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Abstract

We propose a model to characterize the type of knowledge
acquired in Artificial Grammar Learning (AGL). In
particular, we suggest a way to compute the complexity of
different test items in an AGL task, relative to the training
items, based on the notion of Shannon entropy: The more
predictable a test item is from training items, the higher the
likelihood that it will be selected as compatible to the training
items. Our model is an attempt to formalize some aspects of
inductive inference by providing a quantitative measure of
the knowledge abstracted by experience. We motivate our
particular approach from research in reasoning and
categorization, where reduction of entropy has also been seen
as a plausible cognitive objective. This may suggest that
reducing (Shannon) uncertainty may provide a single
explanatory framework for modeling as diverse aspects of
cognition, as learning, reasoning, and categorization.

Introduction

Artificial Grammar Learning (henceforth AGL; Reber,
1989; Redington & Chater, 1996) is an experimental
paradigm to study inductive inference. An artificial grammar
is a set of rules that can be used to generate sequences of
symbols. These sequences are labeled grammatical (G) to
distinguish them from ungrammatical sequences (NG),
which are sequences that violate the rules of the finite state
language. Figure 1 shows an example of one such grammar.
With this set of rules, while the string MSSV is legal, this
would not be the case for string MMSV.

Figure 1: This is the grammar used in Reber & Allen, 1978,
as well as Pothos & Chater (1998a, submitted), whose
results are analyzed in this work.
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]

MSSSV

Atbens —> London > Londen —> London —> Berdn

Figure 2: Examples of the types of stimuli used in Pothos &
Chater (1998a, submitted). Letter strings were used in
Experiment 1, arrangements of shapes in Experiment 2, and
city sequences in Experiment 3.

In a typical AGL experiment the sequences of symbols
are presented as letter strings, such as MSSV or MSSSV
(but these sequences can also be, for example, graphical
symbols or musical tones; see Figure 2). Participants are
presented with a subset of the G strings in a training phase,
and asked to observe them, but no other information is
provided either about the nature of the strings, or about the
subsequent test phase. After training, they are told that the
strings they saw all complied to a set of rules and are then
asked to identify the novel G strings in a set that contains
both G and NG ones. A robust finding in the literature is that
participants can identify the new G strings with above
chance accuracy, while in many circumstances they are
unable to fully articulate the basis on which they made their
decisions.

Pothos and Chater (1998, submitted) provided results
indicating that overall performance in AGL does not vary,
regardless of whether the stimuli are letter strings (as is the
standard condition), embedded shapes, or sequences of
cities that correspond to the routes of an airline company
(see also Pothos & Bailey, 1997; Bailey & Pothos, 1998)."

! Altmann, Dienes, and Goode (1995), as well as Whittlesea
& Wright (1997) also present evidence that AGL-type of
learning is possible with stimuli other than the standard
AGL strings, but these investigators have not attempted a
direct comparison of performance across the different
conditions.
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Performance was investigated in terms of overall accuracy in
detecting G strings, as opposed to NG ones, and also
patterns of error across the different sets the test items could
be divided into.

The fact that performance does not appear to be different
in conditions as different as the ones used by Pothos &
Chater (1998a, submitted), appears to suggest that the type
of learning observed with AGL reflects general properties of
the learning process (that is, properties that do not depend
on the particular experimental format used in different
situations). Thus, the project of identifying an adequate
theory of how participants generalize in an AGL task from
training items to the test ones is an important one.

Investigators have proposed accounts of AGL
performance in the context of rules, stimulus fragments
(parts), or similarity. The original claim by Reber and his
colleagues (see Reber, 1989, for a review) has been that
participants learn in training something of the abstract, rule
structure of the finite state language used to create the
stimuli. This view has been corroborated by ‘‘transfer”
experiments, where the symbols used in training were
different from the symbols used in test. However, one has to
observe that the actual artificial grammar used in different
experiments 1s an object defined entirely by the
experimenter; there is no reason to expect a priori that it
will be psychologically relevant. In this sense, Dulany,
Carlson, & Dewey’s (1984) theory would appear more
realistic. These investigators have instead argued that
participants acquired “correlated grammars,” that is a set of
“microrules” which generally approximated the true
grammar, but might at the same utme include
unrepresentative or even wrong rules.

Perruchet and Pacteau (1990) asked what is the minimal
type of knowledge that could be used by participants and
lead to the observed levels of accuracy. They suggested that
all that is learned is information about the legal bigrams, that
is which pairs of symbols have been observed in the training
items (see Gomez and Schvaneveldt, 1994, and Johnstone &
Shanks, in press, for an extension of this approach;
Redington & Chater, 1996, for a re-evaluation of these
results).

Other theorists suggested that an important factor is
similarity: That is, whether a test item is selected as G or NG
will depend, to some extent, on how similar it is to training
items. Similarity has been operationalized in different ways,
for example, as symbol differences between test and training
items (Brooks and Vokey, 1991), or empirically computed
on the basis of direct similarity data from participants
(Bailey & Pothos, 1998; Pothos & Bailey, 1997). A similar
approach by Knowlton and Squire (1996) differs in that
these investigators computed item similarity in the context
of an instantiation of Servan-Schreiber’s (1991; see also
Servan-Schreiber &  Anderson, 1990) ‘“chunking-
hypothesis,” which is a general theory of learning; the main
finding of previous investigations, that similarity is an
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important predictor of grammaticality performance, has been
replicated.

What do all the above theories share? Unfortunately very
little. Theories such as the above can be used to make
predictions as to which items would be more likely to be
selected as G in the test part of an AGL task (that is,
predictions about “grammaticality endorsements”). While
the actual predictions made by different models in practice
often correlate very highly (e.g., see Johnstone & Shanks, in
press), there is little theoretical insight as to the extent to
which these models are supposed to be mutually exclusive
(in terms of representing different hypotheses about learning
processes) or not. For example, is the microrules approach
(Dulany et al., 1984) the same as Perruchet & Pacteau's
(1990) bigram proposal? They both suggest that the
knowledge acquired in an AGL task is of the form: If there
is an M then a V must follow; although there are some
qualifications, these theories would still probably be
compatible in terms of their predictions. However, one
theory is in terms of rules, while the other might be more
reminiscent of exemplar models of classification.
Furthermore, if one accepts that AGL is supposed to be a
small scale, experimental version of real-life learning tasks
(and the utility of investigating AGL would be arguable
otherwise), in most of the above cases one cannot readily see
how the explanations proposed could generalize to other
learning situations, or relate to existing accounts of other
aspects of cognition.

Motivation

Our aim in this research is to derive a model of AGL
performance from the same computational principles that
have been seen as relevant in research in reasoning and
calegorization, namely the assumption that uncertainty is
quantified via Shannon entropy and that the cognitive
system operates in a way to reduce this uncertainty. Whether
the same principles underlie cognitive performance in areas
as diverse as reasoning, categorization, and learning is
arguable; however, here we suggest as a plausible
hypothesis that these processes reflect the same, basic,
problem of inductive inference (that is the successful
generalization from previously seen instances to future
events). We begin with a brief presentation of the models in
reasoning and categorization that motivate the present work.

For several years investigators assumed that human
reasoning is mediated by the rules of classical logic (e.g.,
Braine et al., 1995; Evans, 1991). The observation that
people often fall prey to an alarmingly large number of
logical and probabilistic fallacies, and recent theoretical
investigations criticizing the appropriateness of logic for
everyday reasoning (Chater & Oaksford, 1993), have led
theorists to pursue alternative approaches. The Wason
selection task is a simple problem where people are asked to
examine whether a conditional rule is true or false, by
selecting among a set of cards (the cards are labeled with



one clause of the conditional, and contain hidden
information about the other clause of the conditional).
Oaksford & Chater (1994) suggest that people select these
cards that minimize the expected uncertainty in deciding
whether the rule is true or not. Uncertainty is quantified
using the notion of Shannon entropy: If there are N cvents,
that can occur with probability p;, then the entropy in trying
to guess which one will actually occur is given by

N
entropy =— 3, p, log(p,) - As will become clear in the
i=l

presentation of our model of AGL performance to follow,
we suggest that the items people will be selecting as G in the
test part of an AGL task, are the ones that are most
predictable in terms of the training items. That is, we predict
that the strings selected as G are the ones that minimize the
entropy of specifying them, relative to the training items.
This i1s a strategy very similar to Oaksford and Chater’s
(1994), who claimed that people select these cards that
minimize the entropy of selecting the right hypothesis.

In categorization, Pothos & Chater (1998b) suggested a
model whereby people’s classifications on a set of items
were such so as to reduce the description length (used here
in a technical sense) of the items as much as possible. In
other words, categories were seen as a means to simplify the
description of a set of items as much as possible. Pothos
(1998) illustrated that the mathematical framework of
Pothos & Chater (1998) is equivalent to an entropy
minimization one: That is, the preferred classification of a
set of items is assumed to be the one that reduces the
uncertainty in predicting the similarity structure of these
items.

The very brief exposition above can only provide a
presentation of the models in question at a very crude,
qualitative level. At such a level, it might appear that the
theoretical coherence afforded by terms like “reduction of
uncertainty,” or “entropy minimization,” is only an artifact
of the fact that the mathematical specification of models
based on such notions is relatively loose; so that
conceptually different models can still be instantiated in a
way that would appear consistent with an entropy
maximization process. This is far from true. Although there
can be several different entropy maximization procedures to
address the same cognitive problem, such alternatives still
need to share the same foundation (a specific use of
probabilities, quantifying uncertainty in a certain way, etc.),
that would make them much more similar, as a class of
models, compared to others.

An entropy model of AGL

This model is an attempt to quantify what exactly is learned
in training in an AGL task. In such a task the test items are
evaluated in terms of whether they are compatible with the
training items or not. What can this mean? We suggest that
each test item is given a complexity measure according to
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how “specifiable” it is from training items. This complexity
measure is computed by dividing the item into parts, and
seeing how “determinable” the continuation to each of these
parts can be on the basis of information from training.

First, each test string is broken down into all constituent
fragments, “anchored” at the beginning or end of the string.
Letting symbols “b” and “e” stand for the beginning and the
end of a string, test string MSV would be broken into [b,
bM, bMS, bMSV] in the forward direction, and fragments
[e, Ve, SVe, MSVe] in the reverse. We consider these
fragments as relevant, on the simple assumption that symbol
sequences are likely to be parsed/ encoded by the cognitive
system in a simple forward and reverse direction. For a
given test item, we ask what is the expected difficulty of
specifying a continuation, given what one has seen in
training, and in this way we compute the S-measures for
each fragment (for the reverse chunks, we ask how likely a
given symbol is to precede a particular fragment; for
simplicity, we use continuation to refer to both, when
discussing general properties of the S-measures). In
particular, if there are N possibilities for a continuation, each
occurring with a probability p; from training, then the
entropy associated with specifying the next symbol in the

N
string is given by S( fragment) = -Z p log(p,)-
i=l

For example, suppose that the training items consist only
of strings MSSV, MSSSSX, and MSVRV. When we see
MSV in test, then to compute the overall complexity of this
string, relative to the training items, we need to consider,
first, S(b): How hard is it to guess what the next symbol is,
for the first symbol in a string, from training? All training
strings start with an M, thus, we have S(b) = 0. Likewise,
S(bM) = 0. To compute S(bMS), note that after fragment
bMS in training, we have an “S” continuation with a
probability of 2/3 and a “V” one (the observed continuation
in test) with probability 1/3. Thus, S(bMS) would be
1/3log(1/3)-2/310g(2/3). Taking an example for the reverse S
measures, S(e) would be computed by noting that in the
training items an end symbol is preceded by a V symbol
with a probability 2/3 and an X one with probability 1/3.

In cases where there is a novel symbol in a test item, or a
fragment not seen in training, we compute S by assuming
that all the possible symbols are equiprobable. In the above
example, if we had a test string QM, then forward S(bQ)
would be given by _5x%]0g2% (we have five possible
symbols, M, S, V, Q, and “e,” and since the fragment bQ has
not been observed in training, all possible continuations are
equiprobable). The underlying hypothesis is that if there is
no information from training about a given sequence, the
cognitive system will operate as if all possible continuations
were equiprobable.

How would the S-measures corresponding to the different
fragments lead to an overall complexity measure for a
string? We suggest that all forward and reverse S-measures



are averaged, and that the resulting number reflects how
familiar a given test string is relative to the training items.
Without going into too much detail here, using an average,
nstead of some other way of combining S-measures, has the
advantage that the computation of the overall complexity of
an item is more balanced across items, and also for
individual items that contain a single violation of regularity
relative to the training items (e.g., in the above example,
think of an item like VMSYV), the effect of this single
violation is moderated by the presence of regular fragments
(regular with respect to the training items).

Investigation of the model

The limited exposition of our model cannot address all the
relevant theoretical issues. In this section, we aim to
alleviate some concerns by fitting the model to results from
three AGL experiments reported in Pothos & Chater (1998a,
submitted). They utilized the Reber & Allen (1967)
grammar to create AGL stimuli that were standard letter
strings (Experiment 1), nested arrangements of geometric
shapes (Experiment 2), and sequences of cities (Experiment
3). The average S-measure reflects how specifiable each test
item 1s on the basis of training items. That is, a high §-
measure indicates that a particular string is not “intuitive”
relative to the training items. Thus, we predicted that the
extent to which different test items would be selected as G
would negatively correlate with the average S-measure of
these items.

Table 1 shows the correlation of the average S-measure
for the test strings of the Reber and Allen (1967) grammar,
with the probability that these strings would be selected as G
in each of the three experiments of Pothos & Chater (1998a,
submitted). That is, for each of these experiments, we
averaged the total number of times (across participants) each
test items was selected as G. Considering the low number of
participants in these studies (ten participants each) compared
to the high number of endorsements we are trying to predict
(50 items), the fact that all the correlations are in the
predicted direction and highly significant provides important
support for our model.

Table 1: The correlation of the average S-measure of
individual test items complexity, with the number of times
each test item (50 test items, in total) was selected as G in

the three experiments of Pothos & Chater (1998a,

submitted).
Letters Shapes Cities
Average S-measures
Pearson Correlation  -0.577 -0.613  -0.381
p-value 0.000 0.000 0.006

This work is not meant to disconfirm any of the existing
models. Our objective has been to propose a computation of
“what is learned in AGL,” in a wider theoretical context, that
is, in a way that relates to research in other areas of
cognition. That is, we hope to provide a model of AGL that
would still capture as much of the intuitions seen as relevant
in other AGL accounts, while the model itself would be
inspired from more general computational principles. In this
respect, finding that the average S-measure correlates with
the predictions from other models of AGL performance,
would provide important support for our approach.

Table 2 shows the correlation of the S-measure with
grammaticality, global associative chunk strength (Knowlton
and Squire, 1996), associative chunk strength at anchor
positions (same as before, but computed only for fragments
at the beginning or end of a string, that is the anchor
positions), novel chunk strength (the fraction of novel
fragments in a string; see Meulemans & Van der Linden,
1997), and anchor novel chunk strength (same as before, but
one looks at the proportion of novel fragments at the anchor
positions). Table 2 reveals that our measure correlates very
highly with almost all the above measures.

Table 2: The number in each of the rows represents the
correlation of the Average S-measure with the AGL
performance measure in each row. The “*” flags correlations
significant at the 0.01 level or less. All correlations were
computed over the 50 test items in the Pothos & Chater
(1998a, submitted), work.

Average S-measure

grammaticality -.630 *
global chunk strength -.436 *
anchor chunk strength -515 *
novel chunk strength -.378 *
anchor novel chunk strength -0.022

Discussion and future direction

We have tried to quantify the amount of information that is
available in the test part on an AGL task from training. In
this respect, we proposed the average S-measure which, for
each string, provides us with a number reflecting how
specifiable the string is (that is, how easily it can be
determined), given a particular set of training items.

To examine our model, we computed average S-measures
for all the strings of the Reber and Allen (1978) grammar
and showed that these correlated significantly with
grammaticality endorsements from three AGL experiments
reported by Pothos & Chater (1998a, submitted). Moreover,
we showed that the average S-measure captures many
aspects of previously proposed measures of AGL
performance, that made different assumptions about what is
learned in an AGL task.



The underlying motivation for the present work was to
provide a quantitative measure of knowledge acquired in an
AGL task, in a broad theoretical context. Thus, our model
can be seen as having a foundation very similar to Oaksford
& Chater’s (1994) model of reasoning in the selection task,
and Pothos & Chater’s (1998) model of categorization. In all
these cases, it is assumed that reduction in uncertainty
(quantified via Shannon's entropy) is the objective for the
cognitive system in processing information about the world.
Further fleshing out the formal relation between such
seemingly diverse aspects of cognition is an important future
objective.

The average S-measure can be employed to model on-line
generalization, that is generalization patterns from individual
items, in the sense that the first item can be used to compute
the complexity of the second one, the first and second
together, the complexity of the third one, and so forth.
Moreover, one can manipulate the “total information
available from training,” and thus make predictions about
the overall level of grammaticality accuracy in an AGL task,
when the actual number of training items presented is always
the same. Both the above considerations represent possible
simple extensions of the present work, to further test the
psychological plausibility of the average S-measure of
generalization.
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