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DETERMINING PROJECTIONS AND FUNCTIONALS FOR
WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

MICHAEL HOLST AND EDRISS TITI

ABSTRACT. In this paper we prove that an operator which projects weak solutions of
the two- or three-dimensional Navier-Stokes equations onto a finite-dimensional space
is determining if it annihilates the difference of two “nearby” weak solutions asymptot-
ically, and if it satisfies a single appoximation inequality. We then apply this result to
show that the long-time behavior of weak solutions to the Navier-Stokes equations, in
both two- and three-dimensions, is determined by the long-time behavior of a finite set
of bounded linear functionals. These functionals are constructed by local surface aver-
ages of solutions over certain simplex volume elements, and are therefore well-defined
for weak solutions. Moreover, these functionals define a projection operator which satis-
fies the necessary approximation inequality for our theory. We use the general theory to
establish lower bounds on the simplex diameters in both two- and three-dimensions. Fur-
thermore, in the three dimensional case we make a connection between their diameters
and the Kolmogoroff dissipation small scale in turbulent flows.
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1. INTRODUCTION

Consider a viscous incompressible fluid in Ω ⊂ Rd, where Ω is an open bounded
domain with Lipschitz continuous boundary, and where d = 2 or d = 3. Given the
kinematic viscosity ν > 0, and the vector volume force function f(x, t) for each x ∈ Ω
and t ∈ (0,∞), the governing Navier-Stokes equations for the fluid velocity vector u =
u(x, t) and the scalar pressure field p = p(x, t) are:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f in Ω× (0,∞), (1.1)

∇ · u = 0 in Ω× (0,∞). (1.2)
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2 M. HOLST AND E. S. TITI

Also provided are initial conditions u(0) = u0, as well as appropriate boundary condi-
tions on ∂Ω× (0,∞).

The notion of determining modes for the Navier-Stokes equations was first introduced
in [13] as an attempt to identify and estimate the number of degrees of freedom in turbu-
lent flows (cf. [9] for a thorough discussion of the role of determining sets in turbulence
theory). This concept later led to the notion of Inertial Manifolds [14]. An estimate of the
number of determining modes was given in [12] and later improved in [21]. The notion
of determining nodes, and other more general determining concepts, were introduced
in [15]. In [16] the notion of determining nodes was discussed in detail, and estimates
for their number were reported in [20], and later improved in [21]. In [17] (see also [19])
the concept of determining volume elements was presented, and a connection was estab-
lished between this concept and Inertial Manifolds. A generalized and unified theory of
all of the above was recently presented in [5, 6].

Bounds on the number of determining modes, nodes, and volumes are usually phrased
in terms of a generalized Grashof number, which is defined for the two-dimensional
Navier-Stokes equations as:

Gr =
ρ2F

ν2
=

F

λ1ν2
,

where λ1 is the smallest eigenvalue of the Stokes operator and ρ =
√
λ1 is the related

(best) Poincaré constant. Here, F = lim supt→∞(
∫

Ω
|f(x, t)|2)1/2 if f ∈ L2(Ω) for

almost every t, or F = lim supt→∞
√
λ1‖f‖H−1(Ω) if f ∈ H−1(Ω) for almost every t.

The best known estimate for the determining set size for the two-dimensional Navier-
Stokes equations with periodic boundary conditions and H2-regular solutions is of order
Gr [21]. In obtaining their estimate, the authors relied on the fact that the domain had no
physical boundaries to shed vorticity, which made available some convenient properties
of H2-regular solutions. However, in the two-dimensional case with no-slip boundary
conditions, to our knowledge the best estimate on the cardinal of any determining set
(modes, nodes, or volumes) that can be obtained is of order Gr2, even for H2-regular
solutions.

Due to the Sobolev Imbedding Theorem H2 ↪→ C0 (which holds in dimensions 1,
2, and 3), or rather due to the failure of the imbedding H1 ↪→ C0 in dimensions 2 and
3, determining node analysis is necessarily restricted to H2-regular solutions to make
sense of point-wise values. However, when talking about determining modes or volume
elements, it is sufficient for functions to be H1-regular, so that these concepts also make
sense for weaker solutions. To construct a general analysis framework for the case of
weak H1 solutions, we can begin by defining notions of determining projections and
determining functionals for weak solutions. (The standard spaces H , V , and V ′ are
reviewed fully in §2.)

Definition 1.1. Let f(t), g(t) ∈ V ′ be any two forcing functions satisfying

lim
t→∞
‖f(t)− g(t)‖V ′ = 0, (1.3)

and let u, v ∈ V be corresponding weak solutions to (1.1)–(1.2). The projection operator
RN : V 7→ VN ⊂ L2(Ω), N = dim(VN) < ∞, is called a determining projection for
weak solutions of the d-dimensional Navier-Stokes equations if

lim
t→∞
‖RN(u(t)− v(t))‖L2(Ω) = 0, (1.4)

implies that
lim
t→∞
‖u(t)− v(t)‖H = 0. (1.5)
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Given a basis {φi}Ni=1 for the finite-dimensional space VN , and a set of bounded linear
functionals {li}Ni=1 from V ′, we can construct a projection operator as:

RNu =
N∑
i=1

li(u)φi. (1.6)

The assumption (1.4) is then implied by:

lim
t→∞
|li(u(t)− v(t))| = 0, i = 1, . . . , N (1.7)

so that we can ask equivalently whether the set {li}Ni=1 forms a set of determining func-
tionals (see [5, 6]). The analysis of whetherRN or {li}Ni=1 are determining can be reduced
to an analysis of the approximation properties of RN . Note that in this construction, the
basis {φi}Ni=1 need not span a subspace of the solution space V , so that the functions φi
need not be divergence-free for example. Note that Definition 1.1 encompasses each of
the notions of determining modes, nodes, and volumes by making particular choices for
the sets of functions {φi}Ni=1 and {li}Ni=1 (see [19, 20]).

In this paper, we will employ Definition 1.1 to extend the results of [5, 6] to the more
general setting of H1-regular solutions. In particular, we will show that if a projection
operator RN : V 7→ VN ⊂ L2(Ω), N = dim(VN) < ∞, satisfies an approximation
inequality for γ > 0 of the form,

‖u−RNu‖L2(Ω) ≤ C1N
−γ‖u‖H1(Ω), (1.8)

then the operator RN is a determining projection in the sense of Definition 1.1, provided
N is large enough. We will also derive explicit bounds on the dimension N which guar-
antees that RN is determining. While we gain generality in our approach here, we also
lose something in the balance: the bounds obtained here are generally of order Gr2,
whereas the bounds in [5, 6] (requiring H2-regularity) are of order Gr.

Outline of the paper. Preliminary material is presented in §2, including some inequali-
ties for bounding the nonlinear term appearing in weak formulations of the Navier-Stokes
equations. In §3, a finite element interpolant due to Scott and Zhang is presented, which
(unlike nodal interpolation) is well-defined for H1-functions. It is shown that the inter-
polant satisfies the approximation assumption (1.8) for H1-functions on arbitrary poly-
hedral domains in both two and three dimensions; most of the details are relegated to the
Appendix. In §4, we consider the two-dimensional Navier-Stokes equations, and derive
bounds on the dimensionN of the space VN , employing only the approximation assump-
tion (1.8). As an application of this general result, we employ some standard assumptions
about simplex triangulations of the domain (discussed in §3) and derive lower bounds on
the simplex diameters, sufficient to ensure that the SZ-interpolant is a determining projec-
tion (equivalently, that the simplex surface integrals forming SZ-interpolant coefficients
are a determining set of linear functionals). We extend these results to three dimensions
in §5, by requiring (following [7]) that weak solutions satisfy an additional technical as-
sumption (due to the lack of appropriate global a priori estimates), which is related to
the natural notion of mean dissipation rate of energy.

2. PRELIMINARY MATERIAL

We briefly review some background material following the notation of [8, 23, 25, 26].
Let Ω ⊂ Rd denote an open bounded set. The imbedding results we will need are
known to hold for example if the domain Ω has a locally Lipschitz boundary, denoted
as Ω ∈ C0,1 (cf. [1]). For example, open bounded convex sets Ω ⊂ Rd satisfy Ω ∈ C0,1
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(Corollary 1.2.2.3 in [18]), so that convex polyhedral domains (which we consider here)
are in C0,1.

Let Hk(Ω) denote the usual Sobolev spaces W k,2(Ω). Employing multi-index nota-
tion, the distributional partial derivative of order |α| is denoted Dα, so that the (integer-
order) norms and semi-norms in Hk(Ω) may be denoted

‖u‖2
Hk(Ω) =

k∑
j=0

|Ω|
j−k
d |u|2Hj(Ω), |u|2Hj(Ω) =

∑
|α|=j

‖Dαu‖L2(Ω), 0 ≤ j ≤ k,

where |Ω| represents the measure of Ω. Fractional order Sobolev spaces and norms may
be defined for example through Fourier transform and extension theorems, or through
interpolation. A fundamentally important subspace is the k = 1 case of

Hk
0 (Ω) = closure of C∞0 (Ω) in Hk(Ω),

in which the Poincaré Inequality reduces to: If Ω is bounded, then

‖u‖L2(Ω) ≤ ρ(Ω)|u|H1(Ω), ∀u ∈ H1
0 (Ω). (2.1)

The spaces above extend naturally (cf. [25]) to product spaces of vector functions u =
(u1, u2, . . . , ud), which are denoted with the same letters but in bold-face; for example,
Hk

0(Ω) =
(
Hk

0 (Ω)
)d. The inner-products and norms in these product spaces are extended

in the natural Euclidean way; the convention here will be to subscript these extended
vector norms the same as the scalar case.

Define now the space V of divergence free C∞ vector functions with compact support
as

V = {φ ∈ C∞0 (Ω) | ∇ · φ = 0} .
The following two subspaces of L2(Ω) and H1

0(Ω) are fundamental to the study of the
Navier-Stokes equations.

H = closure of V in L2(Ω), V = closure of V inH1
0(Ω).

To simplify the notation, it is common (cf. [8, 25]) to use the following notation for
inner-products and norms in H and V :

(u, v) = (u, v)H , |u| = ‖u‖H , ((u, v)) = (u, v)V , ‖u‖ = ‖u‖V . (2.2)

The Navier-stokes equations (1.1)–(1.2) are equivalent to the functional differential
equation:

du

dt
+ νAu+B(u, u) = f, u(0) = u0. (2.3)

The Stokes operator A and bilinear form B are defined as

Au = −P∆u, B(u, v) = P [(u · ∇)v],

where the operator P is the Leray orthogonal projector, P : H1
0 7→ V and P : L2 7→ H ,

respectively.
Weak formulations, which we consider shortly, will use the bilinear Dirichlet form

((·, ·)) and trilinear form b(·, ·, ·) as:

((u, v)) = (∇u,∇v), b(u, v, w) = (B(u, v), w) = (P ((u · ∇)v), w).

(Note that thanks to the Poincaré inequality (2.1), the form ((·, ·)) is actually an inner-
product on V, and the induced norm ‖ · ‖ = ((·, ·))1/2 is in fact a norm on V, equivalent
to the H1-norm.)



DETERMINING PROJECTIONS AND FUNCTIONALS FOR NAVIER-STOKES EQUATIONS 5

A priori bounds can be derived for the form b(·, ·, ·) (cf. [8, 22, 25]). In particular, if
Ω ⊂ Rd, then the trilinear form b(u, v, w) is bounded on V × V × V as follows:

d = 2 : |b(u, v, w)| ≤ 21/2‖u‖1/2

L2(Ω)|u|
1/2

H1(Ω)|v|H1(Ω)‖w‖1/2

L2(Ω)|w|
1/2

H1(Ω), (2.4)

d = 3 : |b(u, v, w)| ≤ 2‖u‖1/4

L2(Ω)|u|
3/4

H1(Ω)|v|H1(Ω)‖w‖1/4

L2(Ω)|w|
3/4

H1(Ω). (2.5)

Moreover, from Hölder inequalities we have for d = 2 or d = 3:

|b(v, u, v)| ≤ ‖∇u‖L∞(Ω)‖v‖2
L2(Ω). (2.6)

3. POLYNOMIAL INTERPOLATION IN H1
0(Ω)

An example of a projection operator which satisfies the approximation assumption (1.8)
is that used for defining determining volumes [19]; we examine now powerful alternative
operator. Let Ω ⊂ Rd be a d-dimensional polygon, exactly triangulated by (for example)
Delaunay triangulation [11], with quasi-uniform, shape-regular simplices, the vertices of
which will form a set of N generalized interpolation points in our analysis. Note that
for quasi-uniform, shape-regular triangulations in Rd (see [4] for detailed discussions), it
holds that

C0|Ω|h−d ≤ N ≤ C ′0|Ω|h−d, (3.1)

where h is the maximum of the diameters of the simplices, and where C0 and C ′0 are
universal constants, independent of both N and h. The parameter h will be referred to
as the characteristic parameter, or characteristic length scale, of such a quasi-uniform
shape-regular mesh.

It should be noted that given some initial triangulation satisfying (3.1), repeated bi-
section [2] or octa-section [27] (quadra-section in 2D) of each simplex can be performed
in such a way as to guarantee non-degeneracy asymptotically, in that the quasi-uniformity
and shape-regularity are preserved. Therefore, inequality (3.1) can be made to hold, for
the same universal constants, for finer and finer meshes in a nested sequence of simplex
triangulations.

To properly define a continuous piecewise-linear nodal interpolant of a function u ∈
H1(Ω) based on the nodes of a triangulation of Ω, the particular function u must be
bounded point-wise. This will be true if the function u is continuous in Ω, hence uni-
formly continuous on Ω̄. One of the Sobolev imbedding results (cf. [1]) states that if
Ω ⊂ Rd satisfies Ω ∈ C0,1, then for nonnegative real numbers k and s it holds that
Hk(Ω) ↪→ Cs(Ω̄), k > s + d

2
. This implies that for d = 1, the interpolant can be

correctly defined, since H1(Ω) is continuously imbedded in C0(Ω̄). However, in higher
dimensions, H1+α(Ω) ↪→ C0(Ω̄) only if α > 0 when d = 2, or if α > 1/2 when d = 3.
While it may be possible to use the nodal interpolant and a regularity assumption such as
u ∈ H1+α(Ω) for appropriate α > 0, an alternative approach is taken here.

The generalized interpolant due to Scott and Zhang [24] can be defined forH1-functions
in both two and three spatial dimensions. The SZ-interpolant Ih is constructed from a
combination linear interpolation and local averaging on faces and edges of simplices,
and has optimal approximation properties even in the case of H1-functions.

Lemma 3.1. For the SZ-interpolant of u ∈ H1+α
0 (Ω), α ≥ 0, it holds that

‖u− Ihu‖L2(Ω) ≤ C1h
1+α|u|H1+α(Ω).

Proof. See the appendix for a condensed proof following [3, 24]. �
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Note that both the usual nodal interpolant and the SZ-interpolant Ih can be written as
a linear combination of linear functionals:

Ihu(x) =
N∑
i=1

φi(x)li(u).

In either case, the set of functions {φi}Ni=1 is the usual continuous piecewise-polynomial
nodal finite element basis defined over the simplicial mesh, satisfying the Lagrange prop-
erty at the vertices of the mesh:

φi(xj) = δij.

The difference between the two interpolants is simply the choice of the linear functionals:
in the case of the nodal interpolant, the functionals are delta functions centered at the
vertices of the mesh; in the case of the SZ-interpolant, they are defined in terms of a
bi-orthogonal dual basis (see the Appendix).

4. THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS

A general weak formulation of the Navier-Stokes equations (1.1)–(1.2) can be written
as (cf. [8, 25]):

Definition 4.1. Given f ∈ L2([0, T ];V ′), a weak solution of the Navier-Stokes equations
satisfies u ∈ L2([0, T ];V ) ∩ Cw([0, T ];H), du/dt ∈ L1

loc((0, T ];V ′), and

<
du

dt
, v > +ν((u, v)) + b(u, u, v) =< f, v >, ∀v ∈ V, for almost every t, (4.1)

u(0) = u0. (4.2)

Here, the space Cw([0, T ];H) is the subspace of L∞([0, T ];H) of weakly continuous
functions, and < ·, · > denotes the duality pairing between V and V ′, where H is the
Riesz-identified pivot space in the Gelfand triple V ⊂ H = H ′ ⊂ V ′. Note that since
the Stokes operator can be uniquely extended to A : V 7→ V ′, and since it can be shown
that B : V × V 7→ V ′ (cf. [8, 26] for both results), the functional form (2.3) still makes
sense for weak solutions, and the total operator represents a mapping V 7→ V ′.

In the two-dimensional case, for a forcing function f ∈ L∞([0, T ];V ′), there exists
a unique weak solution u ∈ L2([0, T ];V ) ∩ Cw([0, T ];H) (cf. [8, 26]). Consider now
two forcing functions f, g ∈ L2([0,∞];V ′) and corresponding weak solutions u and v
to (2.3) in either the two- or three-dimensional case. Subtracting the equations (2.3) for
u and v yields an equation for the difference function w = u− v, namely

dw

dt
+ νAw +B(u, u)−B(v, v) = f − g. (4.3)

Since the residual of equation (4.3) lies in the dual space V ′, for almost every t, we can
consider the dual pairing of each side (4.3) with a function in V , and in particular with
w ∈ V , which yields

<
dw

dt
, w > +ν‖w‖2 + b(u, u, w)− b(v, v, w) =< f − g, w > for almost every t.

It can be shown (cf. [25], Chapter 3, Lemma 1.2) that

1

2

d

dt
|w|2 =<

dw

dt
, w >



DETERMINING PROJECTIONS AND FUNCTIONALS FOR NAVIER-STOKES EQUATIONS 7

in the distribution sense. It can also be shown [8, 25] that b(u, v, w) = −b(u,w, v),
∀u, v, w ∈ V , so that b(w, u, w) = b(u, u, w) − b(v, v, w). Therefore, the function
w = u− v must satisfy

1

2

d

dt
|w|2 + ν‖w‖2 + b(w, u, w) =< f − g, w > . (4.4)

The following generalized Gronwall inequality will be a key tool in the analysis to
follow (see [12] and [19]).

Lemma 4.2. Let T > 0 be fixed, and let α(t) and β(t) be locally integrable and real-
valued on (0,∞), satisfying:

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ = m > 0, lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ = M <∞,

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0,

where α− = max{−α, 0} and β+ = max{β, 0}. If y(t) is an absolutely continuous
non-negative function on (0,∞), and y(t) satisfies the following differential inequality:

y′(t) + α(t)y(t) ≤ β(t), a.e. on (0,∞),

then limt→∞ y(t) = 0.

The main two-dimensional results are now given; we assume that Ω ⊂ R2 is an open
bounded domain with Lipschitz continuous boundary.

Theorem 4.3. Let f(t), g(t) ∈ V ′ be any two forcing functions satisfying

lim
t→∞
‖f(t)− g(t)‖V ′ = 0,

and let u, v ∈ V be the corresponding weak solutions to (1.1)–(1.2) for d = 2. If there
exists a projection operator RN : V 7→ VN ⊂ L2(Ω), N = dim(VN), satisfying

lim
t→∞
‖RN(u(t)− v(t))‖L2(Ω) = 0,

and satisfying for γ > 0 the approximation inequality

‖u−RNu‖L2(Ω) ≤ C1N
−γ‖u‖H1(Ω),

then
lim
t→∞
|u(t)− v(t)| = 0

holds if N is such that

∞ > N > C

(
1

ν2
lim sup
t→∞

‖f(t)‖V ′
) 1

γ

,

where C is a constant independent of ν and f .

Proof. Using the notation (2.2), we begin with equation (4.4), employing the inequal-
ity (2.4) along with Cauchy-Schwarz and Young’s inequalities to yield

1

2

d

dt
|w|2 + ν‖w‖2 ≤ ‖u‖ |w| ‖w‖+ ‖f − g‖V ′‖w‖

≤ 1

ν
‖u‖2|w|2 +

1

ν
‖f − g‖2

V ′ +
ν

2
‖w‖2.
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Equivalently, this is
d

dt
|w|2 + ν‖w‖2 − 2

ν
‖u‖2|w|2 ≤ 2

ν
‖f − g‖2

V ′ .

To bound the second term on the left from below, we employ the approximation assump-
tion on RN , or rather the following inequality which follows from it:

|w|2 ≤ 2N−2γC2
1‖w‖2 + 2‖RNw‖2

L2(Ω),

which yields

d

dt
|w|2 +

(
νN2γ

2C2
1

− 2

ν
‖u‖2

)
|w|2 ≤ 2

ν
‖f − g‖2

V ′ +
νN2γ

C2
1

‖RNw‖2
L2(Ω).

This is of the form
d

dt
|w|2 + α|w|2 ≤ β,

with obvious definition of α and β.
The generalized Gronwall Lemma 4.2 can now be applied. Recall that both ‖f −

g‖V ′ → 0 and ‖RNw‖L2(Ω) → 0 as t → ∞ by assumption. Since it is assumed that
u and v, and hence w, are in V , so that all other terms appearing in α and β remain
bounded, it must hold that

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0, lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ <∞.

It remains to verify that for some fixed T > 0,

lim sup
t→∞

1

T

∫ t+T

t

α(τ)dτ > 0.

This means we must verify the following inequality for some fixed T > 0:

N2γ >
2C2

1

ν

(
lim sup
t→∞

1

T

∫ t+T

t

2‖u‖2

ν
dτ

)
=

4C2
1

ν2
lim sup
t→∞

1

T

∫ t+T

t

‖u‖2dτ. (4.5)

The following a priori bound on any weak solution can be shown to hold (this is a simple
generalization to f ∈ V ′ of the bound in [8] for f ∈ H):

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2dτ ≤ 2

ν2
lim sup
t→∞

‖f(t)‖2
V ′ ,

for T = ρ2/ν > 0, where ρ is the best constant from the Poincaré inequality (2.1).
Therefore, if

N2γ > 8C2
1

(
1

ν2
lim sup
t→∞

‖f(t)‖V ′
)2

≥ 4C2
1

ν2

(
2

ν2
lim sup
t→∞

‖f(t)‖2
V ′

)
, (4.6)

implying that (4.5) holds, then by the Gronwall Lemma 4.2, it follows that

lim
t→∞
|w(t)| = lim

t→∞
|u(t)− v(t)| = 0.

�

Assume now that Ω ⊂ R2 is also polyhedral, and can be exactly triangulated with
a quasi-uniform, shape-regular set of simplices of maximal diameter h = O(N−1/2),
where N is the number of vertices in the triangulation (see §3). As an application of the
general result above, we establish a lower bound on the simplex diameters of such a trian-
gulation, which ensures that the SZ-interpolant is a determining projection (equivalently,
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that the simplex surface integrals forming SZ-interpolant coefficients are a determining
set of linear functionals).

Corollary 4.4. The SZ-interpolant is determining for the two-dimensional Navier-Stokes
equations if the diameter h of the simplices is small enough so that

∞ > h−2 > C

(
1

ν2
lim sup
t→∞

‖f(t)‖V ′
)2

.

Proof. Since h = O(N−1/2) for quasi-uniform, shape-regular triangulations in two di-
mensions, taking α = 0 in Lemma 3.1 yields

‖u− Ihu‖L2(Ω) ≤ C1h|u|H1(Ω) ≤ C̃1N
−1/2‖u‖H1(Ω).

Therefore, the SZ-interpolant Ih satisfies the approximation inequality (1.8) for γ = 1/2.
The corollary then follows by application of Theorem 4.3. �

Remark 4.5. If f ∈ H , then we have in fact a strong solution, i.e. u ∈ H2(Ω), and
the interpolation Lemma 3.1 may be applied with α = 1. This falls into the theoretical
framework of [5, 6], and in the periodic case they have shown that N ≈ Gr, whereas the
above result for the no-slip case states that N ≈ Gr2. Whether the no-slip case may be
improved to N ≈ Gr with additional regularity (f ∈ H) is unclear, due to the lack of an
analogous identity to

(B(w,w), Aw) = 0,

which holds for the two-dimensional periodic case. In physical terms, in two dimen-
sions this identity illustrates the lack of a boundary vorticity shedding source when the
boundary is absent.

5. THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS

The lack of appropriate a priori estimates in the three-dimensional case requires a
modification of the approach taken for the two-dimensional case in the previous section.
However, the interpolation results we have employed are dimension-independent, and
by following the analysis approach of [7] very closely, we can obtain similar results for
the three-dimensional case. Again we require only that f ∈ V ′, but we also assume the
existence of a unique weak solution to the three-dimensional Navier-Stokes equations.
An additional technical assumption is that some measure of the mean rate of energy
dissipation be finite, namely:

ε∞ = inf
T>0

lim sup
t→∞

ν

T

∫ t+T

t

‖∇u‖∞dτ <∞.

This assumption implies that eventually the weak solution for the three-dimensional
Navier-Stokes equations becomes unique, and also in the case f ∈ H the weak solu-
tion eventually becomes strong. But this assumption does not imply anything about the
transients, since the quantity is required to be finite only for large time. We assume again
that Ω ⊂ R3 is an open bounded domain with Lipschitz continuous boundary.

Theorem 5.1. Let f(t), g(t) ∈ V ′ be any two forcing functions satisfying

lim
t→∞
‖f(t)− g(t)‖V ′ = 0,

and let u, v ∈ V be the corresponding weak solutions to (1.1)–(1.2) for d = 3. If there
exists a projection operator RN : V 7→ VN ⊂ L2(Ω), N = dim(VN), satisfying

lim
t→∞
‖RN(u(t)− v(t))‖L2(Ω) = 0,
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and satisfying for γ > 0 the approximation inequality

‖u−RNu‖L2(Ω) ≤ C1N
−γ‖u‖H1(Ω),

then
lim
t→∞
|u(t)− v(t)| = 0

holds if N is such that

∞ > N > C

(
1

ν
inf
T>0

{
lim sup
t→∞

1

T

∫ t+T

t

‖∇u(s)‖L∞(Ω)ds

}) 1
2γ

,

where C is a constant independent of ν, f , and u.

Proof. Beginning with equation (4.4), the inequality (2.6) is employed along with Cauchy-
Schwarz and Young’s inequalities to yield

1

2

d

dt
|w|2 + ν‖w‖2 ≤ ‖∇u‖L∞(Ω)|w|2 + ‖f − g‖V ′‖w‖

≤ ‖∇u‖L∞|w|2 +
1

2ν
‖f − g‖2

V ′ +
ν

2
‖w‖2

Equivalently,
d

dt
|w|2 + ν‖w‖2 − ‖∇u‖L∞(Ω)|w|2 ≤

1

ν
‖f − g‖2

V ′ .

To bound the second term on the left from below, we employ a consequence of the
approximation assumption on RN , namely the inequality

|w|2 ≤ 2N−2γC2
1‖w‖2 + 2‖RNw‖2

L2(Ω),

which yields

d

dt
|w|2 +

(
νN2γ

2C2
1

− ‖∇u‖L∞
)
|w|2 ≤ 1

ν
‖f − g‖2

V ′ +
νN2γ

C2
1

‖RNw‖2
L2(Ω).

This has the form
d

dt
|w|2 + α|w|2 ≤ β,

with again obvious definition of α and β.
The analysis now proceeds exactly as in the proof of Theorem 4.3, so that all that

remains is to check again that for some fixed T > 0,

lim sup
t→∞

1

T

∫ t+T

t

α(τ)dτ > 0.

Thus, we must prove our assumption on N guarantees for a fixed T > 0 that

N2γ >
2C2

1

ν
lim sup
t→∞

1

T

∫ t+T

t

‖∇u‖L∞(Ω)dτ. (5.1)

If we select T∗ > 0 such that

2 inf
T>0

(
lim sup
t→∞

1

T

∫ t+T

t

‖∇u(s)‖L∞(Ω)ds

)
≥ lim sup

t→∞

1

T∗

∫ t+T∗

t

‖∇u(s)‖L∞(Ω)ds,

then our assumption gives

N2γ >
4C2

1

ν
inf
T∗>0

(
lim sup
t→∞

1

T∗

∫ t+T∗

t

‖∇u(s)‖L∞(Ω)ds

)
(5.2)

which implies (5.1). The theorem then follows by the Gronwall Lemma 4.2. �
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Assume now that Ω ⊂ R3 is also polyhedral, and can be exactly triangulated with
a quasi-uniform, shape-regular set of simplices of maximal diameter h = O(N−1/3),
where N is the number of vertices in the triangulation. As an application of the general
three-dimensional result above, we will establish a lower bound on the simplex diameters
of such a triangulation, which ensures that the SZ-interpolant is a determining projection
(and that the simplex surface integrals forming SZ-interpolant coefficients are a deter-
mining set of linear functionals).

Corollary 5.2. The SZ-interpolant is determining for the three-dimensional Navier-Stokes
equations if the diameter h of the simplices is small enough so that

∞ > h−2 > C

(
1

ν
inf
T>0

{
lim sup
t→∞

1

T

∫ t+T

t

‖∇u(s)‖L∞(Ω)ds

})
.

Proof. Since h = O(N−1/3) for quasi-uniform, shape-regular triangulations in three
dimensions, taking α = 0 in Lemma 3.1 yields

‖u− Ihu‖L2(Ω) ≤ C1h|u|H1(Ω) ≤ C̃1N
−1/3‖u‖H1(Ω).

Therefore, the SZ-interpolant Ih satisfies the approximation inequality (1.8) for γ = 1/3.
The corollary then follows by application of Theorem 5.1. �

APPENDIX: APPROXIMABILITY OF THE SCOTT-ZHANG INTERPOLANT

We will sketch the proof of the approximability result for the SZ-interpolant given as
Lemma 3.1; we will follow quite closely the proof given in [3, 24]. As throughout this
paper, we assume that Ω ∈ C0,1, and that the given exact simplicial triangulation of Ω is
both shape-regular and quasi-uniform.

The proof of Lemma 3.1 will follow easily from the following result (see the comments
at the end of this appendix).

Lemma 5.3. For the SZ-interpolant of u ∈ H1+α
0 (Ω), α ≥ 0, it holds that

‖u− Ihu‖L2(Ω) ≤ C1h
1+α|u|H1+α(Ω).

To prove Lemma 5.3, we will begin by defining carefully the SZ-interpolant. Let Th =
{τi}Li=1 be the given quasi-uniform, shape-regular mesh of d-simplices which exactly
triangulate the underlying domain Ω, and let Ωh = {xi}Ni=1 be the set of vertices of these
d-simplices. Define

Vh = span{φi(x)}Ni=1 ⊂ H1(Ω),

where {φi(x)} is the set of standard continuous piecewise linear (nodal) basis functions.
The nodal basis satisfies the Lagrange relationship at the vertices (which are exactly the
“nodes” in this setting):

φi(xj) = δij.

Now, for each vertex xi, we select (arbitrarily) an associated (d− 1)-simplex σi from the
given simplicial mesh satisfying only:

(1) xi ∈ σ̄i, and (2) σi ⊂ ∂Ω if xi ∈ ∂Ω.
In other words, for a given vertex xi we pick an arbitrary (d− 1)-simplex from edges or
faces of the d-simplices which contain xi as a vertex. In two-dimensions, we are picking
the edge of one of the triangles that have xi as a vertex; in three-dimensions, we are
picking the face of one of the tetrahedra which have xi as a vertex. The only restriction
on this choice is near the boundary: if xi is on the boundary, then the (d − 1)-simplex
we pick must be one of the edges or faces of the a simplex which lies exactly on the
boundary (such a choice is always possible).
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In each (d − 1)-simplex σi, we number the generating vertex xi first in the set of
vertices of σi, denoted {xi,j}dj=1. (I.e., we set xi,1 = xi.) For each σi, we also have a
(d− 1)-dimensional nodal basis {φi,j}dj=1, where again we set φi,1 = φi. There exists an
associated L2(σi)-dual (bi-orthogonal) basis {ψi,j} satisfying∫

σi

ψi,j(x)φi,k(x)dx = δjk, j, k = 1, . . . , d.

Again we take ψi,1 = ψi, ∀xi ∈ Ωh. Note that ψi and φj also satisfy a bi-orthogonal
relationship, namely

∫
σi
ψiφjdx = 0, i 6= j. We define now the SZ-interpolant as

Ih : H1(Ω) 7→ Vh(Ω), Ihu(x) =
N∑
i=1

φi(x)li(u), li(u) =

∫
σi

ψi(ξ)u(ξ)dξ.

Thanks to the Trace Theorem [1], the interpolant Ihu(x) is well-defined at nodal values
even for u ∈ H1(Ω), sinceH1(Ω) ↪→ L2(σi). Almost by construction, one can show [24]
that

• Ih : H1(Ω) 7→ Vh(Ω) is a projection
• Ih : H1

0 (Ω) 7→ V0h(Ω)

where V0h is the subset of Vh having zero trace on the boundary of Ω. Thus, Ih pre-
serves homogeneous Dirichlet boundary conditions. Using homogeneity arguments, the
following stability result for the interpolant is established in [24].

Lemma 5.4. For any τ ∈ Th, if the support region of τ is defined as the set Sτ =
interior (∪{τ̄i | τ̄i ∩ τ̄ 6= ∅, τi ∈ Th}), then it holds that

‖Ihu‖Hm(τ) ≤ C
l∑

k=0

hk−m|u|Hk(Sτ ), 0 ≤ m ≤ l, l > 1/2.

Proof. See the proof of Theorem 3.1 in [24]. �

The proof of the Scott and Zhang [24] approximation result is as follows.

Proof. (Lemma 5.3) Since Ih is a projector from H1(Ω) onto Vh(Ω), it follows that on
each element, Ih is a projector from H1(τ) onto P1(τ), the space of linear polynomials
over τ . Thus, Ihp = p, ∀p ∈ P1(τ), and employing also the stability result in Lemma 5.4
we have that for 0 ≤ m ≤ k ≤ 2,

‖u− Ihu‖Hm(τ) ≤ ‖u− p‖Hm(τ) + ‖Ih(p− u)‖Hm(τ) ≤ C
m∑
k=0

hk−m‖u− p‖Hk(Sτ ),

where Sτ is the element support region surrounding τ as defined in Lemma 5.4. Employ-
ing the modified Bramble-Hilbert lemma developed in [10] to estimate the terms of the
sum gives

inf
p∈P1(τ)

‖u− p‖Hm(Sτ ) ≤ Chk−m|u|Hk(Sτ ), 0 ≤ m ≤ k ≤ 2,

where due to the assumptions about the domain and the mesh, the constant C depends
only on the spatial dimension d. Together with the equation above this is

‖u− Ihu‖Hm(τ) ≤ Chk−m|u|Hk(Sτ ) 0 ≤ m ≤ k ≤ 2.

Since the set
Q = sup

τ∈Th
{card{τ ∈ Th|τ ∩ Sτ 6= ∅}}
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is finite due to the quasi-uniformity and shape-regularity of the mesh, we have finally
that for 0 ≤ m ≤ k ≤ 2, it holds that

‖u− Ihu‖2
Hm(Ω) =

∑
τ∈Th

‖u− Ihu‖2
Hm(τ) ≤ Ch2(k−m)‖u‖2

Hk(Ω).

The result for non-integer exponents k and m follows by the usual norm interpolation
arguments between L2(Ω) and H2(Ω), which completes the proof. �

Lemma 5.3 can be easily extended to the vector case, which provides finally the proof
of Lemma 3.1.

Proof. (Lemma 3.1) For u ∈ H1+α
0 (Ω) = (H1+α

0 (Ω))d, we have that

‖u− Ihu‖2
L2 =

d∑
i=1

‖ui − I(i)
h ui‖L2(Ω) ≤ C2

1h
2(1+α)

d∑
i=1

|ui|2H1+α(Ω),

where I(i)
h denotes the scalar SZ-interpolant applied to ui. Thus,

‖u− Ihu‖L2(Ω) ≤ C1h
1+α|u|H1+α(Ω).

�
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