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Abstract. For integers n ⩾ k ⩾ 1, the Kneser graph K(n, k) is the graph with vertex-
set consisting of all the k-element subsets of {1, 2, . . . , n}, where two k-element sets are
adjacent in K(n, k) if they are disjoint. We show that if (n, k, s) ∈ N3 with n > 10000ks5

and F is set of vertices of K(n, k) of size larger than

{A ⊂ {1, 2, . . . , n} : |A| = k, A ∩ {1, 2, . . . , s} ≠ ∅},

then the subgraph of K(n, k) induced by F has maximum degree at least(
1−O

(»
s3k/n

)) s

s+ 1
·
Ç
n− k

k

å
· |F|(n

k

) .
This is sharp up to the behaviour of the error term O(

√
s3k/n). In particular, if the triple of

integers (n, k, s) satisfies the condition above, then the minimum maximum degree does not
increase ‘continuously’ with |F|. Instead, it has s jumps, one at each time when |F| becomes
just larger than the union of i stars, for i = 1, 2, . . . , s. An appealing special case of the above
result is that if F is a family of k-element subsets of {1, 2, . . . , n} with |F| =

(n−1
k−1

)
+ 1,

then there exists A ∈ F such that F is disjoint from at least(
1/2−O

(»
k/n

))Çn− k − 1

k − 1

å
of the other sets in F ; we give both a random and a deterministic construction showing that
this is asymptotically sharp if k = o(n). In addition, it solves (up to a constant multiplicative
factor) a problem of Gerbner, Lemons, Palmer, Patkós and Szécsi.
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Frankl and Kupavskii, using different methods, have recently proven similar results un-
der the hypothesis that n is at least a quadratic in k.
Keywords. Kneser, intersecting, sensitivity, Erdős–Ko–Rado type theorem
Mathematics Subject Classifications. 05D05

1. Introduction

For n ∈ N, we write [n] := {1, 2, . . . , n} for the standard n-element set, and for a set X , we
write

(
X
k

)
:= {A ⊂ X : |A| = k}. The Kneser graphK(n, k) is the graph (V,E)withV =

(
[n]
k

)
and E = {{A,B} : A ∩ B = ∅}, i.e. two k-sets are joined by an edge of the Kneser graph iff
they are disjoint. The Kneser graph K(n, k) has independent sets of size

(
n−1
k−1

)
, viz., the sets of

the form
¶
A ∈

(
[n]
k

)
: i ∈ A

©
for i ∈ [n], and the well-known Erdős–Ko–Rado theorem states

that no independent set can have larger size. (Recall that a set I of vertices in a graph G is said
to be independent if there is no edge of G between any two of the vertices in I .)

Our work in this paper starts with the following question: if F is a set of vertices of K(n, k)
with size

(
n−1
k−1

)
+ 1, how large must the maximum degree of the induced subgraph K(n, k)[F ]

be? (The Erdős–Ko–Rado theorem implies that this maximum degree must be at least one.) Put
another way, if F is a family of

(
n−1
k−1

)
+ 1 k-element subsets of [n], must there exist a set in F

which is disjoint from many of the other sets in F?
This question in turn was motivated by the beautiful (and very short) resolution of the sen-

sitivity conjecture, by Huang [Hua19]. Huang proved that for any n ∈ N, the subgraph of the
hypercube Qn induced by a set of 2n−1 + 1 vertices must have maximum degree at least

√
n.

(This is best-possible whenever n is a perfect square, and it implies the sensitivity conjecture, as
had previously been observed by Gotsman and Linial.) This result is striking, because Qn has
independent sets of size 2n−1, but going just one above this size, forces the maximum degree
of the induced subgraph to jump from 0 to

√
n =

√
∆(Qn). Huang’s proof is by the construc-

tion of a signed adjacency matrix for Qn which has appropriate eigenvalues, together with an
application of Cauchy’s interlacing theorem.

The following questions suggest themselves: is there a similar ‘sharp jump’ for the Kneser
graph, and if so, is there a proof of this along the lines of Huang’s proof?

In this paper, we prove that there is indeed such a sharp jump for the Kneser graph (for k ⩽ cn
where c > 0 is an absolute constant); though we were unable to find a proof along the same lines
as Huang’s (and our proof is a good deal longer). We prove the following.
Theorem 1.1. Let (n, k, s) ∈ N3 with n ⩾ 10000ks5. LetF ⊂

(
[n]
k

)
such that |F| ⩾

(
n
k

)
−
(
n−s
k

)
,

and suppose that F ̸=
¶
A ∈

(
[n]
k

)
: A ∩ S ̸= ∅

©
, for all S ∈

(
[n]
s

)
. Then the subgraph

of K(n, k) induced by F has maximum degree at least(
1−O

(»
s3k/n

)) s

s+ 1
·
Ç
n− k

k

å
· |F|(

n
k

) ,
i.e. there exists A ∈ F such that A is disjoint from at least(

1−O
(»

s3k/n
)) s

s+ 1
·
Ç
n− k

k

å
· |F|(

n
k

)
of the sets in F .
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Our proof combines spectral techniques with more combinatorial ‘stability’ arguments. Ob-
serve that the s = 1 case of the above theorem has the following appealing corollary, which is a
rough analogue of Huang’s result on Qn.

Corollary 1.2. For each ϵ > 0, there exists δ > 0 such that the following holds. Suppose
(n, k) ∈ N2 with k ⩽ δn. Let F ⊂

(
[n]
k

)
with |F| =

(
n−1
k−1

)
+ 1. Then there exists A ∈ F such

that A is disjoint from at least (1/2− ϵ)
(
n−k−1
k−1

)
of the sets in F .

We note that, for k = Θ(n), this corollary says that when |F| increases from
(
n−1
k−1

)
to
(
n−1
k−1

)
+ 1, the minimal maximum degree of the subgraph K(n, k)[F ] jumps from zero to

within a constant factor of ∆(K(n, k)), which is (in a sense) an even more extreme jump than in
Huang’s theorem. (In the latter, the minimal maximum degree jumps from zero to

√
∆(Qn).)

The following construction shows that, up to the dependence of δ upon ϵ, the above corollary
is sharp. Take

F =

®
A ∈
Ç
[n]

k

å
: {1, 2} ⊂ A

´
∪ {A ∪ {1} : A ∈ A1} ∪ {A ∪ {2} : A ∈ A2},

where A1 and A2 are initial segments of the colex ordering on
(
[n]\{1,2}

k−1

)
with sizes as equal as

possible. In the next section we give a random construction that achieves (asymptotically) the
same bound.

We note that Frankl and Kupavskii [FK25], using different methods, recently proved ana-
logues of the above results under the (stronger) hypothesis that k ⩽ c

√
n (for an absolute con-

stant c > 0).
A closely related problem (which has been more studied to date than our ‘maximum degree’

problem), is to minimize the number of edges in subgraph of the Kneser graph induced by a
family F ⊂

(
[n]
k

)
, over all families F of fixed size.

Question 1.3. For each n ⩾ k ⩾ 1 and each 1 < m <
(
n
k

)
, what is the minimum number

of edges e(K(n, k)[F ]) over all F ⊂
(
[n]
k

)
with |F| = m? That is, if |F| = m, how many

(unordered) pairs {A,B} can we guarantee to find such that A,B ∈ F and A ∩B = ∅?

Das, Gan and Sudakov [DGS16] showed that, for sufficiently large n and provided m is not
too large, to minimize the above quantity over all families of sizem, it is best to take the k-subsets
one by one according to the lexicographical order. (Recall that the lexicographical order or lex
order ≺ on

(
[n]
k

)
is defined by A ≺ B if min(A∆B) ∈ A.)

Theorem 1.4 ([DGS16] Theorem 1.6). Let A1 ≺ A2 ≺ · · · ≺ A(nk)
be the lex order on

(
[n]
k

)
.

If n > 108k2s(k + s) and m ⩽
(
n
k

)
−
(
n−s
k

)
, then the initial segment {A1, A2, . . . , Am} is a

family that minimizes e(K(n, k)[F ]) subject to |F| = m.

The lower bound in Theorem 1.1, combined with a general construction we will shortly
describe (see (2.5) in Example 2.2), shows that forn ⩾ 10000ks5, a plot ofmin∆(F) against |F|
looks roughly as in Figure 1.1.
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We note that the n = Θ(k) regime is particularly interesting because the Kneser graph has
edge-density exponentially small in n, in this regime, making it ‘more surprising’ in a sense
that the maximum degree of an induced subgraph of size greater than a star, is as large as we
demonstrate. Indeed, the edge-density of the Kneser graph is roughly

(
n−k
k

)¿(
n
k

)
≈
(
1− k

n

)k,
so in the n = Ω(k2) regime, the density is bounded away from zero by an absolute positive
constant, whereas for n = Θ(k) the density is exponentially small in n, i.e., two uniformly
random subsets of [n] of size k will intersect with ‘very high probability’.

Our results also solve (up to a constant multiplicative factor) a problem of Gerbner, Lemons,
Palmer, Patkós, and Szécsi, who in [GLP+12] asked the following.

Question 1.5 ([GLP+12] Section 4, ‘seems to be an interesting problem’). Let k, l ∈ N.
We say F ⊆

(
[n]
k

)
is (⩽ l)-almost intersecting if ∆(K(n, k)[F ]) ⩽ l. What is the smallest

n0 = n0(k, l) ∈ N such that for all n ⩾ n0, the largest (⩽ l)-almost intersecting families are just
the stars Di of size

(
n−1
k−1

)
?

Gerbner, Lemons, Palmer, Patkós, and Szécsi [GLP+12] showed that

n0 = min{O(k3 + kl), O(k2l)}

is enough. Corollary 1.2 implies that forn ⩽ ck (for c > 0 a sufficiently small absolute constant),
we have

|F| ⩾
Ç
n− 1

k − 1

å
+ 1 =⇒ ∆(K(n, k)[F ]) ⩾ 0.49

Ç
n− k − 1

k − 1

å
.

In particular the right-hand side is greater than
(

n
2k

)k−1, so n = Ω
(
kl1/(k−1)

)
is enough to

guarantee that the maximum degree is larger than l, so any family of size
(
n−1
k−1

)
+ 1 cannot

be (⩽ l)-almost intersecting. The same method works for families of size
(
n−1
k−1

)
that are not

stars, as we shall see in Corollary 4.14. This shows that the minimum n0 in Question 1.5 satis-
fies n0 = Θ

(
kl1/(k−1)

)
, since if n = ⌊kl1/(k−1)/100⌋, any family F ⊂

(
n
k

)
with |F| =

(
n−1
k−1

)
+1

trivially has

∆(F) ⩽

Ç
n− 1

k − 1

å
⩽

nk−1

(k − 1)!
⩽

nk−1

(k/10)k−1
< l.

Before discussing our strategy for proving Theorem 1.1, it is convenient to introduce the fol-
lowing notation. A star Di is a subset of

(
[n]
k

)
of the form

¶
A ∈

(
[n]
k

)
: i ∈ A

©
, for some i ∈ [n].

The families
¶
A ∈

(
[n]
k

)
: A ∩ S ̸= ∅

©
, for S ∈

(
[n]
s

)
, appearing in the statement of Theo-

rem 1.1, are precisely unions of s distinct stars.
Note that a union of s stars has size

(
n
k

)
−
(
n−s
k

)
. We interpolate linearly between integer

values of s, using a ‘size parameter’ λ to describe the size of F , so that if F has size parameter λ,
then its size is the same as that of a union of λ stars, when λ ∈ N.
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Notation 1.6 (Size parameter). For s ⩽ λ ⩽ s+ 1, we say F has size parameter λ if

|F| =
Ç
n

k

å
−
Ç
n− s

k

å
+ (λ− s)

Ç
n− s− 1

k − 1

å
= (λ− s)

Ç
n− s− 1

k − 1

å
+

s∑
i=1

Ç
s

i

åÇ
n− s

k − i

å
. (1.1)

Equivalently,

|F| =
Ç
n

k

å
−
Ç
n− s− 1

k

å
+ (λ− s− 1)

Ç
n− s− 1

k − 1

å
= λ

Ç
n− s− 1

k − 1

å
+

s+1∑
i=2

Ç
s+ 1

i

åÇ
n− s− 1

k − i

å
.

where s ⩽ λ ⩽ s+ 1.

We note, for later, that if F has size parameter λ, then

λ

Ç
n− 1

k − 1

å
−
Ç
s+ 1

2

åÇ
n− 2

k − 2

å
⩽ |F| ⩽ λ

Ç
n− 1

k − 1

å
. (1.2)

(This can be verified just by checking the cases λ = s and λ = s + 1, since all the quantities
above are affine linear functions of λ.)

Proof strategy

The key idea in the proof of Theorem 1.1 is to show that, if F has size parameter λ
with s ⩽ λ ⩽ s+1 and the maximum degree of F is ‘small’, then in fact we can find s+1 stars
that cover most of F (Lemma 4.9).

Suppose F has size parameter λ with s ⩽ λ ⩽ s+ 1. Since the size of F is very roughly λ
times that of a star, this will require finding stars in which F has density roughly λ/(s + 1).
There are n stars, and each k-set is contained in exactly k of them, so the obvious averaging
argument only gives a star where F has density λk/n, which is not enough.

Instead, we use the following strategy. Consider the indicator function f=1F :
(
[n]
k

)
→{0, 1}.

This can also be viewed as a vector in R(
[n]
k ). We can decompose it into a sum of eigenvectors of

the (adjacency matrix of the) Kneser graph (these eigenvectors are given in Lemma 3.9), say as

f = α1([n]
k )

+ f1 + · · ·+ fk

where α = E(f) and fi is an eigenvector of the Kneser graph with corresponding eigenvalue
equal to (−1)i

(
n−k−i
k−i

)
.

We show that, if f1 has small L2-norm, then the number of edges of K(n, k) within F is
close to that in a random subset (this is the content of Lemma 4.5), so the average degree is
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|F| /
(
n−1
k−1

)

min∆(F)/
(
n−k−1
k−1

)

1 ≈ 2 ≈ 3 ≈ 4 ≈ 5

1

≈ 2

≈ 3

≈ 4

Figure 1.1: Rough sketch of min∆(F) against |F| when n is sufficiently large. Zigzag and
hollow circles are schematic for a gap (not up to scale and depends on the ratio p = k/n)
between the lower bound Theorem 4.11 and the upper bound (2.5). The thin red curve is the
average degree of the initial segment of lex ordering, corresponding to the lower bound one gets
from applying Theorem 1.4.

large. Otherwise, f1 has large L2-norm (larger than constant times ∥f∥2), and this must be due
to F having constant density inside some star (see Lemma 4.4). And whenever F has constant
density inside some star, the Expander Mixing Lemma can be used to show that there are many
edges of K(n, k)[F ] between this star and its complement. This in turn enables us to show that
the density of F inside the relevant star is close to 1/2 (in the setting of Corollary 1.2), or close
to λ/(s + 1) (in the general case); this is the content of Lemma 4.6. And this is enough to
conclude the proof.

2. Upper bounds, and (more) general conjectures

In this section, we describe two constructions of induced subgraphs of K(n, k) with small max-
imum degree, for any given size parameter λ ∈ [s, s + 1] such that the quantity in (1.1) is an
integer. The first is a random construction, and the second is explicit. The upper bound given
by the second construction will be used later; the first construction will not be used later, but we
include it as it provides a larger class of families for which Theorem 1.1 is asymptotically sharp.
It is also very interesting that a random construction gives almost the same (almost sharp) bound



combinatorial theory 5 (1) (2025), #16 7

as a deterministic one!

Example 2.1 (Random construction). Fix k, s ∈ N. For n ⩾ C0ks
3 (for an appopriate absolute

constant C0 > 0), we take F ⊂
(
[n]
k

)
to be the (random) family that is the disjoint union of:

1. the “core part”, which consists of all sets X ∈
(
[n]
k

)
with |X ∩ [s+ 1]| ⩾ 2; and

2. the “random part” where for each set X ∈
(
[n]
k

)
with |X ∩ [s+ 1]| = 1, we include X

with probability λ/(s+ 1) (independently, for each such X).

The size of core part is always
s+1∑
i=2

Ç
s+ 1

i

åÇ
n− s− 1

k − i

å
,

and the size of the random part follows a binomial distribution, whose expected value is

λ

Ç
n− s− 1

k − 1

å
.

Hence, E[|F|] is equal to

λ

Ç
n− s− 1

k − 1

å
+

s+1∑
i=2

Ç
s+ 1

i

åÇ
n− s− 1

k − i

å
, (2.1)

the expression that appears in (1.1). When the mean of a binomial distribution is an integer, the
mean coincides with the median (an elementary proof of this can be found in [Lor10]), so with
probability at least 1/2, the family F will have size at least (2.1).

Now we bound the maximum degree of the induced subgraph K(n, k))[F ]. First
consider vertices in the random part. Let X be a vertex in the random part. We may
assume X ∩ [s+ 1] = {1}. In the Kneser graph, this vertex X has

(
n−k−s
k−1

)
neighbours Y ∈ Di

(i = 2, 3, . . . , s + 1) such that |Y ∩ [s+ 1]| = 1, so we expect λ
s+1

(
n−k−s
k−1

)
such neighbours

in F ∩ Di, so sλ
s+1

(
n−k−s
k−1

)
such neighbours in the random part of F . We also need to take into

account the neighbours of X in the core part, so the degree of X in F has expectation

sλ

s+ 1

Ç
n− k − s

k − 1

å
+

s∑
i=2

Ç
s

i

åÇ
n− k − s

k − i

å
. (2.2)

It turns out that any core vertex X , say with |X ∩ [s+ 1]| = x ⩾ 2, will have smaller degree
than (2.2). Indeed, if s = 1 then such a vertex X has degree zero, whereas for s > 1 its degree
satisfies

dX ⩽
s+1−x∑
j=1

∣∣∣∣∣
®
Y ∈

Ç
[n]

k

å
: Y ∩X = ∅, |Y ∩ [s+ 1]| = j

´∣∣∣∣∣
=

s+1−x∑
j=1

Ç
s+ 1− x

j

åÇ
n− k − s− 1 + x

k − j

å
.
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Provided n ⩾ C0ks
3 for some appropriate absolute constant C0, the ratio between successive

terms in the sum on the right-hand side is at most 1/(100s2), and comparing the leading term
with that of (2.2) we see that

(s+ 1− x)
(
n−k−s−1+x

k−1

)
(sλ/(s+ 1))

(
n−k−s
k−1

) ⩽
s2 − 1

s2

(
n−k
k−1

)(
n−k−s
k−1

)
⩽

s2 − 1

s2

Å
1 +

k − 1

n− 2k − s+ 2

ãs
⩽

s2 − 1

s2

Å
1 +

4k

n

ãs
⩽

s2 − 1

s2
e4ks/n

⩽
(
1− 1/s2

)
(1 + 8ks/n)

⩽
(
1− 1/s2

) (
1 + 1/

(
2s2
))

⩽ 1− 1/
(
2s2
)
,

so dX is smaller than
sλ

s+ 1

Ç
n− k − s

k − 1

å
provided n ⩾ C0ks

3.
Finally we need to ensure that with probability greater than 1/2, the maximum degree is not

far from the expected degree (2.2).
If |X ∩ [s+ 1]| = 1, then the number of neighbours of X included in the random part of F

is a binomially distributed variable B ∼ Bin
Ä
s
(
n−k−s
k−1

)
, λ
s+1

ä
. By the Chernoff bound given in

Theorem A.1.4 of [AS00],

P
Ç
B > s

Ç
n− k − s

k − 1

å
λ

s+ 1
(1 + δ)

å
< exp

Ç
−2s

Ç
n− k − s

k − 1

åÅ
λ

s+ 1

ã2
δ2
å

⩽ exp

Ç
−s

2

Ç
n− k − s

k − 1

å
δ2
å
.

Taking the union bound over all such vertices X (there are (s+ 1)
(
n−s−1
k−1

)
of them), we have

P
Ç
∃X ∈

Ç
[n]

k

å
(not necessarily in F) such that |X ∩ [s+ 1]| = 1

and X has more than
sλ

s+ 1

Ç
n− k − s

k − 1

å
(1 + δ) neighbours in the random part of F

å
⩽ (s+ 1)

Ç
n− s− 1

k − 1

å
exp

Ç
−s

2

Ç
n− k − s

k − 1

å
δ2
å
.
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So if we pick δ =
Ä
s
(
n−k−s
k−1

)ä−1/2+ε
for some constant ε > 0, then for n ⩾ C0(k + s) for an

appropriate absolute constant C0 > 0, the probability of having some X with such large degree
in the random part of F is less than 1/2. In other words, with probability more than 1/2 the
maximum degree of F is not far from the expected degree (2.2) and satisfies

∆(F) ⩽
sλ

s+ 1
(1 + δ)

Ç
n− k − s

k − 1

å
+

s∑
i=2

Ç
s

i

åÇ
n− k − s

k − i

å
⩽
Å

sλ

s+ 1
+ s · δ

ãÇ
n− k − 1

k − 1

å
.

(Note that for the last inequality, the identityÇ
n− k − 1

k − 1

å
=

s−1∑
i=0

Ç
s− 1

i

åÇ
n− k − s

k − i− 1

å
(2.3)

is used.)
So with positive probability, |F| is large enough but∆(F) is not too large, and we can remove

any extra vertices from F to obtain a family of size parameter λ and maximum degree at mostÅ
sλ

s+ 1
+ s · δ

ãÇ
n− k − 1

k − 1

å
.

Example 2.2 (Explicit construction). Let (n, k, s) ∈ N3 with n ⩾ 12ks. Construct F ⊂
(
[n]
k

)
as follows. For each X ∈

(
[n]
k

)
with |X ∩ [s+ 1]| = 1, include X in F if and only if X ⊆ [t],

where t ⩽ n is the least integer that satisfiesÇ
t− s− 1

k − 1

å
⩾

λ

s+ 1

Ç
n− s− 1

k − 1

å
.

We also include in F all those sets X ∈
(
[n]
k

)
with |X ∩ [s+ 1]| ⩾ 2 (the “core part”). One can

easily check that F has size-parameter at least λ.
Note that λ/(s+ 1) ⩾ 1/2, so

t− s− 1 ⩾
1

2
(n− s− 1) >

1

3
n. (2.4)

Define p := k/n, and note that p ⩽ 1/(12s). By choice of t, we haveÇ
t− s− 1

k − 1

å
⩾

λ

s+ 1

Ç
n− s− 1

k − 1

å
>

Ç
t− s− 2

k − 1

å
=

Ç
t− s− 1

k − 1

å
· t− s− k

t− s− 1

=

Ç
t− s− 1

k − 1

å
·
Å
1− k − 1

t− s− 1

ã
>

Ç
t− s− 1

k − 1

å
(1− 3p) by (2.4).
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Fix X ∈ F with X ∩ [s + 1] = {1}. The number of sets Y ∈ F such that Y ∩ [s + 1] = {2}
and Y ∩X = ∅ is equal to Ç

t− s− k

k − 1

å
.

We have Ç
t− s− k

k − 1

å¬Ç
n− s− k

k − 1

å
<

Ç
t− s− 1

k − 1

å¬Ç
n− s− 1

k − 1

å
<

λ

s+ 1
· 1

1− 3p

⩽ (1 + 4p)
λ

s+ 1
,

using the fact that p ⩽ 1/12. Therefore, the degree dX of X (also taking into account its
neighbours in the core part) satisfies

dX = s

Ç
t− s− k

k − 1

å
+

s∑
i=2

Ç
s

i

åÇ
n− k − s

k − i

å
<

sλ

s+ 1
(1 + 4p)

Ç
n− k − s

k − 1

å
+

s∑
i=2

Ç
s

i

åÇ
n− k − s

k − i

å
⩽
Å

sλ

s+ 1
+ 4sp

ãÇ
n− k − 1

k − 1

å
. (2.5)

(Note that the last inequality uses Equation (2.3) again.) It is clear that dX is the maximum
degree of F as any core vertex Z ∈ F with |Z ∩ [s+ 1]| ⩾ 2 has smaller degree, similarly to
in the previous example. We can remove elements of F if there are too many (clearly this does
not increase ∆(F)), so as to obtain exactly the right size-parameter.

This construction is motivated by the fact that picking sets in each star according to the colex
order makes sets in different stars intersect more often and is therefore helpful for reducing the
maximum degree of the induced subgraph. We conjecture that to minimize the maximum degree
among vertex sets of the same size, we can take families similar to those in Example 2.2. To
state our conjecture, we need one more piece of notation.

Notation 2.3. For a family F ⊆
(
[n]
k

)
and I ⊆ J ⊆ [n], we write

F I
J = {F \ J : F ∈ F , F ∩ J = I} ⊆

Ç
[n] \ J
k − |I|

å
.

Its elements correspond to elements of F that intersect with J in the prescribed way.
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Conjecture 2.4 (Sparse minimizer). Suppose n is sufficiently large compared to k and s,
and s ⩽ λ ⩽ s + 1. then there exists a minimizer F ⊆

(
[n]
k

)
with size parameter λ (whose

maximum degree ∆(F) is minimum among all such families of the same size) with the follow-
ing properties:

(i) F ⊆ D1 ∪ D2 ∪ · · · ∪ Ds+1;

(ii) Di ∩ Dj ⊆ F for all i, j ∈ [s+ 1]; and

(iii)
∣∣∣F{i}

[s+1] △F{j}
[s+1]

∣∣∣ ⩽ 1 for all i, j ∈ [s+ 1].

Corollary 4.14 shows that Conjecture 2.4 is true when λ = s is an integer, because in this
case, any minimizer must be a union of s stars.

If we assume that F satisfies (i) and (ii), then the problem reduces to choosing the F{i}
[s+1]’s

optimally, which are (s + 1) subfamilies of
(
[n]\[s+1]

k−1

)
with sizes summing to λ

(
n−s−1
k−1

)
. If we

further assume (iii), then every F{i}
[s+1] is almost equal to the same subfamily F ′ ⊆

(
[n]\[s+1]

k−1

)
with

density about λ/(s+ 1) and the problem reduces to minimizing the maximum degree of F ′, so
we have come back to the original problem but in the dense case (since λ/(s + 1) ⩾ 1/2),
as noted on p. 659 of [DGS16]. The way we chose F ′ in Example 2.2 suggests the following
conjecture.

Conjecture 2.5 (Dense minimizer). Suppose
(
n
k

)
/2 ⩽ m ⩽

(
n
k

)
(so the size parameter λ can be

as large as Θ(n) for fixed k), and let t be the smallest natural number such that
(
t
k

)
⩾ m, then

there is some

F ⊆
Ç
[t]

k

å
of size |F| = m such that ∆(F) is minimum over all subfamilies of

(
[n]
k

)
of size m.

When m happens to be of the form
(
t
k

)
, the conjectured optimal family is F =

(
[t]
k

)
, which

is an initial segment of colex. In this case the conjecture would follow from the corresponding
statement that initial segments of colex minimizes the number of edges (such as Corollary 2.4
in [DGS16] for some range of parameters), because minimizing the number of edges in addition
to being regular is enough to guarantee minimizing the maximum degree.

However, when m is not of the special form, the initial segment of colex is not necessarily
optimal, just as the initial segment of lex is not optimal for m =

(
n−1
k−1

)
+ 1.

Example 2.6. Let m =
(
n−1
k

)
+ 1. The initial segment of colex is

F1 =

Ç
[n− 1]

k

å
∪ {{1, 2, . . . , k − 1, n}},

so the vertex {1, 2, . . . , k − 1, n} has degree
(
n−k
k

)
= ∆(K(n, k)) in K(n, k)[F1], i.e., the

maximum possible value! We can easily improve on this: if we pick each vertex of K(n, k)
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independently with probability m
/(

n
k

)
≈ 1 − k/n, then similarly to in Example 2.1, we have

positive probability of getting a family F2 satisfying both |F2| ⩾ |F1| and

∆(F2) =

(
1− k/n+O

(Ç
n− k

k

å−1/2+ε
))Ç

n− k

k

å
< ∆(F1).

This example also shows that for the maximum degree problem there is no counterpart of
Lemma 2.3 in [DGS16] which says if F minimizes the edge number among families of equal
size, then the same holds for

(
[n]
k

)
\F . Indeed the complement of F1 is a subset of the star Dn, so

it has maximum degree 0 and therefore (trivially) minimizes the maximum degree over all sets
of the same size, whereas, by the above argument, F1 does not minimize the maximum degree
over all sets of the same size.

3. Background on singular values and the Expander Mixing Lemma

Our proof of Theorem 1.1 relies on the Expander Mixing Lemma, which allows us to estimate
the number of edges between two large, disjoint subsets of the vertex-set of a regular graph
whose nontrivial eigenvalues are small in absolute value.

In this section, we outline some standard results we need from the spectral theory of biregular
bipartite graphs, and more specifically from the spectral theory of (bipartite) Kneser graphs.

3.1. Singular values of biregular bipartite graphs

Definition 3.1 (Singular values of a linear map / bipartite graph). Let V1 and V2 be finite-
dimensional inner product spaces, and let A : V2 → V1 be a linear map (also viewed as a
matrix). Then a singular value decomposition of A is an expression of A as a linear combina-
tion of rank-one linear maps

A =
r∑

i=1

σiuiv
T
i ,

where {ui}dimV1
i=1 is an orthonormal basis of V1, {vi}dimV2

i=1 is an orthonormal basis of V2, r =
min{dimV1, dimV2}, and σ1 ⩾ σ2 ⩾ · · · ⩾ σr ⩾ 0 are non-negative real numbers. The σi’s
are called the singular values of A and are independent of the choice of orthonormal bases;
moreover, the transpose AT (or dual linear map) has the same singular values as A.

Let G be a bipartite graph with bipartition U ⊔ V . The singular values of G are the singular
values of its bipartite adjacency matrix A, viewed as an linear operator A : RV → RU defined
by (A(x))u =

∑
v∼u xv ∀u ∈ U . (Note that here, the spaces RU and RV are equipped with

the standard inner product induced by the counting measure, making the bases {δu : u ∈ U}
and {δv :v∈V } orthonormal. For example, the all-ones vector 1U =

∑
u∈Uδu has norm

√
|U |.)

The following is well-known; we provide a proof for completeness.
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Lemma 3.2 (Highest singular value of a biregular bipartite graph). Let G be a bipartite graph
with at least one edge and with bipartition U ⊔ V , such that every vertex in U has degree dU
and every vertex in V has degree dV . Let A : RV → RU denote the bipartite adjacency matrix
of G. Then A has largest singular value σ1 =

√
dV dU with v1 = 1V /

√
|V | and u1 = 1U/

√
|U |

being corresponding singular vectors.

Proof. The singular values of A are precisely the (non-negative) square roots of eigenvalues
ofATA (which is symmetric and positive semidefinite). Observe that (ATA)v1v2 counts the num-
ber of length-2 paths from v1 to v2 in G, so in the matrix ATA, all |V | column sums and all |V |
row sums are equal to dV dU , so ATA is dV dU times a doubly stochastic matrix, and so its largest
eigenvalue is dV dU . Hence σ1 =

√
dV dU . It is easy to check that A

Ä
1V /

√
|V |
ä
=
√

|U |1U ,
verifying the last claim.

Notation 3.3. For vectors in x,y ∈ RU (or, interchangeably, functions f, g : U → R), we write
their inner product as

⟨x,y⟩ :=
∑
u∈U

xuyu

(
or ⟨f, g⟩ =

∑
u∈U

f(u)g(u)

)
,

and the induced Euclidean norm is defined by ∥x∥22 := ⟨x,x⟩, ∥f∥22 = ⟨f, f⟩. Note that this
normalisation differs from that in some texts, but it will be convenient for us, as we will work
with U ’s of different sizes.

For functions f : U → R, we also write

E(f) =
1

|U |
∑
u∈U

f(u),

so for example E(f 2) = ∥f∥22 / |U | .

Theorem 3.4 (Expander Mixing Lemma, biregular case; see e.g.[WSV12] Lemma 8, or [Hae79]
Theorem 3.1.1.). Let G be a bipartite graph with at least one edge and with bipar-
tition U ⊔ V , such that every vertex in U has degree dU and every vertex in V has degree dV .
Let A : R[V ] → R[U ] denote the adjacency matrix of G. Let σ1 be its largest singular value
and σ2 its second-largest (counting with multiplicity). Then for any subsets X ⊆ U and Y ⊆ V ,
with densities α = |X| / |U | and β = |Y | / |V |, we have∣∣∣∣e(X, Y )

e(U, V )
− αβ

∣∣∣∣ ⩽ σ2

σ1

»
α(1− α)β(1− β) ⩽

σ2

σ1

√
αβ.

Proof. Let 1X : U → R and 1Y : V → R be the indicator functions of X and Y respectively;
then e(X, Y ) = ⟨1X , A1Y ⟩. Let

A =
r∑

i=1

σiuiv
T
i

be a singular value decomposition where {ui}|U |
i=1 is an orthonormal basis for RU , {vi}|V |

i=1 an
orthonormal basis for RV , r = min(|V | , |U |), and singular values σ1 ⩾ σ2 ⩾ · · · ⩾ σr ⩾ 0,
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and u1 = 1U/
√
|U |, v1 = 1V /

√
|V | are singular vectors corresponding to σ1. In these

bases, 1X and 1Y decompose as:

1X = α1U + x2u2 + · · ·+ x|U |u|U |,

1Y = β1V + y2v2 + · · ·+ y|V |v|V |,

where xi = ⟨1X ,ui⟩, and yi = ⟨1Y ,vi⟩. Now,

A1Y = βdU1U + σ2y2u2 + · · ·+ σryrur,

so

⟨1X , A1Y ⟩ = αβdU |U |+
r∑

i=2

σixiyi,

so

|e(X, Y )− αβe(U, V )| =
∣∣∣∣∣

r∑
i=2

σixiyi

∣∣∣∣∣
⩽

r∑
i=2

σi |xi| |yi|

⩽ σ2

(
r∑

i=2

x2
i

)1/2( r∑
i=2

y2i

)1/2

⩽ σ2

Ä
∥1X∥22 − ∥α1U∥22

ä1/2 Ä
∥1Y ∥22 − ∥β1V ∥22

ä1/2
= σ2

(
α |U | − α2 |U |

)1/2 (
β |V | − β2 |V |

)1/2
= σ2

»
α(1− α)β(1− β) |U | |V |. (3.1)

Recall that e(U, V ) = |U | dU = |V | dV , so e(U, V ) =
√
|U | |V | dUdV = σ1

√
|U | |V |. So

dividing (3.1) by e(U, V ), we obtain∣∣∣∣e(X, Y )

e(U, V )
− αβ

∣∣∣∣ ⩽ σ2

σ1

»
α(1− α)β(1− β),

as required.

Multiplying both sides of the inequality in the above theorem by e(U, V )/ |X|, which is equal
to dU |U | / |X| = dU/α, we obtain the following.
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Corollary 3.5. Let G be a non-empty bipartite graph with vertex partition U ⊔ V , biregular
of degrees dU and dV , and let X ⊆ U and Y ⊆ V be subsets of densities α = |X| / |U |
and β = |Y | / |V |, and α > 0, then∣∣∣∣e(X, Y )

|X|
− dUβ

∣∣∣∣ ⩽ σ2

σ1

dU

 
β(1− β)

α
⩽

σ2

σ1

dU

…
β

α
,

where σ1 ⩾ σ2 are the two largest singular values ofG. In particular, the maximum degree∆(G)
is at least the average degree in X , so

∆(G) ⩾
e(X, Y )

|X|
⩾ dU

(
β − σ2

σ1

 
β(1− β)

α

)
⩾ dU

Ç
β − σ2

σ1

…
β

α

å
.

3.2. Spectra of Kneser graphs and bipartite Kneser graphs

In [Lov79] Theorem 13, Lovász gave the eigenspace decomposition of K(n, k), which also
allows us to prove the bound on the singular values for the bipartite Kneser graph between

(
[n]
k

)
and

(
[n]
l

)
for k ̸= l. We describe the decomposition (and prove some simple properties thereof),

in the next lemma.

Lemma 3.6 (Decomposition implicit in [Lov79], Theorem 13). For each 0 ⩽ i ⩽ j ⩽ n/2,
define ιij : R(

[n]
i ) → R(

[n]
j ) by

(ιij(x))J = E(xI |I ⊆ J),

i.e. the average of the xI’s as I ranges over the
(
j
i

)
size-i subsets of J . For each i ⩾ 1, define the

subspace Pi ⩽ R(
[n]
i ) to be the image of the map ι(i−1)i, i.e.,

Pi := ι(i−1)i

(
R(

[n]
i−1)
)
,

and define P0 := {0}. Let Qi := P⊥
i be the orthogonal complement of Pi in R(

[n]
i ), and for

each i ⩽ k ⩽ n/2 write
Q

(k)
i := ιik(Qi).

Then for each i ⩽ k ⩽ n/2, we have

dimQ
(k)
i = dimQi =

Ç
n

i

å
−
Ç

n

i− 1

å
, (3.2)

and the vector space R(
[n]
k ) decomposes into a direct sum:

R(
[n]
k ) =

k⊕
i=0

Q
(k)
i . (3.3)

Furthermore, Q(k)
0 consists of the constant vectors in R(

[n]
k ), and

Q
(k)
1 = Span{1j∈I − k/n : j ∈ [n]}. (3.4)
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Proof. Firstly, as noted by Lovász [Lov79] and first proven by Gottlieb [Got66], for
each 0 ⩽ i ⩽ j ⩽ n/2 the map ιij : R(

[n]
i ) ↪→ R(

[n]
j ) is an injection, and moreover these

injections form a directed system, meaning that ιik = ιjk ◦ ιij for all 0 ⩽ i ⩽ j ⩽ k ⩽ n/2)
(this follows from the tower rule for conditional expectation).

Since ι(i−1)i is an injection, we have dim(Pi) =
(

n
i−1

)
for all i, using the convention

that
(

n
−1

)
= 0. Therefore, we have dim(Qi) =

(
n
i

)
−
(

n
i−1

)
for all i. Since ιik is an injection, we

have dim(Q
(k)
i ) = dim(Qi) =

(
n
i

)
−
(

n
i−1

)
for all i, proving (3.2).

To prove (3.3), we use induction on k. The k = 0 case is obvious. Let k ⩾ 1, and assume
that

R(
[n]
k−1) =

k−1⊕
i=0

Q
(k−1)
i .

Then

R(
[n]
k ) = Pk ⊕Qk since Qk is the orthogonal complement of Pk

= ι(k−1)k

(
R(

[n]
k−1)
)
⊕Qk

= ι(k−1)k

(
k−1⊕
i=0

Q
(k−1)
i

)
⊕Qk by the induction hypothesis

=
k−1⊕
i=0

ι(k−1)k

Ä
Q

(k−1)
i

ä
⊕Qk since ι(k−1)k is injective

=
k⊕

i=0

Q
(k)
i .

This proves (3.3).
Since P0 = {0}, we have Q0 = R(

[n]
0 ), and therefore Q

(k)
0 consists of the constant vectors

in R(
[n]
k ), as claimed. Moreover, P1 consists of the constant vectors in R(

[n]
1 ),

so Q1 = {x ∈ R(
[n]
1 ) :

∑n
i=1 x{i} = 0}, so the vectors {x(j) : j ∈ [n]} defined

by (x(j)){i} = k(1{i=j} − 1/n) span Q1, and ι1k(x(j)) = y(j), where (y(j))I = 1j∈I − k/n

for all I ∈
(
[n]
k

)
, so (3.4) holds.

We will see shortly that (3.3) is an orthogonal decomposition. But next, we observe that the
bipartite Kneser adjacency matrix acts nicely on the decomposition (3.3).

Lemma 3.7 (Bipartite Kneser adjacency matrix under the decomposition (3.3), modifi-
cation of [Lov79] proof of Theorem 13). Let k ⩽ l ⩽ n/2, and U =

(
[n]
k

)
and V =

(
[n]
l

)
.

Let A : R(
[n]
k ) → R(

[n]
l ) be the bipartite adjacency matrix for the bipartite Kneser graph be-

tween U and V . Then A(Q
(k)
i ) ⊂ Q

(l)
i for all i ⩽ k, and in fact for any y ∈ Q

(k)
i , we have

Ay = (−1)i
Ç
n− l − i

k − i

å
ιkl(y) ∈ Q

(l)
i . (3.5)
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Proof. Let x be an arbitrary element of Qi and consider the action of the bipartite Kneser adja-
cency matrix A sending y := ιik(x) ∈ Q

(k)
i ⊆ R(

[n]
k ) to R(

[n]
l ). Fix L ∈

(
[n]
l

)
. Then

(Aιik(x))L =
∑

K: |K|=k,
K∩L=∅

(ιik(x))K

=
∑

K: |K|=k,
K∩L=∅

E|I|=i(xI |I ⊆ K)

=
∑

I: |I|=i,
I∩L=∅

∑
K: |K|=k,
I⊆K⊆[n]\L

1(
k
i

)xI

=

(
n−l−i
k−i

)(
k
i

) ∑
I: |I|=i,
|I∩L|=0

xI . (3.6)

For each j ⩽ i, let
Sj :=

∑
I: |I|=i,
|I∩L|=j

xI ;

we need to find S0. For i ⩾ 1, the subspace Pi ⩽ R(
[n]
i ) is spanned by the indicators for the

event I ⊃ T for each T of size |T | = i− 1. Denote these indicator vectors by vT (so (vT )I is 1
if T ⊂ I , and is 0 otherwise). Since x ∈ Qi is orthogonal to Pi = Span

¶
vT : T ∈

(
[n]
i−1

)©
, we

know that for every T ∈
(
[n]
i−1

)
, we have∑

I: |I|=i,
I⊇T

xI = ⟨x,vT ⟩ = 0.

If we sum this equality over all T ’s with |T | = i − 1 and |T ∩ L| = j, then only those I’s
with |I ∩ L| = j or j+1 can appear, and moreover each of those I’s with |I ∩ L| = j appears i−j
times (when T equals I minus one element in I \L), and each of those I’s with |I ∩ L| = j+1
appears j + 1 times (when T equals I minus one element in I ∩ L), so

(i− j)Sj + (j + 1)Sj+1 = 0.

Now we can solve iteratively, obtaining

S0 =

Å
−1

i

ã
S1 =

Å
−1

i

ãÅ
− 2

i− 1

ã
S2 = · · ·

=

Å
−1

i

ãÅ
− 2

i− 1

ã
· · ·
Å
− i

1

ã
Si = (−1)i

∑
I: |I|=i,
I⊆L

xI .
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Substituting this back into (3.6), we obtain

(Aιik(x))L = (−1)i
Ç
n− l − i

k − i

å
E|I|=i(xI |I ⊆ L) = (−1)i

Ç
n− l − i

k − i

å
(ιil(x))L.

This holds for all L ∈
(
[n]
l

)
, so we may conclude that

Ay = Aιik(x)

= (−1)i
Ç
n− l − i

k − i

å
ιil(x)

= (−1)i
Ç
n− l − i

k − i

å
ιkl(ιik(x))

= (−1)i
Ç
n− l − i

k − i

å
ιkl(y) ∈ ιkl

Ä
Q

(k)
i

ä
= Q

(l)
i , (3.7)

as required.

Lemma 3.8 (Eigenvalues of the Kneser graph, [Lov79] Theorem 13). Let k ⩽ n/2. Let A be
the Kneser graph adjacency matrix on R(

[n]
k ). Then (3.3) is the eigenspace decomposition for A,

with Q
(k)
i corresponding to the eigenvalue

(−1)i
Ç
n− k − i

k − i

å
In particular, (3.3) is an orthogonal decomposition.

Proof. In the special case k = l, the map ιkl is the identity, and the previous lemma shows that
the Q

(k)
i ’s are indeed eigenspaces of A : R(

[n]
k ) → R(

[n]
k ) corresponding to distinct eigenval-

ues, with Q
(k)
i corresponding to the eigenvalue (−1)i

(
n−k−i
k−i

)
. Therefore, the Q(k)

i ’s are pairwise
orthogonal, being eigenspaces of a self-adjoint linear operator corresponding to distinct eigen-
values.

We can now obtain our required bound on the singular values of the bipartite Kneser graph.

Lemma 3.9 (Singular values of the bipartite Kneser graph). Let k < l ⩽ n/2, and U =
(
[n]
k

)
and V =

(
[n]
l

)
. Let A : R(

[n]
k ) → R(

[n]
l ) be the bipartite adjacency matrix for the bipartite

Kneser graph between U and V . Then (3.3) yields a singular value decomposition
for A : R(

[n]
k ) → R(

[n]
l ), and if we let σ1 ⩾ σ2 be the two largest singular values, then

σ2

σ1

⩽
k

n− l
⩽

l

n− k
.
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Proof. By Lemma 3.7, we may factorize A : R(
[n]
k ) → R(

[n]
l ) as A = ιkl ◦D, where the ‘scaling

part’ D : R(
[n]
k ) → R(

n
k) acts on Q

(k)
i as multiplication by (−1)i

(
n−l−i
k−i

)
(for each i), and ιkl

is 1/
(
l
k

)
times the bipartite adjacency matrix of another biregular graph between

(
[n]
k

)
and

(
[n]
l

)
.

Among the eigenvalues of D,
(
n−l
k

)
has largest absolute value, and its eigenspace is

Q
(k)
0 = ι0k

(
R(

[n]
0 )
)
= Span{1},

which is one-dimensional. By Lemma 3.2, the all-ones vector 1 also attains the largest singular
value of ιkl, i.e.,

∥ιkl(w)∥2
∥w∥2

⩽
∥ιkl(1)∥2
∥1∥2

∀w ∈ R(
[n]
k ) \ {0},

so 1 is also the highest singular vector for A = ιkl ◦ D. All vectors v ∈ R(
[n]
k ) \ {0} that are

orthogonal to 1 satisfy

∥Dv∥2 ⩽
Ç
n− l − 1

k − 1

å
∥v∥2 ⩽

k

n− l

∥D1∥2
∥1∥2

∥v∥2 ,

and therefore satisfy

∥Av∥2
∥v∥2

=
∥ιkl(Dv)∥2

∥v∥2

=
∥ιkl(Dv)∥2
∥Dv∥2

· ∥Dv∥2
∥v∥2

⩽
∥ιkl(1)∥2
∥1∥2

·
Ç
n− l − 1

k − 1

å
,

and comparing this to

∥A1∥2
∥1∥2

=
∥ιkl(D1)∥2

∥1∥2

=
∥ιkl(1)∥2
∥1∥2

·
Ç
n− l

k

å
yields

σ2

σ1

⩽

(
n−l−1
k−1

)(
n−l
k

) =
k

n− l
⩽

l

n− k
,

as required.

Recall the notation F I
J (Notation 2.3), which will now be very useful. In the Kneser graph,

we will need a lower bound on the number of edges between C = F ∩ Dn and B = F \ Dn.
For any c ∈ C and b ∈ B, we have n ∈ c but n /∈ b, so c ∩ b = ∅ ⇐⇒ (c \ {n}) ∩ b = ∅,
so we can remove n from each c ∈ C to obtain C ′ = F{n}

{n} ⊆
(
[n−1]
k−1

)
, and count the edges

between C ′ ⊆
(
[n−1]
k−1

)
and B = F∅

{n} ⊆
(
[n−1]

k

)
in the bipartite Kneser graph. In this setting, we

can combine Corollary 3.5 with Lemma 3.9 to obtain the following.
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Corollary 3.10 (Expander Mixing Lemma applied to a star and its complement). Let n ⩾ 2k+1

and F ⊆
(
[n]
k

)
. Suppose F{n}

{n} ⊆
(
[n−1]
k−1

)
has size γ

(
n−1
k−1

)
, and F∅

{n} ⊆
(
[n−1]

k

)
has size β

(
n−1
k

)
.

Then

e(F{n}
{n} ,F

∅
{n})∣∣∣F{n}

{n}

∣∣∣ ⩾

Ç
n− k

k

åÇ
β − k

n− k

 
β

γ

å
if γ > 0,

and
e(F{n}

{n} ,F
∅
{n})∣∣∣F∅

{n}

∣∣∣ ⩾

Ç
n− k − 1

k − 1

å(
γ − k

n− k

 
γ(1− γ)

β

)
if β > 0.

(Note that we will only consider F of size at most the union of s + 1 stars, so β is always
small and we do not need the extra factor of 1− β in the first inequality of Corollary 3.5.)

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Throughout, we set

p :=
k

n
⩽

1

10000s5
.

4.1. F is dense in some star

The following notation is used only in the proof of Lemma 4.4.

Notation 4.1 (Symmetric sums). If a = (a1, . . . , an) and r = (r1, . . . , rl), then we write

ar :=
∑
i1

∑
i2 ̸=i1

∑
i3 /∈{i1,i2}

· · ·
∑

il /∈{i1,...,il−1}

ar1i1 · · · a
rl
il
.

For example, Ä
a(1)
ä2

=

(
n∑

i=1

ai

)2

=
∑
i

a2i +
∑
i

∑
j ̸=i

aiaj = a(2) + a(1,1).

Note that reordering the entries in r has no effect on the sum ar.

Notation 4.2 (Falling factorials). For integers 1 ⩽ k ⩽ n we shall write nk for the kth falling
factorial n(n− 1) · · · (n− k + 1) and moreover for p = k

n
we write

pi :=
ki

ni
=

k(k − 1) · · · (k − i+ 1)

n(n− 1) · · · (n− i+ 1)
.

Note that pi depends on k and n before reducing the fraction to lowest terms, and when k ⩽ n,

pi ⩽ pi.
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Lemma 4.3. If
∑n

i=1 ai = 0, then

a(r1,r2,...,rl−1,1) = −a(r1+1,r2,...,rl−1) − a(r1,r2+1,...,rl−1) − · · · − a(r1,r2,...,rl−1+1).

Proof. Simply substitute ∑
il /∈{i1,...,il−1}

ail = −ai1 − ai2 − · · · − ail−1

into the innermost summand in the definition of ar.

In the following lemma, and its proof, we identify
(
[n]
k

)
with the set{

x ∈ {0, 1}n :
n∑

i=1

xi = k

}
,

and we write E(f) for the expectation of f = f(x) when x is a uniform random element of this
set. So, for example, E(x1) = k/n = p and E(x1x2) = (k/n) · (k − 1)/(n− 1) = p2.

Lemma 4.4 (Large ∥f1∥2 implies dense in some star). For any n ⩾ 2k + 1 and any F ⊆
(
[n]
k

)
with F ̸=∅, let f=1F be the indicator function of F , and α=E(f)= ∥f∥22

¿(
[n]
k

)
be the density

of F . Let f1 denote the orthgonal projection of f onto Q
(k)
1 = Span{x 7→ xi − k/n : i ∈ [n]}

(see (3.4)), and let η = ∥f1∥22 / ∥f∥
2
2. For each i ∈ [n], let γi denote the density of F in the

star Di, i.e.

γi :=
|F ∩ Di|(

n−1
k−1

) ,

and let γmax be the largest of the γi’s. Then

η3 ⩽
Å
n− 1

n− k

ã3
γ2
max + 3

Å
n− 1

n− k

ã2
ηα.

Proof. First we evaluate the coefficients of f1 =
∑n

i=1 aixi. Note that since x1+x2+· · ·+xn = k
for all x, the constant part f0 = α can also be written as

∑n
i=1

α
k
xi, so it suffices to determine

the coefficients of f0 + f1 =
∑n

i=1 bixi =
∑n

i=1(ai + α/k)xi.
Since f0 + f1 is the orthogonal projection of f onto the linear span of the

functions x 7→ xi, the vector b is the unique stationary point to the (convex) quadratic
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form H = E ((
∑n

i=1 bixi − f)2). The partial derivative of H is given by

∂H

∂bi
= E

(
2xi

(
n∑

i=1

bixi − f

))
= 2biE(x2

i ) +
∑
j ̸=i

2bjE(xixj)− 2E(xif)

= 2bip+
∑
j ̸=i

2bjp
2 − 2pγi

= 2p

(
bi

Å
1− k − 1

n− 1

ã
+

k − 1

n− 1

n∑
j=1

bj − γi

)

= 2p

Å
bi
n− k

n− 1
+

k − 1

n− 1
B − γi

ã
,

where B :=
∑n

j=1 bj . Hence, the stationary point satisfies

bi =
n− 1

n− k
(γi + C),

where C does not depend upon i.
Since

∑
i γi = nα (the n stars cover each k-set equally many times, viz., k times, so the

average of the densities of F in all n stars is just its density in the whole of
(
[n]
k

)
), and we know

the ai’s differ only from the bi’s by an additive constant and satisfy
∑

i ai = 0, we may conclude
that

ai =
n− 1

n− k
(γi − α) ∀i ∈ [n].

We therefore have

ηα = E(f 2
1 ) = E

Ñ(∑
i

aixi

)2
é

= a(2)E(x2
1) + a(1,1)E(x1x2)

= a(2)p+ a(1,1)p2

= a(2)(p− p2) by Lemma 4.3.

By Lemma 4.3, we have
a(3,1) = −a(4),

a(2,1,1) = −a(3,1) − a(2,2) = a(4) − a(2,2),

and
a(1,1,1,1) = −3a(2,1,1) = −3a(4) + 3a(2,2).
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Hence,

E(f 4
1 ) = E

Ñ(∑
i

aixi

)4
é

= a(4)E(x4
1) + 4a(3,1)E(x3

1x2) + 3a(2,2)E(x2
1x

2
2) + 6a(2,1,1)E(x2

1x2x3)+

a(1,1,1,1)E(x1x2x3x4)

= a(4)p+ 4a(3,1)p2 + 3a(2,2)p2 + 6a(2,1,1)p3 + a(1,1,1,1)p4

= a(4)p− 4a(4)p2 + 3a(2,2)p2 + 6(a(4) − a(2,2))p3 + (−3a(4) + 3a(2,2))p4

=
(
p− 4p2 + 6p3 − 3p4

)
a(4) +

(
3p2 − 6p3 + 3p4

)
a(2,2)

=
(
p− 4p2 + 6p3 − 3p4

)
a(4) +

(
3p2 − 6p3 + 3p4

) (Ä
a(2)
ä2

− a(4)
)

=
(
p− 7p2 + 12p3 − 6p4

)
a(4) +

(
3p2 − 6p3 + 3p4

) Ä
a(2)
ä2

⩽ pa(4) + 3p2
Ä
a(2)
ä2

using p2 ⩾ 2p3

⩽ p
(
max

i
a2i

)
· a(2) + 3p2

Ä
a(2)
ä2

. (4.1)

We have seen that
a(2) =

E(f 2
1 )

p− p2
=

1

1− k−1
n−1

· ηα
p

=
n− 1

n− k
· ηα
p
.

Also,

α =
1

n

n∑
i=1

γi,

so γmax ⩾ α > 0, and we have

max
i

a2i =

Å
n− 1

n− k

ã2
max

i
(γi − α)2 ⩽

Å
n− 1

n− k

ã2
γ2
max,

so (4.1) gives

E(f 4
1 ) ⩽

Å
n− 1

n− k

ã3
γ2
max · ηα+ 3

Å
n− 1

n− k

ã2
η2α2.

Since f1 is an orthogonal projection of f , we have

η4α4 = E(f 2
1 )

4 = E(ff1)4

⩽ E(f 4/3)3E(f 4
1 ) by Hölder’s inequality

⩽ α3 ·
ÇÅ

n− 1

n− k

ã3
γ2
max · ηα+ 3

Å
n− 1

n− k

ã2
η2α2

å
,

so
η3 ⩽

Å
n− 1

n− k

ã3
γ2
max + 3

Å
n− 1

n− k

ã2
ηα,

completing the proof of the lemma.
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Lemma 4.5 (Small ∥f1∥2 implies large average degree). For any n ⩾ 2k + 1 and F ⊆
(
[n]
k

)
with F ̸= ∅, let f = 1F , let α = E(f) = ∥f∥22

¿(
[n]
k

)
and let η = ∥f1∥22 / ∥f∥

2
2. Then

∆(F) ⩾
2e(F)

|F|
⩾

Ç
α− k

n− k

Ç
η +

Å
k

n− k

ã2ååÇn− k

k

å
.

Less formally, this lemma says that if η is small, then the average degree of the subgraph
induced by F is not much less than α

(
n−k
k

)
(which is the approximate average degree for a

random family).

Proof of Lemma 4.5. In Lemma 3.8, we have seen that the eigenvalues of the Kneser
graph K(n, k) are, in descending order of absolute value, as follows:Ç

n− k

k

å
, −
Ç
n− k − 1

k − 1

å
,

Ç
n− k − 2

k − 2

å
, . . . , (−1)k

Ç
n− 2k

0

å
.

The function f can be decomposed as a sum of (orthogonal) eigenvectors f0 + f1 + · · · + fk
corresponding to these eigenvalues, and note that f0 = E(f)1 = α1, so

2e(F) = ⟨f, Af⟩ =
Ç
n− k

k

åÆ
α1+ f1 + f2 + · · ·+ fk,

α1− k

n− k
f1 +

k(k − 1)

(n− k)(n− k − 1)
f2

− k(k − 1)(k − 2)

(n− k)(n− k − 1)(n− k − 2)
f3 + · · ·+ (−1)k

1(
n−k
k

)fk∏
⩾

Ç
n− k

k

åÇ
α2

Ç
n

k

å
− k

n− k
αη

Ç
n

k

å
+

k(k − 1)

(n− k)(n− k − 1)
· 0

− k(k − 1)(k − 2)

(n− k)(n− k − 1)(n− k − 2)

Ä
∥f3∥22 + ∥f4∥22 + · · ·+ ∥fk∥22

äã
⩾

Ç
n− k

k

åÇ
α2

Ç
n

k

å
− k

n− k
αη

Ç
n

k

å
−
Å

k

n− k

ã3
· ∥f∥22

å
=

Ç
n− k

k

å
α

Ç
n

k

åÇ
α− k

n− k

Ç
η +

Å
k

n− k

ã2
åå

.

Dividing by |F| = α
(
n
k

)
, we obtain the result.

Lemma 4.5 and Lemma 4.4 together will say if ∆(F) is smaller than constructions in Sec-
tion 2, then γmax is at least some constant. Now we shall use Corollary 3.10 to show that,
once γmax is at least some constant, then indeed it cannot be much less than λ/(s+ 1).
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Lemma 4.6. If n ⩾ 12sk and F ⊆
(
[n]
k

)
has size parameter λ ∈ [s, s + 1], is not a union of

s stars, and minimizes the maximum degree subject to these conditions, then for any i ∈ [n],
if γi =

∣∣∣F{i}
{i}

∣∣∣/(n−1
k−1

)
⩾ c0, then

γi ⩾ λ/(s+ 1)−
»

2(s+ 1)p/c0 − (s2 + 4s)p.

Proof. Let B = F∅
{i}, β = |B|

/(
n−1
k

)
, C = F{i}

{i} , and γ = |C|
¿(

n−1
k−1

)
. By (1.2), we have

λp− s2p2 ⩽ β(1− p) + γp ⩽ λp,

so
(λ− γ)p− s2p2

1− p
⩽ β ⩽

(λ− γ)p

1− p
< 2(s+ 1)p.

Suppose that c0 ⩽ γ = λ/(s+ 1)− ε. We are in exactly the setting of Corollary 3.10 (bipartite
Kneser between

(
[n−1]

k

)
and

(
[n−1]
k−1

)
), so

∆(F) ⩾
e(B, C)
|C|

⩾

Ç
n− k

k

åÇ
β − p

1− p

 
β

γ

å
⩾

Ç
n− k

k

å(
(λ− γ)p− s2p2

1− p
− p

1− p

 
2(s+ 1)p

c0

)

=

Ç
n− k

k

å
p

1− p

(
(λ− γ)− s2p−

 
2(s+ 1)p

c0

)

=

Ç
n− k − 1

k − 1

å(Å
sλ

s+ 1
+ ε

ã
− s2p−

 
2(s+ 1)p

c0

)
.

Comparing this with the upper bound (2.5), we may conclude that

ε ⩽ (s2 + 4s)p+
»
2(s+ 1)p/c0.

4.2. F is dense in s+ 1 stars

The aim of this subsection is to show that if ∆(F) is small, then Lemma 4.6 can be used several
times to give s+1 ‘popular’ elements in the familyF . Before proving the main result Lemma 4.9,
we need some straightforward bounds on binomial coefficients.

Lemma 4.7. Let k ⩽ m ⩽ n, thenÇ
m

k

å¬Ç
n

k

å
⩾ 1− k(n−m)

n− k + 1
.
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Proof. We have Ç
m

k

å¬Ç
n

k

å
=

m(m− 1) · · · (m− k + 1)

n(n− 1) · · · (n− k + 1)

⩾
Å
m− k + 1

n− k + 1

ãk
=

Å
1− n−m

n− k + 1

ãk
⩾ 1− k(n−m)

n− k + 1
,

as required.

Lemma 4.8 (Conversion between
(
[n]
k

)
and

(
[n]\[s]

k

)
). Suppose that s⩽k⩽n/2 and thatF⊆

(
[n]
k

)
.

Writing

γ :=
∣∣∣F{1}

{1}

∣∣∣¬Çn− 1

k − 1

å
and γ̃ :=

∣∣∣F{1}
[s+1]

∣∣∣¬Çn− s− 1

k − 1

å
,

we have
γ̃ + sp > γ ⩾ γ̃(1− 2sp).

Proof. Since
∣∣∣F{1}

{1}

∣∣∣ ⩾ ∣∣∣F{1}
[s+1]

∣∣∣, we have γ
(
n−1
k−1

)
⩾ γ̃

(
n−s−1
k−1

)
, so

γ ⩾ γ̃

Ç
n− s− 1

k − 1

å¬Ç
n− 1

k − 1

å
⩾ γ̃

Å
1− (k − 1)s

n− k + 1

ã
by Lemma 4.7

⩾ γ̃(1− 2sp).

On the other hand, ∣∣∣F{1}
[s+1]

∣∣∣ ⩾ ∣∣∣F{1}
{1}

∣∣∣− s+1∑
i=2

∣∣∣F{1,i}
{1,i}

∣∣∣ ,
so

γ̃

Ç
n− s− 1

k − 1

å
⩾ γ

Ç
n− 1

k − 1

å
− s

Ç
n− 2

k − 2

å
=

Å
γ − s(k − 1)

n− 1

ãÇ
n− 1

k − 1

å
> (γ − sp)

Ç
n− 1

k − 1

å
,

so γ̃ > γ−sp (this follows from the above if γ−sp ⩾ 0, and is trivially true if γ−sp < 0).
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Lemma 4.9. If n ⩾ 100s2k and F ⊆
(
[n]
k

)
has size parameter λ ∈ [s, s+ 1], is not a union of s

stars, and minimizes the maximum degree subject to these conditions, then there are at least s+1
elements x ∈ [n] such that∣∣∣F{x}

{x}

∣∣∣ ⩾ Çn− 1

k − 1

åÅ
λ

s+ 1
−
»

40(s+ 1)p− (s2 + 4s)p

ã
.

Proof. Pick s arbitrary elements from [n], say 1, 2, . . . , s; we shall show there exists some other
element x ∈ [n] \ [s] such that

∣∣∣F{x}
{x}

∣∣∣ satisfies the above bound. (Note that no assumptions here

are made on the sizes of F{1}
{1} ,F

{2}
{2} , . . . ,F

{s}
{s} .) This in turn implies that at least s+ 1 elements

of [n] satisfy the inequality.
We consider the partition of F into 2s parts according to how each A ∈ F intersects [s].

Each of these 2s parts corresponds to some F I
[s] (for I ⊆ [s]).

Formally, letB := F∅
[s], β := |B| /

(
n−s
k

)
, and for I ̸= ∅ let CI := F I

[s], and δI := |CI | /
(
n−s
k−|I|

)
.

Equation (1.1) now gives

β

Ç
n− s

k

å
+
∑
I⊆[s]
I ̸=∅

δI

Ç
n− s

k − |I|

å
= (λ− s)

Ç
n− s− 1

k − 1

å
+

s∑
j=1

Ç
s

j

åÇ
n− s

k − j

å
.

Using δI ⩽ 1 for all I with |I| ⩾ 2, we have

β

Ç
n− s

k

å
+

s∑
i=1

δi

Ç
n− s

k − 1

å
⩾ (λ− s)

Ç
n− s− 1

k − 1

å
+

Ç
s

1

åÇ
n− s

k − 1

å
where δi = δ{i}. Dividing by

(
n−s
k−1

)
, we obtain

β
n− s− k + 1

k
+

s∑
i=1

δi ⩾ (λ− s)
n− s− k + 1

n− s
+ s ⩾ s since λ ⩾ s, (4.2)

and

β ⩾
k

n− s− k + 1

s∑
i=1

(1− δi).

In particular, we have

β ⩾
k

n− s− k + 1
(1− δi) for each i. (4.3)

By assumption, F is not a union of s stars, so β > 0. Note that B ⊆
(
[n]\[s]

k

)
and C{i} ⊆

(
[n]\[s]
k−1

)
,



28 Hou Tin Chau et al.

so we are in the setting of Corollary 3.10 (except that n− 1 is replaced by n− s), so

e(B, C{i})
|B|

⩾

Ç
n− s− k

k − 1

å(
δi −

k

n− s− k + 1

 
δi(1− δi)

β

)

⩾

Ç
n− s− k

k − 1

å(
δi −
 

k

n− s− k + 1

)
using (4.3) and δi ⩽ 1.

⩾

Ç
n− s− k

k − 1

åÄ
δi −

√
2p
ä
. (4.4)

(The last line uses p ⩽ 1/(4s), so that n ⩾ 4sk ⩾ 2(s+ k) and k
n−s−k

⩽ 2k
n
= 2p.)

Applying Lemma 4.5 to B ⊆
(
[n]\[s]

k

)
, we have

2e(B)
|B|

⩾

Ç
n− s− k

k

åÇ
β − k

n− s− k

Ç
ζ +

Å
k

n− s− k

ã2åå
=

Ç
n− s− k

k − 1

å
n− s− 2k + 1

k

Ç
β − k

n− s− k

Ç
ζ +

Å
k

n− s− k

ã2
åå

⩾

Ç
n− s− k

k − 1

åÅ
n− s− 2k + 1

k
β − n− s− 2k + 1

n− s− k

(
ζ + (2p)2

)ã
⩾

Ç
n− s− k

k − 1

åÅ
n− s− 2k + 1

k
β − ζ − 4p2

ã
, (4.5)

where ζ = ∥g1∥22 / ∥g∥
2
2 for g = 1B :

(
[n]\[s]

k

)
→ {0, 1}, and g1 denotes the ‘linear component’

of g, i.e. the orthogonal projection of g onto Q
(k)
1 = Span{x 7→ xi − k/(n− s) : i ∈ [n] \ [s]}.

By (4.5)+
∑s

i=1(4.4) (the number of edges can be simply added together, because the C{i}’s
correspond to disjoint subfamilies of F), we have

∆(F) ⩾

∑s
i=1 e(B, C{i}) + 2e(B)

|B|

⩾

Ç
n− s− k

k − 1

å( s∑
i=1

δi − s
√
2p+

n− s− 2k + 1

k
β − ζ − 4p2

)

⩾

Ç
n− s− k

k − 1

å(
n− s− 2k + 1

n− s− k + 1

(
n− s− k + 1

k
β +

s∑
i=1

δi

)
− s
√
2p− ζ − 4p2

)

⩾

Ç
n− s− k

k − 1

åÅ
n− s− 2k + 1

n− s− k + 1

Å
(λ− s)

n− s− k + 1

n− s
+ s

ã
− s
√
2p− ζ − 4p2

ã
,

(4.6)

where we have used (4.2) for the last inequality. We will now to combine this lower bound (4.6)
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with the upper bound (2.5). By Lemma 4.7, we haveÇ
n− s− k

k − 1

å
⩾

Ç
n− k − 1

k − 1

åÅ
1− (k − 1)(s− 1)

n− 2k + 1

ã
⩾

Ç
n− k − 1

k − 1

å
(1− 2sp). (4.7)

Combining (4.6) and (2.5), and dividing through by
(
n−k−1
k−1

)
, we obtain

sλ

s+ 1
+ 4sp

⩾ (1− 2sp)

Å
n− s− 2k + 1

n− s− k + 1

Å
(λ− s)

n− s− k + 1

n− s
+ s

ã
− s
√
2p− ζ − 4p2

ã
⩾ (1− 2sp)

Ä
(1− 2p) ((λ− s)(1− 2p) + s)− s

√
2p− ζ − 4p2

ä
⩾ (1− (2s+ 4)p)(λ− s) + (1− (2s+ 2)p)s− s

√
2p− ζ − 4p2.

This inequality can be rewritten asÅ
1− 1

s+ 1

ã
(λ− s) +

Å
1− 1

s+ 1

ã
s+ 4sp

⩾ (1− (2s+ 4)p)(λ− s) + (1− (2s+ 2)p)s− s
√

2p− ζ − 4p2,

so

ζ ⩾
Å

1

s+ 1
− (2s+ 4)p

ã
(λ− s) +

Å
1

s+ 1
− (2s+ 2)p

ã
s− s

√
2p− 4p2 − 4sp.

When p ⩽ 1/(100s2), the above inequality implies that

ζ ⩾ 0 +
1

1.5(s+ 1)
· s− s

√
2p− 4p2 − 4sp >

s

2(s+ 1)
⩾

1

4
.

Now apply Lemma 4.4 to the family B ⊆
(
[n]\[s]

k

)
. This lemma says there is some x ∈ [n] \ [s]

such that δ′ :=
∣∣∣B{x}

{x}

∣∣∣/(n−s−1
k−1

)
satisfies

1

64
⩽ ζ3 ⩽

Å
n− s− 1

n− s− k

ã3
δ′2 + 3

Å
n− s− 1

n− s− k

ã2
ζβ.

Using β ⩽ 2sp, k/(n − s) ⩽ 2p, and p ⩽ 1/(100s2), we may conclude that the density
of B{x}

{x} = F{x}
[s]∪{x} in

(
[n]\([s]∪{x})

k−1

)
is δ′ ⩾ 1/10, so by Lemma 4.8, F{x}

{x} has den-
sity δ ⩾ δ′(1− 2sp) > 1/20. By Lemma 4.6, we have∣∣∣F{x}

{x}

∣∣∣ ⩾ Çn− 1

k − 1

åÅ
λ

s+ 1
−
»

40(s+ 1)p− (s2 + 4s)p

ã
,

as required.

Remark 4.10. If n is sufficiently large, then it is not possible to have s + 2 such elements be-
cause λ(s+ 2)/(s+ 1) > λ and by inclusion–exclusion F would be too large.
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4.3. Calculating the maximum degree

Now we have a structural description that most of F can be covered by s+ 1 stars. This allows
us to calculate the maximum degree.

Theorem 4.11. If n ⩾ 10000s2k, F ⊆
(
[n]
k

)
has size parameter λ ∈ [s, s + 1], and F is not a

union of s stars, then

∆(F) ⩾

Ç
n− k − 1

k − 1

åÅ
sλ

s+ 1
− 11

Ä√
s3p+ s3p

äã
.

Proof. Let F be a family that minimizes the maximum degree, subject to the conditions of the
theorem. We may assume that 1, 2, . . . , s + 1 are the s + 1 elements given by Lemma 4.9. So
for i = 1, . . . , s+ 1, we have

γi =
∣∣∣F{i}

{i}

∣∣∣¬Çn− 1

k − 1

å
⩾

λ

s+ 1
−
»

40(s+ 1)p− (s2 + 4s)p.

Now let B = F{s+1}
[s+1] and C{i} = F{i}

[s+1]. (Note that this contrasts with the proof of Lemma 4.9,
where we defined C{i} to be F{i}

[s] .) Lemma 4.8 gives

γ̃i :=
∣∣∣F{i}

[s+1]

∣∣∣¬Çn− s− 1

k − 1

å
> γi − sp.

So, when viewed as a subset of
(
[n]\[s]
k−1

)
, the density of C{i} is

δi :=
∣∣∣F{i}

[s+1]

∣∣∣¬Çn− s

k − 1

å
=

n− s− k + 1

n− s
γ̃i > (1− 2p)(γi − sp) > γi − (s+ 2)p. (4.8)

Also, we have

|B| > (γs+1 − sp)

Ç
n− s− 1

k − 1

å
= (γs+1 − sp)

k

n− s

Ç
n− s

k

å
.

Using λ
s+1

⩾ s
s+1

⩾ 1
2
, the density of B in

(
[n]\[s]

k

)
is

β > (γs+1 − sp)
k

n− s
⩾

1

3
· k

n− s
⩾

k

n− k − s+ 1
· 1
4
. (4.9)

(Technically, B ⊆
(
[n]\[s+1]

k−1

)
, but the latter injects into

(
[n]\[s]

k

)
by adding the element s+ 1 back

into every set.) Now we apply (4.4) to B ⊆
(
[n]\[s+1]

k−1

)
↪→
(
[n]\[s]

k

)
(noting that B has density β in
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the latter set) and C{i} ⊆
(
[n]\[s]
k−1

)
(noting that C{i} has density δi in the latter set), obtaining:

∆(F)

⩾

∑s
i=1 e(B, C{i})

|B|

⩾

Ç
n− s− k

k − 1

å s∑
i=1

(
δi −

k

n− s− k + 1

 
δi(1− δi)

β

)

⩾

Ç
n− s− k

k − 1

å s∑
i=1

(
δi −
 

k

n− s− k + 1

)
using δi(1− δi) ⩽ 1/4 and (4.9)

⩾

Ç
n− s− k

k − 1

å s∑
i=1

Ä
(γi − (s+ 2)p)−

√
2p
ä

by (4.8)

⩾

Ç
n− k − 1

k − 1

å
(1− 2sp)

Å
sλ

s+ 1
− s
»
40(s+ 1)p− (s3 + 4s2)p− s(s+ 2)p− s

√
2p

ã
by (4.7)

⩾

Ç
n− k − 1

k − 1

åÅ
sλ

s+ 1
− s
»
40(s+ 1)p− (s3 + 9s2)p− s

√
2p

ã
since the last factor on previous line is ⩽ s, and if x ⩽ s then (1− 2sp)x ⩽ x− 2s2p

=

Ç
n− k − 1

k − 1

åÅ
sλ

s+ 1
− 11

Ä√
s3p+ s3p

äã
.

Remark 4.12. If we want to see the “jump” behaviour as in Figure 1.1 (with a jump of ε, say)
from Theorem 4.11, then we need

s2/(s+ 1)− 11
Ä√

s3p+ s3p
ä
> s− 1 + ε > s− 1.

(The left hand side corresponds to the lower bound from Theorem 4.11 when λ > s, and
the right-hand side corresponds to the case where F is a union of s stars.) Hence, the er-
ror O

Ä√
s3p+ s3p

ä
should not exceed c/(s + 1) for some small constant c < 1, so p ⩽ c′s−5

(for some small absolute constant c′ > 0) is necessary.
Remark 4.13. Note that theO(s3p) part of the error term in the statement of the previous theorem
resulted from our use of inclusion-exclusion, whereas the dominatingO

Ä√
s3p
ä

part of the error
term came from our use of the Expander Mixing Lemma.

We obtain the following.

Corollary 4.14. If n ⩾ 10000s5k, F ⊂
(
[n]
k

)
has size parameter λ = s, and F minimizes the

maximum degree over all induced subgraphs of K(n, k) of the same order, then F is a union of
s stars.
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Proof. A union of s stars has maximum degree:Ç
n− k

k

å
−
Ç
n− k − s+ 1

k

å
= (s− 1)

Ç
n− k − s+ 1

k − 1

å
+

s−1∑
i=2

Ç
s− 1

i

åÇ
n− k − s+ 1

k − i

å
. (4.10)

If F is not a union of s stars, then Theorem 4.11 says it has maximum degree at leastÇ
n− k − 1

k − 1

åÅ
s2

s+ 1
− 11

Ä√
s3p+ s3p

äã
>

Ç
n− k − 1

k − 1

å
(s− 1)

= (s− 1)
s−1∑
i=1

Ç
s− 2

i− 1

åÇ
n− k − s+ 1

k − i

å
,

which is at least as large as (4.10), since

(s− 1)

Ç
s− 2

i− 1

å
⩾

Ç
s− 1

i

å
∀i ⩾ 1.

5. Relation to the Erdős matching conjecture

Recall that a matching is a family of pairwise disjoint sets. Recall the following well-known
problem, posed originally by Erdős.

Question 5.1 (Erdős matching problem, [Erd65]). Consider all F ⊆
(
[n]
k

)
of size |F| = m.

What is the minimum value of ω(K(n, k)[F ])? That is, for each triple (n, k,m) ∈ N3, what is
the minimum possible size of the largest matching in F , over all m-element subsets of

(
[n]
k

)
?

For s ∈ N, there are two natural constructions of large families F with ω(K(n, k)[F ]) ⩽ s.
One family A is a union of s stars:

A = D1 ∪ D2 ∪ · · · ∪ Ds =

®
A ∈
Ç
[n]

k

å
: A ∩ [s] ̸= ∅

´
.

Among any s + 1 sets in A, two must be from the same one of the s stars, so s + 1 sets in A
cannot be pairwise disjoint. This family has

|A| =
Ç
n

k

å
−
Ç
n− s

k

å
.
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Another construction is to take B =
(
[k(s+1)−1]

k

)
, i.e. the family of all k-element subsets

of [k(s+ 1)− 1]; this has

|B| =
Ç
k(s+ 1)− 1

k

å
,

and clearly it is not possible for (s+1) pairwise disjoint subsets of size k to fit inside [k(s+1)−1].
The celebrated Erdős Matching Conjecture says that, if n ⩾ k(s + 1), and F ⊆

(
[n]
k

)
has

size |F| > max{|A| , |B|}, then

ω(K(n, k)[F ]) ⩾ s+ 1.

This conjecture remains open, though several partial results are known. Erdős himself proved the
conjecture for all n sufficiently large, i.e. for n ⩾ n0(k, s). The bound on n0(k, s) was lowered
in several works: Bollobás, Daykin and Erdős [BDE76] showed that n0(k, s) ⩽ 2sk3; Huang,
Loh and Sudakov [HLS12] showed that n0(k, s) ⩽ 3sk2, and Frankl and Füredi (unpublished)
showed that n0(k, s) ⩽ cks2. A breakthrough was achieved by Frankl [Fra13] in 2013; Frankl
showed that n0(k, s) ⩽ (2s + 1)k − s + 1. This was then further sharpened by Frankl and
Kupavskii [FK22]; they proved the following.

Theorem 5.2 (Frankl–Kupavskii, Theorem 1 in [FK22]). There exists s0 ∈ N such that for
all s ∈ N with s ⩾ s0, all n ∈ N with n ⩾ 5

3
sk − 2

3
s, and all F ⊆

(
[n]
k

)
,

|F| > |A| =⇒ ω(K(n, k)[F ]) ⩾ s+ 1.

A good lower bound for the λ > 2 case in the maximum degree problem implies the corre-
sponding instance of the Erdős Matching Conjecture with s = 2. Similarly, the result for larger λ
implies the Erdős Matching Conjecture for a corresponding range of parameters, as we proceed
to outline in the following.

Corollary 5.3. If the triple (n, k, s) ∈ N3 satisfies n ⩾ 10000s5k, then the Erdős Matching
Conjecture holds for this triple — that is, for any F ⊆

(
[n]
k

)
with size greater than the union of s

stars, F has a matching of size s+ 1, i.e. K(n, k)[F ] contains a clique of size s+ 1.

Proof. Let (n, k, s)∈N3 be such that n⩾10000s5k, and letF⊂
(
[n]
k

)
such that |F|>

(
n
k

)
−
(
n−s
k

)
.

We need to show F has a matching of size s + 1. We already know that the maximum degree
of K(n, k)[F ] is large, by Theorem 4.11. We shall pick out a vertex of maximum degree and
focus on its neighbourhood, and then repeat this process. If we can do this s times, and the
remaining neighbourhood (adjacent to all s chosen vertices) is still non-empty, then we have an
(s+ 1)-clique in K(n, k)[F ], and we are done.

Since F has size parameter λ > s, Theorem 4.11 yields

∆(K(n, k)[F ]) ⩾

Ç
n− k − 1

k − 1

åÅ
s2

s+ 1
− 11

Ä√
s3p+ s3p

äã
,

where, as before, p = k/n.
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Let v1 ∈ F be a vertex of degree ∆(K(n, k)[F ]). Then the neighbourhood Γ(v1) is
a subfamily of

(
[n]\v1

k

)
, the latter isomorphic to

(
[n−k]

k

)
. Moreover the subset Γ(v1) has

size ∆(K(n, k)[F ]), which is greater than (s− 1)
(
n−k−1
k−1

)
, since

s2

s+ 1
− 11

(»
s3 k

n
+ s3 k

n

)
> s− 1,

as is easy to check. Hence, Γ(v1) has size greater than the union of s− 1 stars in
(
[n−k]

k

)
.

It is clear that if (n, k, s) satisfies the condition n ⩾ 10000s5k, then (n − k, k, s − 1)
also satisfies the same condition, so we can apply the same argument to the
family F1 := Γ(v1) ⊆

(
[n]\v1

k

) ∼=
(
[n−k]

k

)
. Similarly, we can repeat this until we

obtain Fs ⊆
(
[n]\(v1∪v2∪···∪vs)

k

) ∼= ([n−sk]
k

)
, which has size at leastÇ

n− k − 1

k − 1

åÅ
1

2
− 11

(»
k
n
+ k

n

)ã
> 0,

so we are done.

This is of course far worse than the result in [FK22], which only requires n ⩾ 5sk/3−2s/3;
we include it only to illustrate the connection between the two problems.
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[Erd65] P. Erdős. A problem on independent r-tuples. Annales Universitatis Scientiarum
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