Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
MULTIPLE-QUANTUM NMR IN SOLIDS

Permalink
https://escholarship.org/uc/item/19p8g9w5

Author
Yen, Y-S.

Publication Date
1982-11-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/19p8g9w5
https://escholarship.org
http://www.cdlib.org/

et

LBL-15253

UNIVERSITY OF CALIFORNIA

E Lawrence Berkeley Laboratory

Materials & Molecular
Research Division

MULTIPLE-QUANTUM NMR IN SOLIDS

Yu-Sze Yen
(Ph.D. Thesis)

November 1982

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098







LBL-15253

MULTIPLE-QUANTUM NMR IN SOLIDS
by
Yu-Sze Yen
Ph.D. Thesis
November 1982
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

This work was supported by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Materials Sciences

Division of the U.S. Department of Energy under Contract
Number DE-AC03-76SF00098.

This manuscript was printed from originals provided by the
author.

B






' MULTIPLE-QUANTUM NMR IN SOLIDS

By
YU-SZE YEN

ABSTRACT

Time domain multiple-quantum (MQ) nuclear magnetic
resonance (NMR) spectroscopy 1is a powerful tool for
spectral simplification and for providing new
information on molecular dynamics. In this thesis,
applications of MQ NMR are presented and show
distinctly the advantages of this method over the
conventional single-quantum NMR.

Chapter 1 {ntroduces the spin Hamiltonians, the
density matrix formalism and some basic concepts of MQ
NMR spectroscopy.

In chapter 2, 14N double-quantum coherence 1is
observed with high sensitivity in isotropic solution,
using only the magnetization of bound protons. Spin
echoes are used to obtain the homogeneous double-
quantum spectrum and to suppress a large HZO solvent
signal.

Chapter 3 resolves the main difficulty in
observing high MQ transitions in solids. Due to the
profusion of spin transitions in a so0lid, individual
lines are unresolved. Excitation and detection of high
quantun transitions by normal schemes are thus

difficult. To ensure that overlapping 1lines add



constructively and thereby to enhance sensitivity,
time-reversal pulse sequences are used to generate all
lines in phase. Up to 22-quantum IH absorption in
solid adamantane is observed. A time dependence study
shows an 1increase 1in s8spin correlatioans as the
excitation time increased.

In chapter 4, a statistical theory of MQ second
moments is developed for coupled spins of spin I=1/2.
The model reveals that the ratio of the average dipolar
coupling to the rms value largely determines the
dependence of second moments on the number of quanta.
The results of this model are checked against computer-
calculated and experimental second moments, and show
good agreemégt. |

A simple scheme 18 proposed ian chapter 5 for
sengsitivity improvement in a MQ experiment. The scheme
involves acquiring all of the signal energy available
in the detection period by applying pulsed spinlocking
and sampling between pulses. Using this technique on
polycrystalline adamantane, a large increase in
seusiéivi:y is observed.

Correlation of motion of two interacting methyl
groups 1is the subject of chapter 6. This system serves
as a model for the study of hindered internal motion.
Because the s8pin system 1is small and the motions are
well-defined, the calculations involved are

tractable. Group theory appropriate for nonrigid

s s



molecules is used to treat the change 1in the
Hamiltonian as the methyl groups transit from
correlated to uncorrelated motion. Results show that-
the four~quantum order alone is sufficient to

distinguish between the two motions.
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CHAPTER 1

IRTRODUCTION TO MULTIPLE-QUANTUM NMR

Multiple-quantum (MQ) spectroscopy has proven to

be a practical tool in the simplication of spectral

(1)

as well as providing new 1information 1in

(2)

analysis
molecular spin dynamics. Diverse in its
applications, MQ NMR has been applied to heteronuclear
as well as homonuclear coupled spin systems, and to
systems with J coupling, dipolar and quadrupolar
interactions. Multiple-quantum transitions have been
observed in liquids, solids and liquid «crystals.
Excellent reviews on this widely useful topic have been
available in the last couple of years.(3'6)

This chapter presents some of the basic concepts
of Fourier transform MQ NMR spectroscopy. The
succeeding chapters will extend on particular aspects
relevant to the subject of discussion.

Before we enter 1into the realm of MQ NMR, the

matter of spin Hamiltonians and spin dynamics as

described in the density operator formalism will be

first discussed. Then we will proceed with a
definition of MQ coherence, discuss the information
content of MQ spectroscopy, describe a Fourier

transform MQ experiment, and present some properties of

MQ coherences.
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1.1 SPIN HAMILTONIANS

The 1interaction of nuclear spians with their

surrounding can be divided into two parts:

The external Hamiltonian H, , is an interaction of the
spins with applied magnetic fields, whether they be
static or oscillating, and is subject to Athe
experimentalist's choice. The internal Hamiltonian
H;,. is inherent to the spin system; it is composed of
the 1interaction of nuclear spins with the local
surroundings.

In the class of substances that we will be dealing

with, the following interactions are of interest:

The Zeeman term H, and the applied rf term H.o¢g are
grouped as external Hamiltonians. The remainder are
internal Hamiltonians. These terms will be discussed

separately.

1.1.1 Zeeman Hamiltonian

In typical laboratory magnets, by far the largest

term is the Zeeman Hamiltonian. Nuclei with dipole

> - . R
moments W = YAl | where Y 1s the magnetogyric ratio,

[T [
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will interact with the large applied static magnetic

-+
field Ho. Expressed in units of #, this interaction is
described by

+ >
Hy = -Hoolu /6= -H IvI .

i i
<>

where z is chosen to be in the direction of Ho and the
summation runs through all nuclei in the sample.

As a result of this interaction, the spins

experience a torque in the direction defined by

>
dyu. > »>
-—1i = TR
de Ti%i Ho
and will precess at a rate Y;H,. This constant wy o4 =
3

H., is referred to as the Larmor precession frequency.

YiHgo

1.1.2 Rf Hamiltonian

For spin excitation, an oscillating field in the
radiofrequency range can be applied. To avoid coupling
with the static field, it is applied in the xy-plane.
Choosing the rf field to be in the x-direction, the rf

Hamiltonian is expressed as:

H = 2Hjcos(ut + ¢)Zvi1xi

where H; is the amplitude of the rf field rotating at a

frequency w with an initial phase ¢.

I
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1.1.3 Quadrupolar Hamiltonian .

Nuclei with I>]1 possess an electric quadrupole

e

moment due to the nonspherical distribution of nuclear
charge. The nuclear quadrupole moment can interact
with the local electric field gradient generated by the ‘
spacial anisotropy in the distribution of the valence

.(7)

electrons. The quadrupolar Hamiltonian is given by:

eqQ.
HQ ! - f1.Y'i.fi
i 21.(21,-1)
i i
eQ.V

1 2 2
- Ii(Ii+1) + ini(1+i+1-

1 22,1 [312.
zi

Dl
i41,.(21.-1)
1 1

where Q; is the quadrupole moment and li is a second
rank tensor describing the electric field gradient.

The asymmetry ﬁarameter n; is defined as:

(v . =V )
n. = xx,1 yy, 1 ,
i
zz,1
and vxx,i’ vyy,i' and sz,i are the electric field
gradient tensor components expressed in the principle «

axis frame. For axially symmetric gradients, n=0.
In the presence of a large magnetic field, only
the secular part (i.e. the part that commutes with Hz)

1s retained:

] s
|

eQ.V . )
Hy = ) r 22,7 (317, - 1,(1,+D].
i 41 (21.-1)




1.1.4 Dipolar Hamiltonian

The direct interaction between magnetic dipoles is

given by:

H. = [ T.eD.,I
D i<3 1 =13 7]
+»  +> + >
Y, Y.h 3(I,°r..)(I.°r,.)
- L3 i "ij i i3 _ 7.7 ]
Sl U3 2 i 73
i<y 7., T,.
1] 1]

. .* 3
where Qij is a traceless second rank tensor and rij is

the vector connecting nuclei i and j. In high fields,

only the secular part of Hp is retained:

. YiY.ﬂ 2 1
H, = —22d-(3cos®6,.-1)[I_.I_. - +(1 I..)]
D .20 3 i] z1 2] 4" "+17=] T-17+]
i<j tij

This is referred to as the "truncated" dipolar
Hamiltonian.

For nuclei of different Y;, Y5 and spins I, S the

Hamiltonian 1is further truncated to:

Y. v.h
1

3
ij

2
= 6,.- . .
Hy Y (3cos i l)szszJ

i<j r

1.1.5 Chemical Shift Hamiltonian

The =electron c¢loud surrounding a nucleus 1is

polarized by the applied magnetic field and effectively

R



shields the nucleus. As a result, nuclei in different
chemical surrounding do not experience the same local
field. In general, the shielding 1is expressed in

tensor form:

where g is a second rank tensor. In 1isotropic

solution, it 1s reduced to a scalar interaction:

cs “itzi
wvhere only o, = %Tr(gi) is retained.

1.1.6 Indirect Spin-Spin Hamiltonian

The interaction between nuclei via electron clouds

in general is given by:

where {ij is a second rank tensor. In high fields,
only the secular parts remain:

1 > +>
330189 L eI.)]

.. L. . 31_.1_.-1, .
1371 7] 1) zizj "1 7]

Since the anisotropic part of H; has the same form as

Hp, it is sometimes called the pseudo-dipolar

Ry R [



coupling. In isotropic solution, the anisotropic term
is averaged to zero, resulting in a purely scalar

coupling:

As 1in HD, the interaction between unlike nuclei I

and S is truncated to give:

1.2 SPIN DYNAMICS

The state of a coupled spin system is conveniently
described by the density operator p. At thermal
equilibrium, the state of maximum entropy dictates that

the density operator takes the following form:

exp(-8H)
pO=
Tr {exp(-B8H)}
DRI = ﬁ/kBT and kB is the Boltzmann constant. At

aperatures BSH € 1, the density operator can be
expanded in a Taylor's series. Keeping only up to the

first order term,

p =2z "(1 - BH)

EE



where Z = Tr{exp(-B8H)}. Since the first term is

proportional to identity and can never have an effect

I

on the spin dynamics, it is wusually dropped, yielding

e RS

what is called the reduced density operator:

bI L]

]
1}

In all our discussions, the constant b = -Bmc'z“1 will
be suppressed.

The equation of motion for p under the influence
of an explicitly time~-independent Hamiltonian H is

given by:

d

©

= 'i[H’ D].

Q.

t

The formal solution to this first order differential

equation is:

p(t) = exp(=-iHt)p(0)exp(iHt)

where p(0) 1is the initial density operator. If the

«
Hamiltonain changes discretely from one t ime-
independent Yamiltonian to another, successive @

applications of the above equation yields:

O(t)'...exp(-intz)exp(-iH1t1)Doexp(iﬁltl)exp(intz)...

AT



The precession at the Larmor frequency is common
to all like spins. To remove this uninteresting term,
it is common to transform the equation of motion into
the rotating frame 1in which the rf Hamiltonian 1is

stationary:

dp*

—_— = =3 * *
It i[H*, p*],

In the rotating. frame,

p* = exp(-ithz)pexp(ithz)

H* = exp(-im:Iz)Hexp(ithz)

are the effective operators. In this representation,

the Hamiltonian for like spins is,

H* = <-Awl + w. I + H* + H* + H* 4+ H*
z 1™ x Q D cs J
where —Aws(w-w ) is the resonance offset and the
internal Hamiltonians retain only the secular parts.
In all our discussions, the rotating frame 1is the

relevant one and the notation * will be suppressed.

1.3 MQ COHERENCE

Formally, MQ coherences are related to the off-
diagonal elements of the density matrix p, with the n-

quantum coherences associated with the elements n off

i

R
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the diagonal of »p. A MQ coherence describes the
transition between two eigenstates where the well-known
selection rule 4m = %1 1is violated. Consider the
energy level diagram for N coupled spin-1/2 system of
Fig.l.1. An "allowed" transition is one in which the

quantum number changes by %1, A MQ transition has no

such restriction; it can be n-quantum or even =zero-

quantum, In single-quantum spectroscopy, effectively
only one spin flips. In a n-quantum transition
multiple spins flip. Tnis multiple flip involves a

simultaneous absorption or emission of n photons. The
process is a coherent one and should be contrasted to a
sequential, and hence incoherent, process.

Becav<e a MQ coherence is a many-body correlation
phenomenon, it requires a Hamiltonian that <couples
spins. More precisely, the criterion for whether a
Hamiltonian term will excite MQ coherences 1is that it
must be a bilinear operator. Such bilinear operators
are the dipolar, the J coupling and the quadrupolar
Hamiltoni#ns.

In the nonlinear regime where H_.y is no longer a
weak perturbation, a nonselective excitation of MQ

coherences can be accomplished by either a long weak

pulse(S) (|H_gl=|H; ,|), or short intense pulses
(IHrfI)IHintl) sandwiching time delays in which a
bilinear operator is operative. Our focus will be on

using short intense pulses to excite MQ coherences. In

10
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Figure 1.1 Generalized energy lgvel diagram of N
coupled spin-1/2's. The dashed arrows indicate
"forbidden”™ MQ transitions, the solid arrows are
"allowed"” single-quantum transitions. The 4m = -]
dashed arrow indicate a transition forbidden by

symmetry.
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this limit, H can neglected in the duratiom of the

int

pulses.

1.4 SPECTRAL SIMPLIFICATION

The problem with single-quantum (SQ) spectroscopy
is apparent from the SQ spectra of oriented systems
shown in Fig. 1.2. 1In Fig. 1.2, the number of coupled
protons increases monotonically down the page. One
observes that the spectral complexity increases with
the number of spins. For a two or three spin system,
the spectrum is still fairly simple. But one notices
that for, say, a six sgin system, already the lines are
beginning to overlap. The situation for a sixteen spin
system 1is intractable =~ one 9only gets a broad
featureless lineshape.

Three methods to reduce spectral complexity are
proposed and can be used in combination. The first two
methods involve reducing the number of coupled spins.
When reduction of system size is no longer feasible, MQ
spectroscopy offers a viabie alternative.

The first method is to simulate isolated molecular
systems, thereby removing intermolecular dipolar
couplings.

In solids, extensive dipolar couplings can exist
and because of the rigid lattice structure, the full
effect of Hp 1is achievable. In order to simulate

isolated molecules and maintain the crystal structure,

12
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the desired compound can be diluted into a matrix of
the isotopic counterpart. Oftentimes, the nuclei of
interest are in low natural abundance, as in the case
of 13C,, and thus the isotopic dilution is already
provided.

Solutes dissolved in a liquid crystal solvent are
particularly convenient systems for studying
intramolecular dipolar couplings. The translational
diffusion of the liquid crystal molecules averages to
zero the intermolecular couplings. However, because
the liquid crystal molecules are restricted in their
molecular reorientation, the intramolecular couplings

(9)

remain but are scaled by order parameters. The same
situation occurs for solutes dissolved in a 1liquid
crystal solvent. Thus we have a convenient method for
isolating molecules, provided the molecule is soluble
in some liquid crystal or is in liquid crystalline
form.

Another alternative is to reduce the number of
coupled spins per molecule with selective isotopic
labeling. This can often be expensive or synthetically
difficult, and sometimes infeasible.

To see what spectral simplication can be found
from MQ spectroscopy, we refer again to Fig. 1.1. We
notice that there is only one N-quantum transition,

where N is the maximum quantum possible. The number of

(N-1) quantum is at most N, and so on. One can show

14
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through a combinatorial argument that statistically the
number of transitions falls off with the number of
quanta in a Gaussian manner.(3) In fact, even for a
small spin system such as benzene, this statistical
argument holds well at least qualitatively (Fig.
1.3). Thus, it would be advantageous to observe the
higher quantum orders where the density of lines are
much lower, provided they contain the same amount of
information. This leads us to the problem of
determining the information content of MQ orders.

We compare the number of unknown physical
constants with the number of measurables, based on a
statistical argument. The claim is that it 1is wusually

zh to consider only the (N-1) and (N-2) quantum
-..usitions, provided that all the 1lines %n these
orders are resolvable.

In oriented systems, typically one has as unknowns
the chemical shifts, J couplings, and dipolar
couplings. The number of dipolar couplings is equal to
the number of pairs of spins. Likewise for the number
of J couplings. The number of chemical shift
differences 1is equal to the number of spins minus
one. Thus, the total number of unknowns 1is N2 - 1.

The (N-1) quantum order has 2N 1lines, and the
(N=-2) quantum order has N(N-1) lines. The
accumulative amount of information available thusfar 1is

already N2 - 1., Therefore, indeed the (N-1) and (N-2)

15
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Figure 1.3 Integrated intensity versus the number of

quanta n. The measured benzene values (solid dots) are
compared against a gaussian curve based on a

statistical counting argument (solid line).



quantum orders offer enough information for a complete

determination of the physical constants.

1.5 FOURIER TRANSFORM MQ EXPERIMENT

A nmultiple-quantum experiment can be separated
into four time domains: preparation, evolution, mixing
and detection (Fig. 1.4). Separation of time domains
allows the experimentalist to create the effective
Hamiltonian of interest in each time period. This
offers great flexibiltiy for the experimentalist on
what he chooses to observe, depending on his ingenuity.

In the preparation period, the <coherences of
interests are created, let evolve 1in t under some
Hamiltonian H,. A direct detection of MQ coherences
would require multipole detectors. Since our coil 1is
capable of detecting only oscillating dipoles, a mixing
period is required to convert the MQ coherences into
single quantum coherences, which are detected in time
ty. This is repeated for many values of t; until a MQ
interferogram 1in t is obtained. The MQ evolution 1in
t; is detected as a modulation of the single-quantum
amplitude,. The signal 1is given as the trace of the
observable I, = I,  + in with the density matrix at
the time of observation:
T,t,) = Tr{ITp(r,t

2 +

s(rt,t r‘,tz)}

l’
= Tr{I_exp(-iﬂztz)VT(T')exp(-iHltl)UT(T)

l »

xpoU(r)exp(iHItl)V(t‘)exp(intz)}

17
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PREPARATION  EVOLUTION MIXING DETECTION
PROPAGATOR: U exp(-idi 1) v exp (= 1,15
TIME VARIABLE: T t, t,

IBL 8112-13%4:

Figure 1.4 A block diagram of MQ pulse sequence,

indicating the separation of time domains. =




Shown 1in Fig. 1.5 are two simple MQ pulse
sequences. The first two pulses separated by a time
delay suffice to prepare MQ coherences.

The amount of coherence prepared depends on the
time delay between the pulses. To demonstrate, exact
dynamics calculation have been performed on benzene, a

(s5)

6-spin system. Figure 1.6 shows the dependence of
the average integrated intensity of n-quantum coherence
on the preparation time. Basically, after -an
incubation period time on the order of the inverse of
the couplings, this dependence is roughly constant for
the lower orders. For the 6-quantum transition, since
there is no averaging with other transitions, the
oscillation is pronounced and continues for all times.

For -+ small pumping times T, the power of the
rate of growth of n-quantum integrated intensity varies
with n (Fig. 1.7). For the two-pulse preparation
sequence, the power is 2n-1 (n>l).(3) This power
dependence clearly indicates that it takes more time to
build up an n-body correlation. In chapter 4,
preliminary experiments in solid adamantane verify that
excitation of the higher quantum coherences do require
longer preparation times.

Transition phase and 1intensity depend on the
preparation and mixing times for general MQ ©pulse
sequences. The transition phase can be independent of

preparation time only 1if the mixing propagator 1is the

19
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Fig. 1.5 Two simple three-pulse sequences for

exciting and detecting MQ coherences in both
channels. If there is no offset, then the upper pulse
sequence 1s even-selective, and the lower sequence 1is

odd-selective.



21

FOT [N 1

ORIENTED BENZENE

1.68

- 2 quantum
-==-3 quantum
----- 6 quantum

Prepared Coherence Maynitude per Transition

T (msec)

Figure 1.6 Exact dynamics calculations of average

integrated intensity versus the preparation time for
the oriented benzene molecule. Only the 2-, 3-, 6-
quantum orders are shown. The dependence is roughly

constant for all but the six-quantum order.
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time-reversal of the preparation propagator. This can
be important since overlapping lines that are out of
phase destructively interfere. To avoid missing lines
that happen to have a small intensity at some poorly
chosen preparation time, it becomes necessary to do the
same experiment with enough different preparation times

and take an average.

1.6 EVEN AND ODD SELECTIVITY

L -

Consider the sequence 11 - 1T - <I for
27x 2 -x
preparation (Fig. 1.5). The ‘"prepared" density
operator for this sequence is
o (imI_dexp(-iHT)exp(=izI )I
. exp(izl Jexp(-i exp(-izI )I,
. T . . I
Xexp(lilx)exp(LHr)exp( LZIX). (1)

A useful concept 1s to let the rotations operate on H,
thereby defining an effective preparation
Hamiltonian. We separate the linear terms from the
bilinear terms in H:
H= -4Awl + H

z zz
where H,, is bilinear. The effect of the rotation on H
is:

n

. .
exp(lilx)ﬂexp(-lzlx) Awa + Hyy

23
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T W
where Hyy = exp(lex)szexp( szx) .

With this, Eq. (1) becomes:

xX . . .
(t) = exp(=iH 1)(I cosldwt + I sindwt)exp(iH =<
g P yy z x pify )

U [I JcosAwt + U [1I ]sindurT,
Yy = Yy x

where Uyy[Ic] s exp(-mHny)Iqexp(LHyyr). The operator

Uyy[Iz] is composed of even-quantum operators, and

Uyy[Ix] of od.- Juantum operators. In the limit Aw=0,

XX
p7 (1) = U I
yy[ 2]
is purely even-quantum.
For the sequence %Iy - 1T = %f , the ©prepared

density operator 1is:

yx - . s . W
e’ T (1) exp( lex)exp( LHr)exp(ley)Iz

. . . T
xexp(LZIy)exp(xﬁr)exp(lex)
= U [I lcosdwt + U [I Jsinduwr,.
yy' "x yy'“z
In the limit Aw=Q,
¥ () = u_ (1]
yy x

is purely odd-quantum.

R 1)

i
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By inserting a 7 pulse in the middle of T to
remove all resonance offsets, selective preparation

sequences can be created. Thus, an even-selective

reparation sequence 1is 11 L L II d an
prep 4 2 2 2 - 7 -x 2t
n
n

L
?Ix - ?Iy.

x
. . T
odd~selective one is 7

- -
2

1.6 SEPARATION OF ORDERS

A highly wuseful property 1is that the offset
experienced by MQ coherences scales with n. By going
off-resonance by an amount Aw greater than- the largest
MQ second moments, the orders can be separated., To see
how this comes about, we expand the density operator in

the irreducible spherical tensor operator basis:(IO)

p(e) = 7 a_ (e)T
k,n k,n k,n
where T, , 1is the nth-component of a k-rank tensor
?
(n<k). The tensor components '1'k n are related to a-
H

quantum operators. It is convenient to group the n-

quantum operators:

p(e) = ] o (t)

n

where Dn(t) = Eak,n(t)rk,n'

As a result of the commutation rule:(IO)

[Iz’ Tk,n] = nTk,n

25
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and the following property of expomential operators(lo)

e'Be™ = B + [4,B] + 3,[4,[4,B]] + 3,[4,[4,14,B]]]+...

the effect of a rotation about Iz on p 1is:
exp(-1¢Iz)pn(t)exp(i¢Iz) - Dn(t)exp(-in¢).

This implies that the existence of an offset term in H;

will cause n-quantum coherences to oscillate as nAuw:
exp(ichIIz)pn(r)exp(-iAutIIz) - pn(t)exp(inAwtl).

If the offset Aw is greater than the largest MQ second
moments, this will result in separation of the orders
in the Fourier spectrunm.

As a corollary, the inhomogeneity 1is also scaled
by n. For high resolution work, it would be desirable
to remove the inhomogeneity by applying a 1 pulse in
the middle of the evolution period. But by doing so,
the centers of orders will coincide.

The method of time proportional phase
incrementa:iou(l'll) (TPPI) allows sorting of orders
meanwhile removing inhomogeneous line broadening. It
can accomplish separation regardless of whether there
is8 a real resonance offset.

As 18 evident from its name, the method involves

(7 an

T



incrementing the phase of the preparation pulses for
each increment in t,;, and keeping the mixing pulses at
a fixed phase.

Suppose we phase shift the preparation propagator

by an amount ¢:
U¢(r) = exp(-i¢Iz)U(r)exp(i¢Iz)

where U(Tt) is at an arbitrary fixed phase. Applying

the propagator on the initial density operator gives:
p(1) = UT(t)I U (1)
¢ z ¢
= exp(-i¢Iz)UT(T)IzU(T)exp(i¢Iz)

Consider 1incrementing the phase of ¢the preparation
pulses by an amount A4¢ proportional to t;- We can
express the phase as

¢ = Awt
where A4uw =-A$

Atl

The fictitious offset Aw is a parameter that can
be varied by changing the phase increment A4%. To
observe up to a maximum order M, the bandwidth 1/4t;
must encompass up to 2MAw/2TW. That is, the minimum

increment in t; must satisfy:

27
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1 5 2MAw

Atl 2"

The corresponding condition on A¢ given A4t; is:

2n
< =
8¢ 2M.

Keeping the mixing propagator V(Tt®) at a fixed
phase, the expression for the signal is then:

s(r,e,,1°) = Tr{V(T')I_Vt(‘t’)exp(-iﬁltl)

1.
x U:(r)IzU¢(r)exp(-iHIt1)}

= Tr{V(t‘)I_Vf(t‘)exp(-iHltl)exp(-iAwtl)

x Uf(r)IzU(t)exp(iAthexp(iHltl).

Thus the signal experiences an additional, although
artificial, offset.

By insertin- . * pulse in the middle of t;, the
effective H; is free of all real offset terms. With
this and TPPI, we c¢an obtain separation of orders
without losing high resolution.

In chapter 2, the scaling of inhomogeneity with n
is put to use to obtain separation of MQ spin echoes

and to allow selective detection.

(SRR
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CHAPTER 2
INDIRECT DETECTION OF SPIN-1 DOUBLE-QUANTUM COHERENCE

IN LIQUIDS

2.1 INTRODUCTION

Time domain multiple-quantum (MQ) NMR has been

(1) to offer higher

demonstrated in a variety of systems
resolution and more information on relaxation dynamics
than single-quantum (SQ) methods. Although § = ]
nuclei 1in anisotropic systems were among the early
applications of time domain double-quantum (DQ)
NMR,(2’3'4) it is only recently that the interesting
problem has been raised of observing these transitions
in isotropic solution where the quadrupole coupling

(5)

recognized that the

(6,7)

vanishes. Prestegard and Miner
usual preparation sequence using two i/2 pulses on
the S spins (14N) does not excite DQ coherence, even
when the spectrum shows resolved J coupling to
neighboring heteronuclei. They demonstrated that
augmentation of this sequence by spin tickling of bound
protons (I = 1/2) did allow S spin DQ coherence to be
prepared from and mixed to S spin magnetization.

In this work we demonstrate that the § DQ
coherence can be excited and detected by using only the
I spin magnetization and applying simple hard pulses at
both I and S frequencies. This is an example of

(8,9)

heteronuclear coherence transfer and is an

30
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extension of heteronuclear MQ techniques already

(10)

demonstrated for I = § = 1/2 in liquids and in

liquid crystals(ll), and for I = 1/2, S = 1 in liquid

(12) (13,14,15)

crystals and solids.

This indirect method of observation of S = 1 DQ
coherence benefits from the signal enhancement(lo’IZ)
which comes from using only proton magnetization as the
initial and final conditions. In addition, we employ
spin echoes and time proportional phase incrementation
(TPPI)(7’16) to separate orders and a form of coherence

transfer echo(9’17)

to suppress large zero-quantum
interference.

In discussing the various coherences possible in a
heteronuclear system, it is useful to label them with a
pair of quantum numbers (nI, ns) which are conserved
under free evolution. For any coherent superposition
|i><j| of two eigenstates these are defined by the
relations

[1,, |i><j|] = n§j|i><j|, (l1a)

[s,, |i><j|] = n§j|i><j|. (1b)

These are just the differences in Zeeman quantum

numbers for the states connected: “%j = m} - mg, n?i =
S - RS
mi mj.

2.2 THEORY

Shown in Fig. 2.1 are two pulse sequence

31
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Fig. 2.1 Pulse sequences used for observing
heteronuclear MQ coherence. The I gpin FID is
monitored at t, = T. Pulse sequence B has the first
two S spin rf pulses phase shifted by ¢ = Awtl
(TPPIL). All other rf pulses of a given frequency may
be of the same phase. The delays 4, and 4, allow
suppression of the signal from all but one order of

coherence.
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variations for observation of wvarious orders of

coherence (nI

ij nﬁj) using only I spin magnetization.

Perfect rf pulses of negligible duration are assumed.
We consider here the case of a group of equivalent I
spins identically coupled to a single S =] spin. The

unperturbed rotating frame Hamiltonian is

H= -Aw_1 - Aw
2

t s, + J°1,5,, (2)

S
where J° = 27J is the scalar heteronuclear coupling (in
rad/sec) and I, = ) I,;. For the preparation sequence

i
(n/2) ~1/2-(m) (1,8)~-1/2-(n/2) (1,S) the propagator is

u(T) = exp[i('"/Z)(Ix + Sx)]exp(-iHT/Z)exp[iﬂ(Ix + Sx)]
x exp(-iHT/Z)exp[i(ﬂ/Z)Ix]

= exp(-iTJ'IySy)exp[-i(ﬂ/2)Sx]. (3)

The simultaneous 7 pulses remove the dependence on the
offset terms in the Hamiltonian of Eq. (2) making the

(4,10,18) g

propagator even-quantum selective
dependent only on the variable J°t.
The density operator at the end of the preparation

period is p(T) = vt e(o)u (). Neglecting the term

proportional to the identity this is given by

p( 1) = exp(-itJ”I_S )(bI Jexp(itJ”I_ S )
yy z yy

= b[I cos(J”TS ) + I sin(J°1S )]
2 y X y

33

R R R e T T

u“upw.vwrmu‘- i



- b{Iz[l + syz(cosJ‘t - 1)]

+ 1 S sinJ”t}. (4)
x"y

In the last step, the identities

cos(esy) =1 + Syz(cosﬁ - 1), (5a)
8in(@S ) = s sin® 5b)
y y ¢
appropriate to S = 1 have been used. The 1initial

equilibrium spin density operator proportional to S, is
not included in the expression, since it does not yield
DQ coherence nor does it lead to an eventual signal in
the proton channel. Equation (4) can be written using
(19,20) for the S

the fictitious spin-1/2 operators

operators:

1-3
p(T) = b{Iz[l + (2/3 - S,
- 1/3(521“2 - 522-3))(cosJ‘t -]
e 2820 (s 172 4 5 273y a1, (6)
x "y y

This expansion shows that Sy2 consists of zero-quantum
and DQ operators. The coefficient of the operator
Izsyz, and thus of the (nl = 0, nS = %2) coherence
Izsx1'3, is maximized by setting T = 1/2J sec, where J
is in hertz. |

The prepared coherences evolve during L) - Since

only (nl = %, nS = 0) coherences can freely evolve
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into protoﬁ transverse magnetization, the 7m/2 pulses at
the end of t, are needed to convert MQ coherence into
such SQ coherence. For each increment in t;, only the
peak of the MQ spin echo at t, = 7T is sampled in the
proton channel. The resulting heteronuclear MQ
interferogram as a function of the evolution time t is
the autocorrelation function of p(7) = p(T, t; = 0).
Neglecting relaxation and with 4, = 4, = 0 (Fig. 2.1),

this 1is

S(tl) = Tr{p(t,o)p(r,tl)}
- 'I'r{p(T,O)exp(-iclJ'IzSz)p(‘r,O)exp(itlJ’IzSz)}
2 .
| .iZj |p(t,0)|i’jexp(-1mijt1), (7)

where w;; = w; = w; and w; = <ilJycr,s, [i>.

Evaluation of the matrix elements of Isz1'3 [Eq.
(6)] for the case of four equivalent I; = 1/2 spins
shows that the DQ spectrum 1is a quintet with line
separation of 2J and line amplitude of

A(mI) 2 (1/4)(cosI”t = 1)(cosJ”t, - l)(mI)zg(mI)

2
= (cosJ T - 1)(cosJ‘t2 - 1), mI = £2
= (cosJ’T - l)(cosJ‘t2 - 1), mI = +]
=0, al = 0.

Note that the central 1line of the quintet has zero

amplitude. The degeneracies g(mI) are 1,4,6 for m
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22, %1, 0, respectively.

The fixed time delays 4; and 4, are included to
selectively echo the desired order for detection. The
scheme is similar to pulsed field gradient methods(17),
except that here the static field inhomogeneity and a
longer time delay are wused for the dephasing and
selective rephasing. Advantage 1is taken of the

IYI + nSYSr

proportionality of the dephasing rate to n
thereby allowing separation of various MQ -echoes.
Sampling at the peak of the desired MQ echo results in
detection of the selected order and suppression of the

14N DQ coherence

other orders. In our experiments, the
dephases at a rate proportional to. ZYS in A1 and
rephases as proton SQ coherence at a rate proportional

14

to Yy in 4,. To observe the N DQ coherence echo as

proton transverse magnetization, AZ must be set at

A, = —= A (9)

This scheme can be viewed as a coherence transfer
echo filterng (CTEF) process. The desired DQ signal 1is

a small oscillation on top of a large signal

originating from coherences not of DQ nature, the
largest being from the HyO solvent. Fluctuations 1in
the large signal resulting from instrumental

instability appear in the Fourier transform as noise at

all wvalues of wy . Because this t) noise can be

36



comparable to the DQ signél, it 1is desirable to
eliminate it by "filtering" out the large signal. 1In
addition, the dynamic range requirements of the
spectrometer are reduced, since the largest signals
never reach the receiver.

Pulse sequence B differs from A only in the way
the separation of MQ orders is accomplished. Because
of the temnsorial properties of MQ operators expressed

in Eq. (1), the center of the order (nI, ns)

S

is at
nIAwi + n”Aug. Pulse sequence- A requires a real
resonance offset, whereas pulse sequence B creates an

artificial offset by TPPI.(7’16) The

T pulses in t;
remove all real resonance offset terms and thus field
inhomogeneity. The phase incrementation of the S rf
pulses in the preparatioq period for each
incrementation in t, effects an apparent S frequency
offset in the observing frame. TPPI yields a spectrum

that 1is free of 1inhomogeneous broadening and yet

retains separation of the MQ orders.

2.3 RESULTS AND DISCUSSION

Spectra were obtained at 27°C of an 8 molar NH,NO,
aqueous solution acidified to pH 1 to slow down proton

exchange with the solvent. The spectrum in Fig. 2.2

was obtained wusing ©pulse sequence A with the 14y

carrier frequency offset by 0.85 kHz from NH4+

resonance and the proton carrier frequency on resonance

37
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Aw ( k HZ) X8L 819-4939

Fig. 2.2 Proton-detected heteronuclear MQ magnitude
spectrum of acidified 8 molar NH,NO, aqueous solution
observed at 185 MHz. The spectrum is obtained using
pulse sequence A in Fig. 2.1 with léy carrier frequency
offset from NHA* resonance by Awg = 0.85 kHz, T = t, =
9.6 msec, t increment = 200 wusec, Al = 11.327 msec,
and 4, = 1.618 msec. The incompletely suppressed on-
resonance line arises predominantly from longitudinal
H,0 magnetization present during ty - The multiplet
with the center offset by 1.70 kHz 1is the lay DQ

spectrum.



at 185 MHz, The time delays 4, and 4, were set
according to Eq. (9). The central peak at Aw = 0
arises predominantly from imperfect CTEF of the
longitudinal proton magnetization of the solvent H,0

present during evolution. Other contributions are from

g 2

the zero-quantum portion of I, y

and from I, of the
ammonium protons, both of which are present in p(1)
even when DQ <coherence 1is maximized [Eqs. (4) to
(6)1]. The multiplet corresponds to the DQ coherence
transfer spectrum of 14N. Its center is offset by 1.70
kHz, which.is twice the carrier frequency offset, the
splitting is 2J, and the linewidth is twice that of ldy
SQ inhomogeneous linewidth - all of which are
indicative of lay DQ transitions.

Figure 2.3 shows the improvement in resolution of
the multiplet using pulse sequence B with the same
parameter settings. The spectrum 1is a quintet with
relative amplitudes of 1:1:0:1:1 and splittings of 2J,
in agreement with the calculations [Eq. (8)]. The
splitting 1is 105 * 1 Hz; the homogeneous absorption
linewidth (full width at half maximum) is 7 % 1 Hz as
compared with the inhomogeneous linewidth of 70 to 80
Hz in Fig. 2.2.

Also of importance 1is the comparison of the
homogeneous lay DQ and SQ linewidths, Through a

14

conventional N detected spin echo sequence, with a

simultaneous 7 pulse applied to the protons to preserve
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500 Hz - X8L 819-4550

Fig. 2.3 Proton-detected 14y DQ magnitude spectrum
using pulse sequence B in Fig. 2.1 with 1y ana 14w
carrier frequencies on resonance. T = ty, = 10 msec;

all other parameter settings are the same as in Fig.
2.2, The spectrum is a quintet with 1:1:0:1:1

amplitude ratio and 105 Hz peak separation.



the J coupling, the absorption linewidth of lay DQ and
SQ homogeneous linewidths are the same.

In both Figs. 2.2 and 2.3, the magnitude spectra
are displayed. The 1lines of the quintet can in
principle be observed in phase [Eq. (7)], but were not
because of the use of CTEF. The insertion of the time
delay Al in t necessitates that the heteronuclear MQ
interferogram is first sampled not at t; = 0 but at t;
= 4. During the extra time Al; the lines accumulate
phase at different rates resulting in a large phase
shift linear in w;.

To demonstrate the sinusoidal dependence of the
Iz'le-3 operator on preparaton time [Eq. (6)], pulse
sequence B was employed with ty held <constant for
different values of T. With ty fixed, the 1line
amplitude varies with Tt as (cosJ”t - 1)exp(-1/T,),
where now T, refers to the nl = 1 homogeneous decay
time. Figure 2.4 shows the integrated line amplitude
of the quintet as a function of T. A least squares
analysis gave T, = 80 * 1l msec.

In summary, DQ transitions in 14N, a quadrupolar
nt. .28 of spin S = 1, is made possible through the J
coupling to the protons. Sensitivity 1s greatly
improved by indirectly detecting the quadrupolar nuclei
through the protons. Using TPPI and a spin echo in the

evolution period, the inherently higher resolution of

the DQ spectrum is realized.
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Fig. 2.4 Normalized Ll4N DQ line amplitude as a

function of the preparation time <. The experimental
points are compared with the solid theoretical curve of
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CHAPTER 3

TIME-REVERSAL MULTIPLE-QUANTUM NMR IN SOLIDS

3.1 INTRODUCTION

Multiple-quantum (MQ) NMR spectroscopy has
generally been applied to systems of isolated molecules

(1,2) The small system

with a small number of spins,
size limits the complexity of the spectrum as well as
the number of rf quanta that can be absorbed or
emitted. One difficulty in studying large spin systems
is that the average intensity per transition decreases
rapidly with the number of spins. As a result,

(3)

selective excitation schemes may be necessary to
channel 1intensity into the desired n-quantum order.
Thus, comparatively few applications have been

(4,5)

performed 1in solids, where extensive dipolar
coupling makes the <coupled spin system essentially
infinite in size.

In this chapter, we present the utilization of

3,6) to enhance overall signal intensity

time reversal(
so that very high quantum absorption can be observed 1in
solids. 1In Fig. 3.1, we show a 1y MQ spectrum of solid
adamantane CioH16 obtained by such a time-reversal
excitation-detection scheme, where up to 22-quantum
absorption 1is observed. Adamantane 1is a plastic

crystal; the molecule 1is nearly spherical and as such

can tumble isotropically in the solid phase. At room
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Figure 3.1 ly multiple-quantum NMR spectrum of solid

adamantane at room temperature, obtained with time-

reversal sequence of Fig.
480 usec.

3.2(d) and excitation time of
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temperature, this motion averages to zero all
intramolecular couplings but retains the intermolecular
terms., Our system is thus not an isolated molecule but
rather a network of molecules. Very high quantum
transitions might thereby be excited.

One of the main features of solids is the high
density of spin states. Due to the continuum of
transitions, individual 1lines within each na-quantum
order are unresolved. Since both the intensity and
phase of individual MQ coherences depend uniquely on
the &excitation time, there may occur destructive
interference between overlapping lines. The integrated
intensity of the MQ spectrum 1is decreased and the
signal-to-noise ratio suffers. This problem becomes
more severe as the excitation time is increased, as 1is
observed experimentally. Very quickly, typically
within 107% sec, the signal-to-noise ratio is dominated
by 1instrumental noise. It eventually becomes very
difficult to observe high quantum absorption, where
long excitation times are required.

What 1s desired then 1is the generation of all
lines in phase at the point of detection, that is, in
séme manner to reverse the dephasing that occurred in
the excitation ©period. In solids, the dominant
dephasing mechanism is the dipole-dipole interaction,
which 1s homogeneous in nature. If one 1is able to

(6)

produce a homogeneous spin echo,

the peak of the
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echo is free of the dipolar Hamiltonian. This in fact
can be accomplished by applying a series of intense rf
pulses to the spin system to effect what is in essence
time reversal. With the method of time reversal, we
were able to regain the 1intensity lost due to fast

homogeneous dephasing of spins in solids.

3.2 THEORY
For the following discussioﬁs, it is convenient to

introduce the time~domain MQ NMR experiment, described

schematically in Fig. 3.2(a). The sequence can be
partitioned into four time domains:(7) preparation (1),

evolution (t;), wmixing (T°), and detection (t,)
periods. As a specific example, consider the simple
three-pulse sequence in Fig. 3.2(b). The first two
pulses separated by an excitation delayl T prepare MQ
coherences, which then evolve freely for a time £y
Because MQ coherences do not correspond to
?agnetization, they are not directly observable with
our detection coil. A third pulse is needed to convert
them into single-quantum coherences, which are detected
in time ty,. For our experiments, only the point at ty

(8)

= T is sampled. The sequence is repeated for many
values of t; wuntil one maps out an interferogram.
Fourier transformation with Trespect to t, of this

interferogram yields the MQ spectrum.

The equation of motion of a coupled spin system is
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Figure 3.2 Multiple-quantum pulse sequences: (a)

Schematic pulse sequence showing relevant periods. (b)
Nonselective three-pulse experiment. (c) Even-selective
sequence with preparation pulses phase shifted by an
amount ¢=Awt; (TPPI) to separate n-quantum orders. (d)
Time-reversed preparation and mixing periods with the
preparation /2 pulses phase shifted by an amount ¢
(TPPI). The preparation and mixing periods are
composed of cycles of the 8-pulse (Hxx-Hyy) sequence
shown below. A delay of 1.6 msec separates the mixing

period from the final detecting pulse to allow
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transients to decay away. 30 usec 1is allowed for

(3

receiver deadtime before sampling 1is taken at the
dotted line.
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conveniently described in the density matrix
formalism. In this formalism, neglecting relaxation,
the signal in the time domain is given by the trace of
the product of the observable and the reduced density
matrix:

t7)}

s(t,t.,t°) = Tr{Izp(t,c

1 b}
= t -3 t i
Tr{VIzV exp( 1Hlt1)U Itexp(lﬂltl)}

1)

= Tr{Q(T')exp(-iﬂltl)P(T)exp(iﬂltl)}
= .Z ij(T)ij(T )exp(-ijktl). (1)
1,k
Here U = exp(iHt) is the preparation propagator, V =
exp(iH“Tt") 1is the mixing propagator, P = UTIZU is the

preparation density operator, Q = VIZVT is the mixing

density 9operator, |i>'s are eigenstates of the
Ham;ltonlan Hl’ and wjk = "“j - W 1s the transition
frequency. In the above equation, the invariance of
the trace to cyclic permutation 1is used. The spin

system is assumed to be initially at equilibrium. For
notational convenience, a virtual ®/2 pulse is applied
at end of t° so that I, rather than I, = I_ + in is
our observable,

To see how phase terms can arise in a MQ NMR
experiment, let us consider the situation V = U, which
is the case for the commonly~used pulse sequences in

Figs. 3.2(b) and 3.2(¢). The transition between states

|3> and |k> is then described by a complex vector
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(ij)z, where the intensity is given by Iijlz and the
phase 1is a complicated function of the preparation

period: 2
Im[P.k (1)]
1 }. (2)

-1
0. (1) = tan " {
Ik ae[p5k2(1>1

The preparation density operator P and hence the phase
of a transition vary with the excitation time T.(g)

If we now look at the case V = UT, then Q = P =
P, and the signal can be written as an autocorrelation

’

function of th- p-oparation density operator P(71):

s(t,t,) = T—{Pr(T)exp(-iﬁltl)P(T)exp(iﬂltl)}

= jzk Iij(T)lzexp(-iwjktl). (3)

Note that here the signal contains no phase factor for
all lines. Suppose further that V differs from ut only

in phase by an amount x, i.e.,
vV = exp(-isz)UTexp(isz). %)

Taen Q = exp(-ixI,)Pexp(ixI,), and the signal is given

by:
2 . .
S(T,tl) ) .z Iij| exp(inx)exp( lmjktl)' (5)
n j,k
This states that all lines within order n = my = my ,

where the mj's are Zeeman magnetic quantum numbers,

have the same phase, and lines between neighboring
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orders differ in phase by x. Thus, 1if orders are
well-separated, the condition in Eq. (4) is sufficient
to ensure no phase <cancellation. In practice,
Hermitian conjugation of U or V is achieved by negating
the Hamiltonian, which has the same effect as reversing

time, hence the term time reversal.

3.3 EXPERIMENTAL

The actual pulse sequence used to generate the
time~reversed spectra is shown in Fig. 3.2(d). The
eight-pulse <¢ycle ©preparation sequence creates an

average Hamiltonian(10) (R, = H,. ), which is a pure

(3)

yy

double~quantum operator
quantum transitions. The excitation time is increased
by adding more cycles. To account for finite rf
pulsewidths, 24 + t_ is used in place of 24, where t

P

is the pulse duration. The experiment was performed on

P

resonance, causing all MQ orders to overlap. To create
the large artificial offset required for separation of
orders, the method of time proportional phase
incrementation (TPPI)(II) is used. For each
incrementation in t;, the phase of the preparation

pulses is incremented by the amount:

2n
- <_ 6

ae M (6)
where M 1s the maximum MQ order to be observed.

In principle, detection can be made immediately

after the mixing pulses with a final detecting pulse.

and can excite only even-.
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In practice, however, due to pulse imperfections and
relaxation, a delay of 1.6 msec is introduced after the
mixing pulses, allowing transients to decay before
applying a detecting pulse. These transients should
decay on the order of T,, the spin-spin relaxation
time,(}Z) which is typically 10™% sec for solids. The
desired signal, after mixing, 1is in the form of
populations. It decays as T;, the . spin-lattice

relaxation time,(IZ)

which is on the order of seconds,
and should essentially be preserved during the 1.6 msec
delay. The final 7/2 pulse rotates it 1into the
transverse plane for detection. The detecting pulse
can be of arbitrary phase, as long as it remains fixed
from point to point in ¢t,. A delay of 30 usec is

inserted before sampling to allow for receiver

deadtime.

3.4 RESULTS AND DISCUSSION

To demonstrate the severity of intensity loss due
to phase cancellation in the normal nontime-reversal
approach to MQ NMR, 1in Fig. 3.3 we compare 1H MQ
magnitude spectra of adamantane obtained with and
without time reversal, using pulse sequences of Figs.
3.2(d) and 3.2(c), respectively. The =7 pulses in Fig.
3.2(c) remove all resonance-offset terms, rendering

(13)

this sequence even-selective, as is the sequence of

Fig. 3.2(d). Both spectra were obtained at 35°C with a

53

[

TR




S00 KHz |,

L

@ J\

(b)

X8L 828-10790

Figure 3.3 Comparison of adamantane ly multiple-

quantum NMR spectra obtained with 144 usec excitation
time and using (a) time-reversal pulse sequence of Fig.
3.2(d) with A4=0.8 usec and t_=3.2 wusec, and (b)

P
nontime-reversal pulse sequence of Fig. 3.2(c).
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preparation time of 144 usec. Without time reversai,
phase cancellation results in a significant reduction
of absolute integrated intensity. This difference in
intensity becomes more pronounced as the excitation
time increases. We emphasize here that without time
reversal, we were not able to increase the excitation
time long enough to observe high quantum absorption.
Comparison of lineshapes, in particular seﬁond moments,
with and without incorporation of time reversal will be
discussed elsewhere.(la)

An interesting result of these experiments is the
initial time dependence of MQ intensities on n, the
number of quanta. The short time behavior can be
obtained from a power expansion in T of the preparation

.(1)

density operator:

P(T) = exp(-iHT)P(0)exp(iHT)
2

= p(0) - it[H,P(0)] - [H,[H,P(0)]] + .... (7

0] A

For the (H - ) pulse sequence in Fig. 3.2(d)

XX Hyy

assuming perfect &-function pulses, evaluation of the

commutators for P(0) = I_ reveals that the integrated

z
intensity of a given order (n=0,4,6,8,...) grows in as:
N EFEE (8)

i,k

where the summation runs through all j,k such that my -
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m, = a. The intensity of the double-quantum order
grows in as tz. Thus, in the short T limit, the higher
quantum operators appear at a later excitation time
than the lower quantum operators. This behavior is
illustrated in experimental results for adamantane in
Fig. 3.4. We observe that 1indeed the coherences
"diffuse" outward toward higher n as the excitation
time 1is increased. A physical interpretation for this
behavior can be obtained by realizing that MQ coherence
is a many-spin correlation phenomenon - at least n
spins are interacting concertedly to absorb n
photons. The higher the number of quanta, the more
spins involved, and hence the longer it takes for
correlations to occur, A random walk picture
connecting spin diffusion with evolution of multiple
spin correlations and MQ coherences is appealing.

In summary, the difficulty in applying normal MQ
NMR methods to solids can be attributed to the fast
homogeneous dephasing of spins. The incorporation of
time reversal enables all transition lines to be phased
with respect to each other, thereby enhancing the
signal-to-noise ratio. Using time-reversal pulse
sequences, we were able to obtain very high quantum
absorption spectra of solid adamantane. From a time-
dependence study, we observed an increase 1in spin

correlations as the excitation time increased.
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Figure 3.4 Normalized integrated intensity of n-

quantum order for various excitation times extracted
from adamantane time-reversal spectra, showing how the
spin correlations "diffuse" out t. higher n. These
intensities are normalized so that the total integrated
intensity for each excitation time 1is  wunity. The
corresponding excitation times on the single-quantum

free induction decay are indicated in the insert.
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CHAPTER 4

SECOND MOMENTS OF MULTIPLE-QUANTUM NMR SPECTRA

4.1 INTRODUCTION

Recent years have s8shown much experimental and
theoretical progress on multiple-quantum (MQ) NMR
studies of dipolar systems.(1’2’3) Most of these
studies depend on the high resolution available in the
spin systems for dynamical and structural
information. In studies where resolution 1s poor,
particularly in solids, lineshape analysis provides the
only practical means of extracting informatiom. Thus,
it would be of interest to explore the behavior of MQ
lineshapes as a function of the number of rf quanta
absorbed or emitted.

For a system containing nuclei of spin I=1/2, the
second moments (Mz) of the dipolar structure of MQ
spectra can be rigorously calculated by assuming a
statistical model. With this assumption, only sums and
producti of the dipolar coupling constants are needed
to determine the second moments. No diagonalization of
the Hamiltonian is necessary. Results reveal that the

ratio r of the average dipolar coupling constant to the

rms value:
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determines to a large extent the second moments
behavior. The two extreme cases:

(1) r=1, all the couplings are the same,

(2) r=0, couplings of both signs occur in such a

way that the average coupling is zero,
show distinctively different behavior.

One may inquire here whether a statistical model
contains enough informatipn to describe lineshape
behavior ags a function of n. A statistical assumption
implies no symmetry in the spin system.- What are the
implications of neglecting symmetry, or conversely,
what role does spin symmetry play in M, behavior?
Also, how large does the system have to be in order for
the statisﬁical assumption to hold? These are the
questions that we explore in our experiments.

In section 4.2, we will proceed firs£ with a brief
description of a Fourier transform MQ experiment and
some terminologies. A formulation for the MQ signal
and its moments 1is given, the need for an unique M2
definition 18 recognized, and the statistical model for
MQ moments is introduced. In section 4.3, a comparison

of experiment with theory is made.

4.2 THEORY
In a Fourier transform MQ experiment (Fig. 4.1),
MQ coherences are created by applying a series of

intense rf pulses to the spin system. The preparation

i
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PREPARATION EVOLUTION MIXING DETECTION
PROPAGATOR: u exp(-idit,) v exp {~id,t )
TIME VARIABLE: T t, T t;
L 8112-13042
Figure 4.1 Schematic pulse sequence showing the :

relevant periods 1in a Fourier transform unmultiple- -

quantum NMR experiment.



sequence may be described by a preparation propagator
u(1). The density operator at the end of the
preparation pulse sequence is given by UTpoU, where o,
is the 1initial density operator, and contains MQ
coherences. The system evolves in t; under the effect
of the Hamiltonian Hl. To detect MQ coherences, a
mixing period described by the operator V(T“) 1is
required to convert MQ coherences 1into detectable
single-quantum coherenc: Typically, one point at
tz-O is sampled for each incrementation in t, keeping

(t,t°) fixed. The resultant MQ interferogram in t; is

given by:(3)
S(tl) - <I+(:1)> (1)
= Tr{Q(-r’)exp(-iHltl)P(t)exp(iHltl)}
where

Q(=17) = V(T )I_V'(t*),

P(t) = UT(r)pOU(r).

Fourier transforming Eq. (1) with respect to t, yields
the conjugate frequency spectrum in w;, the frequency
spectrum of interest (as opposed to wy,, the conjugate
of t,, 1if the entire free induction decay in t, 1is
sampled). Henceforth, the subscript 1 will be dropped.

If the signal S(t) is separable into components of
order n, labeled Sn(t), such as by selective excitation

(1,3)

or detection schemes, the n-quantum moments can be
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obtained from the time-domain signal S(t) with the
following well-known relation:(a)
(-1)* a"s_(¢)

M. (n) = .
k s_(0) at®  |e=0

By differentiating Eq. (1), the analogous n-quantum

k:h—momenc expression to Van Vleck's single-quantum

moments formula(s) i1s8:
k times

Tr(Qn(-r‘)[..:TT[H,[H,Pn(t)]].....]
Mk(n) - .
Tr{Qn(-t‘)Pn(t)}

Specifically, the second moments MZ expression is:(7)

Tr{[H, Qn(-T‘)][H. Pn(r)l}
M (n) s - .
2 Tern(-r )Pn(f)}

Finding expressions for Pn and Qn' which depend on
the pulse sequence used, and performing the
commutations are noantrivial tasks. Instead of
evaluating the commutators directly, an alternmative 1is
to examine the density of states distributed .by the
dipolar Hamiltonian and see what information c¢can be
inferred.

A schematic energy level diagram of an N spin-1/2
system with random coupling constants 1is depicted 1in
Fig. 4.2. The s8spin states are most strongly split by
the Zeeman interaction of spin dipoles with the large

external static magnetic field. Each Zeeman manifold
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Figure 4.2 Schematic energy 1level diagram for an

arbitrary spin system of N spin-1/2's. The states,
split by the Zeeman interaction, are grouped according
to their Zeeman quantum numbers. Within each Zeeman
manifold, the states are further split by the dipolar

Hamiltonian.
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of magnetic quantum number m 1is further split by
dipole~dipole interactions among spins to form a
distribution of states. An n-quantum order is composed
of the sets of transitions between states of m; and m,
that satisfy the condition n = m; - my. There may be
more than one pair (ml. my,) that satisfies this
condition.

Each Zeeman manifold can be labeled by either m,
the magnetic quantum number, or p, the number of spins
aligned parallel ¢to the static =external magnetic

field. The relationship between m and p is:

where N is the total number of spins in the system. We
find the 1label p more convenient for the following
discussions.

Let G;(w) and G;(w) be the distribution functions
for the density of states of manifolds labeled by p;
and pj. The statistical 1lineshape of the set of
transitions between two manifolds 1is described by the

crogss—~correlation of the two distribution functions:

I(w.pl,pz) - Gl(w)*Gz(w) (2)

where * denotes a cross-correlation integral (Fig.

4,3)., Explicitly, this is:(s)
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Figure 4.3 Each Zeeman manifold can be described by a

characteristic distribution of states with a mean
dipolar energy shift and a dipolar width. The
statistical lineshape function for a set pf transitions
between two Zeeman manifolds 1is a cross-correlation

between the two distributions.
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G, (w)*G, (w) = fGl(u)Gz(u-w)du. (3)

The n-quantum spectrum is the superposition of all
cross—-correlations between manifolds that satisfy the
condition n=p,-p;:

N-n

I(w,n) = § I(w,p,,p,=p,+a). (4)
p;=0

The kth-uoment of the lineshape funh:{on I(w,n) is:

[u*T(w,n)dw
M () = . (5)
[I(w,n)dw

We shall show that the MQ moments can be related
to the moments of the distributions Gi(u). To do so,
we list the following properties of cross—-correlation
integrals.

Let Gl(m) and Gz(m) be two distribution functions
with normalization coanstants Nl and NZ’ centroids at

Al and Az, and variances ¢ 2and o

1 {.e.:

2 1

fGi(m)dw = Ni’

wai(m)du
————— .
/6, (w)du 1

f(w-Ai)zci(w)dm

IGi(w)dw

15
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Let h = GI*GZ be the cross—correlation of Gl with G2°

The corresponding properties of h are:

N = /h(w)dw = -N N,

A = Juh(w)dw _

/h(w)dw l 2’
2
02 = J(w=A)"h(w)dw - 012 + 022'
/h(w)dw

We distinguish the definition of second moment from

variance (which is measured from the centroid):

2
- Ju"h(w)dw _ 2 2
My 2 “Th(wyde -~ 9 t 08
2 2 2
=0 " +09," + (A1 - Az) . (6)

Generalizing, it 1s evident from the ©binomial
formula that the kth-moment as measured from the

centroid is:

f(w-8)*h(w)dw _ E <)
T
/h(w)dow r=0

w 6, 1w __{6,]

;&[hl
where the moments of the distribution functions are
similarly defined:

f(w-Ai)sGi(m)dw

u [G,]
8" 1 /6, (w)dw
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The kth moment in terms of the moments of the
distributions G1 and G2 is given by:
k
Jwu h(w)dw k

My = ————— = ] (5)a5u ()
/h(w)dw r=0

1t § e (

- A w 6, Ju___[6,]. 7)
e=0 g=0 8° 8 1°"r=-s" "2

The above expressions are valid for any functions
describing the distribution of states. The functional
form enters only in the quantitative values of the

moments.

4.2.1 Exact Dynamics

Consider the schematic MQ pulse sequence of Fig.
4.1. The expression for the signal intensity of such a
pulse sequence is given by Eq. (l). Expressed in the

eigenstates of the Hamiltonian H, this becomes:

S(e) = ] P
ik

(t)QkJ(-r‘)exp(-im t),

jk jk

where Wi T Wy T, and H|3> = mj|j>. Upon Fourier
transforming with respect to t we obtain the frequency

spectrum:

S(w) = Jgk P (DO (=T 6Cumuy ). (8)

By going off-resonmance by the amount Aw or creating an

i xw'w]w‘n\.hu
i



artificial offset by time proportional phase
1nc:ementation,(5) the MQ spectrum is separable into

components of order n:

N
S(w) = } s (w)é(w = niw),
n=0

assuming w on the right hand side of the equation
contains no offset component., The second moments of
the n-quantum order is then:
I ow, 2(P ), (Q ), 8(u=u, )
1.k jk n’jk "n'kj js
Mz(n) = .2 .

jzk (Pn)jk(qn)kj G(m-wjk)

Evaluation of the Fourier coefficients (Pn)jk(qn)kj in

the eigenbasis of the Hamiltonian yields a numerical

value for Mz(n).

4.2.2 Unique Second Moments Value

A feature not present 1in conventional single-
quantun spectra is the dependence of phase on
preparation as a result of the nature of MQ pulse
experiments. The Fourier coefficient ijij [Eq. (8)]
is complex and thus contains a phase term. Moreover,
the operators P and Q are functions of T and t°, and
thus 8o are the transition amplitude and phase.
Consequently, there {s a Mz value associated with each
(t, t°) value.

We would like to define an unique M2 value for

BT 5



discrete transition lines as well as for a continuum of
transition lines. A convenient choice is one in which
‘all lines appear in phase and the transition amplitudes
show their time-averaged value.(g)

Averaging ijij over T = t° in Eq. (8) and
assuming magnitude spectra yield an “ultimate T
average'(g) for each transition amplitude. Upon T
averagiag, the inherent transition amplitude is
realized; thus ultimate T average spectra should be
used to determine the unique M, value.

Experimental T averages are done by
superimposing spectra of many randomly chosen
preparation times. The phasing of each spectrum can be
accomplished by converting it into a magnitude spectrum
if lines are resolvable, or incorporating time reversal
in the MQ pulse sequence.(lo)

The statistical model to be described in the next

section implicitly assumes no phase factors.

4,2.3 Statistical Model

For large spin systems, a complete diagonalization
of the Hamiltonian for exact dynamics calculations is
prohibitively cumbersome. For this reason, we turn to
approximation with a statistical model for a
qualitative description.

The statistical model assumes a spin system of no

apparent symmetry so that all transitions are allowed
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and are assigned equal intensity. The assuﬁption of
all transitions being allowed 1is embodied in the
construction of one distribution function describing
the density of states for each Zeeman manifold,
regardless of their classification according to the
irreducible representations of the symmetry group. The
equality of transition intensity appears in the
resulting lineshape of the set of transitions between
two manifolds. By taking the cross-correlation between
two density of states functions, each transition 1is
assigned unit intensity; that is, the cross—-correlation
function counts the number of transitions per frequency
bandwidth. Any further intensity specification would
require exact dynamics treatment.

Our focus will be on the broadening of resonance
lines by the dipolar Hamiltonian. Derivation. of MQ
second moments involves first evaluating the dipolar
mean and variance of each Zeeman manifold. Given these
two 1items, a repres: "ive distribution of states 1is
constructed for each .: .man manifold. For a complete
description of the distribution of states, higher
moments should be included. However, for the second
moments of n~quantum orders, only the second moments of
the distribution of states are necessary [cf. Egq.
(6)]. The second moment of each MQ order is then found
by taking the sum of cross—-correlations between

appropriate Zeeman manifolds.
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4.2.3.1 Dipolar Mean and Variance of a Zeeman manifold

The dipolar mean and variance of a p-manifold 1is

given by the following expectation values:

<HD>p - rrp{pHD} (9)

2 - 2 - 2 - 2 10
CH.“> <Hp>S rrp{pan } Tr, {oH} (10)

D “p

The bracket < )p denotes the ensemble average over the

p-manifold, Trp{ } 18 the trace over the states in the
p~-manifold, p here 1is the weighting function of these

states, and Hp is the secular part of the dipole-dipole
(4)

Hamiltonian expressed in units of h:

1
BD = igj dij{Izilzj - I(I+11+j + I‘il-j)}' (11)

The dij's (rad/sec) are the dipolar coupling constants

between spin i and spin j:

2 ,
-« Y h - 2
dij - 3(1 Jcos eij)'

1]

The spin operators Izi' I+i’ and I_i are the zth
component, the raising operator, and the lowering
operator of spin {.

Giving equal weight to each state, as 1is proper, p
must be the reciprocal of the number of states. The

number of states in the p-manifold is given by (:), the



combinatorial of N with p. With this, Eqs. (9) and

(10) become:

N \~
<ip> = (3) freduyl, (12)
2 2 N -1 2 Ny-2. 2
<Bp©>, <Ep> (p) r:p{uD } (p) Trp{HD}. (13)

The evaluation of Trp{HD} and Trp{HDz} involves
combinatorial arguments, In evaluating these traces,
it 1is convenient to define a quantity £f(p) to be the
probability that a spin pair will be antiparallel for a
given state 1in the p=-manifold. The number of
antiparallel spin pairs out of N spins is p(N - p).
Thus, f(p) is just this number divided by the number of

pairs:

£(p) = RAE 2 2), (14)
From the form of Eq. (l14), £(p) 1is also the probability
that a state in the p-manifold will have a given spin
pair (1i,3j) antiparallel with respect to each other.
The explicit evaluations of Trp{HD} and Trp{HDz} are
left to appendices 4.A and 4.B. The results are quoted

here:

N 1
- - 15
Trp{HD} (p)(l 2f)1§j zdij, (15)

rrp{anz} - (:){(l+f)a + (1-2£)b + (l-4fg)c}, (16)
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where

1 2
a = — Zdo
T6 ¢, 13

IH

b = )) ) d“(d1k + dkj),

! 1<3 k#1i,]

[+ )

(]
[}
0\'.—-

16 3¢5 1743

o (N-p-1)(N-p=2) + (p-1)(p-2)
g (N=-2)(N-3) ’

Lol 44,00, (1#1°, §25°)
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and £ 18 defined in Eq. (l4). We mention here that the

number of terms in the summations a, b and ¢ are (g),

2(N-2)(g) and (sz)(g), respectively, and that the

total number of terms in a, b and ¢ is (g)z.

Combining Eqs. (12) and (13) with (15) and (16)

yields for the p-manifold:

h(p) = (1-2£) [ 7

1<y 4

o2 (p) = £(5-4£)a + 2£(1-2£)b + 4E(1-E-g)c.
For brevity of notation, we have defined

h(p) = <Hp>,
2 2 2

Written in this form, it 1s apparent that the

(17)

(18)

dipolar —

shift h(p) [Eq. (17)] 1is directly proportional to the



average dipolar coupling.
For the special case of r=1, i.e. all couplings

are the same, these quantities reduce to:

hp) = (HI() - 2p(8 - )1,

cz(p) = (%)ZP(N - p).

wvhere d is the unique coupling constant. That is, 1in
this limit, the width of a Zeeman manifold 1is
proportional to the square root of the number of
antiparallel spins.

The features of the dipolar structure of the
energy level diagram can be examined. By
differentiating oz(p) with respect to p, the extrema of
cz(p) can be found. Equation (18) can be factored as
fF(p), where F(p) is quadratic im p. Oﬁe extremum is
found from df/dp = 0, which yields a root at p = N/2
(or the m=0 manifold for N even). The other two roots
can be obtained from solving dF/dp = O. These roots,
which can be either real or complex, occur in pairs
since F(p) is symmetric about p = N/2.

The behavior of h(p) and o(p) versus p for ten
randomly-generated sets of couplings between 30 spins
of I=1/2 is illustrated in Fig. 4.4(a) for r=1 and in
Fig. 4.4(b) for r=0, These plots were generated with
the computer programs listed in appendix 4.C. They

show that the extreme states are shifted by the largest

E——
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(o) Positive couplings
/
o (p)

(b) Negative and positive couphngs

o (p)

o

20, 0210-6722

Figure 4.4 The dependence on p of the mean dipolar
shift h(p) and the standard deviation o(p) for ten
randomly generated 30-spin systems in the limit of (a)
r=l, with couplings in the range 0.0 - 1.0 kHz; (b)
r=0, with couplings 1in the range -1.0 - 1.0 kHz. In

(a), the top of the scale is 5.7 kHz, and in (b) is 3.8
kHz.
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amount, and the p=N/2 manifold 1is shifted slightly in

the opposite direction. They also show that the width

i

of the distributions is the largest at p=N/2.

YRR

One observes that the two cases have distinctly
different features. For r=1, the width of the
distribution 18 much smaller than the dipolar shift.
For r=0, 1ideally there 1is no dipolar shift. Also,
given the same upper 1limit on the magnitude of the
couplings, the width 1is generally larger for r=1 than
for r=0. These features dictate the behavior of MQ

second moments.

4.2.3.2 Multiple-Quantum Second Moments

For each Zeeman manifold, a distribution function

is constructed from h(p) and cz(p):

N
G, (w) = (piJgiw). (19)

The normalized function gi(m) is defined to have the

following properties:

N N
e (an = (8 )faCwaa = ()
fwgi(m)d‘ﬂ = Ai’

f(w-Ai)zgi(w)dw = oz(pi).

Evaluating the cross-correlation integral of Eq.

(2) using Eq. (19), and summing over the manifolds



yields the £final expression of the n~quantum second

moments:

N-

pl-O P

(20)
where h(p) and az(p) are given i# Eqs. (17) and (18).
Since each transition 1is given unit 4{inteansity, the
normalization constant Z is just the total number of n-

(11)

quantum traansitions:

N=n
z = [To,m)du= 1 (3 )03
pl-O 1 2
(o) 1 <a <N
- (21)
{%t(ﬁ") - 21y, a=0

Higher moments are readily generalized using Eq.(7) and
evaluating Trp{HDr}, for r=0,1,2,...k.

Showa 1in Fig. 4.5 are the M, values for the same
set of ten random spiln systems as in Fig. 4.4. Figure
4.6 shows the decomposition into the two contributing
terms. As 1is evident, the M, behavior depends almost
exclusively on one term or the other. For r=1 [Fig.
4.6(a)], the dominant contribution 1s from the mean
displacements 22 = [h(pl)-h(pz)lz. For r=0 ([Fig.
2

4.6(b)], 1t 1s the widths of the lineshape functions o

- Uz(pl) + Oz(pz) that 1is dominant. From the dipolar

n
p =z [ (3 )(ng{oz<p1> + a¥(p,) + [h(p)-n(py)1%)
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{a) Positive couplings

second moments

n Quanta)

(b) Negative and positive couphngs

second momenls

o n {quanta} 0
L O2I0 6723

Figure 4.5 Second moments versus the number of quanta

n for the same ten systems in the limit (a) r=l, and
(b) r=0. The top of the scale is 240 kHzZ in (a) and
29 kHzZ2 in (b).
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(@) Positive couplings

a2

.

° n (quanta) X

(b) Neggtive and positive couplings

3
° n(quanta) o
I 80-47TR

Figure 4.6 Contributions to the second moments. The
quantity Az is the square of the mean shift difference
([h(pl) - h(pz)lz) contribution; and 02 is the width 7
(az(pl) + cz(pz)) contribution. Note how different .

contributions dominate in the two cases. ?




structure of the energy level diagram, as constructed
from Figs. 4.4(a) and 4.4(b), these behaviors are
obvious.

For r=1, the mean displacement of an m-manifold is
much greater than its width and thus is the dominant
contributor. From this and the fact that the higher
quantum orders probe only the more extreme states
(which differ little in mean dipolar shift), we expect
.the M, of high quantum orders to be small. For the
lower quantum orders, the sampling is between adjacent
manifolds (which again do rnct differ much in mean
dipolar shift). Thus, we expect the M, of low quantum
orders to also be small. For the orders that connect
p=N/2 to p=0 manifolds, the difference in mean dipolar
shift 1is at 1its largest, and we expect these orders
(n=N/2) to have the largest M,.

For r=0, the opposite 1s true. Since the dipolar
shift 18 41ideally zero for all manifolds, only the
variances c¢an contribute. The variances are roughly
the same except for the more extreme states. This
suggests that M, should remain roughly constant for the
lower quantum orders and then drop to zero at n=N,

Figure 4.5(a) shows that for r=l the maximum M,
occurs off center toward higher n. This 1is due to a
third competing factor: the normalization constant.
Since the number of transitions decreases with n, the

maximum M, is driven toward higher n.
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To summarize, the three competing factors in
determining the features of M, are:

(1) the difference in mean displacements between

transition manifolds.

(2) the distribution widths of transition

manifolds.

(3)-:he normalization constant.
The first term never contributes to the zero-quantum
order and drives maximum M, toward n=N/2. The second
term, which 1s directly proportional to 32 » drives
maximunm Hz towards n=0, The smaller the average
coupling d is, the smaller M, is. Finally, the third
term favors higher n.

The plots in Figs. 4.5 and 4.6 were generated with

the same programs listed in appendix 4.C.»

4.3 COMPARISON OF EXPERIMENT WITH COMPUTER SIMULATIONS

AND STATISTICAL MODEL

We show examples of systems exhibiting both
behaviors predicted by the statistical model.
Experimental results can be compared against exact
dynamics calculations of ultimate T averaged

(12) and the statistical model using the

spectra
experimental coupling constants.
The r=0 behavior is exhibited by n~hexane-dy, with

the methyl positions deuterated, oriented in a nematic

liquid crystal. It is an 8-gpin system: only
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intramolecular couplings are ﬁonzero since rapid
translational diffusion of solutes in a liquid crystal
averages to zero intermolecular couplings. The ratio
of the average IH dipolar coupling to the rms value is
measured to be r=0.12. Shown in Fig. 4.7 are the M,
values of a T-averaged MQ magnitude spectrum of this
system.(13) The t values range from 9.0 - 1ll1.5 msec,
in increments of 0.5 msec. A nonselective three-pulse
sec  .ce was used. The largest second moments occur
nea: a-9, in agreement with the statistical model.

The other extreme is illustrated in the
experimental second moments versus n of polycrystalline
adamantane, shown in Fig. 4.8. The T values range from
244,8 - 448.8 usec, in increments of 40.8 usec. The
transition 1lines are overlapping, and thus a time-
reversal (even-selective) pulse sequenc? was used to

(10) Since the sample 1is a

obtain these spectra.
powder, it 1is hard to assign a single r value to the
spin system. Furthermore, there are an Avogadro's
number of coupled s8pins 8o the system size |is
essentially infinite. These experiments show that M,

increases with n up to l6-quantum, indicating that r>0

and the anumber of spins involved is indeed very large.

4.4 CONCLUSION

Van Vleck's moments formula for single-quantum

spectra can be easily extended for MQ spectra. In the
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e CD3(CHj), CD3
("}
F
£ o
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€
°
c
o
o
o
[7,]
1 1 1 { 1 1 1
0 2 q 6 8
n (quanta)
X8L8211-6799
Figure 4,7 Results of n-hexane-d6 oriented i1in a

nematic 1liquid crystal: experimental values (solid
dots), exact dynamics calculated ultimate T average MZ
values (solid line), and statistical H2 values versus n
(dashed line). The experimental MQ spectrum used 1is
the average of 3ix magnitude spectra with T values
ranging from 9.0 - 11.5 msec.
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Figure 4.8 The MQ M, values of solid adamantane

powder. The spectrum used is the average of 5 spectra

with preparation times ranging from 244.8 - 448.8 usec. £



proéess of generalization, we find the‘dependence of M,
on the number of quanta. One useful consequence of
this i1is that one can choose to observe the broader
orders that are more sensitive to molecular dynamics
than the conventional single-quantum order.

Using a statistical assumption, the second moments
of MQ orders are rigorously evaluated. The statistical
model reveals that two distinct behaviors can occur in
M, values as a functioun of n. Both behaviors have been

shown to exist experimentally. The experimental

results are in accord with statistical model .

predictions and with exact dynamics calculations. The
agreement of the n-hexane-dy MQ spectra with the
statistical model demonstrates that even for a small 8-
spin system with symmetry (C;,), the statistical model
predicts the correct general M, behévior. This
indicates that the w@manifolds of states grouped
according to the irreducible representations must have
distributions similar to those of a random spin
system. In combination, the two systems demonstrate
that a statistical second moments treatment is
appropriate for small spin systems as well as for large

spin systems.

88

R

[y



APPENDIX 4.A

Evaluation of Trp{HD} for the p-manifold

Since the trace 1is independent of the choice of
representation, the simple product basis set will be
used. Henceforth all states will be referred to 1in
this basis set. Only the operator Izilzj of Hp is
diagonal and contributes to the trace. Thus,

(5)

Tr {8} = k§1<k|HD|k>

(g) .
= ] d, . <k|I_.I_,|k>. (A.1)
kel 1<j ij zizj

Exchanging the order of the two summations, which are
done 1independently, we sum over the states first.

Using the relation:

%, (1,3) are : .rallel in |k>
<k|T T, [k> = { !
ST (1,j) are antiparallel in |k>
(A.z)
the summation over the states k produces:
I <k|I T |k> = Z[S(N,p) = OCN,p)], (A.3)
k

where S(N,p) is defined as the number of states in the
p-manifold that has spin pair (i,j) parallel, and

O(N,p) 1is the number of states that has (i,j)
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antiparallel. These two quantities are determined by

combinatorial arguments and are given by:

sane) = () + (3230, (4.4)
O(N,p) = (g) Efgjll. (A.5)
2

Conservation of states requires:
N
S(N’p) + o(Nrp) - (p)‘

Substituting Eqs. (A.3) - (A.5) in Eq. (A.l) yields

N N 1=
Tr, (B} = (J)I(3) = 2p(N = p)1gd (A.6)
where d = (g]'l L d is the average dipolar

1<y
coupling.
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APPENDIX 4.B

Evaluation ofTrp{HDZ} for the p-manifold

As 1in appendix A, we use the simple product basis
set in evaluating Trp{HDZ}. Written in the form of
summation over states, Trp{HDZ} can be separated into

diagonal and off~diagonal elements of Hy:

Tr{a ?} = JCk|H)[kO<Kk|EJk> + [° <k|Bj|1><1[Hy|k>,(B.1)
k k,1
where the prime on the second summation indicates that
the l=k term is excluded. The first term is the sum of
squares of the diagonal elements of HD, and the second
term 1is the corresponding sum for off-diagonal
elements. From the form of HD, we recognize that the
operator IziIzj is purely diagonal and the flip-flop
operator (I+1I_j + I-il+j) is purely off-diagonal.
This 4implies that only Izilzj contributes to the first
summation, and only (I+iI-j + I-iI+j) contributes to

the second summation in Eq. (B.1l):

N
2 (%) % %
Tr_{H "} = d, . d, . .<k|I__TI__|k>}<k|I_,.I . .|k>
p D K 1<) 1°<§° ij 173 ziz] zi“"zj

. 1
+ )° ] ) dijdi,j,<k|1+i1_ +1

_1 I |1
k,1 1<) 1°<3° 16 3 i +3

<11, .T_, +1

j _i,I+j,|k>. (B.2)
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1. Consider for now the first summation of Egq.
(B.2). This term is more easily evaluated by
exchanging the order of summations over states and

spins, i.e.

N
(%) N N
Ck|H |kD<k|H k> = | J >4, .d, . .QN,p)
Lk I8y D 15y -4y T6 13%7
where
N
(5)

Q(N,p) = 16 z <k|IziIzj|k><k|Izi,Izj,|k>. (B.3)

The sum Q(N,p) has both positive and negative
contributions. The summand in Q(N,p) is positive when
<k|IziIzj|k> and <k|1z1‘1zj‘|k> are both either
positive (+1/4) or negative (-1/4) [see Eq. (A.2)] and
is negative when (klIziIzj|k> and <k|1z1‘Izj‘lk> are
opposite in sign. Performing the summation over states

k of Eq. (B.3) yields:
Q(N,p) = A - B. (B.4)

Here A i3 defined to be the number of states within the
p-manifold that, given ¢two spin pairs (1,3j) and
(1°,3°), have both pairs parallel in spin or both pairs
antiparallel in spin. B is defined to be the number of
states within the p-manifold that have one spin pair

parallel in spin and the other antiparallel in spin.

EERSRIRA]
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Conservation of states requires:

TR

N
A+ B = ,
)
implying that Eq. (B.4) becomes:
N
Q(N,p) = (p) - 2B. (B.5)

Thus it 1is only necessary to evaluate B. Three
cagses can be distinguished:

(a) (1,3) = (17,31°),

(b) (1,3) and (1°,j°) share one common spin,

(¢) (1,3) and (1°,3°) share no common spin.

We will treat each case separately.

Case (a): B = 0, by definition.

Cagse (b): Suppose 1i,j,k are the spins of interest,
where k = 1° or j°. We divide the N spin system into
two parts:

(1) a 3-spin system consisting of spins 1i,j,k, and

(2) a (N-3)-spin system consisting of the rest of

the spins.
Division of the system facilitates the —counting
argument, We designate the number of s8pins that are
parallel to the magnetic field in the first spin
subsystem by Pp» and likewise the same for Pg in the

second spin subsystem. Note that conservation of spins

requires P, + Pg ™ P We also 1let B, and Bs have
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analogous meanings in the subsystems as B does in the
total system [Eq. (B.4)].

For the 3-spin system,

[ A A

0, p_=0,3

r - {2’ pr-l,z . (306) -

To treat the (N-3)-spin system, we utilize the facts
that Pg " P = P and that it 1is the product of Br and

B, that 1is important, i.e.:

For pr-0.3, Br-O and the contribution to B 1is zero
regardless of B,. We thus will not evaluate B for

Pg=P>p~3. For pg=p-l,p-2, the coatribution is nonzero,

and
N-3
{ (511 P =p-l
B = .
8 N-3
(p-2)s Pg=P~2
Therefore,
N-3 N-3
B = 2(p_1) +2( 5] .
N »
f(p).

Case (c¢): Evaluation of B here involves the same
concept as in case (b). Since (1,j) and (1°,j3°) are .

four distinct spins, we divide the N spin system into a
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4-3pin system and a (N-4) spin system. The results

are:

There

where

0, pr-0,2,4 -
Bl’.’ - {(4) (4 * g
3)’ pr'l’3 £
-4
(g_l). P =p-l
B -{ L ]
8 N-4
(p_3J’ ps-p-3
fore,
4 /N-4 4,/ N=-4
s - (DO + dDH
- Zfs(g).
o (N-p-1)(N-p-2) + (p-1)(p-2)
g (N"Z)(N‘3) . (3.7)

In tabulated form, we have for expressions of B:

B
case (a) 0
case (b) f(:)
case (c) 2fg(:)

The sum Q(N,p) for each of these cases can be found

with

™)

Eq. (B.5).

The final form of the first summation term is:

§<k[HD|k><k|HD|k> - (:)[a + (1-2£)b + (1-4fg)c], (B.8)
K

where

) *I T s
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N
. T% 1§jdij’
v
b Tgigj k#%,jdij(dik ¥ iyl :
. ) |
c = R'sz 1‘%_1 K IPL YR (1#1', j#3")

are merely constants, and f and g are defined in Egqs.
(14) and (B.7).

2. To evaluate the second summation in Eq. (B.2),
we realize that for a given pair of states |k> and |1,
at most one of the terms I+1I-j and I-iI+j will give a
nonzero matrix element. Also, 1f one s8spin pair flip-
flop term takes |1> into |k>, then a different spin
pair flip~flop term cannot take the same state |[1> into

|k>. That dis,

CTRIUR S0 SR SN SIS ¥ 5SS SR,

gtIog Ty olk> =

61j.1‘j'°
(B.9)
Furthermore, for a given state |k>, Eq. (B.9) s

satisfied for only onme state |1>. Thus summation over

1 of |<k|I, I, + 1_1I+j|1>|2 gives: .
) 2 0, (1,3) are parallel in |k> .
E l<kl1+11-1+1-11+j|1>l -{l, (1,3) are antiparallel in |k>°
(B.10)

Performing the summation over k of Eq. (B.10) produces:

. 2
E E l<k|1+11_j+1_11+j|1>| 0(N,p), (B.1l)



where O(N,p) is defined in appendix A, Eq. (A.5).

Making use of Egqs. (B.9) and (B.1ll) and the

freedon

of exchanging the order of summations, the

second summation term 1is:

N )
lE12‘<k|un|1><1|HD|1;:> = Zj -1—6 E |<k]I+i J4-1_114__,'|1>|
N
1,2
= gj Tgdyy °(N.p)
- (:)fa. (B.12)

Combining the two summations [Eqs. (B.8) and

(B.12)],

2
TrP{HD

where a,

we have as our final expression:
b= ()(Q+e)a + (1-26)b + (1-bfgde},  (3.13)

b, ¢, £f and g are as defined in Eq. (B.8).

2
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APPENDIX 4.C
Computer listings of programs MOMENTS, PLOTl, and

PLOT2

These programs were written for use on the VAX/VMS
computer system.

MOMENTS calculates the statistical dipolar second
moments of each multiple-quantum order. It requires as
inputs the number of spins and :hé dipolar coupling
constants. An option is provided for g;nera:ing random
couplings, given a range of couplings and the number of
spias. The program also has the capability of ruanning
congsecutively up to seven different systems having the
same number of spins.

The second moments for the multiple-quantum orders
are gathered in the datafile PLOT1.DA. If the mean
dipolar shifts and standard deviations for the Zeeman
manifolds are also desired as outputs, the datafile
PLOT2.DA 13 created.

~unning PLOT]1 and PLOT2 will allow the plotting of
the data arrays PLOTl.DA and PLOT2.DA, respectively, on
the Tektronix 4014 and 4662 plotters.

The plotting routines were supplied by Jim

Murdc: ...
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Dro, ram romsuts

This pgrogram calculates tte rultiple-quantum

second momeats for a srin system containiag ug
to 22 spin~1/<’s. 1lLe calculation is based on
a statistical moasel, ebich disregards syrmetry.

T RERC)

aimension 4(4$5¢),var(1£1),sqvar(1d1),n(1e1)
integer 3,p<
real mor(lel) ,moml(121),mom2(121),00rm

2(p)=p#(a=p)®z.2/float(n*(n=-1))
rand{j)=c.2®*ran{(j) = 1.2

oraa(unit=21,name="plotl.da’,type="nes”’)
ofpea(unit=¢z,name="plotZ.za’,type="nev’)

type 32€1 .
format(//,’ enter tce cumter of spims: “,$)
accept *,n

nz=n+n

al=n+1

typ2 21,1 . . ,
forrat(/,  how many “,13,° spin systems szouli be tried? °,$)
accept *#,n0s5€ets

tys2 Z¢s
tormat(/,’ stouid tce sidtn and the mean contribution be plotted’/
‘ 13 adaition to tha seconi moment ? (2=no,layes; °,35)
accept *,isep
mr=nl
an=2%a1
1f(isep .eq. 1) mm=2=nl
¢rite(1,721) osets, m -
write(2,721) asets,an -

do 45¢ iset=l,asctls
if(asets .2t. 1) type Slé,.,n,iset , )
format(// .14, " SEIN SYSTEM #°,13,° ceeee o/)

type £2z2

format(/,” 33 you want randor couplings? (c<=nc,l=yes)
accept *,icrolce

1f(icacice .eq. 1) gc to 29

’

v?)

type 3¢3

forrat(//,° enter toe dipolar couplicg constants i hZ..e.e’,/)
12 20 i=1,n0-1

do 28 J=i+l,n

k=2a*(i-1) = 1#(1+1)/2 +

tJpe ¢4, 1,)

format(3a, "d( 43, 0 . 13,°) ¢ “,%)

accept *,d(x«)

continue

€0 to 5S¢

type 203

format(//,° enter a maximum ragnitude for courlings im hz: °,$)
accept *¥,dmaz

type twe

forrat(’ sbould ail couplings be positive ? (2=no,l=yes) ,3)
accept *,ipos T
type 327 -
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1

terrat(’ enter a ragdoriziasg iateger: °,$)
accenvt *,jr
Jre=jr

IS TR et

40 «@ i=]1,0~1

d0 4¢ jsi+l,an » ;
asa?(i=1) = 1%(1+1)/2 + )

i («)=dmazx“rani(jr)

1£(ipos .eq. 1) alz)=aes(d(x))

continue w

acoupscomb(n,z)
tvpe 3¢8, acoup
forrat{/,” 40 you eant the
aceczpt %,ipriat

L4 -

,13,° couplings printed ocut? °,$)

compute tpe dijzolar varlables t,a,bd

a=0,.2

t=3.0

L=,

30 <22 isl,2-1

do 22¢ j=i+1,n

A3 &< 431l ,n~1

dc 22¢ l=3g4+l,n

£133%(1-1) = 1¥(iel}/2 +

£c2n®(g~1) -~ £%(s+1)/c « 1

12((leecqyeg)ecr.(toeqel)eor.(j.2q.8).0r.(J.2q.1))
bal + d(&L1)%3(x2)

£C 10 z(¢

t2t + 1(«1)

a=a + $(a1)%d«Zg)

coatiaue

tat/4

a=a/1<

ast/1z

10 452 r=9,2a
misme]l

cerpute toe cormaiizaticn fectorl cecee

amsg-m
if(m .eq. €) Borraccre(ns,n) = 2.9%*n
{f(r .3s2. o) aormscomc{nz,om)

campute tge variance apd the méan of the ieeman manifolds .....

10 dek p=¢,n

Pl=pe+l

var(pl)st(z)® ((S=4%f(;))%a + (2-4%f(p))¥d +» 4¥(f(p)*
(4#a=3,=c*(0=1))/((8=2)%(0=2))*(t*t=a=2))

a{pl)=(1=-a*{(p))¥t

coatinue ;

cerpute tpe secons rmoment c..e

rom(mrl)=d.4

moml (ml)=c.d

rom2(rl)=¢.2 —
d0 4290 p=2d,cr —
rl=p+1 :
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p<=plem

romi(rl)=moml(m1) + comd(n,p)*comd(n,m+p)*(var(pl)+var(p2))/norm
mom2(ml)=mom<{m1) + come(3,p)*comt(n,m+p)*(a(32)~r(pl1))**2/norm
continue

mom(ml) = mori(ml) + mor2(ml)

coatinue

priant 2¢1,a

format(1sl//° second morents for a “,13,” spin system c....’//)

tf(iccoice .eq. 1) go to 252

prict o«¢Z

forrat(Zx,” coupliags entered by hand”’)

g0 Lo 472

d lsu==araz

{f{ipos .eq. 1) dlowss.Q

priat €24, dlaow,dmazx

fcrmat(:x.' raneg of ra-domlj-c-osen couplinz- ‘,29.2,
‘az to “,fs.2,° h2z°)

-1t €34, jrv

1crmat(//.-x. initial rancomizing integer = ,:_.z)

if(iprist .eq. €) go tc 4c@

priat 3¢

format(////,° the coupling constaats 10 BZ e.eee’ /)
d0 473 i=1,n-1

do 272 j=i+l,a

&=n*(i-1) - 1*(101)/4 +

prist o.g, 1, s d(x)

fersat(Sx, "at’ 0 Tei3,°) = 7 £2.2)
continue
priat 6é?
fernati/////, 73z,° »i1ta’,161, ‘Tean / m’,3x," secoad roments’,
12x, ratio .ch, contribut.cn 23X, coutributton /,
- ,l‘.l ‘ - ).ch, ‘wm——- .30:.;‘\ - ),:x.lc( '/)
o 292 r=2,n
rl=re}

ratmom=rom({ml)/mem(<)

print S¢&, wm,mom(ml),ratmom,roml(mi),mom2(m1)
ferrmat(ie,7x,€13.3,6x,e13.5,251,813.6,31,e13.8)
contiaue

ariot oll

fornat(lcl///// ? ,12x,°#1dtk’,16x, ‘ratio’,24x, “mean’/
- '11XQ-( )c Ox. fmemm— 34x. ‘---'/’)

10 477 :=2,n

pl=p~l

sqvar{pl)ssqri(var(pl}’

ratvar=sqvar(pl)/sqr: =:.2))

priat 31z, p,sqvar({p.,,ratvar,u(pl)

forrnat(i4,7x,613.6,6x,e13. 6.4-: 213.6)

continue

create lata arrays for plotting .ccee

writa(l1,70z) (mom(i),i=1,n1)

1f(isep.eq.1) write{(1,7¢Z) (momi(i),1=1,n1),(rom2(1),1=1,n1)
write(z,7¢2) (sqvar(l),i=1,al1)

write(2,722) (a3(1),i=1,01)

FEL TR T )

A



contlaue

type Sus

forrat(//,° do you saat amother spin system ? (@=noc,l=ayes)

accept *,ispin
1£(1spia .é3. 1) g0 to 12

priat €13
fermat(lal)

format(i€)
fermat(eld.q)

close{uait=l)

cics2(uait=2)
eai

fugectiona comb{m,r)

computes the oigomial coefficiest for 2 “taiogs” tazen

r atl a tire

comG=sy

1t(m .le. ) retura
if(r .ge. 1) retura
nram

if(r .at. a/z) mmapn-m
cembegy

1f(am .eq. 1) return
rrlsmr-l

qd=rm

d0 22 i=] ,mml
comtscomrc¥(a=-1)
qa=qd*(rm=4)
1f(moa(1,12) .32a. 3) g0 to 20
camb=scomrd/ 44

qe=1.2

ccntiaue

comb=comb/qd

retura

agd

“»$)
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pre2ram plotl

3 program for plotting equally-spaced data poirts on the

Tegtroaix 4wl4 3nd 4362

dimenﬁign dat(1¢,1021) ,drax(12),ipos(18),ines(13),xy(4),
corri4
ctaracter®s word(a)

scrd(1)=“cnsemtle”’
wori(2)=‘easemtle’
word (2)=‘data set’

tyve 521 | a .
format(/,” eater plotter used: 2= 4314, 1= 4352 W5)

accept *,ipl
Jp=d
1£f(ipl .ne. 2) jr=2

t7pe 282 - - .
forrat(/,” 1o whict "plot” file 1s tkte data ? °,3%)
accept *,ifl

call defile({“zlot’,ifl,1)

type £23 .

format(/,” hod rany data ENSEMBLES 2 7, 35)

accapt *,aees

type 20¢

format(/,” waicn uaits 10 you prefer - iaches (2) or em

(1) 7 %)
accept *,iun

corr(l)=¢.2B4€63
corr(&;sa.ssaéz
corr(2)=0.522Z2¢
corr(4)=9.a34E3

1y(1)=€.33
xy(c)=s. 28
xy7(3)=1%.8
xy(4)=&.¢

{1f(iun .2q9. ¢) 20 tO &y
do i2 i=1,4
xy(1)=2y(1) * Z.24

call srstrt(4214,2)
cail dasapt(2)

caell clip
cail incres

10 4CC len=1,nens

type 30¢€, iea ., '
format(//,” 3data emsemtle “,12,° .....”)

read(1,€622) nsets,np
reaa(1,502) ((dat(i,3), jJ=1,2p), i=i,nsets)

type 305, nsets
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forxat(/,17,° data 5735 in teis ensemdle’)

ipss=l

1f(nsets .eq. 1) g0 to 2z

type S51¢
format(/..x. enter the desired plottizg style ceves ol
éx,’l = all data sets on the same paze’,/,

£x,°2 » separate pa¢es but consistent scalineg’,/,

Ex. ‘3 = gaparate pages and independeat scaling ‘03)
accept *,ips

1£(1ps .1t. 3) crepssl
1£(1ips .eq. 2) erepsansets

19 i¢¢ ireps=1,nreps

it(arepes .2t. 1) type 311, irep
format(/,3z,°data set “,41,° .....”)

type 312, ap
format(/ 41. ‘sorizontal scallag for your’,15,° data poiats”,
seo o e '

type 13

format(/,5x, eater loe¢ aod Lizhk poist limits to de’,/,

¢, 3isolayed : (for all points, enter 2,3) °,3)

iccept #,3l0,0ui

if(alo .eq. @) 3lo=l

1£(ary .e3. ¢) nnisag

12(nct .1€é. olo) o0 to 23

3:y=3si - 8lo

type 3514, xy(Jp*l)

tcrwat(/. z, enter toe iesired plot -1dth ia your preferred .
/.83, undts 3 (°,23.1,° mazirum) °,3)

accept *,xx1

1f(lva .eq. 1) xxx33x2 / 2.3¢

1231=133 / corr(jp-l)

ssacg=ansets
if(ips .eg. I) ncact=irep

40 22 {ssirep,naack
ftpos(is)=¢
isaz(is)=d
drmaz(is)=v.@

Jpos=d

Joez=g

sragsc.d

do 29 is=irep,nhdck

10 z& ip=alo,nai

1f(dat(is,i;) .le. .€81) go to 26
tpos(is)=1

Jpos=1

i1f(dat(is,ip) .4e. =.221) g0 to 27
ioea(is)=l

Joegsl
dnax(15)-awaxl(dnax(ls).abs(dat(ls.ip)))
continue

srazr=arazl(imaz(is),srax)

contiaue

type 218

104

R

TR 7L



[$]

OO

o
(¢ 1)

(4]

o
[\
[ ]

(7]

Nore

forrat(//,4x,‘vertical scaling ceeee’)

1f(ips .. 2) 30 to «3
prarssrax

4pOS=]pos

40e:%;n€g

g0 to =2
prazsimax(ire;)
«pos=ipos(irep)
kceg=ineg(ire;)

1top=g

ibot=2

if(snez .se. 3) go to S5
tyve Z1E

forwat(/.~x. your data points are all positive. do you’,/,
=§' ‘eant tae negative calf-plana suppressel ? (@=no,layes)
$

accept *,itop
1£(4zos Jne. ¥) £0 to €2
type 517

forrat(/,%x, ’your data points are all negative. do you’,/,

3)
accept *,icot

type 218, pmax

€x, eant tae positive half-plane suopressed 7 (@=no,l=yes)

4
14

fermat{/,5x, “the beefiest data poiat has abs. value = °,314.6)

t.a° ‘15

for*at(/.:x. for "autcratic” full=-value scaliag, eater ..2.'
/.ox. CtLerdise ecter tte number -*ich corresyoads to”’,/,

8z, ‘mazimum magnitude oo tae plot: “,$)
accept *,fv

1f(fv .eq. 2.08) yrax=graz

12(fv .2t. C.&) ymazx=fv

type 322, zy(Jp*2)

forwat(/.:x. euter the desired plot beisht in your preferred’,

/+62,°ualts ¢ (‘ef3.1,  maximum) “,5)
accept *,yyy
1f(iun .eq. 1) yys=yyy / .54
77¥2yyy / corr(jp+z)
ytop=yyy - -1d@

tf(ips .n2. 2) type 321

torrat(/,5z, snoould a y-axis be drawn ? (@=no,ilsyes) *,$
1f(ips .2q. 2) type 522

format(/.-x, coould a y-axis be drass ? (o-no 1=yes,”,/,
€1, ‘2myes, but ouly oo the first page) °,%)

accept *,iax

i£(jp .¢5. 20 to 7¢

typa S2% 19s)

forwat(//. 2ater 1 if jou are ready to plot, ¢ 1f you’
41 ,°waa: . s4&i; [2.5 ‘,a,’, or =1 if you waat to juit

daccept *,; - .ice

if(ichoice .eq. 2) go to 3¢2

1f(tctolce .1t. &) £o to 430@

apagessl
1f(ips .2¢. ) npages=nsets

)

o/

“e%)
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do 132 lpaces]l,npages

1£(ips .3°. 2) g0 to 72
type 52€, ipage

format{/.5x,’aata sat ‘,12,° == plot it 27 (@=no,l=yes) “,$)

accapt *,1iq0
1£f{1g0 .e3. 2) &0 to 13¢€

call aewpag

zlo=nlo

zzi=1hy

1f(4top .ey. itot) call eindow(zlo,xhi,=-ymaxz,ymax)
1£(1top .eq. 1) call e¢indow(zlo,zc{,2.2,ymax)
1f(idot .2q. 1) cali window(zlo,xai,-ymazx,2.2)
call vepore(2.2,1332,2.120,7t03)

if(iax .eq. ¢) g0 to 73

1£((1az .eg. 2) .and. (ipaze .4t. 1)) =o to 7%
73zts ymax * (1 - {cot)

yazbs=yrax ¥ (1 = Ltoy)

call move(xlo,saxt)

call 1rae(xlao,saxd)

call move(1lo,3.2)

c3il iraes(zai,<.%)

nlines=}
12(ips .aq. 1) slines=nsets

do 122 ilinesi,nlines
iremazd(irep,i;arse,1li0e)
call move(zlo,dat(imr,alo))
10 33 4=1,32p
call drasi{xio+c,dat(im,2l0+x))
call 4rsend

continue

type 33¢
terrat(/,1832, “0ONeA2s 27 (Omno,lsyes,2=nev style,”,
‘lagey ensentle,s=quit) °,3)
accept #,io0n
1f(ion .=q.
1f(tca .eq.
1£(lon .eq.
1f(1on .2g.

) 2o to 72
) g¢ to 21
) g0 to 422
] #0 tO 4:=d

» (a N

contigus
coatisoue
contisue

call «rstop
close(unit=el)

format(1€)
forrat(e1d5.8)

end
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program plote

a proeram for plotting equally=-spaced data points om the
Tegtroaix 4¢14 and 466z == similar to PLOT1, tut combines
up to seven alifferent data ensembles on taoe sare graph.

dimension dat(1e,0¢1,7),dmax(19),1pos(19),ine2(102),xy(4),

corr(4)
cparacter®g 4ord(3)

word (1)=“iAl &CLE’
@ord (2)="FOFSTAND®
werd(3)=’data set

type Z9d1
format(/,” eater piotter used: &= 4214, 1= 4662
accept *,ipl

’

3)

Je=0
1£(ipl .2e. ¢) Jp=2

tyoe S22 " - ,
for~:  ° in «pich “plot file is the data ¢ *,3)
acc: .. ~...1

call i1efile\’zlot”,1£1,1)

type 2032
forrat(/,” hos Tany data EZNSEMBLES ?
accept *,nens

.

e 3)

’

type 242 : .

for~at(/,’ eblct units 1o you prefer = icches (2) or cm °,
‘()2 %,

accept *,iun

corr(l)=¢.3e465
corr(2)=d,25¢842
corr(3d)av.accz€
corr(4)=v,alLas

b Z
b ¥R <3
xy(-. 2.8
zy(4)=8.3

1e(tun .eg. @) g0 to 13
do 12 i1=1,4
ry(L zy(1) = 2.324

call ,rstrt(4214,2)
call iasopt(d)

call clip

call inzues

do <@ x=1,nens

read (1,602) asets,np

read(1,¢02) ((dat{i,J,x), J=i,np), i=1,nsets)
continue

type S2€, nsets

format(/, (“e12,° data SEIS per eansemble;)”)
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ies=}

1f(cse:s s2y. 1) 40 to 22

type 212
fermat{/,2x, eater tae desired plotting ,Strle e’ 9/
€x,°1l = all jata s2ts cc taoe sane page’,/,

gx,°2 » separate paces btut conslstent sce‘ing o/ »

€x,’3 = sagarate pages and independent scaiinz ‘.%)
jecent *,ips

12(ips .1t. 2) nrepys=sl
1£f(ips .eG. ) areps=sasets

do 20@ irep=l,nregs

if(oreps .4t 1) type 311, irep
format(/,2x,°3ata $2t ‘,11,° eeees’)

type 31z, o3

fcrwat(/ 14X, ‘morizonstal scaling for your’,i5,° data peints”’,
tspe 312

forwat(/. z, eater loe¢ acd high point limits to de ‘ol
52,°iisoleyed ¢ (for all points, ester 2,3} °,5)

accept *,ni0,2ai

if(clo .eq. ¢) clo=l

1¢(ant .24. é) aai=np

12{a224 .le. nlo) go to 23

spp=aci - alo

type c14, xy(jpel)

torva:(/.-x. eater the desired plot widtk ia your preferred’,
/.63,°soits 3 (°,f3.1,° mazimum) °,$)

accept *,xxx

1£(lua .eq. 1) zzx%x3x / Z.34

x33=33x / corr(jg+l)

phac4s=nsets
1£(ips .eq. I) nkacxairep

20 23 is=irep,nkack
iros(ls)=d
icecs(is)=d
drax(is)=e.2

Jpos=d

JBoa=e

srax=2.2

do SG {s=s{irep,ns4acx
10 <3 £®1,0ens
0 2& ip=clo,nzd
1:(*5:(1...-.;) e, .221) 29 to 25
1zos(is)=}
Jros=l
{r(3at(ts,ip,x) .ge. =.<21) =o to 27
{2ag(is)al
Joegel
imar(is)=amaxi(drax(is),ads(dat(is,1p,x)))
coatiaue
coatioue
smax=amazl(dmaz(is),smax)
centinye

type 218
format(//,4z, ‘vertical scaling «.cee”)
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1£(1ips .eq. 3) go to 45
prax=smax

KZO0S*JpoOsS

dnezg=joeg

g0 t0 3¢
pﬂax-dmax(irep;
xros=ipos{irerp
dneg=ineg(irep)

1top=2d

tcot=9

if(xneg .pe. &) go to 33

type 5132

tormat(/,2x, “your data points are all positive. do you',/,
5z, want tce negative talf-plase suppressed ? (€=no0,l=yes) °,
3)

accept *,itop

1f(£pos .0e. 3) g2 to &2

type 317

forrat(/,5x, your data points are all aezstive. do you”,/,
£zx,°want tre positive half-plame suppressed 2 (2=no,l=yes) °,
$)

accept *,icot

type Sl&, pmrax

format(/,5%, tce peetfiest data polat nas abs. value = °,314.5)
type S1: .

format(/,tx, ‘for "automatic” full-valus scaling, eater 2.257,
/.cx. otaereise enter the number -nich cerresyonis to’,/,
2z, razxirum magoitude on tke plot: “,$%)

accept *,fv

if(fv .eq. @.2) ymaxaprax

LE(fY .gt, ¢.0) gmax=fv

type 322, 8)(J -2)

forrma- .2z, enter tae desired plot height io your preferred”,
/e%2 . .35 3 (°,£5.1,° mazimum) °,$

accept =, yig

1f(lun .eq. 1) yyy=yyy / 2.54

Yyy=yyy / corr(jp+2)

ytopsyyy + .12

if(ips .se. 2) type 521

forrat(/,%x, saould a y—axis b- drawn ? (2=mo,l=yes) ’,$)
1f(ips .eq. 4) tyse 322

fermat(/,Sx, ‘spould a y-axls ce drawn ? g3=n0.1=,es,'./.
6z, ‘2=yes, out only on tkte first page) ,3)

accept *,iax

1f(Jp .. ¢) go to 7¢

tipe <. wordi{iss)

form .t . /,lz,’enter 1 if you are ready to plot, 3 if you ./.
4z, eant to s«ip Thls “,a, , or =1 if you want to gquit : ,3)
accept * ,icnoice

{r(icnoice .eq. &) g0 to 200

1f(4cnoice .1t. 8) go to 420

npages=l
if(ips .eq. <) npages=psets

d0 13¢ ipages=l,npages
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12(ips .06, Z2) g0 ta 72

type Izd, irage

forrat(/,3x, °data set ‘,12,° — plot it 22 (2Z2=no,i=yses)
accept *,ixo0

1f(1g0 «.eq. ¢) g0 to 128

call newpag

xlo=alo

ILisalkd

12{4top .ey. ttot) call window(xlo,zai,-ymax,yrazx)
1f(itop .€4. 1) call -innas(xlo.xhi.t.a.yvaxs
1f(ibot .eq. 1) call eiccce{zlo,2ki,-ymax,9.2)
call veport(2.¢,xxx,2..29,y%0p)

if(lax .eq. 2) go to 75

17((1ax .eq. &) .and. (ipage .gt. 1)) go %0 75
yaxts ymaz ®* (1 = {oot)

yazxos=-yraz ® (1 - itop)

call move(xlo,yazt)

call iraw(alo,yaxec)

call move(zlo,2.&)

call drav(zei,é.2)

nlinesal
1£(1ps .eq. 1) alines=nsets

do 1¢év ilige=i,alines
iramazd(irep,lpage,ilice)

10 =3 4s1,nen%

call move(zxlo,dat(ir,2l0,x))

i0 8 J=l,a,p

call rae(zlorj,dat(im,nlo+j,x))
continue

call zrseand
continue

type S3¢2 .

format{/,19x, "UNeAdd ?? (C=go,lmyes,2=nev style,”,
‘saquit) ,$)

accept *,ion

1£(103 .24. 2) g0 to 73

if(1lon .2q. 2) g0 %0 21

1£(lon .eq. 2) go to 42¢

contiaue
contiaue

call «rstop
csose(usit=gl)

fcrnatéle)
fermat(elé.g)

and

»

v$)
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CHAPTER 5
SENSITIVITY ENHANCEMENT BY SPINLOCKING IN THE

DETECTION PERIOD

5.1, INTRODUCTION AND THEORY

A MQ experiment is a two-dimensional
experinen:.(l) That 1is, one of the dimensions 1is
scanned in real time, and the other 18 scanned by
successive incrementation from shot to shot. Every
two-dimensional experiment suffers from twd sources of
noise: the real time noise, and the successive shot to
shot noise. The first type of noise, the t, noise, is
predominantly thermal noise in the electronics, and is
also common to single-dimension experiments. The
second type of noise, which has been termed the t;
notse,(2) 1s due to the dirreproducibility of the
experiment and 13 inherent in any two-dimensional
experiment.

A gimple scheme 1is proposed to improve S/N by
minimizing the t, noise. The idea is to acquire more
signal energy(3) in the detection period.

The pulse sequence used is shown in Fig. 5.1l. It
is a typical MQ sequence but with a train of pulses in

the detection period. The first three pulses allow

even-quantum selection and are phase-shifted
by A = %ﬁ , wWhere M 1is the maximum order desired, for

each 1incrementation in t; to effect separation of
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Figure 5.1 Even-selective mwmultiple-quantum pulse

sequence with spinlocking pulses in the detection
period. The preparation puises are incremented by an

amount A¢ for each incrementation in t, (TPPI).
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orders (TPPI(A)). The T pulse in t) removes offset
terms in the w;, spectrum. The next two rf pulses mix
the MQ coherences into single-quantum (SQ) coherences.
Detecting the amplitude modulation of the SQ coherences
as a function of t; maps out the MQ evolution.

Because the evolution in t, i; uninteresting for
our purposes, it is unnecessary to acquire the entire
F.I.D. in ty. In face, typically only one point in t,
is sampled for each incrementation in e, - Only the
amplitude modulation of the SQ coherences in t, is
desired. Therefore, 1instead of subjecting the §Q
coherences to decay under the full Hamiltonian, which
may contain rapidly dephasing terms, one can increase
the signal energy available for detection by removing
the rapidly decaying terms. The main source i? solids
is the dipolar Hamiltonian. One solutiomn is to apply
WAHUHA(S) in ty to remove this term. Best yet 1is to
remove all such terms by pulsed spiulocking.(6'7)
Under perfect spinlocking conditions, the ounly decay
that will occur will be due to the spin-lattice
relaxation in the rotating frame.

The multiple pulses in t, (Fig. 5.1) are applied
for just that effect. Rhim et a1(7) have shown that
optimal spinlocking is achieved with a series of =n/4
pulses at a repetition rate R satisfying

Q>

YHl.oc
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where '31- YHI

irradiation sgtrength and H;,. 1is the local field

is proportional to the average rf

strength,

By spinlocking the SQ coherences in t,, we are in
essence preserving the signal amplitude as modulated by
the evolution in t;. By sampling in the pulse windows
and averaging over all the signal that is available in
the detection period, we have performed an integration
of the signal in t,. The integral is proportional to
the signal amplitude at ty = 0 averaged over the t,

noise.

5.2 EXPERIMENTAL RESULTS AND DISCUSSION

The sample is polycrystalline adamantane,
C10H16. Experiments were performed at a regulated
temperature of 25°C.

The following observations on the effective
relaxation rates were made. The SQ transverse decay
time under free evolution was measured to be = 100
usec. A series of ®/4 pulses was applied at various
repetition rates to the SQ coherences. The observed
decay times in the rotating frame were

Q—l

9-1

= 15.9 usec, T > 1.2 sec
le

= 25.9 usec, T = 1.0 sec
le

Q = 35.9 usec, Tle = 0.2 sec
-1

Q > 90 usec, saw no spinlocking effect

-1
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With ®/2 spinlocking rf pulses at a repetition time of
2"l = 54.8 usec, T;, = 2.2 msec.
For our MQ experiments, the repetition rate was

= (39 usec)-l = 25.6 kHz and the pulse duration for a ¥

pulse was 8.0 wusec. Thus the average irradiation
strength was EIIZN = 3.2 kHz. From second moments
measurements, YH; /27 is roughly 15 kHz for
adamantane. Thus the condition for spinlocking was

modestly satisfied, and for our purpose§ sufficient.

The preparation time was T=60 usec in all our MQ
experiments.

The first sampled point occurs at t, = 0, the
normal sampling point. This is to be compared with the
integrated spinlocked signal. Integration was
simulated by taking the average of 1000 points sampled
in the spinlocking windows. These points were taken
after the first 25 m/4 pulses, or at a delay of 25071 =
1.00 msec after the mixing period. This delay moves
the sampling far away from any transients that were not
spinlocked.

Shown in Fig. 5.2 is a comparison of MQ spectra
obtained with one point sampled at t, = 0 and cthe
average of 1000 points sampled between spinlocking
pulses. There is an improvement in S/N of roughly x2
by sampling more points, indicating that the signal was
large enough so that t; noise dominates.

To effect t, limitation in noise, the signal was
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e
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500 kHz
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X0L8210-4T20

Figure 5.2 MQ spectrum obtained with pulse sequence of

Fig. 5.1 using (a) the first sampled point, yielding
the normal spectrum, (b) an average of 1000 points
sampled between the spinlocking pulses, yielding the
spinlocked spectrum. The <comparison shows lit:

improvement by ty spinlocking, indicating that ty ne e

dominates.
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attenuated by 30dB and the receiver amplifier gain was
increased appropriately to achieve its full dynamic
range. Figure 5.3 shows the large improvement in S/N
by spinlocking. The S/N is increased by 20 - 30 times,
which is near the maximum improvement possible. That
is, for t, limited sensitivity, the spinlocking
spectrum is equivalent to an accumulation of runs
roughly equal to the number of points sampled in t,.

In both instances, Figs. 5.2 and 5.3, we observe
the intensity in the odd-quantum order relative to the
even-quantum order is less in the spinlocking
spectrum. The odd-quantum coherences appear as a
result of imperfect even-selection, and must be a
result of imperfect offset cancellation in the
preparation and mixing periods. If even-selection is
perfect, the signal should appear as <Ix> for the pulse
sequence shown in Fig. 5.1. A small offset term causes
signal to appear in the orthogonal channel. It also
creates a small amount of odd-quantum in both channels
in addition to even-quantum <coherences, but in
different amounts. The difference in the spinlocked
spectrum and the normal spectrum reflects this
difference in the preparation of even and odd quantum
coherences in the two channels: the spinlocked signal
pertains to only one of the channels. Based on this
argument, we should expect to see a difference 1in

spectra obtained with t, spinlocking if selectivity is
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Figure 5.3 MQ spectra obtained in the same way as Fig.

5.2 but with attenuated signal
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imperfect.

For nonselective sequences, signal in the other
channel can be obtained by repeating the experiment a
second tim; with the spinlocking pulses changed in
phase by 90°. Another strategy 1is to phase the
spinlocking pulses at 45° with respect to the mixing
pulses, thereby spinlocking both channels
simultaneously and with equal weighting.

In conclusion, the experiments show that the
proposed scheme can improve sensitivity of detection.
The ¢, noise is proportional to the magnetization and
cannot be minimized by increasing sample size. In
contrast, the ¢t, noise can be made insignificant by
doing so. However, given the situation that the ¢,
noise is an important limitation, these preliminary
experiments show that ©pulsed spinlocking im the
detection period and with integration of signal in the

windows is successful in enlarging S/N.
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CHAPTER 6

CORRELATION OF MOTION OF TWO METHYL GROUPS

6.1 INTRODUCTION

Two interacting methyl groups serve as a model
system for studying hindered internal rotation.
Because it involves ounly s8ix nuclear spins, the
calculations involved are tractable. Definitions of
correlated and uncorrelated motion are well defined and
thus exact treatment 1is possible.
| We wish to utilize the fact that molecular motion
modifies the observed couplings between nuclear
spins. 1In oriented systems, such as solids or solutes
dissolved in a liquid crystal, the dipolar interaction
is typically two or three orders of magnitude larger
than the J couplings. Our studies wili be in such
systems; thus we will concentrate on motional averaging
of the dipolar couplings and neglect the J
couplings.(l)

The definitions of correlated and wuncorrelated
motion of two methyl groups are first stated. The form
of the Hamiltonians is thus defined and is different
for the two motions, ensuring that NMR is sensitive to
correlation of motion. The NMR spectrum for each of
these cases can be calculated as a function of the
dipolar coupling constants. Group theory for nonrigid

molecules is used to simplify the calculations in these
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two extremes and in the intermediate region. The
transition from correlated to uncorrelated motion can
be likened to an exchange process and hence is amenable
to treatment with exchange theory. Multiple-quantum
NMR enters as a simplification tool in the extraction
of coupling constants. A computer simulation of the &4-
quantum spectra for the molecule 1,8-dimethyl-
naphthalene—d6 undergoing exchapge processes at a
particular crystal orientation is presented.
Experiments on the same molecule dissolved in a nematic
liquid cryscal reveals that at room temperature this
system has wuncorrelated equivalent methyl gro.;s.
Finally, we present the analysis of a simple two-spin
system, diprotonated 1,8-dimethylnaphthalene-dlo, in

the limit of correlated and uncorrelated motion.

6.2 DEFINITION OF CORRELATED AND UNCORRELATED MOTION

In both limits, the methyl groups are undergoing
rapid torsional motions about their C5 axes. The
distinction we would 1like to make here 1is in the
relative motion of the methyl groups. We define the
motions as follows. If the mwmethyl groups are
correlated, the motion of one methyl group completely
determines the motion of the other group. If the
methyl groups are uncorrelated, the relative
orientation of the methyl groups is completely random

in time.
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The above definition of correlated motion is
independent of how the motion is executed. The methyl
groups can either be correlated in an "eclipsed" or
“"staggered" configuration, as shown in Fig. 6.1, or inm
an intermediate configuration. The motionally averaged
values of the dipolar couplings are modified by the
type of correlated motion the spin system undergoes,
but the number of coupling <constants remains the
same, Experipental determination of the dipolar
coupling constants, assuming a certain fixed distance
between the two C; axes, can lead to information on how
the methyl groups move in a correlaﬁed manner. The C3
axes distance can be determined by other means, such as
X-ray diffraction or neutron scattering methods.(Z)

The symmetry group of the spin Hamiltonian is also
independent of how the correlated motion is executed,
and can be found based oa the above definition.

Correlation of two methyl groups can be viewed as
two wheels in gear, however the methyl groups are
positioned. In the transition to becoming
uncorrelated, there is an occasional slipping of
gears. The rate of slippage depends on the potential

barrier determined by the environment and on the

temperature of observation.

6.3 DETERMINATION OF THE SPIN HAMILTONIAN

We will assume a system of 1isolated molecules
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Figure 6.1 When the correlated motion of two methyl

groups occur in an "eclipsed" manner, the methyl groups
are mirror images. In a "staggered" coanfiguration,

they act as gears in a cogwheel mesh.
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oriented in a matrix. The relevant Hamiltonian is the
one :hai is averaged over the nuclear motion. The
Hamiltonian also has to be consistent with the spacial
symmetry of the molecule.

At room temperature, the <correlation time of
-9 _ 1o~

rotation Te is typically 10 sec for methyl

groups.(Z) To observe the effect on dipolar spectrum
the inherent time scale is roughly 1073 - 1074 sec for
typical dipolar couplings. Thus, on the NMR time
scale, at room temperature the methyl groups are
motionally averaged.

To determine the Hamiltonian of the spin system,
one must know the number of spins involved, the number
of unique dipolar couplings according to the molecular
motion, and the molecular orientation with respect to
the external magnetic field. Specification of the
molecular orientation is essential since the magnitude
of the coupling depends on the pola; angle 6 that the

internuclear vector r makes with the external magnetic

>
field H :
o

|.—

(3coszei. - 1).

d. .
ij . j
j

W

4

We will first ¢treat a hypothetical case of rigid
lattice structure with one molecule per unit cell. The
influence on the spin Hamiltonian by molecular

reorientation, such as happens in a liquid crystal,
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will be treated in section 6.6. The determination of
the number of motionally averaged dipolar <coupling
constants is discussed separately for the intramethyl

and intermethyl parts of the dipolar Hamiltonian.

6.3.1 Intramethyl Couplings

Due to the fast C, reorientation of the methyl
groups, the dipolar couplings within each methyl group

is averaged to the same value. If the orientation of

the crystal is such that the two C; axes make the same

angle with respect to ﬁo , then the methyl groups are
equivalent and there 1is only one unique intramethyl
coupling constant. Otherwise, the methyl groups are
inequivalent and there are two distinct intramethyl
coupling constants. The above statements are true
gegardless of whether the methyl groups are correlated
or not. Thus, intramethyl couplings do not lead to

information on correlation.

6.3.2 Intermethyl couplings

The determination of the number of intermethyl
couplings 1is more complicated as a result of two
factors: the relative motion of the methyl groups and
the direction of the C, axes with respect to ﬁo . We

will assume for simplicity that each methyl group can

hop between three equivalent equilibrium positions.
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6.3.2.1 Uncorrelated Motion

If the methyl groups are wuncorrelated [Fig.
6.2(a)], a proton on one group senses the same coupling
to all three protons on the other group. But all the
protons on a methyl group are equivalent as a result of
the rapid methyl reorientation. Averaging the
couplings over this motion yields one unique
intermethyl coupling constant. Any type of molecular

reorientation will not alter this ﬁniqueness.

6.3.2.2 Correlated Motion

This case is the most difficult one to contend
with. Determination of the couplings depends on the
factors mentioned at the beginning of section 6.3.2.
In Fig. 6.2(b), for the sake of discussion, we have
assumed a particular relative positioning of the methyl

groups. However, the results remain unaltered by the

relative positioning or by whether the wmethyl

reorientation is discrete or continuous. According to
Fig. 6.2(b), there are three configurations that are
possible.

When the motion 1is correlated, the number of
unique intermethyl couplings depends on the orientation
of the molecule, and thus the symmetry group of the
Hamiltonian will vary with the orientation. (Take note
that this fact does not hold when the motion 1is

uncorrelated.) Three situations can occur.
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(a) Uncorrelated Motion

ey

(b) Correlated Motion
| 2 5
| —< >—
3 6
3 5
<
| 6
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-3 4

2 6
XBL 8210-2926

(a) In uncorrelated motion, the methyl

groups have a random relationship with respect to each
other. (b) Assuming the methyl rotor can hop only
between equilibrium positions, there are only three

possible configurations for correlated motion.
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(i) Equivalent Methyl Groups

When the two methyl C3 axes make the same polar

AR

angle with respect to H they are NMR equivalent.

o’
Averaging the dipolar couplings over the three possible .
configurations results in:

41474257436

d157d167d247d267d347d 35>
where the subscripts are consistent with the labeling
scheme of Fig. 6.2(b). Thus there are two unique
intermethyl coupling constants when the methyl groups

are equivalent,. The net result is that the dipolar

Hamiltonian is of the form:

H. = u X Ui' + v Z v

D kl tw Z wmn’

i,j '3 k,1 @,n -
where u is the unique intramethyl coupling constant, v
and w are the ¢two unique intermethyl <coupling
constants, The spin operators U, V, and W are of the

same form:

1
Uiy " Tl - eI IR I_iI+j),
and the indices run through the following labels:
(i,3) = {(1,2), (2,3), (1,3), (4,5), (5,6), (4,6)}
(k,1) = {(1,4), (2,5), (3,6)} ‘-
(m,n) = {(1,5), (1,6), (2,4), (2,6), (3,4), (3,5)}.



<&
(ii) H_ and the Methyl C, Axes are Contained in a

A4

Plane
The two methyl C, axes define a plane in thé
Cartesian space. The orientation of interest here 1is
the one where this plane contains also the direction
of ﬁo' We distinguish here the case where the methyl
groups are inequivalent. In this orientation, assuming
the same proton labeling scheme as befbre, one finds
that the equivalency of the intermethyl couplings are
the same as in case (i). 'Thus, the dipolar Hamiltonian
is of the form:
o1,y

Hy = up 1 i; 2

. » » X n
1,] 1 ,] k

) Uﬁ%;, ) Vel *t W ) Voo
i%,] , 1 m,n

and the indices run through the following sets:
(i, = ((1,2), (2,3), (1,1}
(i%,j°) = {(4,5), (5,6), (4,6)1},
and (k,l1) and (m,n) run through the same sets as

before.

(iii) Arbitrary Orientation

Excluding the particular orientations listed in
the above two cases (i) and (ii), all other
orientations fall in this class. The averaging of the

intermethyl couplings is different and yields:

d)4=dg5=d 36
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d15™d26™d34

d16™d247d3s-
Thus for an arbitrary orientation, the number of unique
intermethyl couplings is three. The dipolar

Hamiltonian is then of the form:

(1) (2) (1)
H, = u, L U..” +u, J U:S'.+v v +w [w
D li,j ij zi‘,j' 173 K, 1 kl lm,n mn
(2)
+ v, Z wm‘n"

m’,n‘

The indices run through the following sets:

(i,j7) = {(1,2), (2,3), (1,3)}
(i%,j*) = {(4,5), (5,6), (4,6)}
(k,1) = {(1,4), (2,5), (3,6)}
(m,n) = {(1,5), (2,6), (3,4)}
(m*,n”) = {(1,6), (2,4), (3,5)}

The number of unique intramethyl and intermethyl

couplings are displayed in Table 6.1.

6.4 NMR PERMUTATION GROUP OF NON-RIGID MOLECULES

The commutability of I, and H implies that the
Hamiltonian in the eigenbasis of I, is already in block
diagonal form according to the Zeeman quantum number
m. By finding the symmetry group of the spin system,
each Zeeman block can be further block diagonalized

according to the irreducible representations of the

symmetry group. This reduces substantially the amount

»
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Table 6.1

Number of unique dipolar couplings

intramethyl intermethyl
uncorrelated: (83x83).82 1 1
S3XS3 2 1
correlated: D3h 1 2
83 2 2

Cy 2 3



of time and effort in diagonalizing the Hamiltonian to
solve for eigenenergies, and even more so when solving
for the equation of motion of the density matrix.

The objective is to find all operations that leave
the spin Hamiltonian invariant. This defines the
symmetry group of the Hamiltonian. The following
procedure for group determination applies also to rigid
systems:

1. Find equalities among dipolar couplings. This
contains the symmetry of the dipolar Hamiltonian,
including the motionally averaged symmetry as well as
the spacial symmetry of the molecule. Form sets of

equal dipolar couplings 2 = {(i,j): dij-dk}’ where d,

k
represents the unique coupling constant for the set Qk.

2. Find all permutations of labels such that the
dipolar <couplings remain in the same set. These

permutations are the elements of the symmetry group of

the dipolar Hamiltonian:

G= (p : P Q = Q 1},
r T

k k
where
P9 = P d..=d :d..and d are both in Q 1}.
r r 1] mn 1] mn k
One must be careful to locate all symmetry
operations. It is more likely the case that a symmetry

operation is missed, and more transition lines are

predicted than is really the case.
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3. Given the identity of the group, the goal is
to ultimately determine the energy level diagram
according to the irreducible representations of the
group. This can be accomplished by calculating the
coefficients of generating functions of wreath

(3,4) or by obtaining the character table of

products,
the group and decomposing constructed reducible
representations of the Zeeman manifolds 1into the
group's irreducible representations;

Often it 1is difficult to identify the group even
when the elements of the group are known. One may use
elementary group theory, i.e. construct a

multiplication table of the elements, extract the

classes and subgroups from this table, etc., and

eventually counstruct -the <character table. This 1is
usually a difficult problem. Sometimes through
(5)

recognition one may find an isomorphism with a known
group and the obtainment of the group's character table
is automatic, since isomorphic groups have identical
character tables. Fortunately, there is a systematic
approach to group determination of nonrigid molecules
that involves decomposing a larger group into products
of smaller groups, which are easier to handle.

Two types of products are relevant, the direct
product and the semidirect product. The conditions in

which they are applicable are discussed below.

A direct product can be formed between two groups
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only 1f they commute. An obvious case to recognize is
the following. Physically, if two subgroups 1involve
permutations of labels only between disjoint parts of
the molecule, and no other operations in the group will
connect the ¢two subgroups, then these parts of the
molecules can be considered as separate entities. The
operations on separate entities commute, and a direct
product can be formed.

Semidirect products is used when one of the
subgroups is the set of all operations that permute
entire identical molecular parts, but th;t do not
inavolve any permut ations within the molecular

(7,8) Note that the frame subgroup does not

parts.
commute with the internal subgroups.
It 1is useful to realize that all NMR semidirect

product groups of spin systems undergoing uncorrelated

internal motion c¢can be <categorized as generalized
wreath products,. Wreath products are a subset of
semidirect products. In general for nanonrigid systems,
the molecular symmetry group can be decomposed into a
semidirect product of internal torsional subgroups and
a skeletal frame subgroup. When a frame subgroup which
permutes a set of identical rotors can be defined, it

(5)

can be decomposed into a wreath product. When more
than one set of rotors are to be permuted, the
generalized wreath product should be used.(6)

When the molecule is undergoing correlated

136

TREPRCT ] [

ipay
|



internal motion, the group 1is isomorphic-to a point
gToup. More specifically, the subgroup for the parts
of the molecule that move in a relative manner are
isomorphic to point grdups.

As an example, consider the para-disubstituted
biphenyl molecule x-06H4-C654-Y.(9) At room
temperature rapid torsional motion occurs about the
phenyl-phenyl bond. We will analyze the composition of
its symmetry group based on the above concepts. Each
phenyl ring has sz symmetry. Juxtaposed to another
phenyl ring, its symmetry is reduced to C,. If the
para~-substituents X and Y distort the phenyl structures
inequivalently, then the group of the whole molecule 1is
just the direct product CZXC2 , which 1s isomorphic to
D,y. If the para-substituents distor; the phenyl
structure equivalently, then an additional subgroup,
that contains the permutation of the two phenyl rings,
must be included. This group C, does not commute with
either r¢% the phenyl C2's nor with their direct
product. The group for the symmetrically disubstituted
biphenyl molecule is (CyxCy)“C,, which can be shown to
be isomorphic to D,. Here the symbol x represents a
direct product, and -~ represents a semidirect product.

Finally, we consider the importance of separation
of motional time scales. To cite an example, consider
the n-hexane molecule, CH3(CH2)4CH3. Suppose the

hexane molecule is wundergoing slow conformational
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changes but rapid torsional motions about the C-C
boﬁds. A different symmetry group may exist for each
conformation. Each conformation must be considered as
a separate motionally averaged nonrigid specie, each
contributing individually to the NMR spectrum. If the
hexane molecule is also undergding rapid conformational
changes, then the molecule is considered as one specie
which 1is averaged over the conformations as well as the

torsional motions.

6.5 DETERMINATION OF THE HAMILTONIAN SYMMETRY GROUP

Molecules undergoing rapid internal motion must be
treated with group theory appropriate for naonrigid
systems, as discussed in the previous section. As the
environment of the spin  system changes, so may the
symmetry group of the Hamiltonian. Specifically, if
one is dealing with a single <crystal, as the
orientation changes, the Hamiltonian changes and the
symmetry of the Hamiltonian may change. In the case of
two coupled methyl groups, there are five symmetry
groups to consider. We demonstrate the determination
of the Hamiltonian group on the different motional

cases.

6.5.1 .ncorrelated Equivalent Methyl Groups

The group for the case of an equivalent pair of

methyl groups undergoing wuncorrelated motion is G =
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(83*33') ~ S, The prime on the second subgroup
allows differentiation between the two methyl groups.
The notation S, represents the group of permutation of
n identical objects (nuclei). 1In wreath notation, G =

82[83]. The elements of Sj, 83', and S, are listed

below:

S3
(1)(2)(3)

{(12), (23), (13)}
{(123), (132)}

L d

S3
(4)(5)(6)

{(45), (56), (46)1}
{(456), (465)}

Sy
(1)(2)(3)C4)(5)(6)

(14)(25)(36)

The notation (a; a, ... ap) represents a cyclic
permutation of p objects, i.e. a; becomes a,, a,
becomes 89, <. and ap becomes a. The above
permutations can be related to point group

operations. As examples, the permutation (123) has C,

character and (12) has C, character on an individual
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methyl group.

There are a total of (6x6)%x2=72 elements in the
group (S3XS3')~82. The construction of the group G in
terms of products of smaller groups can be formulated
in the following manner. S5 and 83’ are obvious
subgroups; they represent the rapid reorientatidns of
individual methyl groups. All the elements of the S,
commute with all the elements of 83' since they permute
disjoint sets of nuclear labels. One can thean form a
direct product 83883‘ » which-is also a subgroup of G.
The product of s3xs3‘ with S, is a semidirect product
since S, does not commute with either S; and §3°.

The character table of (S3xs3)-82 can be obtained
from the subgroups S, and S,, as prescribed in many
refetences.(7'8) However, we will utilize the identity
of a pair of coupled methyl groups to gaseous ethane,
of which the <character table has already been
derived.(IO) Given the character table, projection
operators are used to obtain the energy level diagram
according to the irreducible representations of G, up

to the number of states for each Zeeman manifold.

6.5.2 Uncorrelated Inequivalent Methyl Groups

When the methyl groups are 1inequivalent and
uncorrelated in motiom, the S9 subgroup present in the
previous group that characterizes the symmetry of two

identical rotors is removed. The appropriate group is
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then S§4X%5;. The elements of the group can obtained

from a direct product of S5 with §;57.

6.5.3 Correlated Equivalenﬁ Methyl Groups

1f the methyl groups are correlated and
equivalent, the operations on this spin system are
isomorphic to those that are performed on
cyclopropane. That is, the protons in both cases are
restricted to move in a relative manner. The group for
this case 1is D3, . The elements of this group are:
(1)(2)(3)(4)(5)(6)
{(123)(456), (132)(465)}
{(12)(45), (23)(56), (13)(46)1}
(14)(25)(36)
{(153426), (162435)}
{(15)(24)(36), (14)(26)(35), (16)(25)(34)}

6.5.4 Correlated Inequivalent Methyl Grou.s in a

“"Planar'" Orientation

If the methyl groups are inequivalent and in an
orientation such that the methyl C, axes and ﬁo lie in
a plane, then the appropriate group is §j. That is,
since the methyl groups are <constrained ¢to move
together but are not interchangeable, this system acts
isomorphically as a single methyl group, and thus its
symmetry group must be the same as that of a methyl

group. The elements of the Sy group are:
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(1)(2)(3)(4)(5)(6)
{€123)(456), (132)(C465)}

{(23)(56), (13)(46), (12)(45)}

6.5.5 Correlated Inequivalent Methyl Groups at an

Arbitrary Orientation

For an arbitrary orientation of the methyl Cy axes
but with correlated motion, the group 1is Cy. This
group has the lowest symmetry of all the cases. It is
easy to show that the elements of the Cy group are:

(1)(2)(3)(4)(5)(6)
(123)(456)

(132)(465)

The list of groups for all five cases are

tabulated in Table 6.2.

6.6 EFFECT OF SPINNING OR MOLECULAR REORIENTATION

ABOUT A FIXED AXIS

Molecular reorientation is of particular concern
in a liquid crystalline environment where solutes have
rotational freedom, although wusually it 1is axially
restricted. Molecular reorientation can also occur in
a solid matrix if spacial symmetry allows it.

To treat this matter, we first determine the
effect of spinning on an internuclear vector r. Figure

’ I3 ’ 3
6.3 shows the vector r being spun about an axis w with
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Table 6.2

Symmetry groups of two interacting methyl groups

equivalent inequivalent
uncorrelated: (S3%xS3) ~S, S3%S3
correlated: D3y S3

Cs



X8L 8210-6728

Figure 6.3 A vector diagram showing the relevant

* . 3
angles when an internuclear vector r 1is beilng spun

about an axis at a rate wuwg.. The spinning axis has a

fixed angle 9‘ relative to the external magnetic

field E;, and the vector £ has a fixed angle B8 relative

to the spinning axis. As a result of spinning, the
>
angle 0 that r makes with Ho is time-dependent.
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an angle 6 with respect to ﬁo and an angle B with

’ . 3 - L
respect to ws . Assuming the rate of spinning we 1is

much faster than the inverse of the coupling, the time-

(11)

average value of cos?e(t) is given by:

cosze(t) = coszﬁ(cosze -LsinZe ) + Lsine .
s 2 s 2 8
. + >
If two 1internuclear vectors rij and L) of equal

magnitude in this spinning system have angles

Bij and Bkl such that

coszsij = coszﬁklg

or B.,. = %8

i3 Kkl *PT7 (p=0, 21, £2,...) 1)

are made

then the two coupling constants Eij and Ekl

equal.

The case of two methyl groups has three axes of
rotation: the two C; axes and the spinning axes. To
treat the combined motions, it 1is convenient to relate
the spinning axis with respect ¢to a '"molecular”
coordinate system defined by the two C; axes.

Figure 6.4 depicts the methyl groups as planar
rotors with their C; axes at some orientation with
respect to ﬁo' The a-axis is defined to have the
highest symmetry; it bisects the two C; axes and is

contained in the same plane. The b-axis lies

perpendicular to the a-axis in this plane, and the c-
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XBL 8210-6729

Figure 6.4 Definition of the molecular frame (abc),

shown here with the laboratory frame (xyz). The plane
defined by the two C; axes will be labeled the ab-
plane, with the a-axis (the axis of highest symmetry)
bisecting the two C; axes. The c-axis is perpendicular

to this plane.
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axis is perpendicular to this plane.

Using Eq. (1) and some elementary geometry
arguments, the following conclusions are drawn and are
applicable regardless of the direction of the Cy axes
with respect to Eo:

(1) 1If the spinning axis is contained in the ac-
plane or bec-plane, then the two methyl groups are made
equivalent. Any other spinning axis will make the
methyl groups inequivalent. The groups that can arise
from - spinning at this axis are (S3X83)‘S2 if
uncorrelated and D4, if correlated.

(2) If the methyl groups are uncorrelated,
spinning about an axis anywhere but in the ac- or bc-
plane will leave the methyl groups inequivalent. The
group that results is S3XS3.

(3) Consider correlated methyl groups. Suppose
the C3 axes are parallel and the two methjl groups are
mirror images. Spinning about an axis in the ab-plane,
but excluding the a- and b-axis, will result in the
group Sj. If there is any deviation from this ideal
geometry, the S, group will never occur and cthe C4
group 1s the appropriate onmne. The C5 group also

encompasses any spinning axis not contained in the ab-,

ac-, or bc-planes.

6.7 ENERGY LEVEL DIAGRAMS

The corresponding energy level diagrams are in
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Figs. 6.5 - 6.9. Group theory allows the determination
of the energy level diagram up to the number of levels
in each irreducible representa:ion. of a given Zeeman
quantum number. It requires no quantitative values of

the couplings, only the equivalence in the couplings,

and thus cannot lead to information on the
eigenenergies. Further determination of the energy
level diagram requires diagonalization of the

Hamiltonian within each subblock, or interpretation of
the experimental dipolar spectrum, depending on one's
objective.

Correlated systems have a lower symmetry than
uncorrelated systems., The uncorrelated representations
must be reducible in correlated representations. By
decomposing the uncorrelated representations into
correlated irreducible representations, one can find
how uncorrelated states transform under the correlated
group. This decomposition shows how the levels split
under a small perturbation. The method of
decomposition is called subduction of a higher symmetry
group 1into a lower symmetry group. The reverse 1is
called an induction. To perform a subduction, one
first finds the correspondence between classes of the
two symmetry groups and thereby obtain the character of
the higher symmetry group's representations for each of
the classes of the lower symmetry group. With the

great orthogonality theorem, one can decompose the
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Figure 6.5 Energy level diagram for (S3x53)“82:

uncorrelated equivalent methyl groups.
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Figure 6.6 Energy level diagram for S3XS3:

uncorrelated inequivalent methyl groups.
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Figure 6.7 Energy level diagram for D3p: correlated

equivalent methyl groups.
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Figure 6.8 Energy level diagram for Sjy: correlated,

3 axes and ﬁo

inequivalent methyl groups with the two C

contained in the same plane.
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Figure 6.9 Energy level diagram for C3: correlated

inequivalent methyl groups at an arbitrary orientation.



representations into a linear <combination of the
irreducible representations of the lower group.

"Coalescence diagrams" describing the convergence
and separation of representations in the transition
region are shown in Figs. 6.10 - 6.12. Note that it is
not possible to subduce or induce energy level diagrams
between equivalent and 1inequivalent methyl groups.
This 1is because equivalent methyl groups,' whether
uncorrelated or correlatéd, contain a C, type operation
that is not present in inequivalent methyl groups, and
complete correspondence between classes can never be
achieved.

Coalescence diagrams can also be found between
correlated methyl groués, and between wuncorrelated
methyl groups. Such diagrams show the change in the
symmetry of the Hamiltonian with changes in the crystal

orientation. These diagrams are in Figs. 6.13 - 6.16.

6.8 MQ SPECTRA

From the energy level diagram, one can count the
number of transitions that occur for a given quantum
order, excluding accidental degeneracy due to poor
spectral resolution. Table 6.3 lists the number of
transition lines for each quantum order and for each of
the limiting cases. The NQ (6Q) order always contains
one central line with no dipolar information (to first

order) and 1is excluded from the table. The 5-quantum
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Figure 6.10 Coalescence diagram from uncorrelated,
equivalent methyl groups [(S3XS3)“52] to correlated

equivalent methyl groups (Dg4,).
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Table 6.3
Number of transitions in the MQ spectrum for each of

the symmetry groups

uncorrelated correlated

S3x§37S;  S3xSy D3n S3 Cs
5Q* 1 2 1 2 2
4Q* 2 4 3 6 7
3Q* 7 14 12 24 28
2Q* 13 20 22 36 53
1Q* 20 34 38 60 92
0qQt 6 15 19 36 65

* The entry corresponds to the number of doublets. The
4Q and 2Q orders have in addition a strong central
line. Note that the nQ (n#0) orders are symmetric
about the order center.

t The entry corresponds to the number of lines. The 0Q

order is not symmetric about the order center.
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order offers no differentiation between correlated and
uncorrelated motion. (It does tell however whether the
methyl groups are equivalent.) The 4~-quantum spectrum
is sensitive to two-body correlations, and is able to

~distinguish the motions.

6.9 INTERMEDIATE REGION - EXCHANGE THEORY

Suppose we begin with a pair of correlated methyl
groups at very low temperature. The methyl profons are
undergoing fast torsionmal motions but always at a fixed
relationship with one another. As the temperature
increases, an occasional slippage of gears can occur,
and the methyl groups change configurations. This
slippage of gears can occur in either sense; i.e. one
of the methyl gears can slip in the clockwise or
counterclockwise direction (Fig. 6.i7). This
occasional slipppage in either sense can be envisioned
> a hopping between three equivalent sites
(configurations). Tnus we can apply exchange theory to

this process.

6.9.1 Exchange Operators

Let P represent a slippage of gears in one
sense. Then its inverse P-! must be the slippage in
the opposite sense, Properties of the permutation

1

operators P and P ' are:

(1) p3 = p-3 a3,
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Figure 6.17 In becoming wuncorrelated, one of the

methyl groups can slip in a clockwise direction or in a

counterclockwise direction.
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(2) »? = p71,

(3) p, Pl are real, nonsymmetricv(non-Hermitian)
and non-unitary,

(4) (P + P°1) is real, symmetric (Hermitian) and

non-unitary.

6.9.2 Master Equation with Exchange

Let p be the 1initial density operator. The form
of the density opérator after exchange P can be
determined in the following manner. Let Yy be the wave
function describing the initial state of the spin
system, The density matrix p is defined as wa, where
here ¢ is written as a column vector. The wavefunction
after exchange by definition is PYy. This implies that
the density operator after exchange is (py)(py)' =
PW!*PT - PpPT. The change in the density matrix as a
result of exchange 1is then Pth - p.

We assume that both senses of slippage are random

independent processes with the same rate of occurrence

c =1 (12)

e Because the exchanges are

characterized by
between equivalent sites, the Hamiltonians before and
after exchange are the same. Neglecting all other

relaxation effects, the master equation governing the

evolution of the density matrix is:

t -1 _~-1%t
dp - PpP - p P " pP - p
L T

e e
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In superoperator representation, this is written as:

[ o) At1,11 A11,120 vt A kk ]
P12 Ata, 11 412,12 e Al2,kk
“d L] . . L] L ]
dt : : . :
| Pk | L Akk,1r Akk,1z et Aukkk

where here k=2¥x2¥N, Compactly written, this 1is

4

> 20
=
dt [ p.

A

The superoperator A 1is composed of the Liouville

A
operator ﬁ and an exchange superoperator X:

A= i + X.

Equation (2) represents a set of

simultaneous linear differential equations:

d : ) 1 t =1 -1t
at’as st[l(uﬁasYQ HQYGGB) * te(PaYPGB*PaYPGB
! 2
= T Pasg’
e

where (a,8) = {(1,1), (1,2), ..., (2,1), (2,2)

)]pch

P11
P12

(2)

(3)

2¥xoN

(k,k”. The matrix elements of the superoperators can

be related to those of the Heisenberg operators:

aaﬁ,yé B HGBGYQ - H

07668’
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Xa8,v8 " T 'Pay’ o8 ayt 68 26

aB,Yﬁl'
When solving for eigenvalues of the matrix A,

properties of the superoperators to recognize are:
(1)
(2)

" v
H is Hermitian,
A . I3
X 1s real non-symmetric,
A
(3) Thus A is complex non-Hermitian.

A simplification results from the commutation of

I, with the exchange operators:

p, 1,1 = (27!, 1,1 = 0.

This means that the Zeeman quantum number m 1is
conserved under permutations (exchanges) P and P-l.
Alternatively stated, P and 1"-1 do not mix blocks of

different m. Thus, each Zeeman manifold can be treated

separately.

The exchange operators P and P'1 in general do mix
states belonging to different irreducible
representations. As evident from the <coalescence .

diagrams of Figs. 6.10 - 6.12, this is to be expected
since the states rearrange in the transition between
the two energy level diagrams. However, some
simplification do result and the symmetry-adapted-
linear-combination{®) (SALC) basis will be adopted.

The solutions to the master equation are found by

A
diagonalizing A. The eigenvalues that result are
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complex. Because the equations are linear, the
solutions yield Lorentzian lineshapes with
characteristic frequencies and linewidths. The

imaginary part of the eigenvalue gives the frequency of
transition, and the real part yields the exchange
broadening [ = w/2(full-width-half-maximum value). The
phase of a transition 1is determined by the initial
conditions, 1i.e. the phase factors of the prepared
density matrix p(t=0), where t fefer§ to the evolution
time.

Before performing a computer simulation, numerical
values for the coupling constants are required. This

takes us to the next section.

6.10 1,8-DIMETHYLNAPHTHALENE

The reasons for choosing l,8-dimethylnaphthalene
(1,8-DMN) for our studies are: (1) the methyl groups
are sterically hindered, and (2) its crystallographic

(13) Presented below are some of

structure is known,
the relevant structural information of this molecule in
the single crystal form. Complete information 1is
available from ¢the structure parameters given in
reference [13].

The <c¢rystal structure is monoclinic with four
molecules per unit cell and lattice constants a=9.8354,

b=7.012A, and c=16.1144, The angles that a, b and ¢

axes make with respect to one another are a=90°,
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B=124.35° and Y=90°. The <crystallographic data
presented in reference [(13] are in fractional
coordinates x, y, z as referred in this coordinate
system. In order to determine an internuclear distance

) S

ijo the following formula should be used:

2 2 2 2.2 2 2
Tij (xi xj) a® + (yi-yj) b + (zi zj) c

+ 2(x.-x.)(z.-z.)abcos8.
1 J 1 J

in Fig. 6.18 is the labeling scheme for 1,8-
DMN molecule, consistent with reference [13]. In the
minimum strain-energy configuration, the carbon
skeleton of the 1,8-DMN molecule is planar, The methyl
groups are in an eclipsed configuration where the outer
methyl C-H bonds [C(11)-H(1l1C) and cC(12)-H(12C)] lie
roughly in the same plane as the aromatic fraume. The
amount of tilt of the outer C-H bonds out of the
aromatic plane is 5° for the C(11)-H(11C) bond and
-10.8° for the €(12)-H(12C) bond. Thus the two methyl
groups are not quite mirror images.

The methyl C, axes are also slightly tilted out of
this plane: the methyl(ll) C5 axis [C(1)-c(11) bond]
deviates by 0.2°, and the methyl(12) Cqy axis [c(8)-(12)
bond] deviates by -0.2°, which are negligible.

The wmethyl C3 axes are not parallel; they are
splayed outward to accomodate both methyl groups in

such close proximity. Taking the C(9)-C(10) bond to be
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Figure 6.18 Molecular structure and the labeling

scheme of 1,8-dimethylnaphthalene.



the axis of highest symmetry, the methyl(ll) Cy axis
deviates by -7.4°, and the methyl(12) C; axis deviates
by +7.4°.

In the equilibrium configuration, assuming the
covalent radius of proton is 0.32A, the <clearance
between the outer radii of the closest intermethyl
protons is 1.32A., The separation of the methyl Cq, axes
are determined from the C(1)-C(8) distance (2.543A) and
the C(li)-C(lZ) distance (2.9324). The effective
activation barrier to methyl rotation for this molecule
has been measured to be 3 kcal/mole.(la)

From Fig. 6.18, one observes that the aromatic

protons H(2) and H(7?) are significantly close to the
methyl protons. The average distance of H(2) and H(7)
with the methyl protons is 3.00A. Another wuseful
distance to know is the closest intermolecular proton-
proton distance, which is 6.79A, Both of these
distances will be useful when estimating the rf power

required for heteronuclear decoupling.

6.11 COMPUTER SIMULATION OF EXCHANGE PROCESS

We will choose one particular crystal orientation
for discussion. The orientation chosen is where the
methyl C; axes and H, lie in the same plane and the
polar angles of the C; axes with H, are 78° and 92°.
The methyl groups are inequivalent and the appropriate

groups are S4%S4 if uncorrelated, and S4 if
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correlated. The dipolar coupling constants for this

crystal orientation are:

u, = 10.858 kHz (4)
up = 14.645 kHz
uncorrelated: v = 8,327 kHz
correlated: v = 17.001 kHz
{ w = 3.990 kHz.

The 5-quantum lines are unaffected by exchange.
We will concern ourselves with the 4-quantum spectrum
in the exchange process. The transitions of interest
are between the m=%2 to m=*2 Zeeman manifolds, and m=%]
to m=%*3 manifolds. We start wi:h the correlated limit
since it is easier to envision slippage of gears as an
exchange process than the reverse situation.

The secular determinant can be constructed given
the matrix elements of the Hamiltonian and the exchange
operators in the SALC basis of the correlated symmetry
group.

For simplicity ve dictate that all coherences, or
the elements of the prepared density matrix, assume the
same initial phase and intensity. In the rotating
frame and on resonance, only the dipolar Hamiltonian

needs to be considered in the equation of motion [Eq.

(2)].

6.11.1 Secular Determinant for m=%2 to m=*%2 Manifolds

The A (m=22) manifolds are unaffected by
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exchange. These n=4 transitions remain sharp with no
frequency shift.

The E manifold 1is affected by exchange. The
secular determinant 1is 16x16 and will not be shown
here. The actual construction was done trivially
within a computer program, listed in aépendix 6.A. The
solutions to the secular determinant were derived from
running a package computer program EIGCC from the IMSL
library. EIGCC is aﬁ iterative routine for

diagonalizing a general complex matrix.

6.11.2 Secular Determinant for m=%] to m=+3 Manifolds

Only the A, manifold is involved. In general, the
manifolds corresponding to different irreducible
representations are mixed by P and P'l. Note that
although the A,(m=%1) is mixed with the A ;(m=%1)
states, the secular determinant is not. This exception
occurs when transitions involve the extreme states A,
(m=2%3) . The origin of this exception arises from the
invariance of the extreme states to exchange. Thus the
secular determinant for the 4-quantum order 1is also
block diagonal with respect to the irreducible
representations of the group. For the 4A; transitions,

it is:

a-A 0 e f
0 b=-2A e f
= 0
e e c-A g
f f g d=-2A
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where

., 3
a -1(Eu1 + v + 2w)

.. 3
b -x(zuz + v + 2w)

c = -i(ul *u, + 2w) - %
d = -i[%(u1+u2) + v+ w] - %
e = -iiw
2{.
f = -i-%(v + w)
V2 V2
g -1—z(ul + uz) + -

With the insertion of the <coupling constants
listed in Eq. (4) into the program EXCH2 listed 1in
appendix 6.A for the E manifold and EXCHl in appendix
6.B for the A manifold, the results are shown in Table
6.4. The sharp transition Alkm-tz) to A;(m=%2) at
13.722 kHz is excluded from this table. Since the 4Q
spectrum is symmetric, only half of it is tabulated.
The frequencies are measured from the center of the 4Q
order, The lines that are broadened near the center
(at 0 kHz) are also excluded from the table.

The data in Table 6.4 and including the A (m=2%2)
transitions are illustrated in Fig. 6.19. At 1,=1 sec,
the lines are fairly sharp and correspond to correlated
motion. The most action occurs in the 0.1 - 2 msec
range. As the rate of exchange increasés, the E
transition at 7 kHz mixes with the <central E

transitions, broadens and is shifted in frequency
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The frequencies

(v)

the 4-quantum order

Table 6.4

and

exchange

broadenings

(r)

for

E(m=+2) to E(m=%2) and Al(m=12)

to Al(m=$2) transitions.

t(sec) v(kHz) F(kHz)
1x10”7 60.235 (4A)) 0.003
44.758 (a)) 0.0001
36.805 (aA)) 0.0002
1x10"% 61.545 (A;)  1.157
44.780 (A) 0.032
36.814 (4)) 0.025
2x10”% 62.171 (4;) 0.825
44.802 (a)) 0.032
36.831 (a)) 0.034
26.777 (Ay) 14.109
5.626 (EJ 14 .33
1x10”3 62.485 (A)) 0.188
44.825 (A]) 0.009
36.871 (4A)) 0.017
26.401 (A,) 2.785
6.91 (E} 2.08
2 ¥19-3 62.496 (A;) 0.095
44.825 (A;) 0.005
36.875 (A]) 0.009
26.386 (A;) 1.392
7.05 (£} 1.03
1 62.500 (4A;) 0.0002
44.825 (A)) 0.0
36.876 (4)) 0.0
26.381 (A;) 0.003
7.099 (E} 0.002
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Figure 6.19 Computer simulation of one half of the 4-

quantum region showing the broadening and merging of
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lines as correlation sets in.
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toward the order center as it disappears. The outer
four A, transitions are mixed and shifted in frequency
toward each other as the transition line at 26 kHz
broadens and disappears. At ‘re=10-7 sec, fast exchange
is occuring and the spectrum corresponds to

uncorrelated motion.

6.12 1,8-DIMETHYLNAPHTHALENE-D, IN A NEMATIC LIQUID

CRYSTAL

A convenient method for molecular isolaton is the
dissolution of the desired molecules in a nematic
liquid crystal solvent. Its applicability is
restricted to the narrow temperature vrange of the
nematic phase. In the nematic phase, the long axis of
the liquid crystal molecules have a defined direction
when placed in a magnetic field. The translational
freedom averages intermolecular couplings to zero and
retains only 'inctamolecular couplings. Molecular
reorientation of the solute in the 1liquid crystal
matrix does occur :rnd scales down the intramolecular
dipolar couplings. This scaling of coupling constants
by restrictgd molecular reorientation is described by
order parameters, the number of them depending on the
structural symmetry of the solute molecule.

The MQ spectrum for 1,8-dimethylnaphthalene-dg
(1,8-DMN-d,) dissolved astman #15320 liquid crystal

at room temperature is shown in Fig. 6.20. From this
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Figure 6.20 MQ spectrum of 1,8-dimethylnaphthalerw-ds

dissolved in a nematic liquid crystal at 25°C.
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spectrum, we wish to determine whether the methyl
groups are correlated in motion. It is not obvious a
priori whether the methyl groups are equivalent. Their
equivalency relies on the molecular reorientation that
occurs in the liquid crystalline matrix. [See section
6.6.]

Figure 6.20 shows two doublets in the &4-quantum
region. Referring to Table 6.3, we see immediately

that this corresponds to the group (SBXS3)“S implying

2
equivalent and uncorrelated methyl groups.

Often the object is to obtain molecular structural
information by iterating on the couplings and the order
parameters. However in our case we know the molecular
structure beforehand. We can use this extra piece of
information to solve directly for the order parameters
which informs us of the type of molecular-reorientation
occuring in the liquid crystal matrix.

To extract coupling constants from the 4- and 5-
quantum orders, an iteration routine MQITER(g) is
used. This routine requires as inputs the experimental
transition frequencies and an initial guess of the
coupling constants. The latter input requires
specification of the type of motion that the methyl
groups are experiencing. The resulting couplings from
iterating on the 4~ and 5-quantum orders are used to
generate the 3-quantum order, which 1is then compared

with the experimental 3-quantum spectrum. The best fit
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for these orders corresponds to eéuivalent and
uncorrelated methyl groups (as expected)Awith dipolar
couplings (Fig. 6.21):

u= 1.196 kHz (5)

vs= -1.223 kH=z.

Here u and v are scaled by the order parameters.

For 1,8-DMN-d6, the molecular point gtéup is
C, For sz molecules, there are twvo order
(15) S.a

v®
parameters: and sbb'scc’ where a,b, and ¢ are
the axes of the molecular frame. The a-axis is taken
to be the one of highest symmetry, the b-axis is
defined here to lie also in the aromatic plane, and the
c-axis is perpendicular to the aromatic plane (Fig.
6.18).

The motionally averaged dipolar Hamiltonian can be

expressed as:

L

ij> zirzj 4(x )]

.I .+ .I. .
silos*Ioly;
wvhere 2z refers to the direction of the external
magnetic field. For molecules having wmore than one
configuration, in the limit of fast conformational

changes all configurations contribute to the observed

coupling constants:

« Ll 5 pl® 6
<Dij> " g D;izz (6)
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where n, is the number of configurations. 1In general,

a
each configuration may differ in symmetry and thus may
have a different set of order parameters. In our case,
the methyl reorientation about the C; axes does not
affect the order parameters since they hop about
equivalent positions. Hence each configuration must

have the same order parameters, which can then be

factored out of the summation. The spacial part of Hy

is then:<15)
(3c0328€?)-1)
<p..> = k[ §__ ] PR
ij aa o £3
ij
~(cos 9<;) cos E;g)
+ (8p,=8..) g 3 ] (7

r:.
1)

For the intramethyl coupling u there are six

configurations to be averaged, and for the intermethyl

coupling v there are nine. Inserting Eq. (7) into (6)

given the observed coupling constants <Dij> in Eq. (5),

and calculating e ij 's from the crystallographic data

result in an unique solution for the order parameters:

Sga ™ 0.037

Sbb-Scc" -0.291.

The relation S €S - 8 implies that the
aa bb cc

molecular reorientation in the liquid crystal solvent
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is predominantly about an axis in the bc-plane. We
deduce however that since 1,8-DMN is planar, the open
volume required for a rotation about the c-axis is less
than for about the b-axis (or about the a-axis). Thus
we assert that the reorientation is predominantly about
the c-axis. Also, this reorientation equalizes both
methyl groups, which is consistent with the obtained MQ
spectrum,.

To summarize, the number of lines in the 4-quantum
order allows us to determine that the methyl groups on
1,8-DMN at room temperature are uncorrelated and
equivalent in the nematic liquid crystalline
eanvironment. Since 1,8-DMN 1is planar, to minimize
steric hindrance between solute and solvent we can
expect the aromatic plane tc lie along the direction of
the long axis of the liquid c-ystal. C;nsidering the
amount of free volume required, ;t can be argued that
the molecular reorientation is predominantly about an
axis perpendicular to the aromatic plane. The above

affirmations are in agreement with the measured order

parameters.

6.13 1,8-DIMETHYLNAPHTHALENE-D,,

The practical advantages and disadvantages of MQ
spectroscopy on the molecule 1,8-DMN-d, can be compared
with those of single-quantum (SQ) spectroscopy on 1,8-

DMN-d;g4. In both cases, an isolated molecular system
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is simulated by diluting the desired guest molecule in
a perdeuterated host which preserves the molecular and
crystal structure. The power required for proton-
deuteron decoupling 1is roughly the same for both
cases. The advantages and disadvantages of MQ NMR on
1,8-DMN~-d, is first diséussed. The SQ spectroscopy of
1,8-DMN-d,; 4 is analyzed and the significance of
impurity concentration is examined.

For the MQ experiment, the wise choice for the
guest molecule 1is 1,8-DMN~d, where the uninteresting
aromatic positions are deuterated. The advantages are:
(1) it requires a lower deuteration level, and (2) it
has the capability of separating the desired signal
from impurity signal. The previous sections have shown
':hac thev 4Q order is sensitive to <correlation of
motion. It is highly improbable that the perdeuterated
host impurities will contribute to the 4Q spectrum -
the probability of four or more impurity protons on the
same molecule 1is extremely small. Thus the purity
requirement of the host 1is not stringent. The
impurities of the guest molecule will contribute to the
4Q region, but if the purity is reasonably high (>902)
the purity level again is not critical.

The disadvantage of a MQ experiment is that it is
a two-dimensional experiment. Hence for a given data
acquisition time, it is inherently a lower sensitivity

experiment, with noise in t; as well as in tz.(16) To
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get the same amount of sensitivity as in an one-
dimensional SQ experiment, perfect selective excitation
of the desired quantum order and a full two-~dimensional
data acquisition are required.

For SQ spectroscopy to be feasible, a two-proton
system with one proton on each methyl group (and the
rest of the ©positions deuterated) is the most
convenient choice. Single-quantum spectroscopy on this
system can give information on the correlation of
motion.

The advantage of SQ NMR is that it is a simple
one-dimensional experiment, provided the magnet
inhomogeneity is small compared to the dipolar
broadening. The pulse sequence involves one pulse, or
at best a two-pulse solid echo sequence.(17) (The
solid echo experiment is preferred to minimize linear
phase distortion and since most solids have a decay
time comparable to the receiver deadtime.)

The major problem of SQ NMR is that the desired SQ
signal will oveflap with impurity signal. If the
dilution level is high (which is desirable for better
isolation of guest molecules), the impurities of the
host contribute a signifi:ant amount of signal. The
details of this matter will be discussed separately in
section 6.13.2.

We make the case for preferring a powder sample to

a single crystal.(la) The experimental problems
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associated with a single crystal are: (1) a crystal may
undergo crystal structural phase transitions as
temperature is lowered, and (2) cracking of crystal may
result if the cooling or heating of the sample occurs
too quickly. 1In using a powder, it becomes unnecessary
to know the crystal orientation, nor to know the number
of molecules in the wunit <cell and their relative
orientation in the unit cell. Though the S/N is lower
for a powder per frequency bandwidth, the singularities
(that occur at 6=90°) in the powder spectrum should be
sharp and the peak S/N should be substantial, excluding

dominant impurity signal contributions.

5.13.1 Single-Quantum Spectrum

If the system 1is wuncorrelated, we expect on the
average one unique dipolar coupling comnstant. The nine
configurations possible are shown in Fig. 6.22, where
it is assumed that the methyl group can only hop
between equilibrium orientations. The dipolar

Hamiltonian for this case is just:

H. = v[I .I 1

D RIS FER ST ISR IR

= vle'

The extreme eigenstates |++> and |--> are shifted

by %v, the symmetric eigenstate 7é(|+-> + | =+>)
' 2

by - —lv,and the antisymmetric state —l(|+-> - |=+>) is
V3 "2
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Uncorrelated Motion

= o= <
< <o <o
< o= D

Correlated Motion

(a) —<HH>— _<”H>_ H_< >_,.,
0 = < e
@ < > <

XBL 8210-2935

Figure 6.22 Assuming random hopping only between

equilibrium positions, f~r wuncorrelated motion the
methyl groups have ;andom relationship. For
correlated motion there are only three possible initial
conditions, and three ©possible configurations each.
Note that configurations b and ¢ are indistinguishable

by NMR.
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unshifted.

Assuming the methyl geometry is wunaltered by
deuteration, the coupling constant can be calculated.
The coupling for 6=0°, which is the maximum inherent
value possible, 1is:

Vo ™ 3.784 kHz.
The SQ spectrum for this molecule is then a doublet
with a separation of (/2 + %)v, or 11.0}2 kHz for 68=0°
[Fig. 6.23(a)].

If the system is correlated in motion, on the
average there are two unique dipolar coupling
constants. The two constants arise from the fact that
there are two initial configurations possible [Fig.
6.22(b)]. (Actually there are three; however, two of
them are NMR equivalent but are enantiomers.) The

superimposed Hamiltonian is:

The coupling constants for 6=0° are:

vy = 10.535 kHz

v, * 3.408 kHz

The SQ spectrum is a superposition of two doublets with

separations (/7 + %)v and (V2 + %)w, or 20.167 and
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(a) Uncorrelated Motion

l T I
i -10 0] 10
v (kHz)

(b) Correlated Motion

st
-
-—

-10 0 10
4 (k Hz ) X8L 8210-2927
Figure 6.23 The single~quantum spectrum for 1,8-

dimethylnapthalene-d;, molecule at orientation =90°
undergoing (a) wuncorrelated motion, resulting in a
doublet, and (b) <correlated motion, showing two
doublets with one doublet having twice the intensity of

the other.
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6.524 kHz for 6=0° [Fig. 6.23(b)].

The dispersion function of a powder pattern is

given by:(lg)

-
£(v) = (--2—3 + 1) /2, -d_<v<-+d
d 0 20
o
o 2V A, (2 <4 1 1
( a " 1 * (d DS 2d0<u<ido
o o
o (2V. 4/ 1
(d + 1) y -2-d°<\3<d°
o
wvhere d, «corresponds to the appropriate <coupling
constant at 6=0°, The singularities occur at *d4_/2,

which corresponds to d at 6=90°, Calculated dipolar
povwder patterns for uncorrelated and correlated motion
of I,B-DMN-dlo are shown in Fig. 6.24. Measurement of
the splittings between singularities of a powder

pattern yields the coupling constant at 6=0°,

6.13.2 Impurity Content

The motivation for including this section stemmed

from measurements made on 1,8-DﬂN-d10 showing impurity

signal comparable to or larger than the desired signal,
even at a high host purity level of 99.0% and at a 5%
dilution. This came rather as a surprise at first.
The arguments to be discussed below will clearly show
why SQ spectroscopy requires high purity samples.

The level of sample purity can be estimated
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(a) Uncorrelated Motion
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Figure 6.24 The single-quantum powder spectrum for
1,8-dimethylnaphchalene-dlo undergoing (a) uncorrelated
motion, and (b) correlated motion, showing a -

superposition of two powder patterns.



assuming a statistical distribution of proton
attachments. Generalizing, suppose there are N
molecules with m sites each, totaling a number of mN
gsites. The question 1s: what is the probability that
each molecule with m sites will have k impurities?

This can be abstracted to the following problem.
Suppose there are a total of mN objects, where x of
them are of one kind and y of them of another kind.
What 1s the probability of picking m objects such that
k of ¢them are of the y type, assuming k<y
and (m-k) <x? Through combinatorial arguments, this

probability is found to be:

(3 ) (g )

(x+y]

P(m,k)

Listed in Table 6.5 are the probabilities for
typical impurity levels. The percentage refers to the
number of sites occupied by an impurity and not molar
percent. The notation P(m,k) 1s interpreted as the
probability of 1,8-DMN having k impurity protons. For
1,8-DMN, the number of sites 1s a=12. The tabulated
values assume N=100 molecules, which is large enough to
yield values close to those of N+w,

Note that a portion of P(12,2) has protons in the
desired location. This amount {is (li)-l or 1/66,
implying P(12,2) should be multiplied by 65/66 to give

the correct impurity content.
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Table 6.5
Probability P(m,k) of m sites being occupied by k

impurities

impurity content P(12,1) P(12,2) P(12,3)
102 0.38 0.23 0.17
12 0.11 0.006 2x10”%

0.5% 0.06 0.001 1x107°
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The <calculation of 4impurity content of the
starting guest material 1s more complicated. It
depends on the selectivity of the deuteration
procedure. Thus the proton attachment is no longer a
statistical problem. Fortunately, the purity
requirement 1is less stringent since the guest molecule
will be in 1low abundance. For example, 1f the net

effect of the selectivity and extraction procedure is

902 effective, then roughly »>l0% of the sgites aré

occupied by mislocated protoms and the desired signal
is <902 of the expected value. (Compare this to a
random deuteration composing of 3827 single-proton
impurity, 232 two-proton impurity and 172 three-proton
impurity.) For the rough estimate that we want to make
this wmodification can be neglected. Note that part of
this reduction. is counteracted by the perdeuterated
host having the desired proton attachment.

Given Table 6.5, the comparison of the size of
impurity signal from the host versus the desired guest
signal can be made for a given guest dilution.

A 5% molar dilutionm 138 a reasonable amount for
effecting 1isolation of guest molecules. (Considering
cubic~closest-packing structure, 22 dilution is
optimal., But if the nearest intermolecular distance 1is
greater than the intramolecular distances, 5% dilution
is tolerable.) When the dilution is high, the impurity

of the guest compound can be neglected.
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The total !

H signal size is proportional to the
number of proton occupied sites. At 5% dilution, 952
of the molecules are hosts. Assuming a host impurity
level of 1Z, the number of sites corresponding to
single-proton host moleucles is (0.11)95Z = 10X, to
two-proton hosts 1is 2(0.06)95% = 12, and to three-
proton hosts is 3(0.016)95%Z = 0.05Z%. Compare this to
the number of guest proton sites, which 1is at best
(2)52 = 10ZX. The rest of the sites contribute to
deuterium signal. Thus even at 52 molar dilution and
with a 992 host purity level, the impurity signal is
comparable to the desired signai.

To improve the above situation, one may either

increase the amount of guest molecules (which may

result in intermolecular broadening) or decrease the
impurity content of the host. Let us consider the
latter.

Suppose the host impurity level is wultra-low at
0.5%. At 52 dilution, the number of host impurity
sites is 5% single-proton, 0.2% two-proton and
negligible three-proton. The desired signal again
derives from 10X of the sites, Thus at 0.5% host
impurity level, the desired signal is twice as large as
the impurity signal, which is tolerable.

It is worth mentioning that it is very difficult
to get higher than 99.52 purity since most commercial

starting materials (D,0) are graded at 99.5%.
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6.13.3 Conclusion

Provided the sample purity is high enough, it is
feasible to perform SQ NMR spectroscopy on the
selectively deuterated 1,8-DMN-d;, diluted in a
pefdeu:erated matrix. The observation of correlation
of motion of two methyl groups is then an one-pulse
experiment with heteronuclear decoupling. A powder
sample of 1,8-DHN-d10 is preferable to a single crystal
for experimen:dl ease and to remove the need to know
the unit cell structure. In contrast to the single
crystal spectrun, the powder spectrum is also
unaffected by the fact that in the slow motional limit,
the methyl groups can no longer be treated as an
averaged specie,.

A preliminary measurement on a powder sample of 5%
dilution in a host of 992 purity resulted in a smearing
out of the powder pattern by impurity signal. A simple
calculation assuming statistical proton attachments
reveals the importance of high purity requirement of

the host compound.
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APPENDIX 6.A

Computer listings of programs EXCH2 and HARDMAT

EXCH2 diagonalizes the superoperator A for the
four-quantum transitions in the E manifold. The NMR
permutation group S; and the dipolar couplings for the
orientation specified in section 6.l11 are assumed. It
requires as inputs only the exchange times ("tau").

HARDMAT is called within EXCH2 to create a "hard
copy”" of the counstructed 16x16 superoperator A. This

subroutine was supplied by Jim Murdoch.
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TT T T apaTplfla,ic)®plib, l&T + piaviia,ic)®pfrv(ib,id] T 7 tau
slx, II’C‘""IY("" '-1-#2
""I'f{ €3, IT s, ITTas (R, T = "2°C/Tdu -
&7 contirue

st coE¥itae

T Ul8a“TSFINTICIC SUPERCPERATUR ~
call !‘_.f_r‘.'ﬁat(s.title.leu)
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e s e g e —— ————

sall etgec(s,18,16,1,v,z,15, vk, 1er)

c

T type t©74, Ter ’_-
£24 format({/,5x, " fer = °,15,/)
C

oriat 512, tau B
TIC T formatlInl,s T TAU =, efa.eéy; ... ... 7T T
erict 525 ;
TR T T Trormal T /7, R ISBTVALUES <. o o77) N
orint 5¢6, v

131 for=atZelE €Y
c
do Ige I=1.1F - T T R
stm=a, ¢
~ =0 ST 11,16 —
o sum=sum + 2(i,j)}®corie(z(1,3)) N

SCSUM=SGrL(Sum
do GF i=1,16

TE 2L, YT=2(1, 37 7 sqsum
1ev ccntinue
< e

title="NCRVAIIZEE EIGENVECTCORS®
cell Ferdmatlz, TICId, Lt

e
TTTTT Type 529 - T
€ac fermat(/,” 43 you waat acotner tau ? (¥=z0,1=yes) °,3)
- “Taccept ¥, ITan T - - - T
if!itac .ne. ¢} go to I )
T

erd
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subroutine hardmat(p,title,tau)

¢
c displays 16x1€ complex ratrices on one page
¢
e ___ . complex p'zaez ol o .
dirension rag(1€),1ph(16),12(16),1mr(1€)
character®*sg title
¢
10dx(1,3)=(J=1)%nst + 1
c
e i ___nstsig o
c
Fi=4 .2%atan(1.2)
rad=18¢. 7 pi
¢
dc 12 )=1.ast
—— Ji=3-1 ——— - - R
11(3)=33/4 + 1
12 1r(J)erodi{jl,e) « 1
c
srinst 120, title,tay
129 fcrmat{ibhl,//,%2,a,° for tau = ‘,e14.€,//)
¢
- print 112, (11(4),ir(3),J=1,088) = - -
112 ferrat(7x,16(° (°,11,°,7,11,°)°))
¢
$rist 111
111 forrat (12,1328 (1h=))
c
- ‘do 8¢ sl,ast T TTTTUTT T T ommnmerT oY
de 45 §=1,pst
13sindg(L,))
zzsreal (p(i}3))
yy=airag(p(1}))
. _ . zz=cabs(p(i})) ) _ _
12(z2 .1t. @.2021) gc tc 3%
1r(xx) 24,31,24
a1 1e(yy) 33,22,22
h ) iph(})=co
g0 ta 40
.22 - gps())=-Se2
g0 tC 482
34 ph=atanZ(yy.xz) * rad
tph(y)=ph » sign(2.%,ph)
8o ta 4¢
s tph{J)=0
__ 42 mag())=1200. * 21 + sign(@.5,23) _
45 mag( 3)arine(cS55855,rag(y))” ~
priat 112, 1114),im(1),.(rag()), J=1,nst)
112 fermat(ine, (°,11,°,7,11,%) °,1617) o
print 116, (iph(y), J=1,ast)
11¢ fermat (72 ,1647)
1 __—_costinue_ —
¢ @
return *

end

(TR T



APPENDIX 6.B

Computer listing for program EXCHI

EXCH1 diagonalizes the superoperator A for the
four-quantum transitions involving the AI m=+1 and m=+3
manifolds. The NMR permutation group S3 is assumed.
The programs asks for the matrix elements of the

Liouville operator H and the exchange times as inputs.
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~ "T program excri .
¢
¢ 3ArdéraTizirs the 31 £-2 tramsitidns T T T
¢
corplex eafe,&e',w(d),204,4)
dimersior wx{12),aa(4,4) o
3 T - /et ¢
tyoe £ )
TTECL T forvat (77, entef the Ira;Trarj eleémerts of tRe Suiéro.erztor &,
1 ‘ -on.."/.‘
o 27 3°1.2 - P
do 22 i{=1,} e e
T type 222,740 T
£02 farmat:8x,°A{". 11,7, %,11,° & °,$5)
TTT T T eceedt ey T T T i et
2 cortinve —— -
<
I type 5243
3 Par=atT7,;, €rter a value #GT tau: .5 -
accept *,tau
TR 2RI T
40 4¢ i=1,) —_

— 3T A ITAmelre.T,eali,. 577 T
ai3,3i=a°2,3) - 2.2/tay
T T Al LY (T4 e 830’280 /taw T T T T T s T
al{e,4'=a.4,4" -~ 1.2/tau

T T T %g T a7, % - -
drizi=l
- I Tr T -1 -
£2 efly,b1=ali,ji
¢
call eig~c(a,4,4,1,m,2,4,98,i80
e —— ——— Al L 298,180 —_ V-
trse $c4, ler B
L) Tys=3at7 .52, Ler = .15,/
¢
T T U el 10, Tal T et -
£is for=at(. ,,” tau = °,e11.2) .
TTT T T it SR 77T T T - T
€28 for=at!///,’ elcervalues .....°,/7;
ariet ¢S, w
95 rer=3t(2e18.5) L o
é
10 7¢ !s1.,4
T sum=ETLA - -
do £2 _1=1,4
zC SUM=SLT * 2(1,J)°CoB R 2L 1,47
scsumssert(s .
"d0 &F {=1,4 - T
£ zfii1,))=2:1,)) / sasum Y
T ¢odtire ) T
¢ -
trirt S0
27 format(//,° normalized el,envectors .....’,/) @
""""_"‘B?Iﬁf“tﬁsT’TTEFYJ?TT”I;TTZI. {s1,a] T
S2¢ forrat(4(2x,27€.4)) .
3

tr7pe S48

<) Tor—~atl(/, 40 jO4 wacLt arolcer tad 7 (J=60,1=,€5/ %)
azcept ®,itau
ITTItaT .0e. &' 70 to &0

ety
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