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Abstract

The additive genetic gamma frailty model has been proposed for genetic linkage analysis

for complex diseases to account for variable age of onset and possible covariates effects. To

avoid ascertainment biases in parameter estimates, retrospective likelihood ratio tests are

often used, which may result in loss of efficiency due to conditioning. This paper considers

when the sibships are ascertained by having at least two affected sibs with the disease be-

fore a given age and provides two approaches for estimating the parameters in the additive

gamma frailty model. One approach is based on the likelihood function conditioning on

the ascertainment event, the other is based on maximizing a full ascertainment-adjusted

likelihood. Explicit forms for these likelihood functions are derived. Simulation studies

indicate that when the baseline hazard function can be correctly pre-specified, both ap-

proaches give accurate estimates of the model parameters. However, when the baseline

hazard function has to be estimated simultaneously, only the ascertainment-adjusted like-

lihood method gives an unbiased estimate of the parameters. These results imply that the

ascertainment-adjusted likelihood ratio test in the context of the additive genetic gamma

frailty may be used for genetic linkage analysis.
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1 Introduction

Correction for ascertainment has been a long-standing problem in statistical genetics (Can-

nings and Thompson, 1977). For genetic linkage analysis, families are often ascertained by

collecting only families with multiple affected individuals, leading to non-random sampling

of families from the study population. There has been new interest in studying this prob-

lem in the context of including the latent trait heterogeneity. For example, Burton et

al. (2000) noted that classical approaches to ascertainment fail to acknowledge the un-

seen population structure and are inconsistent. Epstein et al. (2002) and Glidden and

Liang (2002) further examined the scenario considered in Burton et al. (2000) by consid-

ering different formulations of the likelihood function, with both concluding that proper

construction of the ascertainment-adjusted likelihood can yield population-based param-

eter estimates. However, both papers considered the ascertainment problem for binary

affected/unaffected traits within the framework of the logistic variance-components mod-

els. Pfeiffer et al. (2001) and Neuhaus et al. (2002) studied inference for covariates that

accounts for ascertainment and random genetic effects in family studies for binary traits.

In order to account for variable age of onset and potential environmental risk factors in

genetic linkage analysis, Li (1999), Li and Zhong (2002) and Li (2002) developed the ad-

ditive genetic gamma frailty model, which utilizes inheritance vectors (Lander and Green,

1987). Within this modelling framework, Li and Zhong (2002) (abbreviated as LZ in the

rest of the paper) used a retrospective likelihood formulation for estimating the parameters

and for performing linkage analysis. While this approach is free of potential ascertain-

ment biases, it may result in loss of efficiency due to conditioning. If the ascertainment

scheme is known and the ascertainment probability is taken into account, one would ex-

pect an increase in efficiency in parameter estimates. Li (2002) proposed a semiparametric

prospective likelihood approach for genetic linkage analysis using the EM algorithm, but

did not consider the issue of ascertainment correction.

In order to rigorously account for ascertainment in model estimation, one must clearly

define the sampling scheme of the families (Thompson, 1993; Thompson and Cannings,

1979). In this paper, we consider the ascertainment scheme of collecting only sibships with

at least two affected sibs with age of disease onset before a fixed age t0. This sampling

scheme is commonly used in genetic linkage studies of diseases with variable age of onset.

Under this ascertainment scheme, we use the additive genetic gamma frailty model of LZ

to consider the ascertainment-adjusted (AA) maximum likelihood estimation for censored

age of onset traits. At present, this is the first attempt to study the ascertainment issue for
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linkage analysis relative to survival data and random effects models. We demonstrate by

simulation studies that the proposed methods can be applied to obtain unbiased estimates

of both the population baseline hazard function and the parameters involved in the random

frailty effects.

The rest of the paper is organized as follows. We first briefly review the additive genetic

gamma frailty model defined in LZ. We then present two different likelihood formulations

for including ascertainment when estimating the parameters in the model. One formulation

is based on a conditional likelihood, the other based on an ascertainment-adjusted likelihood

to explicitly account for ascertainment probabilities. We then present simulation results

on evaluating these methods. Finally, we give a brief discussion on the implications for

genetic linkage analysis.

2 The Additive Genetic Gamma Frailty Model and

the Joint Survival and Density Functions

2.1 The additive genetic Gamma frailty model

Consider a sibship with K sibs. Let Tj be the random variable of age at disease onset for

the jth sib. Let (tj, δj) be the observed data, where tj is the observed age at onset if δj = 1,

and age at censoring if δj = 0. We assume that the hazard function of developing disease

for the jth individual at age tj is modelled by the proportional hazards model with random

effect Zj,

λj(tj|Zj) = λ0(t) exp(X
′
jβ)Zj, for j = 1, 2, · · · , K, (1)

where λ0(t) is the unspecified baseline hazard function, Xj is a vector of observed covariates

for the jth sib, and β is a vector of regression parameters associated with the covariates.

Zj is the unobservable random genetic frailty. LZ constructed the genetic frailties based

on the inheritance vector at the putative disease locus d, denoted by Vd. In the following

discussion, the paternal chromosomes containing the locus of interest are labelled by (1,2),

the maternal chromosomes by (3,4). The inheritance vector (Kruglyak et al., 1996; Lander

and Green, 1987) of a sibship at the d locus is defined as

Vd = (v1, v2, · · · , v2j−1, v2j, · · · , v2K−1, v2K),

where v2j−1 = 1 or 2, v2j = 3 or 4 for j = 1, 2, · · · , K. The inheritance vector indicates

which parts of the genome at locus d are transmitted to the K children from the father
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and the mother. LZ defined the frailties for a sibship of size K as

Z = HU, (2)

where

Z = {Z1, Z2, · · · , ZK}′,

H =




a11 a12 a13 a14 1
...

aK1 aK2 aK3 aK4 1




,

U = {Ud1, Ud2, Ud3, Ud4, Up}′ .

Here H is the inheritance matrix with elements




aj1 = 1, aj2 = 0 if v2j−1 = 1

aj1 = 0, aj2 = 1 if v2j−1 = 2

aj3 = 1, aj4 = 0 if v2j = 3

aj3 = 0, aj4 = 1 if v2j = 4

for j = 1, · · · , K. The random effects Ud1 and Ud2 are used to represent genetic frailties from

the father’s two chromosomes, and similarly, Ud3 and Ud4 are used to represent the genetic

frailties inherited from the mother. Here Up is employed to account for possible genetic

contributions to the disease due to loci unlinked to locus d. We further assume that the

Ud1, Ud2, Ud3 and Ud4 are independently and identically distributed and follow Γ(νd/2, η),

and Up follows Γ(νp, η) across different sibships, where parameter η is the inverse scale

parameter and νd and νp are the shape parameters. Then Zj is distributed as Γ(νd +

νp, η), for j = 1, 2, · · · , K. To make the baseline hazard function λ0(t) identifiable, let

νd + νp = η, which sets E(Zj) = 1, j = 1, 2, · · · , K, and prevents arbitrary scaling in

model (1). Under this restriction, there are two free parameters, νd and νp. We may also

consider reparameterization in terms of the two frailty means, µd = 2E(Udj) = νd/η, and

µp = E(Up) = νp/η and the variance σ2 = V ar(Zj) = 1/η. Note that µd + µp = 1, so there

are only two free parameters, µd and σ2. We use this parameterization in our simulation

studies. We denote Θ = (λ0(t), β, µd, σ
2) as the parameters in model (1), where µd and σ2

are the parameters related to the genetic frailties.
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2.2 The joint survival and density functions

Assuming conditional independence and based on model (1), we observe that conditioning

on the frailty vector Z and the inheritance vector, the joint survival function for a sibship

can be written as

S(t1, t2, · · · , tK |Z1, Z2, · · · , ZK , Vd) = exp[−Λ1(t1)Z1 − Λ2(t2)Z2 − · · · − Λn(tK)ZK ],

where

Λj(tj) = Λ0(tj) exp(X
′
jβ), j = 1, 2, · · · , K,

Λ0(tj) =
∫ tj
0 λ0(u)du, j = 1, 2, · · · , K.

It is simple to verify that the marginal joint survival function by integrating out Z1, Z2, · · · , ZK

is given by

S(t1, · · · , tK |Vd) = Pr(t1, δ1 = 0, · · · , tK , δK = 0|Vd)

=

{
4∏

i=1

ηνd/2

[
∑K

j=1 Λj(tj)aji + η]νd/2

}
×

{
ηνp

[
∑K

j=1 Λj(tj) + η]νp

}
,

(see LZ for derivation). In practice, observations are often censored and therefore we need

not only the joint survival function but also combined densities and survivor functions. For

a sibship with a affected sibs (indexed by j = 1, · · · , a) and K − a unaffecteds, the joint

survival and density function is

Pr(t1, δ1 = 1, · · · , ta, δa = 1, ta+1, δa+1 = 0, · · · , tK , δK = 0|Vd) = (−1)a ∂aS(t1, · · · , tK |Vd)

∂t1, · · · , ∂ta
.

For sibship with all sibs affected, the joint density function is

Pr(t1, δ1 = 1, · · · , tK , δK = 1|Vd) = (−1)K ∂KS(t1, · · · , tK |Vd)

∂t1, · · · , ∂tK
.

The closed forms of these expressions and the detailed derivations can be referenced in LZ.

2.3 Retrospective likelihood, prospective likelihood and sampling scheme

Based on the joint density and survival functions presented in the previous section, LZ

showed that testing whether the putative disease locus d affects the disease risk can be

formulated as testing νd = 0. Since families collected for genetic linkage analysis are not

typically a random sample from the study population, estimation of the parameters in

model (1) based on the usual prospective likelihood function can result in potentially large
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biases and lead to incorrect conclusions of linkage. LZ proposed using a retrospective

likelihood ratio test (Whittemore, 1996) for testing this null hypothesis. This likelihood

function is defined as the probability of the observed marker data conditioning on the

sibship age of onset/age at censoring data. Although this retrospective likelihood ratio

test is valid for any ascertainment scheme, it requires specification of the baseline hazard

function and may suffer loss of efficiency due to conditioning on the phenotypes of the

whole sibships.

When the sampling scheme for families is clearly defined and followed, it becomes possi-

ble to make statistical inference based on a prospective likelihood formulation. We consider

a particular population-based sampling scheme for collecting data for genetic linkage anal-

ysis. Under this sampling scheme, we sample sibships randomly from the population, until

we obtain n sibships with at least two sibs who were affected with the disease before age

t0. These n sibships are then genotyped and used for genetic linkage analysis. Parents of

these sibs can also be genotyped if their DNAs are available. However, phenotype infor-

mation is not necessary for the parents, as it is not used in the proposed linkage analysis.

Suppose that in order to obtain n such sibships, n0 families with at least two sibs but with

no sib being affected before t0 and n1 families with at least two sibs but with only one sib

being affected before t0 were contacted. This is a special case of the epidemiologic survey

sampling of families. It is important to note that in this sampling scheme, n0 and n1 are

random variables rather than parameters. In addition, by strictly following the sampling

scheme, one can also obtain the empirical estimates of the distribution of families with

different numbers of children in the study population. This distribution is used in the

AA likelihood formulation presented in a later section. We propose in the subsequent two

sections, two alternative approaches for estimating the parameters in model (1) based on

the sibship data collected by this sampling scheme.

3 A Conditional Likelihood Approach for Ascertain-

ment Correction

Under the ascertainment scheme where only the sibships with at least two sibs being affected

before age t0 are collected, we can assume the n sibships collected are a random sample from

such sibships. Further, let Ki be the number of the sibs in the ith sibship, for i = 1, 2, · · · , n.

Define AC = {At least two members of the family are affected before age t0}, then for a

given sibship with known inheritance vector Vd, the conditional (on the random effects)

7



probability of the ascertainment event is

Pr(AC|Z, Vd) = 1− exp


−

K∑

j=1

Λ0(t0) exp(β′Xj)Zj




−
K∑

i=1



exp


−∑

j 6=i

Λ0(t0) exp(β′Xj)Zj


− exp


−

K∑

j=1

Λ0(t0) exp(β′Xj)Zj






 .

For simplicity, this paper only considers the case when no covariates are included in the

model. We can then integrate out the vector of random effects Z and obtain

Pr(AC|Vd) = 1 + (K − 1)
4∏

l=1

[
η

∑K
j=1 Λ0(t0)ajl + η

] νd
2

×
[

η

KΛ0(t0) + η

]νp

−
K∑

i=1

4∏

l=1

[
η∑

j 6=i Λ0(t0)ajl + η

] νd
2

×
[

η

(K − 1)Λ0(t0) + η

]νp

.

Then for the ith sibship, for a given inheritance vector Vdi, the likelihood function, condi-

tioning on the ascertainment event AC, is

Li(Θ|Vdi) = I(AC)× Pr(t1, δ1 = 1, · · · , tai
, δai

= 1, tai+1, δai+1 = 0, · · · , tKi
, δKi

= 0|Vdi)

Pr(AC|Vdi)
,

where I(AC) is 1 if the values of (t1, δ1, · · · , tai
, δai

, tai+1, δai+1, · · · , tKi
, δKi

) meet the as-

certainment criterion AC and 0 otherwise. Taking into account the uncertainty of the

inheritance vector, the conditional likelihood for the ith sibship can be written as

Li(Θ) =
∑
vdi

Li(Θ|Vdi = vdi)Pr(vdi|Mi),

where Pr(Vdi = vdi|Mi) is the probability distribution of the inheritance vector at the

putative disease locus d given the marker data for the ith sibship. Such distribution can be

calculated using multipoint methods (e.g., those of Lander and Green, 1987; Kruglyak et

al., 1996) using all the marker information for the ith sibship, Mi., including the parental

genotypes if they are available.

If we assume that the baseline hazard function belongs to a parametric family, we can

obtain an estimate of the parameters in the baseline hazard and the parameter associated

with the frailties by maximizing the following conditional likelihood function:

Lcond(Θ) =
n∏

i=1

Li(Θ). (3)

8



4 An Ascertainment-Adjusted Maximum Likelihood

Approach

4.1 Ascertainment-adjusted likelihood functions

As defined in the previous section, conditional likelihood function (3) relies on families

meeting the ascertainment criteria. Such conditioning may result in loss of efficiency,

especially when many of the sibships collected have only two affected sibs before age t0.

Considering the sampling scheme outlined in the previous section, suppose n families with

at least two sibs who are affected with the disease before age t0 are collected for genetic

linkage analysis. Also presume that in order to obtain n such families, we contacted n0

families with at least two sibs but with no sib being affected before t0, and n1 families with

at least two sibs but with only one sib being affected before t0. The corresponding AA

likelihood function can be written as

Lasc(Θ) = P0(Θ)n0P1(Θ)n1

n∏

i=1

P (i)(Θ), (4)

where Pi(Θ) is the probability that a randomly selected sibship of size greater or equal to

2 has i affected member before age t0, for i = 0, 1, and

P (i)(Θ) =
∑

Vdi

Pr(t1, δ1 = 1, · · · , tai
, δai

= 1, tai+1, δai+1 = 0, · · · , tKi
, δKi

= 0|Vdi)Pr(Vdi|Mi),

(5)

which is the joint probability of the observed data for the ith sibship.

If n0 or n1 are unknown, but n0 + n1 is known, we can also define the ascertainment-

adjusted likelihood function as

Lasc1(Θ) = (P0(Θ) + P1(Θ))n0+n1

n∏

i=1

P (i)(Θ), (6)

which requires only the value of the random variable n0 + n1, that is, the total number of

families with zero or one affected sib that were contacted during the sampling process of

getting n sibships with at least two affected sibs with age of onset before t0.

4.2 Estimation of the probabilities

We now give some details on how to calculate the probability P0, and P1 in the likelihood

functions (4) and (6). For a given inheritance vector Vd, we introduce the following notation,

Q(K, j|Vd) = Pr(T1 ≤ t0, · · · , Tj ≤ t0, Tj+1 > t0, · · · , TK > t0|Vd),

Q(K, j) = Pr(T1 ≤ t0, · · · , Tj ≤ t0, Tj+1 > t0, · · · , TK > t0),
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for j = 0, 1, · · · , K, K = 1, 2, · · · . It is clear that

Q(K, j + 1|Vd) = Q(K − 1, j|Vd)−Q(K, j|Vd),

and similarly,

Q(K, j + 1) = Q(K − 1, j)−Q(K, j), (7)

for j = 0, 1, · · · , K − 1. Note that for a given inheritance vector Vd,

Q(K, 0|Vd) = Pr(T1 > t0, T2 > T0, · · · , TK > t0|Vd) = SK(t0, t0, · · · , t0|Vd)

=

{
4∏

i=1

ηνd/2

[
∑K

j=1 Λ0(t0)aji + η]νd/2

}
×

{
ηνp

[
∑K

j=1 Λ0(t0) + η]νp

}
.

In practice, the inheritance information for those families who were contacted during the

sampling process but did not meet the sampling criteria is not available. Considering all

possible inheritance patterns with uniform probabilities, we can obtain

Q(K, 0) = E[Q(K, 0|Vd)] = E

{
2∏

i=1

ηνd/2

[
∑K

j=1 Λ0(t0)aji + η]νd/2

}

× E

{
4∏

i=3

ηνd/2

[
∑K

j=1 Λ0(t0)aji + η]νd/2

}
×

{
ηνp

[
∑K

j=1 Λ0(t0) + η]νp

}

=

{
K∑

l=0

C l
K

1

2K

ηνd

[(Λ0(t0)l + η) · (Λ0(t0)(K − l) + η)]νd/2

}2

×
{

ηνp

[
∑K

j=1 Λ0(t0) + η]νp

}
.(8)

Using equations (7) and (8), we can calculate Q(K, 0), Q(K, 1), · · · , Q(K, K). For a given

sibship of size K, let P (j|K) be the probability that there are j members being affected

before age t0, then

P (j|K) =




K

j


 Q(K, j), j = 0, 1, · · · , K.

Let qK be the proportion of the families with K children among the families with at least

two children, for K ≥ 2. Averaging over K, we have

Pj(Θ) =
∑

K≥2

qKP (j|K). (9)

Here qK can be estimated empirically by surveying the study population during the sam-

pling process.

Finally, if we assume a particular parametric form for the baseline hazard function, we

can obtain the parameter estimates by maximizing the likelihood function Lasc or Lasc1 as

defined in equation (4)or (6) over the model parameter Θ. We call the resulted parameter

estimates the ascertainment-adjusted maximum likelihood estimates.
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5 Simulation Studies and Results

In order to investigate the proposed conditional and AA likelihood approaches for estimat-

ing the parameters in the additive gamma frailty model, we performed extensive simulation

studies for family samples ascertained by having at least two affected sibs before age t0.

We assumed a Weibull baseline hazard function,

λ0(t) = τ
tτ−1

bτ
(10)

in model (1), with parameters b = 80 and τ = 5. Age of onset data was simulated from

the additive genetic gamma frailty model (1), while the current age was simulated as age

at censoring from a uniform distribution U(60, 80). We considered four different models by

specifying four different combinations of model parameters, where the genetic variance is

σ2 = 3.33 for the first two models with µd = 1 and µd=0.67 respectively, and σ2 = 1.25 for

model 3 and model 4 with µd = 1 and µd=0.75 respectively. The corresponding (νd, η) is

(0.3,0.3), (0.2,0.3), (0.8,0.8) and (0.6,0.8) respectively for the four models. Therefore, the

degree of dependence is stronger for models 1 and 2 than for models 3 and 4. Figure 1 (a)

shows the baseline survival curve and the corresponding population disease-free survival

curves for parameters η = 0.3 and η = 0.8. Note that the model with η = 0.8 results in

higher population disease risk than the model with η = 0.3. We considered three different

sample sizes, n = 100, 200 and 500. For each model, we simulated families until the required

sample size of families (n) with at least two affected sibs before age 40 is obtained. We

then recorded n0 and n1, which are used in the estimation procedure. All simulations were

based on 50 replications. For all the simulations, fully informative markers were simulated

so that the inheritance vectors are known for all the sibships and sibships of size 4 were

sampled.

5.1 Evaluation of the conditional likelihood based parameter estimates

First, consider the case when the baseline hazard function is known. Table 1 shows the

mean of the parameter estimates and their empirical standard errors. The results show the

excellent performance of the maximum conditional likelihood estimators based on the ascer-

tained samples, indicating that when the baseline hazard function is known, the maximum

conditional likelihood gives unbiased estimates of the parameters related to the random ge-

netic effects. We also observed that the empirical standard error for the variance parameter

is larger than that for the mean parameter of all the models considered.
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We then examined how the conditional maximum likelihood estimation performs when

the baseline hazard function is incorrectly specified. We performed simulation studies by

assuming that model 1 or 2 are true models and a sample size of 500. We estimated the

parameters by using four different slightly misspecified baseline hazard functions (see Figure

1 (b) for the disease-free survival curves corresponding to the true and the misspecified

baseline hazard functions) in the conditional likelihood function Lcond. Table 2 presents

the mean and the standard error of the estimates of the frailty parameters, indicating biased

estimates even when the baseline is slightly misspecified.

When the baseline hazard function is unknown, we also considered the method of max-

imizing the conditional likelihood over both the parameters related to the baseline hazard

function; by assuming a Weibull baseline function (10) and the parameters related to the

random effects. We observed very large biases for the estimates of all the parameters (de-

tails not shown). In some cases, maximum values cannot be found. These results indicate

that when the baseline hazard function has to be estimated simultaneously with other pa-

rameters in the model, the maximum conditional likelihood estimation cannot be used to

obtain satisfactory estimates of the parameters.

5.2 Evaluation of the ascertainment-adjusted likelihood based parameter

estimates

To evaluate the proposed AA likelihood estimation, we first considered the scenario when

the baseline hazard function is known and not part of the estimated parameters. Table

3 shows the means of the parameter estimates and the empirical standard errors of the

estimates. The results demonstrate the excellent performance of the maximum likelihood

estimators from the ascertained samples. Compared to the results from the maximum

conditional likelihood estimation, we note that the empirical standard errors are smaller

based on the full likelihood, which is expected since the ascertainment-adjusted likelihood

explicitly models how data are generated. As a comparison, since the conditional likelihood

approach does not require the values of the random variables n0 and n1, it is practical to

implement. However, as indicated in previous section, slight misspecification of the baseline

hazard function can result in very biased estimates of the parameters.

We next considered the scenario when the baseline hazard function is unknown but

can be specified as a Weibull baseline hazard function as defined in (10) with parameters

b and τ . We maximize the likelihood function Lasc as in equation (4) over parameters in
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the baseline hazard function and the parameters involved in the genetic frailties. Table

3 gives the means of the parameter estimates and the estimated standard errors for all

the parameters in the model. This table clearly shows that when the values n0 and n1

are known, both parameters in the baseline hazard function and the parameters associated

with the frailties can be estimated successfully by maximizing the ascertainment-adjusted

full likelihood function Lasc. When the parameters in the baseline hazard function are

estimated simultaneously with the frailty parameters, the estimated standard errors for

the frailty parameters are higher than the estimates when the baseline hazard function is

correctly specified.

We also investigated the alternative AA likelihood formulation as defined in equation

(6). We noted that when n0 + n1 is observed, the estimates of the model parameters are

unbiased, but are slightly less efficient than those obtained by maximizing the likelihood of

equation (4) (details not shown). This is the expected outcome, as likelihood (4) utilizes

more population information than likelihood (6). When n0 + n1 is unobserved and is

incorrectly specified, estimate of the frailty variance could be biased, but estimates of the

other parameters seem to be relatively robust. These simulation results indicate that the

estimation procedure based on the likelihood formulation Lasc performs better than that

based on the likelihood formulation Lasc1.

5.3 Effects of misspecification of the population parameters on the

ascertainment-adjusted maximum likelihood estimators

The AA likelihood estimation procedure requires prediction of both n0 and n1 if they are

not observed, as well as the distribution of the families with different numbers of children

(the qk parameters in equation (9)). It is therefore important to study how robust the

proposed maximum AA likelihood estimators are to misspecification of n0 or n1 and the

distribution of families with varying numbers of children.

We first investigated the biases resulting from the misspecification of values of n0 and

n1. We considered cases when the values of n0 and n1 are under- or over- specified by

20%, 50% and 100% of their true observed values. Table 4 shows the parameter estimates

by maximizing Lasc, but with incorrectly specified n0 and n1 for two different models and

sample size of 500. Overall, we observed that the baseline parameters b and τ and the

mean of the genetic frailties can still be estimated efficiently, however, large biases on the

estimates of the frailty variance are observed. When n0 and n1 are over-predicted, the
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frailty variance tends to be underestimated, and when n0 and n1 are under-predicted, the

frailty variance tends to be overestimated. This follows with the expected result, as smaller

frailty variance corresponds to higher prevalence of disease in the population (see Figure 1

(a)).

We then investigated how misspecification of the distribution of the family sizes af-

fects the results. We considered model 2 and sample sizes of 100, 200 and 500 sibships.

We generated the sibship data by assuming the true distribution of the family sizes to

be (q2, q3, q4, q5) = (0.10, 0.50, 0.35, 0.05) where qj is the proportion of the families in the

population with j sibs for j = 2, 3, 4, 5. We considered four different misspecifications in

the estimation procedure (see Table 5 for the misspecified probabilities). The first two

misspecifications overestimate the numbers of families with 4 and 5 children and the next

two misspecifications overestimate the numbers of families with 2 and 3 children. Table 5

presents the simulation results. Clearly, all parameter estimates are very robust to misspec-

ification of the distribution of the family sizes. In addition, the means and the estimated

standard errors are all very similar across different specifications of the distribution of the

family sizes.

6 Discussion

We have proposed and evaluated two different methods for estimating the parameters in

the additive genetic gamma frailty model for sibships ascertained by having at least two

affected sibs with disease before a fixed age t0. This ascertainment scheme is often used in

genetic linkage analysis for complex diseases with variable age of onset. The simulations

have demonstrated that when the population disease rate data are known, the conditional

likelihood maximization procedure provides unbiased estimates of the parameters related

to genetic frailties. However, misspecification of the baseline hazard function can result

in significant biases in the parameter estimates by maximizing the conditional likelihood.

When the baseline hazard function is unknown but the distribution of different types of

families in the population can be roughly estimated, our simulation results indicate that

we can obtain unbiased estimates of the parameters in both the baseline hazard function

and in the genetic gamma frailty by maximizing the AA likelihood function.

The additive genetic gamma frailty model was developed for genetic linkage analysis by

testing the null hypothesis of νd=0. Although not studied in this paper, we would expect

that the likelihood ratio test based on the AA likelihood function should provide a valid
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test for νd = 0. We call the proposed likelihood ratio test the prospective ascertainment-

adjusted likelihood ratio (PAA-LR) test. We expect that the PAA-LR test has better

power then the retrospective likelihood ratio (R-LR) test proposed in LZ for the particular

ascertainment considered in this paper. First, similar to model-based parametric log-odds

(LOD) score tests for linkage, the PAA-LR test formulates the likelihood function as the

probability of observed phenotypes given the marker data through inheritance vectors. The

R-LR test in LZ is similar to the allele-sharing based methods as it examines the identity-by-

descent sharing among the sibs conditioning on their phenotypes. It is well-known that the

model-based LOD methods often have better power than the allele-sharing based methods

when the parametric genetic models are correctly specified. We would therefore expect the

PAA-LR test to possess greater power to detect linkage than the R-LR test. However, it is

critical to emphasize that the PAA-LR test is substantially different from parametric LOD

score methods since the PAA-LR test does not require specifying the penetrance functions

or mode of inheritance. Second, the R-LR test in LZ can be applied to sibship data

ascertained by any methods since the phenotypes of the whole sibship are conditioned on.

However, for sibships which are ascertained in a particular sampling scheme, the likelihood

ratio test constructed based on how the data are generated is expected to have better

power than the R-LR test. Future research should focus on comparison between the power

of these two tests to detect genetic linkage.

Although the R-LR test in LZ can be applied to sibship data collected by any as-

certainment scheme, it requires a correct specification of the baseline hazard function or

population disease rates, which may not be available. LZ demonstrated the robustness in

power and type 1 error rates of the R-LR test to modest misspecification of the baseline

hazard function. However, for some diseases, it is very difficult or impossible to come up

with an estimate of the baseline hazard function. The baseline hazard function can in

principle be estimated by maximizing the retrospective likelihood, however, such an esti-

mate can be very unreliable due to the ascertainment problem. To efficiently incorporate

age of onset information into genetic linkage analysis, knowledge of the baseline hazard

function is essential (Li and Hsu, 2000). In order to estimate the baseline hazard function,

certain sampling procedure must be followed in collecting family data. A random sample

of families from the study population would be ideal, but is rarely used for genetic linkage

studies. We considered in this paper one particular sampling scheme; sibships with at least

two affected sibs before a given age. We demonstrated by simulation studies that under

this sampling scheme, the population baseline hazard function does not need to be spec-
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ified but can be estimated simultaneously with the frailty parameters, assuming we can

obtain an approximate estimate of the distribution of the family sizes. When the sampling

scheme is strictly followed, the distribution is readily estimable based upon empirical data.

In addition, our simulation studies demonstrated that the parameter estimates based on

maximizing the AA likelihood are fairly robust to the misspecification of these population

parameters.

There are several issues which deserve further investigations. First, for all our sim-

ulations, we assume that the data are generated from the true model. It is important

to further determine how misspecification of the distribution of the frailty affects the re-

sults. Second, for both conditional and AA likelihood approaches, we assume a parametric

Weibull distribution for the baseline hazard function. Future directions will include studies

of how our simulation results are affected by misspecification of the baseline hazard func-

tion. Also providing future direction in this research area is development of semiparametric

methods leaving the baseline hazard function unspecified. Finally, we considered only the

cases when covariates are not included in the model. If the risk of developing a certain

disease depends on some environmental covariates, we need to have the distribution of

the covariates in the population and to integrate out the unobserved covariates for those

sibships with zero or one affected sib before age t0 in order to calculate the probabilities

P0 and P1 in the ascertainment-adjusted likelihood functions. When practically applying

this method, however, it is difficult to know the distribution of the covariates in the study

population.

In summary, we conclude that when the models are correctly specified and the ascer-

tainment procedure is followed, the ascertainment-adjusted maximum likelihood method

provides unbiased estimates of both the parameters in the baseline hazard function and the

frailty parameters. The likelihood ratio test based on such ascertainment-adjusted maxi-

mum likelihood can be potentially applied for genetic linkage analysis of complex diseases

with variable age of onset.
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Figure 1: Survival functions used to generate data for simulations. (a) disease-free survival
curves for the baseline and the population for η = 0.3 and 0.8 (σ2=3.33 and 1.25); (b)
population disease-free survival curves for different parameters in the Weibull baseline
model for η = 0.3 (σ2 = 3.33).
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Table 1: Means and estimated standard errors (ESE) for parameter estimates based on
maximizing the conditional likelihood Lcond over the frailty parameters for four different
models and three different sample sizes when the baseline hazard function is assumed to
be known. For each sample size, the first column is the mean (ESE) of the estimates of µd,
the second column is the mean (ESE) of the estimates of σ2.

Model Sample Size
Parameters 100 200 500
µd = 1,σ2 = 3.33 0.97(0.060),3.54(0.92) 0.98(0.034),3.32(0.61) 0.99(0.023),3.32 (0.33)
µd = 0.67,σ2 = 3.33 0.66(0.12),3.36(0.72) 0.66(0.099),3.35(0.57) 0.67(0.061),3.32(0.36)
µd = 1,σ2 = 1.25 0.95(0.14),1.29(0.45) 0.96(0.074),1.29(0.30) 0.96(0.077), 1.27(0.14)
µd = 0.75,σ2 = 1.25 0.79(0.19),1.26(0.36) 0.77(0.15),1.33(0.32) 0.76(0.087),1.32(0.21)
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Table 2: Mean and estimated standard error (number in parenthesis) of the parameter
estimates based on maximizing the conditional likelihood Lcond when the baseline hazard
function is misspecified for two different models and sample size of 500. The true values
for the Weibull baseline hazard function are b = 80 and τ = 5.

Model b or τ misspecified

Parameters b = 83, τ = 5 b = 77, τ = 5 b = 80, τ = 5.3 b = 80, τ = 4.7

Model 1

µd = 1 0.96(0.052) 1.00(0.0073) 0.97(0.041) 1.00(0.011)

σ2 = 3.33 3.12(0.28) 4.08(0.78) 3.02(0.56) 4.23(0.92)

Model 2

µd = 0.67 0.58(0.14) 0.74(0.089) 0.61(0.11) 0.73(0.080)

σ2 = 3.33 3.10(0.54) 4.03(0.74) 2.99(0.73) 4.15(0.86)
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Table 3: Means and estimated standard errors (numbers in parenthesis) for parameter
estimates based on maximizing the ascertainment-adjusted likelihood Lasc over the baseline
hazard function and the frailty parameters for four different models and three different
sample sizes. For each given sample size, the first column assumes that the baseline hazard
and n0 and n1 are observed, the second column assumes that n0 and n1 are observed but
the baseline hazard function is estimated from the data.

Model Sample Size
100 200 500

Model 1
b = 80 - 80.59(3.42) - 80.23(2.65) - 80.25(1.35)
τ = 5 - 4.97(0.29) - 4.99(0.23) - 4.99(0.11)
µd = 1 0.97(0.003) 0.97(0.053) 0.98(0.002) 0.98(0.041) 0.99(0.001) 0.98(0.025)
σ2 = 3.33 3.33(0.46) 3.32(0.45) 3.23(0.34) 3.22(0.33) 3.33(0.20) 3.23(0.21)

Model 2
b = 80 - 80.61(2.82) - 80.53(2.39) - 80.05(1.47)
τ = 5 - 4.97(0.25) - 4.97(0.21) - 4.99(0.13)
µd = 0.67 0.66(0.11) 0.66 (0.11) 0.66(0.097) 0.66(0.097) 0.67(0.059) 0.67(0.060)
σ2 = 3.33 3.38(0.44) 3.37(0.47) 3.44(0.40) 3.43(0.39) 3.34(0.22) 3.35(0.21)

Model 3
b = 80 - 80.74(3.25) - 80.93(2.47) - 80.35(1.56)
τ = 5 - 4.95(0.27) - 4.93(0.22) - 4.97(0.13)
µd = 1 0.96(0.12) 0.95(0.12) 0.97(0.068) 0.96(0.077) 0.96(0.064) 0.96(0.066)
σ2 = 1.25 1.32(0.29) 1.32(0.29) 1.25(0.17) 1.25(0.18) 1.23(0.12) 1.22(0.12)

Model 4
b = 80 - 80.69(4.04) - 80.00(2.18) - 80.07(1.41)
τ = 5 - 4.96(0.35) - 5.01(0.19) - 5.00(0.13)
µd = 0.75 0.76(0.18) 0.77(0.18) 0.76(0.14) 0.76(0.15) 0.76(0.0082) 0.76(0.085)
σ2 = 1.25 1.32(0.33) 1.33(0.34) 1.33(0.22) 1.33(0.23) 1.30(0.11) 1.30(0.12)
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Table 4: Means and estimated standard errors (numbers in parenthesis) for parameter es-
timates based maximizing the ascertainment-adjusted likelihood Lasc over both baseline
hazard function and the frailty parameters for two different models and sample sizes of 500
when the prediction of n0 and n1 are subject to errors, where the percentage of misspecifi-
cation is defined as [nj(predicted)− nj(true observed)]/nj(true observed), for j = 0, 1.

% of misspecification of n0 and n1

Parameters 20 % -20 % 100 % -50 %

Model 1

b = 80 80.11(1.27) 80.18 (1.31) 79.42(1.40) 79.36(1.43)

τ = 5 5.05 (0.12) 4.91(0.14) 5.23(0.26) 4.78(0.25)

µd = 1 0.99 (0.014) 0.97(0.039) 1.00(0.00) 0.94(0.070)

σ2 = 3.33 2.81(0.54) 3.93(0.61) 1.60(1.73) 5.26(1.94)

Model 2

b = 80 79.80(1.50) 80.18(1.48) 78.41(2.19) 79.55(1.48)

τ = 5 5.08(0.16) 4.90(0.16) 5.35(0.39) 4.74(0.29)

µd = 0.67 0.69(0.061) 0.64 0.066) 0.76(0.11) 0.59(0.10)

σ2 = 3.33 2.91(0.45) 3.85(0.56) 1.84(1.50) 4.89(1.58)
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Table 5: Means and estimated standard errors (numbers in parenthesis) for parameter
estimates based on maximizing the ascertainment-adjusted likelihood Lasc over both base-
line hazard function and frailty parameters for model 2 and sample sizes of 100, 200 and
500 when the distribution of the family sizes is misspecified. The true distribution of
families with 2,3,4 and 5 children is (q2, q3, q4, q5) = (0.10, 0.50, 0.35, 0.05). The misspec-
ified distributions are: miss-1=(0.05,0.35,0.50,0.10); miss-2=(0.05, 0.45,0.40,0.10); miss-
3=(0.13,0.55,0.30.0.02); miss-4=(0.13,0.65,0.20,0.02).

Sample size misspecified distribution

Parameters miss-1 miss-2 miss-3 miss-4

Sample size=100

b = 80 80.69(3.39) 80.35(3.30) 79.08(3.27) 78.70(3.35)

τ = 5 5.08(0.31) 5.07 0.30) 5.04(0.29) 5.03(0.29)

µd = 0.67 0.66(0.16) 0.66(0.16) 0.66(0.17) 0.67(0.17)

σ2 = 3.33 3.53 (0.56) 3.50 (0.55) 3.41(0.53) 3.39(0.53)

Sample size=200

b = 80 81.11(2.85) 80.76(2.71) 79.50(2.52) 79.11(2.61)

τ = 5 5.03(0.24) 5.03(0.23) 5.00(0.23) 4.99(0.23)

µd = 0.67 0.64(0.095) 0.64(0.096) 0.65(0.10) 0.65(0.10)

σ2 = 3.33 3.41 (0.34) 3.38(0.34) 3.29(0.33) 3.27(0.33)

Sample size=500

b = 80 80.65(1.62) 79.40(1.55) 81.00(1.81) 79.01(1.72)

τ = 5 5.03(0.13) 5.00(0.13) 5.04(0.14) 4.99(0.13)

µd = 0.67 0.66(0.052) 0.70(0.054) 0.66(0.052) 0.67(0.055)

σ2 = 3.33 3.37(0.27) 3.28(0.27) 3.40(0.27) 3.27(0.27)
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