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A Q U A C U LT U R E

Pathogens from salmon aquaculture in relation to 
conservation of wild Pacific salmon in Canada
Martin Krkosek1,2*†, Andrew W. Bateman1,2,3†, Arthur L. Bass4, William S. Bugg3,5,  
Brendan M. Connors6, Christoph M. Deeg3,4, Emiliano Di Cicco3, Sean Godwin2,3,7,8, Jaime Grimm1, 
Leila Krichel1,2, Gideon Mordecai9, Alexandra Morton2,10, Stephanie Peacock2,3, Dylan Shea11, 
Brian Riddell3‡, Kristina M. Miller4,5‡

The spread of pathogens from farmed salmon is a conservation concern for wild Pacific salmon in British Columbia 
(BC), Canada. Three pathogens are prevalent in farmed Atlantic salmon in BC, spill over to wild Pacific salmon, 
and are linked to negative impacts on wild salmon: Piscine orthoreovirus, Tenacibaculum spp., and sea lice 
(Lepeophtheirus salmonis). Molecular screening of infectious agents in farmed and wild salmon and environ-
mental DNA highlights a further 4 agents that are likely elevated near salmon farms and 37 that co-occur in wild 
and farmed salmon. Pathogens likely affect wild salmon indirectly by mediating migration, competition, and 
predation. Current net-pen aquaculture practices pose these risks to numerous populations of all species of 
wild salmon in BC, most of which are not covered in Government of Canada science and advisory reports. 
Climate change, pathogen evolution, and changes to disease management and aquaculture regulations will 
influence future risks.

INTRODUCTION
Salmon aquaculture has been among the fastest-growing seafood 
production systems over the last 30 years (1) and has replaced wild 
fisheries as the main producer of salmon both globally and in western 
Canada (Fig. 1). Meanwhile, wild Pacific salmon (Oncorhynchus spp.) 
have experienced widespread declines in the southern portion of 
their North American range, prompting fisheries restrictions and 
conservation listings for many populations from California through 
British Columbia (2). Salmon farming is not permitted in the western 
United States, but has expanded around Vancouver Island and on 
the central coast of British Columbia (BC), where farmed salmon 
(predominantly Atlantic salmon, Salmo salar) are raised in ocean 
net-pens at abundances similar to or larger than wild Pacific salmon 
populations that rear in or migrate through the shared marine envi-
ronment (Fig. 2).

The introduction of large captive populations of domesticated 
Atlantic salmon, and in some cases Chinook salmon (Oncorhynchus 
tshawytscha), into coastal ecosystems inhabited by wild salmon 
and many other wild fish species, has created opportunities for 
novel ecological and evolutionary dynamics of their pathogens 
(3, 4). The abundance and density of fish in salmon farms present 

ideal conditions for the growth of viruses, bacteria, and parasites 
(4–6) (collectively “pathogens”). This can create a new source of 
transmission to wild Pacific salmon that would not exist naturally 
(6), and the associated risks are likely to be elevated whether or not 
a pathogen is exotic. Examples of how salmon farms alter disease 
dynamics include pathogen introductions, amplification, spillover 
and spill-back between wild and farmed salmon (7–9), pathogen 
adaptation to new hosts (10), and the evolution of drug resistance 
(11, 12) and virulence (13, 14). These changes to disease dynamics 
have impacts on the health (15, 16), growth (17), survival (18, 19), 
and recruitment (20, 21) of wild salmon. These pathogen interac-
tions may be a primary mechanism for the association between 
salmon aquaculture development and wild-salmon declines ob-
served in Europe, eastern Canada, and BC (22).

In BC, the possibility that salmon farms may contribute to dis-
ease, decline, and/or impaired recovery of wild Pacific salmon has 
resulted in concern by scientists (23–25), regulators (26–28), in-
dustry, Indigenous peoples, and the general public (29–32). Until 
recently, a large portion of farmed salmon production occurred 
along eastern Vancouver Island (Fig. 2). However, over the last few 
years, several initiatives led by Indigenous governments of the 
Dzawada’enuxw, Gwawa’enuxw, Kwiakah, Kwikwa’sutinuxw-
Haxwa’mis, Mamalilikulla, ‘Namgis, and shíshálh First Nations and 
decisions by the Canadian Federal Department of Fisheries and 
Oceans (DFO) (33) have resulted in the closure of most salmon 
farms in the Strait of Georgia, Discovery Islands, and Broughton 
Archipelago regions (Fig. 2). These closures represent nearly 50% 
of the salmon farms in BC, and have been implemented largely to 
reduce risks to wild salmon stocks from local watersheds and the 
Fraser River (Fig. 2), but also to address other environmental ef-
fects such as pollution, waste deposition, escapes, and interactions 
with marine mammals. Currently, Canadian policy on salmon aqua-
culture in BC is in flux, with the federal government considering 
options that range from re-establishing net-pen production in 
some decommissioned regions to transitioning the entire industry 
away from net-pen production.
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In this review, we focus on pathogen-related risks of salmon farm-
ing to wild salmon in BC. We begin with three prominent pathogens—
Piscine orthoreovirus (PRV), Tenacibaculum spp., and sea lice 
(Lepeophtheirus salmonis)—that previous studies have shown are 
prevalent in farmed salmon and linked to negative impacts on wild 
Pacific salmon populations in BC (19, 34, 35). However, there are 
many more infectious agents that have been detected in farmed 
salmon (36) and wild salmon (37), for which environmental DNA 
(eDNA) is elevated in the marine environment near active salmon 
farms (38) (Fig. 3), and for which the probability of molecular detec-
tion in multiple wild salmon species increases with proximity to ac-
tive salmon farms (35). Although such molecular detections do not 
guarantee infectivity (39), they are useful for investigating spatial 
and temporal patterns of pathogen distribution that are relevant for 
interpreting risk to wild salmon. We refer to these as infectious 
agents (and not pathogens) because, for some, the pathogenicity to 
wild salmon is unknown. We assemble data for 58 infectious agents 
across several high-throughput multi-infectious agent studies of 
farmed salmon, wild salmon, and eDNA to characterize the distri-
butions of infectious agents among wild and farmed salmon in 
BC. From those data, we highlight four other infectious agents that 
occur in wild and farmed salmon and whose eDNA is elevated in 
the marine environment near active versus inactive sites (Fig. 3). 
We then analyze how these data and literature relate to Canadian 
government advisory reports published via the Canadian Science 
Advisory Secretariat (CSAS) on the pathogen risks to wild salmon 
in BC, particularly updating findings and applying them to salmon 
species and populations that were not encompassed in those re-
ports. Before considering the pathogens, however, we briefly review 
the trends and status of wild salmon in BC in relation to salmon 
farming, broader regional variability, and other drivers of change.

STATUS AND TRENDS IN WILD PACIFIC SALMON IN BC
Although Pacific salmon are at historical abundance in the North 
Pacific Ocean due to hatcheries (40) and warming conditions that 
are favorable in the north (41, 42), they have generally declined in 
the southern regions of their range, including BC, resulting in the 

collapse of commercial salmon harvests (Fig. 1B). This collapse is 
partly due to catch restrictions to protect small and vulnerable 
populations (43) but also low returns for commercially important 
stocks, including Fraser River sockeye (Fig. 2). Hypothesized drivers 
of declines in survival include changing ocean basin–scale environ-
mental conditions, ocean warming at more southern latitudes, and 
competition among salmon at sea (41, 44–49). Empirically, declines 
in smolt-to-adult survival, age at maturity, and body size (Fig. 2) 
have been broadly associated with increasing marine predator abun-
dances (50–52) and competition among salmon at sea (53). For 
example, Chinook salmon return to spawn over a range of ages and 
the shift in age at maturity of West Coast Vancouver Island Chinook 
(Fig. 2) reflects a decreasing frequency of older returning individuals. 
In addition, degradation of freshwater habitats due to dams, land 
use, and climate change has contributed to declines in survival and 
abundance, particularly at more southern latitudes (54, 55). Also in 
southern BC, parasite and pathogen interactions with farmed salmon 
are an additional stressor of wild salmon populations that migrate 
near salmon farms (9, 56, 57). Such is the multifactorial nature of the 
decline of wild salmon in BC.

The status of wild salmon populations in BC varies among regions, 
species, and life histories. Many populations of sockeye, Chinook, 
and coho salmon from the Fraser River and Vancouver Island have 
experienced large reductions in abundance, smolt-to-adult survival, 
age at maturity, and body size (58, 59) and have been assessed as 
endangered by the Committee on the Status of Endangered Wildlife 
in Canada (COSEWIC) (60–62) (Fig. 2). For example, interior 
Fraser coho populations have not recovered from declines in the 
early 1990s (e.g., Fig. 2; North Thompson River coho) and sockeye 
salmon stocks in the Fraser River are at historic lows (63) (Fig. 2, 
Fraser River sockeye). In contrast, some populations of ocean-type 
Chinook, which migrate to sea in their first year of life, have in-
creased in abundance in recent decades (58) (e.g., South Thompson 
Chinook, Fig. 2). On the central and north coasts of BC, numerous 
populations are also doing poorly. This includes chum salmon, 
which spawn in hundreds of systems and for which data from 25 
well-documented systems indicate declines greater than 90% since 
the 1960s (64). Sockeye populations from large lakes up mainland 

Fig. 1.  Trends in production of salmon from aquaculture and commercial fisheries globally and in British Columbia. (A and B) Data are sourced from the Food and 
Agriculture Organization database for global aquaculture production (193) and Fisheries and Oceans Canada databases for aquaculture production (194) and commercial 
landings (195) in Canada.
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Fig. 2. Trends in spawner abundance (orange time series), smolt-to-adult survival (blue series), age at maturity (purple series), and mass (teal series) of select 
Pacific salmon populations in British Columbia, as well as salmon farm locations (symbols) colored by aquaculture management zone (circles = active farms, 
triangles = decommissioned farms). Imperiled populations designated by COSEWIC are indicated with exclamation marks and populations without active salmon 
farms on their migration routes are highlighted blue. Salmon populations were selected to show spatial variation in trends of stocks that are of economic or conservation 
importance, as well as those that likely interact with salmon farms (Area 7 chum, Viner chum, Broughton pinks, and Fraser populations). Inclusion of time series does not 
indicate a published relationship with salmon farming. Time series of smolt to adult survival, age at maturity, and mass illustrate changes that are likely unrelated to aqua-
culture but still contribute to declines of wild salmon in BC. Data on salmon abundance are sourced from the DFO NuSEDS database (196), except for Fraser River sockeye 
salmon that is sourced from the Pacific Salmon Commission. Data on life history traits are sourced from (59) for smolt-to-adult survival of Strait of Georgia Chinook, (197) 
age at maturity of West Coast Vancouver Island Chinook, and (198) body mass of Fraser River pink salmon.
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inlets on the central coast have also collapsed and been slow to 
recover (65, 66) (Fig. 3; Owikeno Lake sockeye). However, fur-
ther north, declines in sockeye have been more modest, but in-
creasingly composed of enhanced production from Babine Lake 
in the Skeena watershed (67) (Fig. 2), and in some cases popula-
tions have increased in recent decades (e.g., lower Nass river 
type) (68).

In general, many wild salmon populations that migrate through 
areas of intensive salmon aquaculture (Fig. 2) are in southern BC, 
including populations from the Fraser River, Broughton Archipelago, 
and West Coast Vancouver Island, and they have been doing 
worse than those on the north and central coast (34, 61, 69–71). 
Many studies have now established a correlative link between 
marine survival of Pacific salmon in BC and exposure to salmon 
farms or pathogens of farmed salmon (19, 34, 69, 72–74). This has 
sparked research and conservation concern regarding the role of 
salmon aquaculture in declines and/or impaired recovery of wild 
salmon in BC. However, not all wild salmon systems in areas of 
aquaculture have declined to the same degree, and declines are 
not limited to areas with aquaculture (Fig. 2). Migration of wild 
salmon may facilitate pathogen spread beyond salmon farming 
regions, as has occurred for PRV, which was detected in wild 
salmon on the north coast of BC (57) and southeast Alaska (8), 
further complicating the interpretation of relationships between 
salmon farms and wild salmon declines. These nuances reflect 
the complexity of wild salmon declines in BC and that interaction 
with pathogens from aquaculture is one of many stressors, anthro-
pogenic and natural, that contribute to the current state of wild 
salmon populations in BC. Below, we assemble and review the evi-
dence on the risks of pathogens from salmon farms to BC’s wild 
salmon populations.

PISCINE ORTHOREOVIRUS
For the past decade, PRV has been one of the primary infectious 
diseases of concern on salmon farms in terms of its risks to wild 
Pacific salmon (15). First discovered in diseased Atlantic salmon in 
Norway in 2010 (75), the virus was detected in farmed Chinook 
salmon in BC in 2012 (76), associated with disease on BC Atlantic 
salmon farms in 2013 (77), and has been documented to spread 
from salmon farms to wild salmon populations in BC (8, 35, 57). 
PRV is known to comprise three strains, PRV-1, PRV-2, and PRV-3 
(78), of which PRV-1 is the only strain known to be present in 
BC. Analyses of genetic sequence data (8, 79) indicate that PRV-1 
originated in the Atlantic Ocean (Fig. 4B) and has been introduced 
to BC on more than one occasion, initially coincident with the ad-
vent of Atlantic salmon farming in the region (8). A few researchers 
assert, based on a single, very weak PCR detection in an archival 
liver sample of Steelhead from fresh water in BC from 1977, that the 
arrival of PRV predates the Atlantic salmon farming industry (80). 
Regardless, the phylogenetic evidence suggests an Atlantic origin.

Genetic diversity of PRV-1 in the Pacific regions likely reflects 
the transmission history among different populations. The history 
of Atlantic salmon introductions in the Pacific dates back to 1874 
and includes decades of propagation in Columbia River hatcheries 
(starting in the 1970s) (81) and egg importation for salmon aqua-
culture (starting in roughly the 1980s) (8,  82). Although PRV on 
farms is often genetically distinguishable among specific operating 
companies (83), all BC farmed Atlantic salmon are infected with a 
similar lineage (8, 79). The unique lineage of PRV that is commonly 
detected in hatchery-origin Columbia River salmon is the same lin-
eage infecting farmed Chinook salmon in BC but not the same as 
that infecting farmed Atlantic salmon in BC. Conversely, the lineage 
in farmed Atlantic salmon in BC does not appear to have become 
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Fig. 3. Odds ratio of the occurrence of infectious agents in eDNA samples in the marine environment around active versus inactive salmon farm sites. The data 
are from 3 years of surveys at 58 sites in the Discovery Islands and Broughton Archipelago regions collected before the decommissioning of farms in those areas [see 
Fig. 2 for map, data from Shea et al. (38)]. In each of the 3 years of surveys, the status of sites as inactive versus active varied according to regular farm practices of stocking, 
harvesting, and fallowing. The plotted values represent post hoc best linear unbiased predictors for levels of a random effect, and should be interpreted with care (199). 
The upper confidence interval of the odds ratio for T. maritimum is 18.4. Model estimates and data are replotted from (38).
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established into BC Pacific salmon hatcheries. Rather, PRV is mostly 
absent in BC-origin hatchery and wild Chinook and coho salmon 
until late in the fall, when it is largely detected in marine-phase fish 
in salmon farming regions and is mostly the same lineage infecting 
Atlantic salmon farms (8).

In Atlantic salmon, PRV-1 causes heart and skeletal muscle in-
flammation (HSMI), a disease common on European salmon farms 
(84) that can cause variable mortality (85, 86), from 0 to 20% of the 
farm population (in the most extreme cases) over the production 
cycle (87). Controlled laboratory challenge trials conducted in 
Norway have established that different isolates of PRV-1 vary in 
virulence (i.e., disease severity) and that a PRV-1a isolate from BC 
can cause lesions diagnostic of HSMI, but in a lower proportion of 
infected individuals than the most virulent PRV-1b isolate domi-
nant in Norway (86). Although virulence differences among iso-
lates in this challenge study were attributed to mutations in certain 
viral proteins, phylogenetic placement of PRV-1 lineages was not 
the ultimate determinant of virulence (86). Farmed Atlantic salmon 
in BC infected with PRV-1a have also been diagnosed with HSMI, 
but not all Atlantic salmon infected with PRV-1a in BC exhibit 

HSMI (77, 88), which may suggest the involvement of an environ-
mental or host cofactor (e.g., elevated stress) in disease development 
and manifestation.

All three strains of PRV (i.e., PRV-1, PRV-2, and PRV-3), includ-
ing the lineage found in BC (PRV-1a), have also been associated 
with or shown to cause disease distinct from HSMI in Pacific salmonids 
(15,  78,  89–92). All three strains can result in rupture of infected 
blood cells, the primary target of infection (93), which can lead to a 
jaundiced appearance and organ damage from release of toxic levels 
of hemoglobin (15, 78, 89–92). Some challenge studies in BC and 
Washington (with PRV-1a in Pacific salmon species) have not ob-
served mortality or clinical jaundice/anemia (94–96). The data and 
observations in some of those studies, however, did show early signs 
of disease progression toward jaundice/anemia, consistent with ob-
servations from PRV-infected farmed Chinook salmon in BC (15), 
but the challenged fish did not progress to exhibit jaundice/anemia. 
Another challenge study conducted in sockeye salmon concluded 
that PRV exposure is of little consequence (97), although several au-
thors of this review have questioned whether the study design was 
adequate to reach such a conclusion and if analytical choices made 

Fig. 4. Transmission dynamics of PRV. (A) Almost all farmed Atlantic salmon in BC become infected with PRV-1 over the course of an 18-month grow-out period. 
(B) Schematic representation of the global emergence of PRV-1. Arrows depict estimated translocations of PRV-1 lineages. Movements are determined by a maximum 
clade credibility time-scaled phylogenetic tree to infer the emergence of the contemporary phylogeographic distribution of PRV-1. (C) Probability of PRV infection for 
first–marine-year Chinook salmon increases closer to active salmon farms in the fall-winter period. Phylogenetic evidence (8) also supports ongoing transmission be-
tween farmed and wild salmon. Blue symbols in (A) and (C) indicate collections from which samples were sequenced to inform phylogenetic inference. Data and figures 
are sourced from (8).
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in the study may underrepresent the true ecological impacts of PRV 
exposure (98–100). Together, these findings indicate that PRV-1a 
causes disease in Pacific salmon, but that either the most severe 
clinical signs of jaundice/anemia seen in Chinook salmon in BC 
farms (77, 95) are not readily reproduced by challenge experiments 
or only a small proportion of individuals exhibit the most severe 
disease signs (94–96).

A mounting body of evidence indicates that wild salmon are also 
negatively affected by PRV infection. Wild BC Chinook salmon in-
fected with PRV-1a in their first year of ocean life have gene expres-
sion patterns indicative of immune response to viral infection, while 
also having lesions that indicate the early signs of jaundice/anemia 
(16). Although the extent of disease progression to jaundice/anemia 
in wild Chinook salmon would be mediated by similar environmen-
tal conditions that can produce it in farmed Chinook (15), wild 
salmon must also contend with ecological realities from which 
farmed salmon are sheltered. Therefore, as with other salmon patho-
gens [e.g., (18,  101)], PRV infection of wild Chinook likely also 
affects predation, competition, and migration outcomes, which 
could remove infected individuals earlier in the disease progression 
than the advanced stages of jaundice/anemia observed in farmed 
Chinook. This is consistent with two studies on wild juvenile salmon, 
which found that PRV is associated with poorer body condition (in 
Chinook and coho) and survival (in Chinook only) (19), and with 
smaller body size and condition in Chinook (102). However, despite 
these multiple correlations, it is possible—as with all such observa-
tional field studies—that increased levels of PRV resulted from poor 
body condition or that the correlations were due to other unknown 
causal factors.

Multiple lines of evidence (genetic and epidemiological) indicate 
that PRV, amplified on BC salmon farms (8, 35, 36), can spill over to 
affect wild salmon. PRV infection of wild Pacific salmon has been 
correlated with exposure to salmon farms and impaired migration 
success (18, 57). Analyses of PRV distribution among Pacific salmon 
in coastal BC have found that infections cluster regionally around 
Vancouver Island including, but not only in, areas with salmon farms 
(37, 102). PRV is also prevalent in the biological waste (e.g., feces, 
tissue, and other biological materials) that drifts out of farms and in 
the outfall of processing plants that spills into the nearby marine 
environment (83), possibly attracting wild fish and facilitating 
transmission. Genetic analyses indicate continuous viral transmis-
sion between farmed and wild salmon, that the number of total PRV 
infections have increased in recent decades, and that Chinook salmon 
caught closer to farms are more likely to be PRV positive (8).

TENACIBACULUM SPP.
The globally distributed marine pathogen Tenacibaculum maritimum 
has long been known to cause tenacibaculosis in marine fish (103) 
and has recently come to light as posing risk to BC wild salmon (19). 
Tenacibaculosis can cause severe mortalities, and T. maritimum is 
known to have caused substantial health issues for Pacific salmonids 
in California (104), Chile (105, 106), New Zealand (107), and Alaska 
(108). T. maritimum is widespread in Atlantic salmon farms through-
out BC (36,  38), where it commonly causes a disease, known as 
“mouthrot,” characterized by acute oral ulcers and plaques. Mouthrot 
is a particular manifestation of tenacibaculosis, exhibiting a subset 
of the symptoms observed in diverse fish species after infection by 
various Tenacibaculum species.

Left untreated, farmed fish with mouthrot can die within days 
(109, 110). Mouthrot is treatable with antibiotics, but treatment ap-
pears not to eliminate the pathogen from a farm. T. maritimum is 
detectable via genetic screening of farmed fish through to harvest, 
and detections are elevated in dead and dying fish for much of that 
duration (36). In addition, in seawater screening, T. maritimum eDNA 
is substantially elevated near active salmon farm sites, compared 
to inactive sites, and shows one of the strongest associations with 
active salmon farming of 39 salmon pathogens studied [Fig. 3; (38)]. 
Further, T. maritimum can form surface-attached biofilms, which 
may serve as reservoirs for tenacibaculosis outbreaks in aquaculture 
settings (111, 112), e.g., possibly after net-washing or mechanical 
delousing dislodges bacteria (113). Thus, although T. maritimum is 
globally common, it appears to be amplified locally by salmon farms 
in BC (6, 48).

Recent studies on wild Pacific salmon have indicated that the 
spread of T. maritimum from salmon farms is a risk to infection and 
survival of wild fish (9, 19). T. maritimum detection rates peaked in 
juvenile Fraser River sockeye as they migrated past the Discovery 
Islands (Fig. 5A), and spatio-epidemiological models fit to those 
data suggest that salmon farms in the Discovery Islands are the 
most plausible source of infection (9). In addition, sampling of wild 
Chinook and coho salmon in their first year of marine residence 
shows that T. maritimum infection is associated with decreased 
marine survival in Chinook and reduced body condition in Chinook 
and coho (19), one of the most consistent patterns across infective 
agents studied. Together, this evidence indicates that salmon farms, 
which elevate levels of T. maritimum in the marine environment 
(36, 38), increase exposure levels and risk of population-level im-
pacts for some species. These risks are likely to increase with climate 
change, because T. maritimum tends to be most common in warmer 
years (36, 38).

Recently, previously unrecognized Tenacibaculum genetic diver-
sity has come to light, with some authors describing the genus as 
“critically understudied” (114). New Tenacibaculum species continue 
to be discovered (115), and—relevant to Pacific salmon—multiple 
species can cause tenacibaculosis (and indeed clinical signs of 
mouthrot) (109, 116–118). Two such species, T. finnmarkense and 
T. dicentrarchi, have both been isolated from mouthrot/tenacibaculosis 
outbreaks on Atlantic salmon farms in BC (112,  115,  116). The 
same species have been isolated globally from fish (including salm-
on) exhibiting tenacibaculosis, and their pathogenicity has been 
demonstrated in experimental laboratory infections of salmonids 
(116, 118–122). T. finnmarkense has caused tenacibaculosis out-
breaks in Norwegian and Chilean salmon farms (120, 123). In Norway, 
these outbreaks have been observed at low water temperatures and 
in juvenile farmed salmon shortly after transfer into net-pens, 
suggesting ubiquity of T. finnmarkense in the marine environment 
(117). The closely related T. dicentrarchi is globally distributed (114) 
and has been identified in Chilean and Norwegian salmon farms 
as responsible for fin rot, gill damage, and high levels of mortality 
[60 to 100% in laboratory challenges; (119, 124)] across multiple 
salmonids (119, 124, 125). Both T. dicentrarchi and T. maritimum 
have been identified as the causative agents of tenacibaculosis in 
Chinook salmon in New Zealand, demonstrating high levels of 
mortality [28% and 60 to 100%, respectively; (126)] and similar 
clinical presentations to those observed in tenacibaculosis outbreaks 
in wild-caught Chinook salmon in BC (107). While T. dicentrarchi is 
highly virulent in some hosts (Atlantic salmon, rainbow trout), 
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including wild and farmed Chinook in BC (127), it may have little 
effect in others, such as coho (119). T. dicentrarchi may be especially 
pathogenic during the stress induced by seawater transfer, and it can 
be harbored in nonsalmonid hosts (124, 125).

SEA LICE
Sea lice (L. salmonis and Caligus spp.) are a group of ectoparasitic 
copepods that feed on the skin, muscle, and blood of their hosts 
(Fig. 6). For salmon aquaculture, sea lice cause losses due to delous-
ing treatments, reduced growth, and survival (128). While sea lice 
naturally infest salmonids and other marine fishes around the world, 
salmon farms elevate sea-louse infestation pressure for nearby wild 
juvenile salmon (56, 129–131), which lack the fully developed scales, 
immune systems, and body size that protect adult salmon from 
these parasites (132). In Europe and North America, the primary 
louse species of concern for wild and farmed salmon is the salmon 
louse (L. salmonis). Meta-analyses of large-scale manipulative field 
experiments in Europe have shown L. salmonis to be associated with 
reduced survival and recruitment of wild salmon (20, 133), an effect 
that is stronger under poor natural conditions for survival (20).

In BC, the Broughton Archipelago has been the focal region 
for salmon farm–related ecological research. Stock-recruit fisheries 
models that include covariates for sea lice on farms near spawn-
ing rivers, or on juvenile wild salmon themselves, have provided 
evidence that sea lice on salmon farms are correlated with reduced 
population productivity for pink and coho salmon (34,  73,  74). 
Seemingly contradictory studies (134) have highlighted the need to 
carefully consider confounding factors and account for spatial and 
temporal covariation in salmon dynamics when testing for evidence 
of correlations among salmon farms, sea louse infestations, and wild 
salmon productivity (34). Chum salmon from the Viner River in the 

Broughton Archipelago, which is centrally located amidst salmon 
farms but also a watershed heavily impacted by forestry, have col-
lapsed (Fig. 2) but analysis of chum populations in the region do not 
appear to have experienced louse-associated productivity declines 
(135), possibly due to behavioral interactions between pink, chum, 
and their coho predators (135, 136). Sea lice on wild juvenile salmon 
have been associated with salmon farms in the sea-louse reporting 
zones in BC for which analyses have been conducted, including the 
Broughton Archipelago (56, 129, 137), Discovery Islands (131, 138), 
Central Coast (130), and Nootka Sound, Esperanza Inlet and 
Quatsino Sound (139–141) (see the “Canadian Government Science 
Advice on Salmon Disease” section for a brief meta-analysis).

Sea lice influence wild salmon physiology and behavior. Ecologi-
cal studies in BC indicate that juvenile sockeye salmon infested with 
higher numbers of Caligus clemensi sea lice exhibit reduced feeding 
success (142), growth (17), and competitive ability (143). Juvenile pink 
and chum salmon infected with L. salmonis show reduced swimming 
endurance (144) and increased susceptibility to predation (136). Con-
trolled laboratory trials have shown that sockeye salmon infected with 
L. salmonis experience mortality, skin erosion, scale loss, and high 
levels of stress (145). Cumulatively, these effects from L. salmonis have 
a large physiological effect on juvenile sockeye salmon relative to 
impacts detected in Atlantic salmon (146).

In the Broughton Archipelago, pink salmon populations showed 
evidence of recovery in the mid-2000s after changes to farm prac-
tices and implementation of regulations mandating treatment of sea 
lice on salmon farms when motile (i.e., adult and preadult) sea lice 
exceeded three per farmed salmon (74). As coastal waters of BC 
warm, however, models of sea-louse population dynamics indicate 
that the ability to control outbreaks will diminish due to accelera-
tion of louse population dynamics (147). Further, experiments show 
that effects of salmon-louse infestation on survival, growth, and 

Fig. 5. Tenacibaculum maritimum detections and lesions of wild Pacific salmon. Molecular detections of T. maritimum in juvenile Fraser River sockeye salmon relative 
to active Atlantic salmon farm locations along the juveniles’ migration route [vertical “rug” dashes along the x axis, blue = Discovery Islands salmon farms (A)]. T. maritimum 
was the only Tenacibaculum species screened in the study. (B to G) [reprinted from (127)] show typical lesions consistent with tenacibaculosis, ascribed to T. dicentrarchi, 
in infected wild-caught Chinook salmon: skin ulcers (B) and erosions (C) on the caudal peduncle (arrows) and belly [(D) and (E), arrows]; fin hemorrhages [(D), white 
arrowhead]; extensive scale loss associated with ulcerative lesions on the flank [(F), white arrowhead]; and severe erosion with ulceration of the mucosa and skin on both 
maxilla and mandible [(G), arrows]. Data and plot in (A) are from (9); photographs are from (127).
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Fig. 6. Lepeophtheirus salmonis infestation of wild and farmed salmon. L. salmonis infestation of a juvenile pink salmon, showing (A) adult male and female lice and 
(B) copepodid and chalimus stage lice. Chalimus lice are tethered by an attachment filament and feed on epidermal tissues and sometimes blood and musculature, produc-
ing the lesions around the point of attachment. Motile lice are preadults and adults that can move around on the fish and swim from fish to fish, evading fish predators and 
searching of mating opportunities. Abundances (C) of motile stage L. salmonis on farmed salmon from 2011 to 2022 per farm for each sea lice reporting zone in BC. Data are 
shown for April, May, and June of each year, which is the peak outmigration period for most juvenile wild salmon in these areas, though some populations are resident for 
longer periods. The horizontal dotted line shows the regulatory limit of three motile lice per farmed fish. Tables above each plot summarize data above six motile lice per 
fish with the number of counts, and the lowest and highest values of those counts. Sea-louse data were sourced from Fisheries and Oceans Canada Industry sea lice monitor-
ing database available from the Open Data program of the Canadian Federal Government (200). See fig. S1 for a plot of these data without the y axes truncated.
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body condition of Atlantic salmon all become more severe at warm-
er temperatures (148). Similar to other regions, sea lice on BC salm-
on farms have begun to show resistance to emamectin benzoate 
(EMB; trade name SLICE), the main treatment used to control sea-
louse outbreaks throughout the 2000s and 2010s in BC (149, 150). 
Detecting and understanding factors affecting treatment efficacy, 
including the effects of changing environmental conditions, has 
been difficult given a lack of open data and an apparent bias in in-
dustry monitoring (151), highlighting the multifaceted challenges 
for sea-louse management in the near future.

In response to the potential for evolved EMB resistance, alterna-
tive sea-louse treatments have been implemented in BC, such as 
freshwater and hydrogen peroxide baths and physical removal of 
lice using pressurized water in a “hydrolicer” (152). However, these 
alternative treatment methods are less effective than preresistance 
EMB and can increase stress on treated salmon (153, 154) through 
loss of mucus and scales that normally help protect fish against 
infectious microbial agents. These host effects likely increase vulner-
ability to disease (154,  155) and potentially enhance spillover of 
ecto-pathogens shed with mucous and scales in untreated effluent. 
Although hydrolicers and bath treatments may remove lice from 
farms, viable larval lice are released back into the nearby marine 
environment (A. Morton, personal observation). In addition, these 
alternative treatments can unintentionally process wild fish such as 
herring that aggregate within and around net-pens—the implemen-
tation of hydrolicing is coincident with an increase in incidental by-
catch mortality of herring reported from salmon aquaculture sites 
in BC from less than 100,000 fish annually in 2011 to 2020 to over 
800,000 in 2023 (156).

INFECTION RISK FROM OTHER POTENTIAL PATHOGENS
In addition to the best-studied pathogens we have focused on above, 
recent high-throughput studies of >50 species of infectious agents 
indicate that there are many other infectious agents that are detected 
in farmed salmon, wild salmon, and eDNA. Many agents in juvenile 
Chinook, coho, and sockeye cluster along the east of Vancouver 
Island (37), and data from studies of farmed salmon and eDNA 
show consistent patterns for infectious agents that are prevalent in 
farmed salmon and water samples near active versus inactive salmon 
farm sites (table S1 and Fig. 3). We assembled and assessed detec-
tion data for agents that have potential transmission risks to wild 
salmon by meeting four criteria: (i) detection in BC farmed salmon; 
(ii) detection in Pacific salmon, farmed and/or wild; (iii) more fre-
quent detections in eDNA samples near active salmon farms versus 
inactive salmon farm sites; and (iv) direct transmission between 
hosts is possible (i.e., we excluded parasites with complex life histo-
ries). The papers from which the data were assembled were found 
via Web of Science and at the advice of our senior author, K.M.M., 
who is a coauthor of all of them and runs the laboratory that gener-
ated the data. The assembled data indicate that 42 infectious agents 
have been detected in samples of wild Pacific salmon, of which 37 have 
also been detected in farmed Atlantic salmon and all of which 
have been detected in either farmed Chinook salmon or farmed 
Atlantic salmon in BC.

Beyond T. maritimum, four agents stand out for their prevalence 
in farmed salmon and occurrence in eDNA samples near active versus 
inactive salmon farm sites—Moritella viscosa, Piscirickettsia salmonis, 
Cutthroat trout virus (CTV-2), and Atlantic salmon calicivirus (ASCV). 

M. viscosa and P. salmonis are known pathogens of salmon that 
cause winter ulcer disease and piscirickettsiosis, respectively, which 
are managed with good husbandry, antibiotics, and vaccines (157). 
They have low prevalence (~1%) in the data on farmed salmon 
cohorts (table S1), although P. salmonis was detected in 22% of dead 
and dying Atlantic salmon and in 32% of dead and dying farmed 
Chinook salmon sampled from the DFO farm audit program (table 
S1). eDNA of M. viscosa was detected near 10 of 44 active salmon 
farm sites versus 1 of 66 inactive sites, whereas P. salmonis was 
detected in eDNA samples near 47 of 59 active salmon farms com-
pared to 32 of 75 inactive sites (table S1). P. salmonis and M. viscosa 
have also been found to cluster in wild juvenile sockeye salmon 
from the Fraser River that migrated near salmon farms (158). CTV-2 
was common in samples of farmed Atlantic salmon (54%) and 
detected in eDNA near 10 of 59 active salmon farms versus zero of 
75 inactive sites. In Atlantic salmon, CTV-2 infection is systemic 
but seems to favor the brain, where it is associated with mild neuronal 
necrosis and degeneration (159). In Pacific salmon, CTV-2 has rarely 
been detected in wild fish, but was detected in 12% of dead and 
dying farmed Chinook salmon. A laboratory challenge study of 
CTV-2 in sockeye, pink, and Chinook salmon found persistent 
infections but no mortality or morbidity, and although histological 
analysis did not consider brain tissue, kidney, spleen, and heart 
tissue showed mild endocarditis in Chinook salmon (160). ASCV is 
notable for its 54% prevalence in fish in four cohorts of Atlantic 
salmon, 76% prevalence in dead and dying Atlantic salmon, and 
10% of dead and dying farmed Chinook salmon (table S1). ASCV 
has rarely, however, been observed in wild Pacific salmon, and it 
was detected in eDNA in only 3 of 77 sites, all near active salmon 
farms (table S1). For ASCV, no studies exist on the physiological 
and ecological effects on Pacific salmon.

CANADIAN GOVERNMENT SCIENCE ADVICE ON 
SALMON DISEASE
In this section, we analyze how the findings of this review relate to 
advisory reports of the Canadian Department of Fisheries and 
Oceans (DFO) that have been produced to inform regulatory deci-
sions on salmon aquaculture in BC. Our purpose is to provide an 
update on scientific findings published after those reports were pro-
duced and to provide advice on salmon species and populations that 
have not been encompassed in those reports. DFO is the regulator of 
salmon aquaculture in BC and is responsible for setting parasite and 
biomass limits on farms and approving license applications. License 
applications include a fish health management plan and consider-
ations of site location, such as proximity to rivers, which must be 
more than 1 km. The primary formal mechanism by which DFO 
provides science advice to inform issues of relevance to fisheries 
management in Canada, including regulation of the salmon aqua-
culture industry, is the Canadian Science Advisory Secretariat 
(CSAS)—a coordinating body that produces advisory reports on 
analyses and risk assessments conducted by DFO scientists and 
invited external participants (28). CSAS has been criticized for 
procedural issues underpinning the reports and risk assessments on 
aquaculture-related topics, including participant selection, peer 
review, transparency, open data, and reproducibility, which have re-
sulted in reports and science advice that is not fully supported by 
evidence (140, 161). The evidence we review in this paper outlines 
additional information needed to fill knowledge gaps from these 
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CSAS reports, most of which were limited to Fraser River sockeye 
and salmon farms in the Discovery Islands. Here, we consider a 
broader scope, all salmon species in all farming regions of BC, and 
provide some important revisions and updates to DFO’s science 
advice on aquaculture risks to wild salmon.

Through CSAS, DFO has conducted risk assessments of nine 
pathogens, known to cause disease in farmed salmon in the Discovery 
Islands region, for their risk to sockeye salmon from the Fraser River: 
PRV, infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic 
septicemia virus (VHSV), and the bacteria Aeromonas salmonicida, 
Renibacterium salmoninarum, Yersinia ruckeri, T. maritimum, P. salmonis, 
and M. viscosa. Our review is broader, encompassing a wider range 
of pathogens and all Pacific salmon in all salmon farming regions of 
BC. Our review is also broader because we focus on pathogen occur-
rence in farmed salmon, rather than the ability of the pathogens to 
cause disease in farmed salmon, as the mechanism for creating risk 
to wild salmon. This latter point is important because it is a patho-
gen’s ability to infect farmed salmon, propagate, and spill over into 
the environment—rather than its ability to cause disease—that is 
necessary for a pathogen of farmed salmon to create risks for wild 
salmon. This is because (i) transmission can occur in the absence of 
overt disease, (ii) the high abundance of farmed salmon means that 
spillover to wild salmon can be large even at low prevalence on farms, 
and (iii) the consequences of infections are likely higher in wild 
salmon due to the unique challenges they face, such as competition, 
predation, and migration (18), which have the potential to increase 
mortality in infected hosts.

Of the nine pathogens considered in DFO’s risk assessments on 
Fraser River sockeye, three are among those that we have highlighted 
for impact on wild salmon (PRV, Tenacibaculum spp.) or likely ele-
vated infectious risk near salmon farms (M. viscosa), all of which 
were concluded by DFO to pose minimal risk. The other five patho-
gens evaluated by DFO were also assessed as posing minimal risk to 
Fraser River sockeye. These latter five pathogens showed very low or 
zero prevalence in marine multipathogen molecular screening of 
farmed salmon, wild salmon, and eDNA (table S1). DFO has not 
conducted a risk assessment of sea lice, but has produced a recent 
statistical analysis of sea lice on wild and farmed salmon in four 
salmon farming regions of BC (139) (see below). Below, we high-
light some important discrepancies in and updates to the DFO 
risk assessments for PRV, T. maritimum, sea lice, M. viscosa, and 
P. salmonis.

In 2019, CSAS assessed the risk to Fraser River sockeye salmon 
due to PRV transfer from Atlantic salmon farms in the Discovery 
Islands area as minimal. CSAS concluded that there is a high likeli-
hood of transmission of PRV-1 from farmed salmon to wild sockeye 
salmon, but with uncertainty ranging from low to high (162). The 
consequences of transmission for Fraser River sockeye were consid-
ered negligible, with reasonable certainty for juveniles and reasonable 
uncertainty for adults, but participants disagreed on the applicabil-
ity and abundance of the data to support uncertainty estimates. A 
preceding 2015 risk assessment on PRV to wild Pacific salmon in BC 
(not just Fraser River sockeye salmon) concluded a low likelihood 
that the presence of the virus in any life stage of farmed Atlantic and 
Pacific salmon would have an impact on wild Pacific salmon popu-
lations (162). The 2015 assessment was focused on whether the BC 
variant of PRV causes disease in Pacific and Atlantic salmon in BC, 
concluding that laboratory studies in Chinook, sockeye, and Atlantic 
salmon and rainbow trout provide evidence that infection with the 

lineage of PRV found along the West Coast of North America does 
not cause clinical disease in these species. The 2019 risk assessment 
concluded that PRV-1 has been associated with severe heart inflam-
mation in farmed Atlantic salmon. Those conclusions unconven-
tionally excluded research conducted outside of Canada, which has 
causally linked PRV-1, including a variant from western North 
America, to HSMI in Atlantic salmon (161). The 2019 CSAS risk 
assessment further concluded that current evidence does not sup-
port the view that the lineage of PRV in BC (PRV-1a) causes disease 
or mortality in sockeye salmon, and that a causal relationship be-
tween PRV and jaundice/anemia in Chinook salmon has not been 
established. As discussed in the PRV section above, recent studies 
on species other than sockeye that were published after the CSAS 
risk assessment indicate that PRV-1a is associated with jaundice/
anemia in farmed (15) and wild Chinook salmon in BC (16), that 
PRV is present in the biological waste that drifts from salmon farms 
and processing plants into the marine environment inhabited by 
wild fish (83), that transmission occurs from farmed salmon to wild 
Pacific salmon in BC (8, 57), and that PRV is associated with lower 
body condition and survival in Chinook and coho (19).

DFO’s 2020 CSAS risk assessment of T. maritimum from Atlantic 
salmon farms in the Discovery Islands assessed that the bacterium 
posed minimal risk to Fraser River sockeye (110). It concluded that 
it is unlikely for juveniles and very unlikely for adult Fraser River 
sockeye salmon to become infected with T. maritimum released 
from Atlantic salmon farms in the Discovery Islands area, but with 
uncertainties that ranged from high uncertainty to high certainty, 
respectively. However, new evidence indicates that T. maritimum 
detection rates peaked in juvenile Fraser River sockeye as they 
migrated through the Discovery Islands (Fig. 5), with the bacteria 
likely acquired from the cluster of salmon farms in that region (9). 
Further, eDNA analyses indicate that T. maritimum is one of the 
pathogens most elevated near active salmon farms (38). The risk 
assessment further concluded that the impact of T. maritimum on 
Fraser River sockeye salmon is negligible given that modeled 
mortality of sockeye attributable to T. maritimum infection from 
Atlantic salmon farms was less than 1%, which was made with 
reasonable uncertainty (110). However, no empirically validated 
models supported such a quantitative prediction, and the low impact 
was predicated on a low detection rate, an interpretation that subse-
quent work has shown to be invalid (9). Recent work has further 
shown that T. maritimum infection is associated with decreased 
marine survival in Chinook and reduced body condition in Chinook 
and coho salmon (19). Thus, the combined body of evidence indi-
cates that salmon farms may elevate exposure levels of T. maritimum 
for many species, that farms are a primary source of exposure for 
Fraser River sockeye salmon, and that T. maritimum may cause 
population-level impacts for some species.

A recent CSAS Science Response Report (no. 2022/045) evaluat-
ing sea lice on salmon farms and wild salmon in BC concluded that 
the presence of parasitic sea lice on wild juvenile salmon is not sig-
nificantly associated with sea lice from nearby salmon farms (139). 
That conclusion ignores many studies, reviewed here and elsewhere 
(163), which document a large body of evidence that salmon farms 
increase sea-louse infection pressure on wild salmon, and that sea-
louse infections affect the fitness of individual juvenile wild salmon 
and the overall recruitment in affected salmon populations. The 
conclusion of the CSAS report was based on statistical analyses that 
found no significant association between sea lice on wild juvenile 
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salmon and sea lice on nearby salmon farms within individual re-
porting zones. Besides the report ignoring all infection-intensity 
data from field collections, a key part of the analysis was an unvali-
dated model for sea-louse infection pressure on wild salmon that 
accounted for the dispersion of lice from farms to the sampling loca-
tions of wild Pacific salmon. As a result, the conclusion of a lack of 
association between lice on farmed and wild salmon may be the 
consequence of using a hydrodynamic model that did not account 
for asymmetric dispersal of lice due to tides and currents (164). 
However, the conclusion of the report was not tenable, even assum-
ing a robust infection pressure model. Applying Fisher’s combined 
test to the results from all four regions, considered separately in the 
report, indicates an overall significant association between sea louse 
infection pressure from farmed salmon and sea louse occurrence on 
wild juvenile salmon (Table 1).

The CSAS assessment of M. viscosa from salmon farms in the 
Discovery Islands found that the infectious agent posed minimal 
risk to sockeye from the Fraser River. It relied on the seasonality of 
winter ulcer disease, which is a cold-water disease that occurs in 
farmed salmon in the Discovery Islands primarily between December 
and February (165). The assessment reasoned that juvenile salmon 
in BC, including sockeye from the Fraser River, generally do not 
migrate to sea until after that time period, and so there is no tempo-
ral overlap of the disease in farmed salmon and wild salmon migra-
tions. That reasoning, however, does not account for species, like 
ocean-type Chinook salmon, that remain resident in coastal waters 
around Vancouver Island (166, 167). Further, eDNA data published 
just before the risk assessment, but which did not make it into 
the risk assessment, indicate that M. viscosa occurs 3 to 10.5 times 
more frequently in the marine environment near active salmon 
farms compared to inactive sites (38). The eDNA data were collected 
March to August, which suggest that salmon farms amplify 
M. viscosa in the marine environment during the migrations of wild 
salmon, especially during colder years (38), although the pathogen 
does not cause disease in farmed salmon during this time of year. 
M. viscosa has occurred at low prevalence in wild Pacific salmon, 
and for sockeye from the Fraser River, the few positive detections 
have come from fish that have migrated near salmon farms (158).

The CSAS assessment of P. salmonis from salmon farms in the 
Discovery Islands found that the infectious agent posed minimal 
risk to sockeye from the Fraser River. It was based on the conclu-
sion, with reasonable certainty, that farmed salmon are unlikely to 

become infected (168). However, the data we reviewed indicate that 
P. salmonis is common in moribund farmed salmon and that P. salmonis 
is elevated in eDNA samples near salmon farms (table S1). The risk 
assessment’s other conclusion, with reasonable to high uncertainty, 
that there will be minimal risk for P. salmonis to subsequently spread 
within wild sockeye populations or have ecological effects (168) is 
not empirically supported but rather reflects a lack of data to resolve 
uncertainty. Piscirickettsiosis has been observed in Pacific salmon 
species (pink, coho, and Chinook) in seawater tanks and net-pen 
aquaculture environments (169). More recent cohabitation experi-
ments in seawater tanks have indicated that pink and chum salmon 
are susceptible to infection and mortality from P. salmonis at tem-
peratures the fish encounter during spring and summer (170).

The CSAS risk assessment for VHSV found that transmission 
from salmon farms in the Discovery Islands to Fraser sockeye was 
extremely unlikely, given that sockeye appear to not be susceptible 
to VHSV infection, but that is not the whole story for Pacific salmon. 
Because of the rarity of the associated disease, transmission events 
coincident with the brief sockeye migration period are likely to be 
rare; however, the CSAS risk assessments were mandated to focus 
on Fraser River sockeye and so did not consider risks to other Pacific 
salmon species or other fish. Of particular relevance is that risk to 
herring-dependent species may be higher, especially for Chinook 
salmon, which often remain resident in nearshore habitats during 
their first year at sea. Herring congregate around farms, transmis-
sion from Atlantic salmon to herring is possible (171), and VHSV is 
virulent in herring (172, 173). As a consequence, Chinook could be 
affected directly by acquiring infection from infected prey, or indi-
rectly through a decline in prey abundance.

DISCUSSION
Currently, for wild fish, most emerging or re-emerging infectious 
diseases co-occur with domesticated fish populations (6, 174). This 
aligns with the view that new or intensified transmission dynamics 
between wild and domesticated animals is a primary mechanism 
for the emergence or re-emergence of infectious diseases (175). It 
should therefore not be a surprise that for wild and farmed salmon 
that share the same marine environment, many infectious agents are 
also shared, and that some have emerged as production concerns for 
farmed salmon and conservation concerns for wild Pacific salmon. 
Our review of data from several high-throughput screening studies 

Table 1. Results from (139) showing estimates of logistic regression models evaluating the effect of L. salmonis infestation pressure from Atlantic 
salmon farms on the log-odds of the occurrence of sea lice in sampled out-migrating juvenile chum and pink salmon. Clayoquot Sound and Quatsino 
Sound include chum salmon only, while Discovery Islands and Broughton Archipelago include chum and pink salmon. Fisher’s combined test is shown in the 
bottom row. Data are sourced from the Canadian Science Advisory Secretariat Report No. 2022/045 (139).

Region Coefficient (95% CI) Odds ratio* (95% CI) P value χ2 df

Clayoquot Sound  1.19 (−0.06, 2.43)  3.29 (0.94, 11.36)  0.06 ﻿ ﻿

 Quatsino Sound  1.3 (−0.34, 2.95)  3.67 (0.71, 19.11)  0.12 ﻿ ﻿

Discovery Islands  0.57 (−0.03, 1.17)  1.77 (0.97, 3.22)  0.06 ﻿ ﻿

 Broughton Archipelago  0.12 (−0.25, 0.50)  1.13 (0.78, 1.65)  0.52 ﻿ ﻿

 Fisher’s combined value ﻿ ﻿  0.03  16.8 8

*Values greater than 1 indicate increased chances of at least one attached copepodid sea louse in samples of juvenile salmon relative to a unit increase in 
standardized modeled infection pressure from sea lice on farmed salmon.
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for >50 infectious agents in farmed salmon and wild Pacific salmon 
indicates 42 infectious agents that occur in wild Pacific salmon, 37 of 
which co-occur in farmed Atlantic salmon, and all of which co-occur 
among wild Pacific salmon, farmed Atlantic salmon, and farmed 
Chinook salmon in BC. As our review indicates, three pathogens—
PRV, Tenacibaculum spp., and L. salmonis—have emerged as a 
conservation concern for wild salmon due to their high prevalence 
on farmed salmon, strong evidence for transmission from farmed to 
wild salmon, and strong correlative evidence of ecological effects on 
the fitness and recruitment of wild Pacific salmon in BC. Several 
other infectious agents show evidence of high prevalence in farmed 
salmon and increased occurrence in eDNA samples near active 
salmon farms, but little else is known of their transmission dynamics 
or ecological effects on wild salmon.

Aquaculture environments readily enable observation of dis-
ease or mortality, as well as subsequent clinical diagnoses and 
laboratory studies of infection. For wild fish, the same symptoms 
of disease or mortality may not be easily observable, not due to 
lack of observation effort, but because other ecological processes, 
such as predation, remove those individuals from the population 
before overt symptoms of disease seen in aquaculture or labora-
tory settings can develop (18). The ecological context of wild 
fish creates an environment that changes the consequences of 
infection for wild fish as compared to farmed fish, and so the 
identification and function of disease also differs. For Pacific 
salmon, many studies have identified ecologically relevant but 
sublethal effects of infection including increased predation risk 
(18, 101, 176, 177), reduced swimming endurance (144), reduced 
migration success (57,  178,  179), changes to habitat selection 
(180), and reduced foraging success, body growth, and body condi-
tion (17, 48, 142, 143).

The spatial spread of salmon pathogens from farms into the 
surrounding marine environment is not empirically understood for 
any of the identified species, except for sea lice (129), resulting in key 
uncertainties for management. As one reference point, Atlantic 
salmon eDNA from salmon farms in the Broughton Archipelago was 
estimated to be contained relatively locally, with 95% of material 
ranging from 1.6 km upstream to 3.2 km downstream from farms 
(relative to a prevailing current) at 2 m depth, and 1.8 to 3.7 km at 
8 m depth (38). Infectious agents can also spread when industry 
moves live salmon from freshwater hatcheries to marine net-pens, 
and among marine sites (7, 36). Regulations prohibit interregional 
transfers of fish experiencing high levels of mortality or infectious 
disease outbreaks, but asymptomatic individuals can also carry and 
spread pathogens. The availability of alternate hosts to complete their 
life cycle in the nearby environment will limit transmission to wild 
salmon for myxozoans, whereas more easily transmissible pathogens 
with a broad host range could potentially spread spatially very quickly 
(e.g., VHSV and herring). Pathogens may also spread into the nearby 
environment via net cleaning (113), discharge from delousing ves-
sels, and the outfall from processing plants (83).

In addition to the risks posed by infectious agents per se, salmon 
aquaculture environments promote the evolution of pathogen and 
drug resistance and virulence (11, 13). For example, a study from 
Norway showed that farm-origin salmon lice were more harmful to 
their salmon hosts, with higher rates of skin damage, and stronger 
impacts on host growth when compared to wild origin salmon lice 
(181). Further, sea lice have evolved resistance to multiple treat-
ments on salmon farms (12) including EMB in BC (149, 150), which 

has been the primary chemotherapeutant used to control sea lice in 
BC. Selection on salmon farms has also impacted bacterial patho-
gens, increasing virulence (14, 182) and decreasing the effectiveness 
of a variety of treatment options (11, 183). Thus, it is not surpris-
ing that Tenacibaculum spp. have also developed resistance to the 
common antibacterial treatment oxolinic acid, with some strains of 
T. maritimum and T. dicentrarchi demonstrating resistance to a vari-
ety of antibiotic treatments (115, 184). Similarly, there is some evi-
dence to suggest that aquaculture-specific selective pressures have 
increased the virulence of PRV-1 in the Atlantic ocean and main-
tained the resulting lineage of the virus within farms (185). There is 
no reason to expect that salmon aquaculture in Pacific Canada is 
immune to the selective forces on farms that can drive evolution of 
pathogen virulence and treatment resistance.

Many strategies are used to mitigate the risk of pathogen spread 
from net-pen salmon farms, including animal husbandry, antibiotics, 
vaccines, and area-based management (186). The risks to BC’s wild 
salmon of pathogen spread from salmon farms that we have re-
viewed here exist under the best practices available for net-pen 
salmon aquaculture. There are 41 salmon farms in BC that have 
been certified as sustainable by the Aquaculture Stewardship Council 
despite the issues outlined here, and 28 of these are among the sites 
in the Discovery Islands and Broughton Archipelago that were 
recently closed by the Federal Government and First Nations, re-
spectively [Fig. 2, (187)]. Some reductions in the risk of pathogen 
spread from salmon farms in BC may be achievable with more 
formal area-based management, such as coordinated delousing 
efforts to minimize sea louse abundances during the outmigration 
period of wild juvenile salmon; however, the performance of current 
pathogen control strategies is unlikely to be stable due to the evolu-
tionary dynamics of pathogens (12, 13). Substantial reductions in 
pathogen risks beyond current practices are unlikely without the 
advent of new efficacious vaccines and other treatments or a transi-
tion to closed containment technology that separates the environ-
ment of farmed fish from that of wild fish.

Our review indicates that three species of pathogens—PRV, 
T. maritimum, and sea lice (L. salmonis)—are well documented 
to be amplified by farmed salmon populations in BC, transmitted 
between wild and farmed salmon in BC, and linked to population-
level effects on wild Pacific salmon in BC. There are four further 
infectious agents common to farmed salmon and that are elevated 
in eDNA samples near salmon farms. Some are newly described 
(CTV-2 and ASCV), and their pathogenic potential, transmission 
dynamics, and effects on wild fish have not been characterized. The 
other pathogens M. viscosa and P. salmonis may be considered well 
managed, from the perspective of farmed salmon health, but they 
nonetheless likely increase infection pressure and ecological risk 
for wild salmon. Reasons for increased risk in wild salmon include 
size and life-stage differences; differences in physiological infec-
tion susceptibility; an inability to benefit from vaccines, antibiotics, 
and other treatments; and susceptibility to mortality from multiple 
ecological processes that pathogens can modulate, such as preda-
tion, competition, migration, and environmental stress. These 
pathogen and infectious agent risks to wild salmon fit into a broader 
conservation context for wild salmon in BC of collapsed commer-
cial and Indigenous fisheries, risks to salmon-specialist predators 
such as southern resident killer whales (Orcinus orca; (188), and 
variable levels of salmon population decline that are likely driven 
by multiple anthropogenic and natural factors, including disease.
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The infectious agents of wild Pacific salmon that we have identi-
fied as likely to be amplified by farmed salmon are based on patterns 
of molecular detections in wild salmon, farmed salmon, and envi-
ronmental samples. However, such data do not necessarily represent 
viable infectious agents, as opposed to genetic material from agents 
that were nonviable at the time of sampling. Interpretation of such 
data needs care, and further work is needed to establish infectivity, 
pathogenicity, and ecological effects on wild fish (39). For the data 
we reviewed, the infectious agents that co-occurred in wild and 
farmed salmon do not necessarily represent viable infections or 
pathogens that are maintained in those putative host populations. 
Some of the infectious agents of wild Pacific salmon that we high-
lighted are well-known pathogens (e.g., M. viscosa and P. salmonis), 
whereas others are poorly characterized (e.g., CTV-2 and ASCV). 
This represents an important knowledge gap to evaluate the risks to 
wild Pacific salmon. For all of these infectious agents, further work 
could help evaluate the realized transmission risk to wild salmon. 
Fruitful topics of study would be the relationship between molecular 
occurrence and minimal infectious dose, the potential for acquisi-
tion of infection by wild salmon in the environment of amplification 
(35), and the ecological effects of infection on mortality-related pro-
cesses of wild salmon such as predation, competition, migration, 
and environmental stress. On the basis of past global findings, some 
risks will prove to be minimal and others will prove to be serious.

This review can be informative in several respects to Canadian 
science advice and policy on salmon aquaculture and fish health. 
The DFO, via the CSAS, has conducted risk assessments on nine 
pathogens and an analysis on sea lice (110), but for all except sea 
lice, they were mandated to limit those assessments to Fraser River 
sockeye and salmon farms in the Discovery Islands region. As re-
viewed above, data from many recent studies and reanalysis of 
the CSAS sea lice report indicate that revisions and updates are 
needed (e.g., for the sea lice report and the risk assessments on PRV, 
T. maritimum, M. viscosa, P. salmonis, and VHSV). There are no 
comprehensive risk assessments for all species of salmon in BC with 
respect to sea lice or the pathogens that we have highlighted in this 
review. The CSAS risk assessments for Fraser River sockeye do not 
reflect risks to other species in other areas, particularly pink, chum, 
and ocean-type Chinook salmon that migrate to sea at small body 
sizes and remain in coastal waters for several months, and particu-
larly ocean-type Chinook that are resident in coastal BC waters dur-
ing their first year (166).

The context of risks from salmon farms in BC is changing. Patho-
gen risks from salmon farms to some southern BC wild salmon 
populations (including in the Fraser River) have been partially miti-
gated by the closure of most salmon farms in shíshálh First Nation 
territory (Sechelt Inlet), the Discovery Islands, and the Broughton 
Archipelago, but disease interactions between wild and farmed 
salmon still occur in areas where salmon farming remains. Release 
of pathogens detected in the effluent from farm salmon processing 
plants into marine waters may be another source of infection for 
wild fish (83). While DFO plans to transition away from net-pen 
aquaculture in BC (189), of the options being considered, only 
full closed containment systems fully contain disease risks to wild 
Pacific salmon. Semiclosed containment or area-based management 
may improve some aspects of sea-louse management or disease 
control, but will continue to allow for the exchange of seawater, and 
infectious particles in that water, between farms and the surround-
ing environment.

Globally, as aquaculture continues its expansion to meet seafood 
demand, our review highlights that net-pen production facilitates 
pathogen interactions between wild and farmed fish that can create 
conservation risks for wild fish. With the intensification of net-pen 
production and its expansion to new species and new regions, it 
should therefore be anticipated that new disease dynamics can 
emerge and may require management intervention. Looking ahead, 
the risks of pathogen spread from farmed salmon to wild Pacific 
salmon in BC will likely continue to change due to changes in 
disease management of farmed salmon, aquaculture regulations, 
climate, and pathogen evolution. With climate change, for example, 
outbreaks of sea lice are expected to worsen (147, 190) but risks of 
coldwater disease from M. viscosa to wild and farmed salmon may 
diminish. Geographic shifts of pathogen ranges and increased phys-
iological stress in salmon may exacerbate many [though not all; 
(191)] existing salmon disease risks as the climate warms (18, 192). 
Selection for drug resistance in aquaculture environments will 
continue to challenge pathogen management on salmon farms and 
influence the associated risks to wild Pacific salmon. For example, 
drug resistance in sea lice has shifted louse control to mechanical 
delousing, which removes protective mucus and scales in which sur-
face bacteria and parasites may also be sloughed at high densities 
into the water column, creating new risks not yet considered by 
regulators. Continued surveillance that generates accessible, trans-
parent, and unbiased data will be important to track and further 
evaluate pathogen risks to wild Pacific salmon in BC. For many of 
the infectious agents we have highlighted, the physiological effects 
on wild Pacific salmon are not well characterized, and there are few 
if any data on the agents’ effects on ecological processes known to 
be important for wild Pacific salmon, including foraging, growth, 
competition, predation, and migration. Addressing these knowl-
edge gaps will be important to resolve uncertainties regarding 
pathogen risks of salmon farms to wild Pacific salmon in BC, but 
need not preclude precautionary management. For PRV, Tenacibaculum 
spp., and sea lice, the accumulated evidence indicates that pathogen 
management and regulations are needed now to mitigate risks of 
salmon farms to wild Pacific salmon in BC.
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