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Abstract

In this paper we present an initial specification of a
general, robust, and efficient computational framework for
tracking cognitive processes — that is, inferring a
persons’ thoughts from their actions. Our framework,
which we call the mind-tracking architecture, centers on
two core processes: generating predicted cognitive and
action sequences using computational cognitive models,
and tracking observed actions through robust matching
with predicted actions. In essence, the mind-tracking
architecture “thinks along” with the person in predicting a
set of possible thoughts and actions, and then matches
these to the person’s observed actions to infer their most
likely thoughts. In the paper we provide a background of
related work (e.g., for intelligent tutoring systems),
outline the basic components of the architecture, and
demonstrate its usefulness for a sample real-world
application — real-time inference of driver intentions.

Introduction

Whenever people interact, they continually infer others’
thoughts and intentions from their actions — sometimes in
mundane ways (e.g., watching a friend wave "hello"),
sometimes in complex and subtle ways (e.g., watching a
poker player for signs of bluffing). This process of intent
inference is not only a core component of human
communication but also of human-computer interaction:
when human users and computer systems interact, the
systems must continually observe user actions and respond
to the inferred thoughts and intentions behind these actions.
For example, the current generation of intelligent tutoring
systems center around the notion that the system can infer
student intentions and knowledge in order to adapt and
personalize the learning experience (e.g., Anderson et al.,
1995; Anderson & Gluck, 2001; Frederiksen & White,
1990). As another example, adaptive help systems in
intelligent user interfaces monitor user behavior and provide
focused contextual help when prompted or even
spontaneously (e.g., Horvitz et al., 1998). Such systems
essentially mimic the role of human tutors, assistants, etc.
in continually inferring another’s intentions to best adapt
and respond to another’s communication.

Researchers have addressed the problem of intent
inference using a variety of techniques that integrate
cognitive validity with pattern matching algorithms. Work
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on intelligent tutoring systems has utilized “model tracing”
or “tracking” algorithms (see Anderson et al., 1995, for a
review) that follow a student step-by-step in a problem
solution, in addition to “knowledge tracing” algorithms that
keep a current estimate of student knowledge and skill. As
successful as these systems have been in real-world
deployment, the underlying model-tracing algorithms have
two major assumptions that limit their generality: (1) all
actions are discrete events without noise, and (2) each action
corresponds one-to-one to a skill-related rule without
ambiguity and limited backtracking. Recent interesting
work on tutoring systems (e.g., Conati, Gertner, &
VanLehn, 2002) and intelligent help systems (e.g., Horvitz
et al., 1998) has used probabilistic Bayesian networks to
make inference more robust and flexible in the face of noise
and ambiguity; however, this work focuses more on the
“knowledge tracing” aspect and still relies on the
assumption that observations are discrete and unambiguous.
In contrast, a great deal of multimodal data collected in
empirical studies and real-world interactive systems are
continuous and noisy — for instance, mouse movements,
hand positions and gestures, eye movements, even task-
specific data such as steering and acceleration/braking for
driving (to be discussed later). A general framework for
tracking cognitive processes must be able to handle such
noisy, continuous data in order to use a full complement of
multimodal data for inference.

In this paper we propose a computational framework
called the mind-tracking architecture for modeling and
tracking human cognitive processes — that is, mapping
observed actions to the unobservable thoughts that produced
them. The mind-tracking architecture centers on two core
processes: model simulation and action tracking. First, at
each time step, the architecture generates a set of predicted
thought and action sequences by running computational
cognitive models in simulation. Second, the architecture
finds the best match between the predicted action sequences
and the actual observed sequence, thereby inferring the most
likely cognitive process (i.e., thought sequence) that
generated the observed actions. Thus, the mind-tracking
architecture “thinks” along with people as they behave,
mirroring their thoughts and actions and providing a
continual estimation of the person’s current cognitive state,
including intentions, goals, knowledge, etc. In doing so,
the architecture provides a unified framework for robustly
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Figure 1: Overview of the mind-tracking architecture.

relating observable, low-level multimodal actions to high-
level cognitive processes.

This paper outlines the mind-tracking architecture and
demonstrates the core ideas in the context of a real-world
application domain: driving. Inference of driver intentions
is essential for the development of future intelligent vehicle
systems that warn and assist drivers in critical situations,
very much analogous to inference of student intentions and
knowledge in an intelligent tutoring system. However,
driver intent inference must handle an inundating stream of
multimodal data — including steering, acceleration,
braking, eye movements, even facial expressions — which
are notoriously rife with noise and individual variability,
making current model-tracing techniques very inadequate for
the driving domain. Using a rigorous model of human
driver behavior (Salvucci, Boer, & Liu, 2001) developed in
the ACT-R architecture (Anderson & Lebiere, 1998), we
demonstrate how the mind-tracking architecture allows for
robust, accurate inference of driver behavior, specifically the
problem of detecting driver lane changes.

The Mind-Tracking Architecture

In its essence, the mind-tracking architecture continually
maps a person’s observed actions to their inferred thoughts
and intentions. We first outline the representation of the
computational cognitive models that allows us to represent
cognitive state as well as generate sequences of predicted
thoughts and actions. We then describe the process by
which the architecture uses these models to follow along
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with a person’s observed actions and thus infer their
predicted thoughts.

Model Representation

Because the mind-tracking architecture is a computational
framework in which to infer thoughts, we require some
computational representation for thoughts or more precisely
“cognitive state” — including a person’s goals, intentions,
knowledge, perhaps even mood, etc. While we might
imagine a number of existing models and frameworks
serving this role, we have chosen the ACT-R cognitive
architecture (Anderson & Lebiere, 1998), a production-
system architecture based on condition-action rules and
separate declarative (factual) and procedural (skill)
knowledge stores. The ACT-R architecture has been used
to model behavior in tasks ranging from simpler laboratory
tasks (e.g., memory and recall: Anderson & Matessa, 1997)
to more complex dynamic real-world tasks (e.g., air-traffic
control: Lee & Anderson, 2001).

Due to space limitations, we must refer interested
readers to Anderson and Lebiere (1998) for more details on
the ACT-R architecture. However, we note three important
features of ACT-R (and similar cognitive architectures such
as Soar: Laird, Newell, & Rosenbloom, 1987, and EPIC:
Meyer & Kieras, 1997) that make it an excellent choice for
purposes of mind tracking. First, the architecture allows for
computational models that run in simulation and generate
temporal sequences of “thoughts,” namely rule firings. At
any point in time, the current state of the model serves as



the current “cognitive state” in that it embodies all current
knowledge and skills, including symbolic knowledge (e.g.,
whether a given fact is known at all) as well as subsymbolic
knowledge (e.g., whether a given fact can be readily
recalled). Second, ACT-R can produce interaction with real-
world or simulated stimuli though realistic perceptual and
motor modules (Byrne & Anderson, 2001), often running in
identical environments as human subjects. This feature
allows for direct comparison between human behavior and
model predictions for real-world metrics. Third, the
architecture facilitates modeling at multiple grain sizes and
levels of details — for instance, both at the level of lower-
level control (e.g., steering and braking) and higher-level
cognition (e.g., decision making and planning). These and
other features allow for direct integration of ACT-R models
into the mind-tracking framework.

Mind tracking runs not one but many cognitive models
simultaneously. Roughly speaking, the set of cognitive
models approximates the variability of strategies and
behaviors seen in a population of human performers such
that the models represent as many different behaviors and
strategies as possible. The issue of variability and
individual differences is an extremely involved one that
raises many questions concerning where the variability
arises (e.g., “hardware” versus “software” differences: see
Meyer et al., 2001) and how much to represent explicitly in
the models. A rigorous treatment of variability and
individual differences is beyond the scope of this paper;
however, as we will see in the application to driving, the
architecture offers several broad choices for handling
variability: explicitly representing different strategies in
different models, implicitly representing different behaviors
by varying model parameters, and allowing the matching
process in action tracking to account for unexplained noise.

Mind Tracking

Given the desired set of cognitive models, the mind-
tracking process operates in four stages: (1) data collection:
recording the person’s observed actions; (2) model
simulation: generating predicted thoughts and actions for all
models; (3) action tracking: finding the best matching
predicted actions for the observed actions; (4) thought
inference: identifying the inferred thoughts before cycling
the process in the next time step. We now describe each
step of this process, as illustrated in Figure 1.

(1) Data Collection: recording the person’s observed action
sequence for a given period of time. The actions recorded
would include any multimodal data relevant to the task,
stored as a vector of numerical or categorical information.
The period of time is also task-specific and related to the
temporal grain size of the multimodal data, though a value
around one half to several seconds should suffice for most
purposes. Of course, as illustrated in the figure, the thought
sequence that generated these actions is unknown and will
be inferred through the mind-tracking process.

(2) Model Simulation: generating the models’ predicted
thought and action sequences. Starting at the same initial
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state as the human data sequence, each model is run for a
period of time to generate its unique model simulation
trace. Each trace includes both a thought sequence and an
action sequence, where the thought sequence comprises
states of the cognitive model and the action sequence
comprises vectors of observable data. The model action
sequences should be completely analogous to the human
action sequence in terms of the amount and type of data, the
sampling rate, and the total sampled time.

(3) Action Tracking: identifying the model whose
predicted action sequence best matches the person’s
observed action sequence. Action tracking could be
performed using any of a number of techniques. For this
initial treatment of mind tracking, we assume that all
features in the multimodal data are continuous values and
compute the sum of squared error between the observed and
predicted action sequences; thus, the best-matching model is
the model with the least error between its predicted actions
and the person’s actions. (For future work, we are currently
investigating more complex methods of action tracking —
for instance, using a sequence-distance metric or complex
probabilistic models.)

(4) Thought Inference: identifying the inferred thought
sequence. Given the best-matching model from action
tracking, this model’s action sequence is associated with its
corresponding predicted thought sequence, resulting in the
desired inferred thoughts given the observed actions. We
can then analyze the cognitive state embodied in this
sequence to determine current goals, intentions, etc. For
instance, by using ACT-R as our model representation, we
can determine the person’s inferred intentions at the end of
the tracking time period by looking at the final cognitive
model’s “goal buffer” (a buffer that contains a link to the
current declarative goal chunk). As another example, we
could check whether a particular unit of knowledge is
currently in memory, such as declarative chunk for factual
knowledge or a production rule for skill knowledge.

Taking the final state (or any intermediate state) as the new
current state, the system cycles the mind-tracking process,
repeating all four steps at this next time increment.

Discussion

As mentioned, the core idea of the mind-tracking
architecture is similar to a large body of work in intelligent
tutoring, namely work on model tracing (Anderson et al.,
1995) and tracking (Frederiksen & White, 1990). For
example, the model-tracing cognitive tutors developed at
Carnegie Mellon (Anderson et al., 1995) use a single
cognitive model with multiple decision points and follow a
student step-by-step through the problem-solving process.
However, the cognitive tutors assume a direct mapping
between observed actions and cognitive rules — for
instance, a mapping between the student subtracting a
number from both sides of an equation to a rule that
embodies this skill in the equation-solving domain. In
addition, the tutors do not handle ambiguity when an



observed action could potentially map to multiple rules; in
such a situation, the tutor is forced to prompt the user to
determine which rule is intended. The mind-tracking
architecture generalizes the model tracing process to allow
for arbitrary mapping between observable actions and rule
firings even in the presence of data noise.

Another body of work closely related to mind tracking
is that of sequential protocol analysis, with origins as far
back as Newell and Simon’s (1972) seminal work on human
problem solving. Others have explored interpreting specific
types of protocol data, such as verbal protocols (Waterman
& Newell, 1971) and eye movements (Salvucci &
Anderson, 2001), with such techniques as sequence-distance
matching and hidden Markov models (see Salvucci &
Anderson, 2001, for a review). Mind tracking integrates the
core ideas of these areas of literature and integrates them
into a unified framework for high-density streams of
multimodal data.

Sample Application: Driver Intentions

To put the mind-tracking architecture in context and to
demonstrate its usefulness in a real-world domain, we
performed a study of how to apply the architecture in the
domain of driving — in particular, recognizing drivers’
intent to change lanes. This task may seem small at first in
comparison to the generality of the architecture; however,
lane-change recognition is in fact quite difficult and serves
as an excellent first test for two important reasons. First,
lane-change recognition has proven very difficult even for
complex probabilistic models intended for just such a
purpose. For instance, Pentland and Liu (1999) developed
hidden Markov models (HMMs) to recognize lane changes
with reasonable accuracy, but this work analyzed discrete
time steps and was not easily generalizable to continuous,
real-time recognition. Second, the driving domain involves
a large amount of noisy multimodal data (e.g., steering,
pedal depression, etc.) that cannot be handled by earlier
model tracing algorithms. Thus, inference of driver lane
changes serves as an excellent challenge for the mind-
tracking architecture on a difficult problem and an excellent
demonstration of its advantages over earlier methods.

Driver Model

Mind tracking requires that we have a computational model
capable of performing the given task and predicting the
same types of action data collected from human subjects.
For this purpose, we used a version of the ACT-R
integrated driver model (Salvucci, Boer, & Liu, 2001), a
computational model of highway driving; specifically, we
used a C++ implementation of the original LISP model
with the same core architecture and task-specific knowledge
base. The driver model navigates in a simulated multi-lane
highway environment and incorporates three primary
modules: control for lower-level perception, steering, and
acceleration; monitoring for perception of the environment
and maintenance of situation awareness; and decision
making for choice actions that depend on the current
perceptual and environmental variables. Because of its
implementation in the ACT-R cognitive architecture, the
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driver model runs in simulation using “eyes” for perception
and “hands” and “feet” for steering and pedaling.
Simulations produce identical protocols to human drivers
navigating the same environment in a driving simulator (see
Salvucci, Boer, & Liu, 2001). The model has been
validated with respect to lane changing, curve negotiation,
and even the effects of driver distraction (e.g., Salvucci,
2001). This well-validated model thus serves well as the
basis for our mind-tracking study of driving.

Setup and Procedure

Using the driver model as a basis, we began the setup of the
mind-tracking architecture by specifying the model sets with
which to detect lane changes:

* Driver-Only: This set contained only the default driver
model with no modifications. The mind-tracking
architecture has no choice but to select the same model
in action tracking, thus this set represents a baseline for
inference in that it tells us how accurate the driver
model reflects human performance.

» Stayer-Changer: This set explicitly represented the
two possible intentions by including two models: a
“stayer” model that always tries to remain in its current
lane, and a “changer” model that always tries to change
lanes. After a lane change, both models are re-
synchronized to drive in the correct lane.

* Variable-16: This set implicitly represented the set of
possible behaviors by creating a set of 4°=16 models
representing variations of the model’s four task-specific
parameters: the desired time-headway (THW) for
following a lead car, the desired THW before starting a
pass maneuver, the minimum cut-in distance from other
cars when changing lanes, and a parameter describing
how aggressively the model steers into the other lane.
In this set, each parameter was varied by either 1.5 or
0.75 times its default value, thus producing 16 driver
models with unique parameter settings.

* All-19: This set represented a combination of the
Driver-Only, Stayer-Changer, and Variable-16 sets, for
a total of 19 unique driver models.

Using each of these model sets, we ran the mind-tracking
process on driving data collected in a previous study
(Salvucci, Boer, & Liu, 2001). In this previous study, 11
human drivers navigated a highway environment with
moderate traffic for approximately 30 minutes and could
change lanes whenever they desired. In our study, we used
only 6 of the 11 subjects for which turn-signal data was
available (due to a glitch in the original data collection).
One important feature of this data set was the inclusion of
verbal reports, specifically markings for when drivers voiced
their intentions to begin (and end) a lane change; this feature
allowed us to compare directly between when the driver
started a lane change and when the mind tracking first
recognized the change of intention.



For mind tracking, we used three primary features from
the original driving data: steering angle (in radians),
accelerator depression [0-1], and brake depression [0-1]. In
addition, for some of the tests, we also included both turn
signals with a value of 1 for on and O for off. To compute
the error needed for action tracking, we weighted steering
angle by a multiplicative factor of 5 (to compensate for its
smaller relative value) and then added the squared errors for
each feature to arrive at the total error.

Results

We analyzed three aspects of how the mind-tracking
architecture recognized driver lane changes, all with separate
analyses without turn signals and with turn signals to
examine the signals’ contribution to tracking. First, Table
1 shows the delay time as the time (in seconds) needed for
the model to detect a lane change. Delay time was
calculated as the elapsed time between (1) the driver stating
an intention to change lanes (as noted in the verbal protocol
markings) and (2) the first time the best-matching model
indicated a lane change, or the first time the vehicle crossed
into the other lane (the ground truth). The Driver-Only and
Variable-16 sets both required over 1 second to detect a lane
change; the average time for an entire lane change was 5
seconds, and thus even these methods recognized the lane
change approximately one-fifth of the way through the
maneuver. The Stayer-Changer and All-19 sets both
performed much better without turn signals, with delay
times around .70 s. All sets performed better with turn
signals than without (except the Driver-Only set, which
always chooses its one model), and the Stayer-Changer and
All-19 sets again performed particularly well with delay
times around .55 s with turn signals.

While delay time is a reasonable indication of the speed
of lane-change recognition, it may be deceptive in that the
vehicle may have not shifted far during the delay, making it
hard to fault the recognition system for lack of detection.
To clarify this point, Table 2 shows the lateral distance
traveled before recognition — that is, the distance traveled
across the lane (i.e., orthogonally to the direction of travel)
during the delay time — with separate results included for
lane changes to the left and those to the right. Once again
the Stayer-Changer and All-19 sets outperform the Driver-
Only and Variable-16 sets across the board, for right-to-left
(R->L) and left-to-right (L->R) changes and with and
without turn signals. Turn signals again aided recognition,
although not as clearly: distances were higher for right lane
changes for the two best sets. Interestingly, lateral distances
for R>L changes (to pass a lead car) were generally much
larger than those for L>R changes (to return to the travel
lane). The explanation arises in where drivers started their
lane changes: on average, they started R-> L changes exactly
in the center of the right lane (position 0.50 for lane
position [0,1]) but started L->R changes on the right side of
the left lane (position 0.36); the larger resulting discrepancy
between steering signals needed to change lanes versus stay
in the lane make the L->R changes easier to detect quickly.

Table 3 shows the time ratios for correct predictions,
namely the ratio of time during either lane keeping (LK) or
lane changing (LC) for which mind tracking generated the
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Table 1: Delay times for recognition, in seconds.

Model Set Without TS With TS
Driver-Only 1.17 1.17
Stayer-Changer .69 .54
Variable-16 1.07 .93
All-19 .70 .57

Table 2: Lateral distance before recognition for right-to-left
(R->L) and left-to-right (L>R) lane changes, in meters.
(Note that the lane width in the original study was 4 m.)

Without TS With TS
Model Set
R>L L>R | R>L L=R
Driver-Only 1.12 12 1.12 72
Stayer-Changer .52 A2 .20 .28
Variable-16 1.08 40 .96 .36
All-19 .64 .08 .40 A2

Table 3: Time ratios for correct prediction for
lane keeping (LK) and lane changing (LC).

Model Set Without TS With TS
LK LC LK LC
Driver-Only .70 40 .70 40
Stayer-Changer .92 57 .84 .61
Variable-16 .84 .39 .87 .45
All-19 91 .53 .96 .61

correct intention. Again, the Stayer-Changer and All-19
sets outperform the others both without and with turn
signals. Overall, the process does not perform perfect
recognition, but the numbers do show some promise: a real-
world system would not rely on or even expect perfect
predictions, but rather would use the predictions as a
suggestion for how to proceed or possibly integrate the
predictions into a downstream probabilistic system that can
alleviate the variability in the process.

Discussion

Overall, we were very pleased with this first attempt at
applying the mind-tracking architecture to a real-world
practical problem. Although there is little previous work
with which to compare our results, two previous attempts at
lane-change recognition come to mind, both using a very
different technique (hidden Markov models). First,
Pentland and Liu (1999) reported that their recognizer could
detect changes in the first half second of the maneuver; their
recognizer performs only analysis of discrete segments, as
opposed to continuous recognition (as we do), but
nevertheless this result maps well onto our best recognition
times. Second, Kuge et al. (2000) reported similar findings
for their continuous recognition system; however, their



system uses only steering-based features and has no
knowledge of the surrounding environment, which clearly
affects whether and when people make lane changes. The
mind-tracking architecture implicitly takes environment into
account in that the model predictions are based on
perception of the current environment. Thus, mind tracking
offers a novel method of inferring driver intent that
compares well with previous results and generalizes well to
other complex intentions for lower-level maneuvers (e.g.,
turns) and higher-level decisions (e.g., route planning).

Conclusions

The mind-tracking architecture provides a unified framework
for inferring people’s thoughts from their actions. As such,
it represents an extremely broad area of work with many
degrees of freedom, and this initial treatment only scratches
the surface of a potentially fruitful area of research. As just
one example, we have chosen the ACT-R architecture as the
cognitive model representation; however, we might just as
easily employ another cognitive architecture (e.g., Soar:
Laird, Newell, & Rosenbloom, 1987, or EPIC: Meyer &
Kieras, 1997) and use models developed for these
architectures — for instance, Aasman’s (1995) Soar driver
model. Our upcoming work will explore many of these
degrees of freedom and continue applying this theoretical
work to practical domains such as driving, intelligent
tutoring, etc. For now, this initial work shows good
promise for the mind-tracking architecture in providing a
novel way of representing and thinking about the inference
of human thoughts and intentions.
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