 and PC Sham*,2

1Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong; 2Department of Psychiatry, The University of Hong Kong, Pokfulam,
Hong Kong; 3Nuff ield Department of Medicine, Molecular and Population Genetics, University of Oxford, Wellcome Trust Centre for Human Genetics,
Oxford OX3 7BN, UK; 4Department of Clinical Oncology, Queen Mary Hospital, Pokfulam, Hong Kong; 5Department of Surgery, Ruttonjee Hospital, 266
Queen’s Road East, Wai Chai, Hong Kong; 6Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, 3 Lok Man Road, Chai Wan,
Hong Kong; 7Department of Surgery, Pamela Youde Nethersole Eastern Hospital, 3 Lok Man Road, Chai Wan, Hong Kong; 8Department of Clinical
Oncology, Princess Margaret Hospital, 2-10 Princess Margaret Hospital Road, Lai Chi Kok, Kowloon, Hong Kong; 9Department of Surgery, Princess
Margaret Hospital, 2-10 Princess Margaret Hospital Road, Lai Chi Kok, Kowloon, Hong Kong; 10Department of Surgery, Kwong Wah Hospital,
25 Waterloo Road, Kowloon, Hong Kong; 11Department of Surgery, Tseung Kwan O Hospital, 2 Po Ning Lane, Hang Hau, Tseung Kwan O, New
Territories, Hong Kong; 12Department of Surgery, Tuen Mun Hospital, Tsing Chung Koon Road, Tuen Mun, New Territories, Hong Kong; 13Section of
Cancer Genetics, The Institute of Cancer Research, Brookes Lawley Building, Haddow Laboratories, Sutton, Surrey SM2 5 NG, UK; 14Department of Public
Health, Epidemiology and Biostatistics, The University of Birmingham, Public Health Building, Edgbaston, Birmingham B15 2TT, UK

BACKGROUND: Recent genome-wide association studies of colorectal cancer (CRC) have identified common single-nucleotide
polymorphisms (SNPs) mapping to 10 independent loci that confer modest increased risk. These studies have been conducted in
European populations and it is unclear whether these observations generalise to populations with different ethnicities and rates
of CRC.
METHODS: An association study was performed on 892 CRC cases and 890 controls recruited from the Hong Kong Chinese
population, genotyping 32 SNPs, which were either associated with CRC in previous studies or are in close proximity to previously
reported risk SNPs.
RESULTS: Twelve of the SNPs showed evidence of an association. The strongest associations were provided by rs10795668 on 10p14,
rs4779584 on 15q14 and rs12953717 on 18q21.2. There was significant linear association between CRC risk and the number of
independent risk variants possessed by an individual (P¼ 2.29� 10�5).
CONCLUSION: These results indicate that some previously reported SNP associations also impact on CRC risk in the Chinese
population. Possible reasons for failure of replication for some loci include inadequate study power, differences in allele frequency,
linkage disequilibrium structure or effect size between populations. Our results suggest that many associations for CRC are likely to
generalise across populations.
British Journal of Cancer (2011) 104, 369–375. doi:10.1038/sj.bjc.6605977 www.bjcancer.com
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Colorectal cancer (CRC) affects over one million people each year
worldwide (Tenesa and Dunlop, 2009). It is currently the third
commonest malignancy and the fourth commonest cause of
cancer-related mortality in the world (Stewart et al, 2003). The
overall burden of the disease is set to increase further from the
increasing incidence rates in Asian and African populations
associated with the adoption of western diets (Tenesa and Dunlop,
2009). In Hong Kong, CRC is now the second commonest cancer
(with 4084 cases in 2007) and the second commonest cause of
cancer death (1690 deaths in 2007) (Hong Kong Cancer Registry,
Hospital Authority, 2009).

Although dietary and lifestyle risk factors undoubtedly are
major risk factors for CRC, twin studies have shown that B30% of
the variation in susceptibility to CRC involves inherited genetic
differences (Lichtenstein et al, 2000). However, high-penetrance
susceptibility mutations account for o6% of CRC cases; the
majority of inherited variance appearing to be a consequence of
the co-inheritance of multiple low-risk variants (Lichtenstein et al,
2000; Bost et al, 2001).

Recent genome-wide association studies (GWAS) have provided
statistically robust evidence for common susceptibility loci for
CRC. These studies have so far identified common single-
nucleotide polymorphisms (SNP) at 10 independent loci that
confer modest increased risk to CRC (odds ratios (OR) B1.1–1.3)
at 8q23.3, 8q24.21, 10p14, 11q23.1, 14q22.3, 15q13.3, 16q22.1,
18q21.1, 19q13.11 and 20p12.3 (Easton and Eeles, 2008;
Le Marchand, 2009). These GWAS have been performed almost
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exclusively in populations of European ancestry, and the effects
of these risk alleles in other populations are as yet unknown.

Understanding the effects of these variants in different
populations is extremely important in terms of inferring the
causality and mechanisms of colorectal tumourigenesis, as well as
for the translation of these results to risk prediction in different
populations. Colorectal cancer is a disease with very different
incidence rates between populations (Curado et al, 2007). The risk
variants may confer different magnitudes of increased risk in
different populations for a variety of reasons, including differences
in allele frequency and linkage disequilibrium (LD) structure, and
difference in genetic and environmental backgrounds that interact
with the variants (Sawyer et al, 2005; Weir et al, 2005; Ireland et al,
2006; Ioannidis, 2007).

To further our knowledge of the role of common genetic
predisposition to CRC, we have examined the impact of the
10 known low-penetrance CRC risk loci in the Han Chinese
population in Hong Kong using a case–control study design.
We first examined variants, which were previously reported to
have reached genome-wide significance (Broderick et al, 2007;
Tomlinson et al, 2007, 2008; Houlston et al, 2008; Jaeger et al, 2008;
Tenesa et al, 2008) for association with CRC risk, in an initial
case–control sample. We then examined in an extended case–
control series 22 additional SNPs, which have been associated
with CRC risk in unpublished studies on European populations.
Some of these SNPs were located close to SNPs genotyped in the
first part of the study. Phase 1 can be regarded as a replication
study of established associations in European populations, whereas
Phase 2 is a replication study of more tentative associations as
well as a more comprehensive screening of the risk loci evaluated
in Phase 1.

MATERIALS AND METHODS

Subjects

Since October 2006, subjects (CRC cases and controls) have been
recruited from seven departments of surgery and three depart-
ments of oncology in seven public hospitals in Hong Kong. The
CRC cases were adults with histologically proven adenocarcinoma
of the colon or rectum (international diseases 9 codes 153 and 154)
diagnosed either (1) within 18 months before recruitment com-
mencement date (prevalent cases) or (2) within the recruitment
period (incident cases), treated at the seven participating hospitals.
The controls were sex- and age-matched hospital inpatients or
outpatients without a personal history of cancer or a family history
of CRC in first-degree relatives treated at the participating
hospitals.

Informed consent was obtained from all participants and the
study protocol was approved by the Institution Review Boards of
the seven participating hospitals in accordance with the declara-
tion of Helsinki.

Genotyping

Variation at 8q24.21, 10p14, 11q23.1, 14q22.3, 15q14, 16q22.1,
18q21.2, 19q12 and 20p12.3 loci was evaluated by genotyping cases
and controls for rs6983267, rs7014346, rs706771, rs827401, rs7894531,
rs7898455, rs4474353, rs10795668, rs3802842, rs11623717, rs17563,
rs2071047, rs2761887, rs8014363, rs4444235, rs6494587, rs16969681,
rs16970016, rs1554865, rs11632717, rs1406389, rs1919360, rs7165427,
rs10318, rs4779584, rs9929218, rs12953717, rs4464148, rs4939827,
rs10411210, rs961253 and rs355527.

DNA was extracted from EDTA-venous blood samples using
standard methodology. The SNP genotyping was conducted using the
Sequenom MassARRAY system (Sequenom, San Diego, CA, USA).
Genotyping assays were designed using SpectroDESIGNER software

version 2.0.0.17 (Sequenom). Quality control was monitored by
including duplicate and four negative controls in each 384-well plate.
Further quality control included the exclusion of SNPs with genotype
call rates o95%, minor allele frequency (MAF) o5% and those that
deviated significantly from Hardy–Weinberg equilibrium in the
controls (Po0.01).

Statistical and bioinformatic analysis

Haploview version 4.1 (Barrett et al, 2005) and HapMap CHP+JPT
data (release 22; http://hapmap.ncbi.nlm.nih.gov/) was used
to generate LD plots. The PLINK (Purcell et al, 2007)
and R (Version 2.8.1; http://www.r-project.org/) were used for
association analyses. The Cochran–Armitage trend test was used
to examine association between CRC and SNP genotype (Armitage,
1995). In addition, logistic regression analysis of CRC on allele
dosage (0, 1, 2) was performed, with adjustment for sex as
covariate. Statistical significance was assessed on the basis of two-
sided P-values, and allowance for multiple testing was made by
using Bonferroni’s correction and false discovery rates (FDR)
methodology. Heterogeneity between the ORs in this study and
those of previous studies was assessed by the Breslow– Day’s test.
Association between clinico-pathological variables and SNP
genotype was analysed by the Armitage trend test or by logistic
regression with sex as covariate, on the cases only. A composite
score of genetic susceptibility was created from nine independent
SNPs in Part 1, choosing only one SNP (the most significant) from
each group of tightly linked SNPs. The composite score in an
individual was calculated as the total number of high-risk alleles
present in the individual (possible range 0– 18). The association
between the composite score and CRC risk was assessed by w2 tests
and by a Cochran –Armitage trend test.

RESULTS

In the first phase, we genotyped 716 CRC cases and 714 controls.
The cases comprised 445 males and 271 females. In the second
phase, an additional 176 cases and 180 controls were genotyped
yielding a total of 892 cases and 890 controls. The clinical
characteristics of the cases and controls are detailed in Table 1.

Table 1 Characteristics of the colorectal cancer cases studied

Case subject characteristics Phase I Phase 2

Number 716 892

Age at diagnosis (year)
Median
(range, interquartile range)

68 (58–76, 18) 68 (58–76, 18)

Mean (range, s.d.) 66.75 (31–96, 12.25) 66.43 (31–96, 12.21)

Sex (%)
Male 445 (62.2) 519 (58.2)
Female 271 (37.8) 373 (41.8)

Tumour site (%)
Colon 444 (62.0) 549 (61.5)
Rectum 265 (37.0) 338 (37.9)
Both sites (synchronous) 7 (1.0) 5 (0.6)

AJCC cancer stage (%)
Stage I 90 (12.6) 112 (12.6)
Stage II 220 (30.7) 276 (30.9)
Stage III 227 (31.7) 287 (32.2)
Stage IV 171 (23.8) 207 (23.2)
Not defined 8 (1.1) 10 (1.1)

Abbreviation: AJCC¼American Joint Committee on Cancer.
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The 14 SNPs included in the first phase (rs6983267, rs7014346,
rs10795668, rs3802842, rs4444235, rs4779584, rs10318, rs9929218,
rs4939827, rs12953717, rs4464148, rs10411210 and rs355527) had
an average genotyping call rate of 99.9% (Supplementary Table 1).
One SNP, rs16893766, was monomorphic in this cohort and was
thus not analysed. For the 22 SNPs included in the second phase,
the overall genotyping call rates were 95.3%. Three SNPs were
excluded from analysis because they had genotyping call rates
o95% (rs133344771) or MAF o5% (rs11986063 and rs10424333).
A total of 32 SNPs (13 from Phase 1 and 19 from Phase 2)
annotating nine distinct loci provided data for the complete
analysis. Ten SNPs were mapped to 15q, six SNPs each to 10p and
14q, three SNPs to 18q, two SNPs each to 8q and 20p and one SNP
each to 11q, 16q and 19q.

Five of the 13 SNPs genotyped in Phase 1 were significantly
associated with CRC risk (Table 2A). Although only the most
significant SNP (rs10795668, P¼ 0.0018) would be significant after
Bonferroni’s adjustment, all five nominally significant SNPs would
be considered significant on a basis of an FDR of 0.1 (rs10795668,
rs7014346, rs12953717, rs4779584 and rs4939827). For all five
SNPs, the risk-increasing allele in this study is the same as in the
original report of association. Two of the significant SNPs,
rs4939827 and rs12953717 on Chromosome 18q21.2, are in strong
LD with each other.

Seven of the 19 SNPs in Phase 2 were significant, but none
were significant after Bonferroni’s adjustment (Table 2B). All
seven nominally significant SNPs would be considered significant
at an FDR of 0.1 (rs7898455, rs4474353, rs7894531, rs1554865,
rs16970016, rs706771 and rs827401). However, these significant
SNPs are all in strong LD with SNPs significant in Part 1:
rs7898455, rs4474353, rs7894531 rs706771 and rs827401 are in LD
with rs10795668 on Chromosome 10p14, whereas rs16970016 and
rs1554865 are in LD with rs4779584 on Chromosome 15q14.

In logistic regression analyses of SNPs within each LD region,
the inclusion of additional SNPs to a model containing the
most strongly associated SNP in each (i.e. rs10795668 on 10p14,
rs4779584 on 15q14 and rs12953717 on 18q21.2) did not signifi-
cantly improve the fit of the model, thus providing no evidence for
more than one disease locus in each of these regions (Supple-
mentary Table 2).

Collectively, these data are consistent with four independent
CRC loci defined by SNPs rs10795668, rs12953717, rs4779584 and
rs7014346.

In order to avoid bias, a composite index was calculated from
all nine independent SNPs from Phase 1. This index was signifi-
cantly associated with CRC risk (Ptrend¼ 2.29� 10�5) with an OR
of over 2 for individuals with 12 or more high-risk alleles
compared with individuals with 6 or fewer high-risk alleles
(Table 3). The difference in composite index between cases and
controls is shown graphically in Figure 1.

We assessed the associations between SNP genotype and various
clinico-pathological variables through case-only logistic regression
analyses. The clinico-pathological variables evaluated were sex, age
at CRC diagnosis (above or below the median age), tumour site
(colon or rectum), stage at diagnosis (stage I/II or III/IV; presence
or absence of distant metastasis) and family history of CRC
(Table 4). No association was found between genotype and age
at cancer diagnosis, site of cancer or a family history of CRC.
The high-risk alleles of rs10795668 and rs4779584 were found to be
significantly associated with male gender (P¼ 0.03 and 0.01,
respectively). Stratified analysis under additive model provided
evidence that the association with CRC risk was limited to men for
rs10795668, rs1295371 and rs4779584 (P¼ 0.002, 0.002 and 0.002,
respectively), whereas the association was limited to females
for rs7014346 (P¼ 0.011). A test for interaction of rs4779584
(using the additive model) with sex was statistically significant
(P¼ 0.038). There was no significant interaction of the other three
SNPs with sex. Both rs12953717 and rs7014346 were associated

with tumour stage. The high-risk allele of rs12953717 was
significantly associated with stage IV at presentation (P¼ 0.04),
whereas the high-risk allele of rs7014346 was significantly
associated with stage III or IV disease (P¼ 0.01).

Of the four independent risk variants examined, none demon-
strated statistically significant difference in effect size between the
Hong Kong Han Chinese and the Caucasian European populations
(Table 5). For rs7014346, there was also no difference in effect sizes
among four populations (i.e. Hong Kong Han Chinese, Japanese,
English and Scottish).

DISCUSSION

Although a number of CRC risk variants have now been identified,
almost all have been through analyses based on European
Caucasian populations. As the incidence of CRC and the allele
frequencies of SNPs differ across populations, it is important to
understand the effects of these markers in other populations. We,
therefore, comprehensively examined the association between 32
SNPs and CRC risk and clinico-pathological variables in Chinese
CRC patients recruited from hospitals across Hong Kong. Twelve
SNPs from four independent susceptibility loci (at 8q24.21, 10p14,
15q14 and 18q21.2) were found to be significantly associated
with CRC in the Han Chinese population in Hong Kong.
A composite index of nine independent SNPs was significantly
associated with CRC risk, which provides support for the CRC
association findings in European populations. Although we
recommend caution in implementing genetic models for predict-
ing individual risk, approaches incorporating multilocus geno-
types could help identify high-risk subgroups within a population.
This underscores the potential for future risk profiling, even
without identification of the causative variant (Wray et al, 2007).
However, large multinational cohort studies will be needed to
validate such genetic risk predictive models.

The rs10795668 provided the strongest evidence for an
association in the Han Chinese population. This SNP maps to an
82-kb block of LD (8.73– 8.81 Mb) within 10p14. All five additional
SNPs, rs706771, rs827401, rs7894531, rs7898455 and rs4474353,
mapping to this LD block showed evidence of association with
CRC risk. The inclusion of each of these additional SNPs did not
significantly improve the fit of the model compared with
rs10795668 alone, providing no evidence for more than one
disease locus at 10p14.

There are no proven protein-coding transcripts in the vicinity
of the marker SNPs that we tested, and there is no predicted
gene within 0.4 Mb of rs10795668. The nearest predicted genes are
BC031880, located 0.4 Mb proximal to rs10795668, and LOC389935,
located 0.7 Mb distally. Although loss of heterozygosity invol-
ving Chromosome 10p14 is seen in CRC (Shima et al, 2005),
the underlying basis of the association identified at rs10795668
is presently unclear, but there is no evidence to implicate the
predicted gene FLJ3802842 (Tomlinson et al, 2008). In the CEU
population, there was some evidence that the effect of rs10795668
on CRC risk varied by the site of the tumour, with the
susceptibility allele more common in rectal cancers (Tomlinson
et al, 2008). This was not seen in the Han Chinese population we
studied.

The SNP rs4779584 maps to Chr15:30 782 048, that is the CRAC
(HMPS) locus. Although the risk allele in our population is the
same as the European population, T is a major allele (0.83) in our
population, whereas it is a minor allele in the CEU population
(0.19). A previous meta-analysis by Jaeger et al (2008) showed a
very strong association of rs4779584 with CRC risk. Two out of
nine additional SNPs tested in this region were also statistically
significant (rs16970016 and rs1554865) in our population; rs10318,
which maps 31 kb distal to rs4779584, was one of the two most
strongly associated SNPs in the CEU population; yet, such finding
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could not be replicated in our study. One of the possible reasons
for this disparity is that there are differences at this locus
between the CEU and CHB population in terms of LD structure
(Supplementary Table 3a and b). For example, there are vast
differences in the MAFs for rs10318 (CEU 0.18, CHB 0.49 and HK

control 0.46). Differences in MAFs between the two populations
and the nature of the minor alleles were also found for other SNPs
tested in this study (MAF: rs6494587, rs1696968, rs11632715 and
rs1406387; nature of minor alleles: rs1554865, rs16970016,
rs1406389, rs1919360 and rs7165427).

In the European studies, no association was found between the
genotypes of rs4779584 and any of the clinico-pathological
variables tested. In the Han Chinese population, the risk allele
of rs4779584 was significantly associated with the male gender.
Moreover, there was significant interaction between this SNP and
the gender. This SNP rs4779584 lies between GREM1 and

Table 2 Allele frequency in CRC cases and controls and OR for SNPs studied

SNP
Chromosome
regiona

Position
(bp)b Allelesc

High-risk
allele in previous

studies
MAF
cases

MAF
controls

OR heterozygous
(95% CI)

OR homozygous
(95% CI) P-value*

(A) SNPs analysed in Phase 1
rs6983267 8q24.21 128 482 487 G, T G 0.46 0.43 0.98 (0.77 – 1.24) 1.31 (0.97 – 1.77) 0.127
rs7014346 8q24.21 128 493 974 A, G A 0.34 0.3 1.15 (0.92 – 1.43) 1.7 (1.17 – 2.49) 0.0091
rs10795668 10p14 8 741 225 A,G G 0.32 0.38 0.74 (0.59 – 0.92) 0.65 (0.47 – 0.90) 0.0018
rs3802842 11q23.1 110 676 919 C, A C 0.46 0.44 1.29 (1.02 – 1.64) 1.16 (0.86 – 1.56) 0.225
rs4444235 14q22.3 53 480 669 T, C C 0.48 0.48 1.03 (0.81 – 1.32) 1.03 (0.77 – 1.38) 0.822
rs4779584 15q14 30 782 048 C, T T 0.17 0.21 0.76 (0.60 – 0.95) 0.74 (0.43 – 1.26) 0.017
rs10318 15q14 30 813 271 C, T T 0.46 0.44 1.11 (0.88 – 1.42) 1.21 (0.89 – 1.64) 0.213
rs9929218 16q22.1 67 378 447 A, G G 0.24 0.24 0.97 (0.78 – 1.21) 1.05 (0.65 – 1.67) 0.965
rs4939827 18q21.2 44 707 461 T, C T 0.38 0.35 1.12 (0.90 – 1.40) 1.45 (1.03 – 2.04) 0.037
rs12953717 18q21.2 44 707 929 T, C T 0.38 0.33 1.1 (0.88 – 1.37) 1.64 (1.15 – 2.34) 0.015
rs4464148 18q21.2 44 713 030 C, T C 0.09 0.07 1.21 (0.90 – 1.62) 4.11 (0.46 – 36.19) 0.108
rs10411210 19q12 38 224 140 T, C C 0.18 0.18 0.99 (0.78 – 1.25) 0.92 (0.52 – 1.62) 0.809
rs355527 20p12.3 6 336 068 A, G A 0.08 0.07 1.25 (0.93 – 1.69) 0.38 (0.10 – 1.46) 0.49

(B) SNPs analysed in Phase 2
rs706771 10p14 8 736 452 A, G — 0.45 0.49 0.89 (0.72 – 1.11) 0.73 (0.56 – 0.95) 0.022
rs827401 10p14 8 738 836 A, G — 0.45 0.49 0.89 (0.72 – 1.11) 0.74 (0.57 – 0.96) 0.028
rs7894531 10p14 8 774 767 T, G — 0.34 0.38 0.76 (0.62 – 0.93) 0.72 (0.54 – 0.96) 0.006
rs7898455 10p14 8 778 914 T, G — 0.34 0.38 0.77 (0.63 – 0.94) 0.71 (0.53 – 0.95) 0.005
rs4474353 10p14 8 783 319 A, G — 0.33 0.38 0.76 (0.62 – 0.94) 0.71 (0.54 – 0.95) 0.005
rs11623717 14q22.3 53 483 882 G, A — 0.43 0.44 1.02 (0.83 – 1.26) 0.93 (0.71 – 1.21) 0.679
rs17563 14q22.3 53 487 272 C, T — 0.29 0.27 1.08 (0.89 – 1.31) 1.32 (0.92 – 1.89) 0.142
rs2071047 14q22.3 53 488 161 T, C — 0.41 0.41 1.03 (0.84 – 1.27) 0.97 (0.74 – 1.27) 0.9
rs2761887 14q22.3 53 494 802 C, A — 0.44 0.44 1.0 (0.81 – 1.24) 0.99 (0.76 – 1.29) 0.961
rs8014363 14q22.3 53 501 325 C, T — 0.1 0.11 0.99 (0.78 – 1.26) 0.61 (0.25 – 1.48) 0.584
rs6494587 15q14 30 768 935 A, G — 0.42 0.4 1.17 (0.95 – 1.43) 1.16 (0.88 – 1.52) 0.194
rs16969681 15q14 30 780 403 T, C — 0.36 0.34 1.15 (0.94 – 1.40) 1.16 (0.85 – 1.59) 0.185
rs16970016 15q14 30 782 590 C, A — 0.22 0.25 0.81 (0.67 – 0.99) 0.72 (0.48 – 1.07) 0.017
rs1554865 15q14 30 787 098 A, G — 0.21 0.25 0.83 (0.68 – 1.01) 0.68 (0.45 – 1.02) 0.015
rs11632717 15q14 30 791 539 G, A — 0.23 0.23 1.0 (0.82 – 1.21) 1.22 (0.76 – 1.94) 0.644
rs1406389 15q14 30 796 770 T, A — 0.28 0.3 0.94 (0.77 – 1.15) 0.78 (0.56 – 1.09) 0.173
rs1919360 15q14 30 830 747 C, T — 0.38 0.37 0.96 (0.79 – 1.18 1.05 (0.78 – 1.41) 0.91
rs7165427 15q14 30 947 552 T, C — 0.5 0.5 0.89 (0.71 – 1.12) 0.99 (0.76 – 1.29) 0.946
rs961253 20p12.3 6 352 281 A, C — 0.08 0.074 1.28 (0.98 – 1.67) 0.34 (0.09 – 1.26) 0.337

Abbreviations: CI¼ confidence intervals; CRC¼ colorectal cancer; MAF¼minor allele frequency; OR¼ odds ratio; SNP¼ single-nucleotide polymorphism. aChromosomal
regions were obtained from NCBI map viewer, Ideogram section. bAll base pairs were according to the NCBI build 36.3 data. cOrder of allele: minor allele, major allele; the allele
underlined denoted high-risk allele in our study. OR heterozygous – OR in heterozygotes, relative to common homozygotes. OR homozygous – OR in rare homozygotes,
relative to common homozygotes. *P-values were obtained by Cochrane–Armitage trend test with one degree of freedom; P-values obtained from logistic regression models
were similar (data not shown). In Phase 1, if an OR had the same direction as previously reported, one-tailed P-values were calculated, i.e. P/2, conversely for ORs in the opposite
direction P¼ 1�P/2.

Table 3 Association between total number of risk alleles and colorectal
cancer risk

Total no. of
risk alleles

Cases
No. (%)

Controls
No. (%) OR (95% CI)

4–6 25 (3.6) 42 (5.9) 0.54 (0.32–0.94)
7 39 (5.6) 76 (10.7) 0.47 (0.30–0.74)
8 101 (14.4) 131 (18.5) 0.70 (0.50–1.00)
9 160 (22.8) 128 (18.1) 1.14 (0.82–1.59)
10 151 (21.4) 138 (19.5) 1.0 (reference)
11 110 (15.7) 104 (14.7) 0.97 (0.68–1.38)
12 77 (11.0) 61 (8.5) 1.15 (0.77–1.73)
13–15 39 (5.5) 29 (4.1) 1.23 (0.72–2.09)

Ptrend¼ 2.29� 10�5

Abbreviations: CI¼ confidence intervals; OR¼ odds ratio; SNP¼ single-nucleotide
polymorphism. SNPs used to calculate number of risk alleles: rs7014346, rs10795668,
rs3802842, rs4444235, rs4779584, rs9929218, rs12953717, rs10411210 and
rs355527. High-risk allele: more frequent allele observed in cases from reference
study. P – obtained from w2 test. Ptrend – obtained from Cochrane–Armitage trend
test.
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Figure 1 Composite index distribution in cases and controls.
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SCG5. Jaeger et al (2008) have previously reported no association
between SCG5 or GREM1 expression and the genotype of
rs47795684. The GREM1 encodes a secreted bone morphogenetic
protein (BMP) antagonist. The TGF-b/BMP pathway is known to
have an important role in colorectal tumourigenesis. It is,
therefore, plausible that GREM1 may increase tumour prolifera-
tion, for example, through its expression in the stroma (Sneddon
et al, 2006). Although SCG5 is genetically and functionally slightly
worse candidate than GREM1, neuroendocrine signalling involving
SCG5 (Seidah and Chretien, 1999) could influence cellular
proliferation in the large bowel through, for example, signalling
of nutrient availability or systemic hormonal effect.

The SNP rs12953717 is located at intron 3 of the SMAD7 gene on
18q21. One of the other two SNPs (rs4939827) tested in this region
was also statistically significant. Yet, the inclusion of rs4939827 did
not improve the fit of the model compared with rs12953717 alone;
such result was compatible with there being a single risk locus in
the SMAD7 region. The risk allele, C, was a major allele in our
study, whereas it was a minor allele in the CEU studies. Although
18q21.1 contains another protein-coding gene (CR621005) and a
predicted gene of unknown function (KIA0427), the decay in LD
away from SMAD7 intron 3 incorporating all three SNPs as shown
by Broderick et al (2007) did not support these genes as the
location of a causative variant.

Loss of chromosome 18q is very common in individuals
with CRC. Broderick et al (2007) observed that lower median

SMAD7 mRNA expression was associated with CRC risk allele at
rs12953717. The SMAD7 acts as an intracellular antagonist of
TGF-b signalling by binding stably to the receptor complex and
blocking activation of downstream signalling events. Pertubation
of SMAD7 expression has been documented to influence CRC
progression (Levy and Hill, 2006) and SMAD7 has also been
shown to induce hepatic metastasis in CRC (Halder et al, 2008).
Our finding of significant association of rs129753717 with
metastatic disease supports the observations that SMAD7 influ-
ences CRC progression and induces distant metastasis. In a recent
study, Thompson et al (2009) had shown gender-specific associa-
tion of SMAD7 with colon cancer risk (i.e. risk association in
women only). However, in our study, stratified analysis revealed
significant association of rs12975717 with CRC risk in man only,
while the interaction between rs12975717 and gender was not
significant. There is no obvious explanation for the disparity in
these study findings.

Located on 8q24, rs7014346 is in strong LD with rs6983267;
rs7014346 is 3 kb upstream of POU5F1P1 and maps within intron 6
of the gene DQ515897. Although this is close to genes encoding
POU transcription factors, recent data suggest that the causal
basis of the 8q24 association is rs6983267, which impacts on the
differential expression of c.MYC through a long range cis-effect
(Pomerantz et al, 2009; Tuupanen et al, 2009). Previous European
studies did not find any interaction between various clinical
variables with rs7014346 (Tenesa et al, 2008). The locus at 8q24.21

Table 4 Association of independent SNPs with various clinico-pathological variables

Sex: male (M),
female (F)

Age: omedian,
Xmedian

Cancer stage:
stage I/II, stage III/IV

Metastatic disease:
not stage IV, stage IVs

Family history
of CRC

Site of cancer
colon (C) rectum (R)

SNP Genotype M F P o68 X68 P I and II III and IV P Not IV IV P Yes No P C R P

rs10795668 AA 54 55 49 60 42 64 84 22 3 106 73 33
Risk allele: G AG 209 161 0.03 192 178 0.57 157 210 0.17 278 89 0.99 36 334 0.21 222 145 0.50

GG 244 156 185 215 184 213 308 89 36 364 247 151

rs4779584 CC 14 12 9 17 15 11 22 4 4 22 15 11
Risk allele: T CT 107 87 0.01 87 107 0.12 80 111 0.64 142 49 0.88 16 178 0.39 126 65 0.71

TT 324 172 248 248 215 276 373 118 42 454 303 189

rs12953717 TT 60 37 51 46 45 51 66 30 5 92 65 32
Risk allele: T TC 220 123 0.48 168 175 0.21 145 194 0.77 255 84 0.04 43 300 0.22 231 125 0.24

CC 165 111 125 151 120 153 216 57 14 262 166 108

rs7014346 AA 50 31 39 42 32 49 60 21 7 74 56 25
Risk allele: A AG 199 132 0.39 162 169 0.65 128 199 0.01 237 90 0.06 33 298 0.35 205 123 0.26

GG 196 108 143 161 150 150 240 60 22 282 183 117

Abbreviations: CRC¼ colorectal cancer; SNP¼ single-nucleotide polymorphism. P – P-values obtained from logistic regression model.

Table 5 Heterogeneity of associations between Hong Kong Han Chinese population and other populations

OR (95% CI), high-risk allele frequency in control subjects;
ref allele: low-risk allele in this study

Breslow – Day’s test Pheterogeneity

with this study

SNP, chromosome HK England/CEU Japan Scotland England/CEU Japan Scotland Reference

rs7014346, 8q24.21 1.23 (1.05 – 1.44), 30% 1.29 (1.18 – 1.40), 36% 0.85 (0.79 – 0.92), 77%a 1.23 (1.15 – 1.33), 37% 0.60 3.67� 10 – 5 0.95 Tenesa et al (2008)
rs10795668, 10p14 1.28 (1.1 – 1.5), 62% 1.12 (1.00 – 1.25), 67% — 0.17 Tomlinson et al (2008)
rs4779584, 15q14 1.26 (1.04 – 1.52), 79% 1.21 (1.12 – 1.31), 19%a — 0.72 Jaeger et al (2008)
rs12953717, 18q21.2 1.20 (1.03 – 1.40), 33% 1.38 (1.21 – 1.56), 42% — 0.19 Broderick et al (2007)
rs4939827, 18q21.2 1.17 (1.01 – 1.37), 35% 1.40 (1.23 – 1.59), 51%a — 0.08 Broderick et al (2007)
rs10318, 15q14 1.10 (0.95 – 1.27), 44% 0.79 (0.67 – 0.94), 82%a — 0.005 Jaeger et al (2008)
rs4464148, 18q21.2 1.20 (1.03 – 1.4), 33% 1.35 (1.18 – 1.55), 29% — 0.29 Broderick et al (2007)
rs12953717, 15q14 1.2 (1.03 – 1.4), 33% 1.38 (1.21 – 1.56), 42% — 0.19 Broderick et al (2007)
rs6983267, 8q24.21 1.12 (0.97 – 1.3), 43% 1.41 (1.24 – 1.6), 49% — 0.02 Tomlinson et al (2007)
rs4444235, 14q22.3 1.02 (0.88 – 1.18), 48% 0.89 (0.85 – 0.93), 54%a — 0.21 Houlston et al (2008)
rs9929218, 16q22.1 1.00 (0.84 – 1.18), 76% 1.14 (1.08 – 1.21), 70% — 0.15 Houlston et al (2008)
rs355527, 20p12.3 1.10 (0.84 – 1.45), 7% 1.13 (1.08 – 1.19), 33% — 0.85 Houlston et al (2008)
rs10411210, 19q12 1.02 (0.85 – 1.24), 82% 1.27 (1.16 – 1.38), 90% — 0.045 Houlston et al (2008)

Abbreviations: CEU¼Caucasian European; CI¼ confidence interval; CRC¼ colorectal cancer; HK¼Hong Kong; OR¼ odds ratio; SNP¼ single-nucleotide polymorphism.
aHigh-risk allele different in this and reference study.
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has been previously reported to influence the risk of adenomas as
well as CRC (Tomlinson et al, 2007), suggesting that the 8q24.21
locus was involved in tumour initiation rather than progression. In
our study, we found an association of rs7014346 with aggressive-
advanced cancer raising the possibility that the 8q24.21 locus is
also involved in tumour progression.

Twenty previously identified risk SNPs were not associated with
CRC risk in the Chinese population. Although rs3802842 was
significantly associated with CRC risk in various Caucasian
populations, this association has not been replicated in the
Japanese and Hong Kong Han Chinese populations. Several
reasons exist for a failure to replicate findings. First, it could be
that this study had insufficient power to detect the modest effect
sizes of these SNPs. Second, for some non-replicated SNPs, there
are differences in terms of the allele frequencies and LD patterns
between the CEU and HCB/HK data. Third, the magnitude of the
effect of a risk allele may differ between populations because of
gene–gene or gene–environment interactions.

The study provides replication of four independent SNPs and
suggests that there is a great deal of commonality in the aetiology
of CRC across populations. This may not be entirely surprising
for such high-frequency variants as these are likely to have quite
ancient origins before ethnic diversification.
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