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The ability to respond rapidly to changes in oxygen tension is critical for many forms of life.
Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and
biomedicine, provide important insights into mechanisms of hypoxia adaptation and
tolerance. Here we synthesize findings across varying time domains of hypoxia in
terms of oxygen delivery, ranging from early animal to modern human evolution and
examine the potential impacts of environmental and clinical challenges through emerging
multi-omics approaches.We discuss how diverse animal species have adapted to hypoxic
environments, how humans vary in their responses to hypoxia (i.e., in the context of high-
altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from
each of these fields inform the other and lead to promising new directions in basic and
clinical hypoxia research.
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1 INTRODUCTION

In parallel with the evolution of aerobic metabolism, various
organisms evolved mechanisms for adapting to decreased
oxygen (O2) availability. These alterations can be categorized
by time domains ranging from gradual changes in
atmospheric O2 concentrations over millions of years to
immediate physiological responses upon exposure to
hypoxic stress. In this review, we discuss adaptations and
responses to hypoxia that span 1) millions of years of non-
human animal evolution, 2) hundreds of generations since
modern humans have occupied high altitudes, 3)
physiological and epigenetic changes within a lifespan,
and 4) physiologic and pathophysiologic hypoxic
challenges. We highlight how different species have
adapted to reduced O2 availability and how humans
exhibit variable individual capacities to alter hypoxia
pathway responses. We approach these topics from
multiple perspectives and emphasize the importance of
integrating physiological and -omics effects of hypoxia for
future progress in biological and medical applications.

2 TIME DOMAIN 1: ADAPTATION TO
HYPOXIA ACROSS NON-HUMAN SPECIES
2.1 Oxygen Over Geologic Time and its
Impact on Early Animal Pathway Evolution
Since the emergence of eukaryotes and multicellular life,
Earth’s atmospheric and oceanic O2 levels have been in
constant flux. It is estimated that atmospheric O2 ranged
between 15 and 30% over the last 550 million years (Berner,
1999). During this time, most of the animal phyla we know
today emerged and evolved, adapting to changes in O2

availability. Many major events in the evolutionary
history of life coincided with rising atmospheric O2

levels (Falkowski et al., 2005; Berner et al., 2007; Mills
et al., 2014).

Key hypoxia sensing and response pathways evolved to
ensure prompt physiological responses when O2 demand
exceeded supply. For example, the hypoxia-inducible factor
(HIF) pathway coordinates expression of thousands of genes in
response to hypoxia (Semenza, 2020) and is highly conserved
with a majority of metazoans expressing HIF homologues
(Hampton-Smith and Peet, 2009). The HIF pathway evolved
in the common ancestor of Bilateria, Cnidaria, and Placozoa,
as modern representatives of earlier-branching metazoan
lineages (Ctenophores and Poriferans) lack the ability to
respond to changes in O2 via transcriptional regulation
(Mills et al., 2018). Once the HIF pathway was established,
it underwent changes in complexity as O2 requirements
became more demanding in larger animals and tissue
metabolic requirements became specialized (Taylor and
McElwain, 2010).

2.2 Physiological Adaptations to Hypoxia in
Tetrapods
Comparative studies provide empirical generalizations about the
nature of hypoxia adaptations and yield unique insight into
adaptive mechanisms that would otherwise remain unknown.
Air-breathing animals adapt to high-altitude hypoxia through
physiological adjustments that sustain O2 flux to tissue
mitochondria and thereby support aerobic ATP production.
The first physiological response to hypoxemia is to increase
ventilation to minimize the decline in the arterial partial
pressure of O2 (PO2), which occurs within the first minutes of
hypoxia exposure through the hypoxic ventilatory response
(Teppema and Dahan, 2010; Ivy and Scott, 2015) (further
discussed in Section 4). Studies of deer mice reveal that
evolutionary adaptation to high altitude changes the hypoxic
ventilatory chemoreflex to further increase breathing and
pulmonary O2 uptake while attenuating sympathoadrenal
activation (Scott et al., 2019; Storz and Scott, 2019). Highland
deer mice maintain higher rates of alveolar ventilation and
preserve ventilatory sensitivity to CO2 relative to lowland
conspecifics (Ivy and Scott, 2017, 2018). Known exceptions to
this common increase in ventilation are the naked mole rat and
guinea pig (Gonzalez-Obeso et al., 2017). The naked mole rat is
an extremely hypoxia-tolerant mammal that lives underground
and has been shown to decrease ventilation upon hypoxia
(Pamenter et al., 2015).

Changes in lung structure and function also represent
important adaptations to chronic hypoxia at high altitude.
Hypoxia during early life can impair septation (the
partitioning of saccules into alveoli) and thus impede lung
development (Blanco et al., 1991; Ambalavanan et al., 2008).
These effects are overcome in high-altitude deer mice (West C.M.
et al., 2021), whereby they and many other high-altitude animals
exhibit larger lungs and/or higher alveolar surface density than
low-altitude counterparts (Pearson and Pearson, 1976; Lechner,
1977; Maina et al., 2017). High-altitude deer mice are also more
effective at ventilation-perfusion matching in chronic hypoxia
than low-altitude mice (West CM. et al., 2021). These changes
help increase the morphological and physiological capacities for
O2 diffusion of the lungs, and thus help augment arterial PO2 and
O2 saturation in chronic hypoxia.

Another adaptive mechanism to improve arterial O2

saturation is achieved through genetically based changes in
hemoglobin (Hb), the protein responsible for circulatory O2

transport (Storz, 2016, 2019). Many vertebrates native to high
altitude have evolved increased Hb-O2 affinity (Storz, 2016) and,
in some cases, the adaptive protein modification helps safeguard
arterial O2 saturation under severe hypoxia (Tate et al., 2017,
2020; Storz and Bautista, 2021). These changes are attributed to
amino acid replacements at numerous sites in the a- and ß-chain
subunits of the α2β2 Hb tetramer (Storz et al., 2010; Natarajan
et al., 2015a, 2015b, 2016, 2018; Tufts et al., 2015; Zhu et al., 2018;
Signore et al., 2019). A regulatory mechanism of adaptation was
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also documented in the Tibetan antelope, whereby an increased
Hb-O2 affinity is achieved via an Hb isoform switch (Signore and
Storz, 2020). The convergent evolution of increased Hb-O2

affinity in high-altitude taxa highlights the importance of this
phenotype in hypoxia adaptation (Storz, 2016). However,
numerous exceptions have also been documented where high-
altitude specialists have not evolved elevated Hb-O2 affinities in
comparison with lowland sister taxa (Revsbech et al., 2013;
Janecka et al., 2015).

Although an elevated Hb-O2 affinity can improve arterial
O2 saturation under conditions of severe hypoxia, the resultant
increase in arterial O2 content only translates into an increased
capacity for O2 transport to tissues if it is associated with a
sufficiently high tissue O2 diffusion capacity (Wearing et al.,
2021). Accordingly, bar-headed geese and high-altitude deer
mice have evolved elevated Hb-O2 affinities (Storz et al., 2010;
Jendroszek et al., 2018; Natarajan et al., 2018) in conjunction
with derived muscle phenotypes that improve O2 diffusion
capacity and O2 utilization, as characterized by increased
capillary density, oxidative fiber density, mitochondrial
volume density, and mitochondrial oxidative capacity (Scott
GR. et al., 2015, Scott et al., 2015 G. R.; Lui et al., 2015;
Mahalingam et al., 2017, 2020; Tate et al., 2017, 2020; Nikel
et al., 2018; Storz et al., 2019). High-altitude deer mice can also
achieve higher cardiac output in hypoxia than low-altitude
mice (Tate et al., 2020; Wearing et al., 2022). The combined
effects of increases in arterial O2 saturation, cardiac output,
and tissue O2 extraction lead to pronounced increases in
aerobic capacity in hypoxia (Tate et al., 2020). Storz and

Scott (2019) provide an overview of O2-transport pathway
mechanisms.

The distinct responses to hypoxia across high-altitude birds
shows how attempts to interpret how species match O2 supply to
O2 demand requires consideration of the integrated function of
all the steps in the O2 transport cascade. Thus, while bar-headed
geese demonstrate surprisingly large increases in ventilation
accompanied by a fall in pulmonary O2 extraction in hypoxia
(Scott and Milsom, 2007; Lague et al., 2016), this produces a
respiratory alkalosis that should enhance Hb-O2 binding,
increasing arterial O2 content (CaO2) and reducing the need
to increase cardiac output (Lague et al., 2017). On the other hand,
the high mass-specific cardiac output seen in high-altitude
speckled teal and ruddy ducks despite a large O2 carrying
capacity of the blood appears to be essential to support the
high mass-specific metabolic rates of these smaller species (Ivy
et al., 2019; Laguë et al., 2020; Milsom et al., 2021). In short, there
is tremendous diversity in how different high-altitude avian
species match O2 supply to demand. Different strategies
animals utilize to mitigate impacts of hypoxia are illustrated in
Figure 1.

2.3 Physiological Adaptations to Hypoxia in
Marine Mammals
Some of the most dramatic mammalian adaptations to hypoxia
have evolved in diving mammals that recolonized marine
environments 50–30 million years ago (Berta, 2015). Unlike
high-altitude or burrowing animals, marine mammals do not

FIGURE 1 | Different strategies that animals utilize to overcome hypoxia. Bar-headed geese fly above the tallest mountains in the world and exhibit increased
ventilation, higher blood oxygen affinity, and denser capillary networks relative to lowland species among other adaptive traits. Deer mice have adapted to high altitude
through elevated Hb-O2 affinities, increased breathing, increased pulmonary oxygen uptake while attenuating sympathoadrenal activation, and other adaptive strategies.
Naked mole rats are extremely hypoxia-tolerant, but knowledge of their main strategies for overcoming hypoxia is still limite. Elephant seals can dive for longer than
an hour and undergo bradycardia and redistribution of peripheral blood flow to overcome hypoxia. However, unlike humans, they do not have reperfusion-related
inflammation (mechanism still unknown).
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face issues with pulmonary-O2 loading since O2 uptake occurs at
sea level. Instead, hypoxemia is induced by breath-hold diving
and results from depletion of blood and muscle O2 stores
(Thewissen et al., 2009). In deep-diving mammals, the lungs
contribute very little to O2 storage capacity, as the animals
routinely experience alveolar collapse at depth, forcing reliance
on blood and muscle O2 stores during dives (McDonald and
Ponganis, 2012). For this reason, deep-diving mammals evolved
to have extremely high concentrations of Hb in blood and
myoglobin in muscle as a mechanism to increase O2 storage
capacity (Ponganis, 2015). To maximize the use of on-board O2

stores, marine mammals exhibit dramatic cardiovascular
adjustments while diving and surfacing, known as the dive
response. At the onset of a breath-hold dive, marine mammals
experience dramatic reductions in heart rate, which is matched by
a high degree of peripheral vasoconstriction to maintain a steady
mean arterial pressure (Davis and Williams, 2012). This
bradycardia and tissue ischemia ensures that hypoxia-sensitive
organs, such as the brain and heart, have consistent supplies of
blood arriving throughout the dive. Other organs (e.g., kidney,
liver, spleen), which experience severely reduced blood delivery
during dives, must utilize alternative O2 stores (e.g., myoglobin),
or rely on anaerobic metabolism to meet energetic demands
(Kooyman et al., 2021). When an animal surfaces from a dive,
ischemic tissues undergo reperfusion and heart rate increases well
above resting levels to maintain mean arterial pressure. Despite a
lifestyle of chronic ischemia-reperfusion events to many of their
tissues, these mammals appear to have no detrimental side effects
and, therefore, represent excellent mammalian models to study
potential cytoprotective mechanisms.

Hypoxia tolerance in marine mammals has been studied
extensively in the northern elephant seal, an elite diver that
spends up to eight months continuously foraging at sea and
conducting dives that may be in excess of one and a half hours
(Hassrick et al., 2010). Elephant seals undergo routine apneas
even when on land when asleep, exhibiting physiological
adjustments similar to those during dives mentioned
previously (Ponganis et al., 2006; Stockard et al., 2007; Tift
et al., 2013). During these terrestrial apneas, elephant seals
experience a reduced muscle blood flow of only 46% of the
average muscle blood flow during normal breathing (Ponganis
et al., 2008). The animals routinely experience hypoxemia during
these terrestrial apneas (PaO2 ~ 30 mmHg), and the degree of
blood O2 depletion during dives is even more dramatic (PaO2 ~
10 mmHg) (Meir et al., 2009). Considering these animals spend
over 80% of their lives in a breath-hold, it is remarkable that their
tissues can tolerate these degrees of hypoxemia and repeated
ischemia/reperfusion events.

In fact, unlike humans and most other mammals, marine
mammals do not show evidence of tissue damage in response to
repeated bouts of severe hypoxia or ischemia-reperfusion events
(Vázquez-Medina et al., 2011; Vázquez-Medina et al., 2012).
Potential strategies to avoid injury include mechanisms to
cope with ischemic inflammation and reperfusion-derived
oxidant generation. In particular, the glutathione system likely
plays a key role in antioxidant defense in marine mammals.
Glutathione levels in tissues and circulation are significantly

higher in diving than in non-diving mammals (Vázquez-
Medina et al., 2007; García-Castañeda et al., 2017). Similarly,
several genes involved in the glutathione system are under
positive selection or expanded in marine mammals (Yim et al.,
2014; Zhou et al., 2018).

Limiting ischemic inflammation is crucial to avoid reperfusion
injury. Evidence shows that deep-diving Weddell and elephant seals
possess a yet-to-be-identified anti-inflammatory component in their
plasma (Bagchi et al., 2018). These same two species also have the
highest levels of endogenous carbonmonoxide (CO) ever measured,
with levels in the blood approaching those seen in chronic cigarette
smokers (Pugh, 1959; Tift et al., 2014; Tift and Ponganis, 2019).
Interestingly, exposure to low or moderate levels of CO has been
shown to have potent cytoprotective effects (Motterlini and
Otterbein, 2010). The primary source of endogenous CO
production in mammals is the degradation of heme by heme
oxygenase enzymes (Tenhunen et al., 1968). Therefore, elevated
Hb and myoglobin stores result in more heme that could be
degraded to produce CO endogenously. The mechanism of
cytoprotection is also not completely understood, but there are
several studies that have now shown CO can provide tissue-
specific protection against injuries associated with hypoxia and
ischemia-reperfusion events (Tift et al., 2020). These unanswered
questions may be best examined in the elephant seal due to its
propensity for voluntary breath-holds and the existence of
established endocrine, biochemical, and molecular techniques to
work with the animals (Khudyakov et al., 2015; Crocker et al., 2016).
Ongoing investigations using ex vivo systems that are amenable to
physiological manipulation and molecular perturbation can also
complement in vivo studies while providing insights into
mechanisms that confer natural tolerance to hypoxemia and
ischemia/reperfusion in diving mammals as described by Allen
and Vazquez-Medina (2019) and Lam et al. (2020).

2.4 Genomic Analyses Across Multiple
Species Reveal Converging Patterns of
Hypoxia Adaptation
For species that have adapted to hypoxic environments, key traits
show consistent genetic evidence for convergent evolution. The
HIF pathway is reported as a major genetic target of selection in
multiple species native to the Tibetan Plateau. For example,
Endothelial PAS Domain Protein 1 (EPAS1), the gene that
encodes the HIF-2α subunit, is reported to be important for
high-altitude adaptation in Tibetan yak and antelope (Wang
et al., 2015), snakes (Li et al., 2018), dogs (Wang et al., 2014),
and wolves (vonHoldt et al., 2017) (reviewed in Pamenter et al.,
2020). These key adaptations in HIF-pathway genes have been well
summarized recently across many hypoxia-adapted species (Storz,
2021; Storz and Cheviron, 2021), including domesticated animals
(Witt and Huerta-Sánchez, 2019). While the phenotypic effects of
many of these naturally occurring EPAS1 variants are not well
understood, recent studies of highland deer mice have shown that
allelic variation is associated with altered cardiovascular function
and transcriptomic responses to hypoxia (Schweizer et al., 2019).
Specifically, the allele that predominates at high altitude is
associated with an elevated heart rate under hypoxia and
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reduced expression of genes involved in catecholamine
biosynthesis and secretion. Many of these effects seem to be
attributable to a single non-synonymous substitution that
disrupts the interaction between HIF-2 alpha and its
transcriptional co-activator, CREB-binding protein (Song et al.,
2021). Further evidence for convergent adaptation is reported at
the Hb gene region across various species and impacts Hb-O2

affinity, as mentioned in Section 2.2 (Storz 2019).
Experiments in the fruit fly, Drosophila melanogaster, have

also yielded insights into key genetic pathways for hypoxia
adaptation, primarily involving the Notch pathway. The Notch
signaling pathway is highly conserved across animal species and
regulates many aspects of development, cell-cell signaling, and
tissue renewal (Kopan and Ilagan, 2009). In hypoxia, Notch-
responsive promoters are activated, and the HIF-1 transcription
factor is recruited to these promoter sites (Gustafsson et al., 2005).
Notch pathway genes were shown to underlie hypoxia adaptation
and increased Notch activity conferred improved hypoxia
tolerance in Drosophila after hypoxia exposure for 200
generations (Zhou et al., 2011, 2021) and have been reported
as putatively adaptive genes in Andean populations at high
altitude (Bigham et al., 2009). Research aimed at analyzing the
cross-talk between HIF and NOTCH pathways in highland
populations will provide greater insight into long-term
hypoxia adaptations in humans (O’Brien et al., 2022).

Information from extinct species provide additional insight
into the genetic factors underlying long-term hypoxia adaptation.
The growing accessibility of ancient DNA sequencing coupled
with in vitro expression systems permits the resurrection of
phenotypes once lost to evolutionary time (Campbell et al.,
2010; Mirceta et al., 2013; Huerta-Sánchez et al., 2014;
Campbell and Hofreiter, 2015; Signore, 2016). For example,
the extinct great auk (Pinguinus impennis) is an ideal
candidate to study phenotypic changes associated with breath-
hold hypoxia, as this alcid very recently diverged from its aerial
relatives (razorbills and murres) and became a flightless diving
specialist. While some morphological changes associated with the
great auk’s air-to-sea transition are present in the fossil record,
the critical physiological processes that accompanied this
transition have been lost. However, ancient DNA sequencing
and in vitro expression of the great auk’s Hb proteins suggest this
species also evolved an adaptive increase in Hb-O2 binding
affinity (Berenbrink et al., 2017). Information on ancient
adaptive trends in DNA can also be gleaned from existing
animals’ genomes. For example, an adaptive gene region with
linked genetic makers (i.e., a haplotype) containing EPAS1 and
Protein Kinase C Epsilon (PRKCE) is thought to have originated
in high-altitude Tibetan wolves and mixed into highland dogs’
genomes, a process called introgression, more than 10,000 years
ago (vonHoldt et al., 2017). This introgressionmirrors the finding
of Denisovan (archaic human) DNA in modern Tibetan human
genomes, also in the form of a haplotype containing EPAS1
(Huerta-Sánchez et al., 2014; Hu et al., 2017). Understanding
adaptive introgression in other populations and at other genomic
locations could provide important insight into evolutionary
processes in hypoxia-adapted species.

3 TIME DOMAIN 2: ADAPTATION TO
HYPOXIA IN HUMANS
3.1 Physiological Adaptations to Hypoxia in
Humans
Compared to other high-altitude species, humans have persisted
at high altitude for a relatively short period of time. Humans first
inhabited high altitudes hundreds of generations ago, with
reports suggesting as long as 30,000 to 40,000 years on the
Tibetan Plateau (Rademaker et al., 2014; Capriles et al., 2016;
Zhang et al., 2018). Although human occupation of high altitude
is significantly shorter than other species mentioned above,
humans display distinct physiological adaptations to hypoxia
that have developed over thousands of years, and these
patterns of adaptation vary by continental group (Beall, 2007;
Bigham et al., 2009; Simonson, 2015; Luks et al., 2021).

While there is considerable variation within populations,
studies of high-altitude residents indicate many individuals of
Tibetan ancestry exhibit larger lung volumes, elevated resting
ventilation, and elevated hypoxic ventilatory responses compared
to both Han Chinese high-altitude residents and Andean high-
altitude groups (Hackett et al., 1980; Sun et al., 1990; Droma et al.,
1991; Zhuang et al., 1993; Beall et al., 1997; Curran et al., 1997;
Moore, 2000; Wu and Kayser, 2006; Beall, 2007). Contrary to
Tibetans, many Andean groups exhibit blunted ventilatory
responses to hypoxia (Beall, 2007; Heinrich et al., 2020) with
associations noted between hematocrit and daytime and sleep
oxygen saturation in Andean men and women as well as blunted
heart rate response to hypoxia in men (Heinrich et al., 2020).

Variation in hemoglobin concentration ([Hb]) has been well
characterized and replicated in many studies of high-altitude
populations. Tibetan highlanders generally maintain [Hb] with
ranges typically observed in populations living at or near sea-level,
while Andean highlanders have, on average,much higher [Hb] (Beall,
2007). Native Amhara high-altitude residents of the Simien Plateau of
Ethiopia demonstrate similar [Hb] and erythropoietin concentrations
to Tibetans and are also able to maintain higher O2 saturation levels
than either Andeans or Tibetans (Beall et al., 2002). In contrast,
Native Oromo high-altitude residents of the Bale Plateau of Ethiopia
have elevated hemoglobin concentration and low O2 saturation
(Lundgrin et al., 2013).

The precise mechanisms underlying differences in [Hb]
phenotypes among high-altitude human populations remains an
active area of research. Studies suggest plasma volume as the key
adaptive phenotype that underlies lower [Hb] in Sherpa relative to
Andean males with comparable blood volumes (Stembridge et al.,
2019). In Tibetan males, relatively lower [Hb] was associated with
higher peak VO2, which was further associated with heart and
muscle diffusion components of O2 transport (Simonson et al.,
2015). It is further plausible that variation in red cell lifespan/
destruction underlie within and across population variation (Tift
et al., 2020). Additional genetic studies, as discussed in Section 3.2,
and further physiological and functional assessments will provide
much needed insight into these mechanisms.

Differences are also apparent in traits associated with blood
flow and O2 diffusing capacity, particularly relating to the
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signaling molecule and vasodilator nitric oxide (NO). Tibetans
display higher exhaled NO than Andeans (Beall et al., 2001), and
this elevated NO is associated with enhanced pulmonary blood
flow (Hoit et al., 2005) and may account for the lower pulmonary
artery pressures observed in Tibetans (Groves et al., 1993; Hoit
et al., 2005; Beall, 2007). Tibetans also demonstrate higher
circulating NO and bioactive NO products compared to sea-
level residents, with the former being associated with variants in
the regulator gene of nitric oxide synthase, GCH1 (Guo et al.,
2017), and the latter with higher forearm blood flow (Erzurum
et al., 2007). Some Himalayan Sherpa also demonstrate higher
sublingual capillary densities and microcirculatory blood flow at
high altitude (5,300 m) compared to sea-level residents (Gilbert-
Kawai et al., 2017). As discussed in Section 5.3, individual
variation in NO could further underlie susceptibility to high-
altitude illnesses, such as high altitude pulmonary hypertension.

While distinct adaptive phenotypes are observed across high-
altitude human populations, it is important to recognize that
substantial within-population variation exists among each group.
Furthermore, the extent to which observed trait differences reflect
genetically based adaptive changes, environmentally induced effects,
and/or plasticity in terms of gene-environment interactions requires
additional functional investigation (Hall et al., 2020). The likely
importance of gene-environment interactions in shaping
phenotypes in high-altitude natives is emphasized by recent work
in deer mice, which shows that high-altitude populations have

evolved altered responses to chronic hypoxia for several
cardiorespiratory traits (Storz and Scott, 2019).

3.2 Genomic Evidence for Positive Selection
in Humans
All studies reporting genetic adaptation to high altitude employ
statistical tests that derive from observations that a) only two of the
four forces driving genetic evolution–gene flow and natural
selection–have directional effects, and b) of these, gene flow
affects all loci (particular positions in the genome) in the same
way, whereas natural selection acts on specific loci (Lewontin and
Krakauer, 1973).While such tests have their limitations (Jensen et al.,
2016), the wide range of tests employed and consistent results across
multiple studies provide substantial evidence that natural selection
has operated on specific genes in the multigenerational residents of
Ethiopian, Himalayan, and Andean high-altitude populations. The
genes reported in many of these studies are contained within regions
of the genome that exhibit a distinct pattern (i.e., a “selective sweep,”
summarized in Simonson (2015)). In most cases, the specific genetic
change in the DNA underlying the adaptation is unknown but is
likely within or near the gene reported. A compilation of genes
reported in human high-altitude adaptation studies are visually
summarized in Figure 2, highlighting top adaptive genes
reported among Ethiopians (Figure 2A), Tibetans (Figure 2B),
and Andeans (Figure 2C).

FIGURE 2 |Word clouds of genes under positive selection. Genes reported as top targets of positive selection in high-altitude human populations illustrated in word
clouds. A total of 31 publications were used to establish word clouds based on four, fifteen, and twelve original studies from Ethiopian (A), Tibetan (B), and Andean (C)
populations, respectively. All genes included are mentioned by name in the main text of at least one study and/or mentioned more than once in the supplementary
materials section of the publication. Text size is indicative of the number of times a top selection candidate gene is mentioned. Gene symbols are validated using the
Ensembl genome database. Major statistical methods considered in this analysis are FST, PBS, iHS and XP-EHH. Gene lists of this analysis can be found in the
Supplementary Table.
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While many HIF pathway genes are reported as targets of
selection in highland populations, only some are associated with
known, putatively adaptive phenotypes and these associations vary
across populations. In genomic studies of Tibetans, allelic variants at
HIF genes such as EPAS1 and Egl-9 Family Hypoxia Inducible Factor
1 (EGLN1) exhibit significant associations with [Hb] (Beall et al.,
2002; Simonson et al., 2010; Yi et al., 2010) but do not provide
information about the direct modulation of this phenotype
(reviewed in Simonson (2015)). Lower [Hb] in Tibetan males
was also associated with regulatory variants in the Heme
oxygenase 2 (HMOX2) gene, reported as a top selection candidate
gene in Tibetans (Simonson et al., 2010), and these regulatory
variants were associated with higher HMOX2 expression in cell
culture analyses (Yang et al., 2016). These findings suggest
upregulation of the heme oxygenase/carbon monoxide (HO/CO)
pathway that is involved in heme degradation–the same HO/CO
pathway relevant to elephant seal adaptation (discussed in Section
2.3). Elevated [Hb] in Andeans is associated with increased
endogenous CO, suggesting potential convergence of elevated CO
through different rates of erythrocyte production versus lifespan/
destruction in each population (Tift et al., 2020).Variants within the
HIF genes and other adaptive genetic factors may affect various steps
in the O2 transport pathways and/or metabolic O2 utilization that
prevent cellular O2 levels from declining as much as they would
otherwise thereby attenuating the hypoxic stimulus that induces
erythropoiesis or plasma volume contraction (Storz, 2021; Storz and
Cheviron, 2021). The relatively low [Hb] observed in many Tibetan
highlanders may potentially be an indirect consequence of how
allelic variants of genes like EPAS1 modulate components of O2-
sensing/transport.

From an evolutionary perspective, identifying functional links
between genotypes showing evidence of positive selection and
reproductive success is of particular importance. One such
strategy has focused on determinants of birth weight since a)
birth weight is the most important determinant of neonatal or
infant mortality, b) mortality risk during pregnancy and through
the first year of life is greater than at any other time prior to the
end of the reproductive period (i.e., the period during which
natural selection is acting), and c) the profound effect of high
altitude to reduce birth weight (Jensen andMoore, 1997). Tibetan
and Andean ancestry confer protection against hypoxia-
associated reductions in birth weight compared to newcomer
groups residing at the same altitude, reviewed inMoore (2021). In
Andeans, this effect appears to stem, in part, from greater
uteroplacental blood flow and O2 delivery during pregnancy at
high altitude in women of Andean versus European ancestry
(Julian et al., 2009). Such effects appear to be genetic, not
developmental, in origin (Julian et al., 2011). One genomic
region near adaptive protein kinase, AMP-activated, alpha 1
(PRKAA1), the gene encoding the α1 catalytic subunit of
adenosine monophosphate kinase (AMPK), not only shows
evidence of positive selection in Andeans but has also been
associated with greater birth weight and uterine artery
diameter at high altitude, a major determinant of
uteroplacental blood flow (Bigham et al., 2014). Moreover,
AMPK activation in vitro in pregnant human uterine vessels
or in vivo in murine models have potent vasodilator effects that

are associated with maintenance of fetal growth during high-
altitude exposure (Lane et al., 2020; Lorca et al., 2020). While
much remains to be learned, given that drugs such as metformin
activate AMPK and have been safely used in pregnancy, such
studies offer the possibility of yielding new therapies for treating
or preventing pregnancy disorders characterized by
uteroplacental ischemia and hypoxia.

3.3 Evolutionary Significance in Medicine
In the fields of precision and personalizedmedicine, it is necessary to
consider individual genetic factors that may underlie variation in
particular phenotypes or pathologies. In present-day highland
populations, unique evolutionary histories help contextualize such
variation, i.e., adaptations and maladaptations. Each population’s
genetic landscape has been shaped by standing (existing) genetic
variation, admixture (mixture of genetic material from different
populations), and/or de novo (novel) mutations that have occurred
throughout hundreds of generations at high altitude. An example
pertinent to the history of Tibetan adaptation is the introgression of
the previously mentioned EPAS1 gene region as mentioned in
Section 2.4. The genetic sequence in this region has proven
crucial for Tibetan adaptation and is more similar to an archaic
human population that no longer exists, the Denisovans. The
sequence of DNA at the EPAS1 region is more similar to
Denisovan DNA than other available human genome sequences,
reflecting adaptive introgression from this population tens of
thousands of years ago (Huerta-Sánchez et al., 2014; Hu et al., 2017).

Furthermore, while a vast majority of genome-based association
studies have focused on populations of European ancestry (Sirugo
et al., 2019), an understanding of physiological and genomic
variation in other historically understudied populations are sorely
needed to provide a more complete understanding of human
variation relevant to hypoxia tolerance and genomic medicine. It
is further important that as raw genomic data continue to increase in
value as a global commodity, researchers ensure genome donors
have a say in how their information is utilized and that part of the
benefits received are returned to the original participants (Fox, 2020;
Hall et al., 2020).

4 TIME DOMAIN 3: PHYSIOLOGICAL AND
EPIGENETIC CHANGES IN RESPONSE TO
HYPOXIA WITHIN A LIFETIME
In addition to long-term generational population-level
adaptation, responses to acute (minutes) or chronic hypoxic
stress (days) may occur in order to maintain oxygen
homeostasis. These responses may be under genetic/epigenetic
control and reflect ranges of species, population, and individual
variation. Such differences could prove adaptive to a point or lead
to maladaptive phenotypes, e.g., in cases of overcompensation
such as excessive erythrocytosis (Hancco et al., 2020) as discussed
in Section 5.2. The first physiological response to an acute
hypoxic stimulus is the hypoxic ventilatory response (HVR),
which involves an increase in minute ventilation due to the
activation of the peripheral chemoreceptor mainly located in
the carotid bodies (Powell et al., 1998; Teppema and Dahan, 2010;
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Ivy and Scott, 2015; Pamenter and Powell, 2016). This response
shapes how one acclimatizes to hypoxia and has the potential to
impact the extent of hypoxia experienced, thereby impacting
molecular changes that may lead to a cascade of physiological
changes. Epigenetic modifications, in interaction with the
genome, the environment, and other regulatory factors,
provide a mechanism for environmental stresses such as
hypoxia to modify gene expression early in development and
throughout the life course. While various steps of O2 transport
may be altered over shorter time domains within the lifetime, this
Section focuses primarily on the initial hypoxia responses
involving the first steps of O2 transport.

4.1 Hypoxia Responses in Early Life Stages
The magnitude of hypoxia responses vary across life stages. The
initial increase of ventilation in neonates is moderate compared to
the HVR observed in adults (Teppema and Dahan, 2010; Dzal
et al., 2020), and the HVR is usually accompanied by a decrease in
metabolic rate not observed in adulthood (Mortola, 2004;
Mortola and Maskrey, 2011). The HVR in newborns is
mediated by the peripheral chemoreceptors and progressively
increases with age as the result of chemosensory reflex maturation
(Teppema and Dahan, 2010; Dzal et al., 2020) and a decrease of
HVD with maturation (Bissonnette, 2000; Renolleau et al., 2001).
The newborn phase is critical for the development of respiratory
control (Carroll, 2003), as changes in O2 levels, such as hypoxia or
hyperoxia, may cause alterations in respiratory control with long-
lasting effects (Carroll, 2003; Bavis, 2005, 2020; Lofaso et al., 2007;
Teppema and Dahan, 2010). Given the long-lasting repercussions
of O2−related challenges, it is plausible that hypoxic events, via
epigenetic modifications, may result in phenotypic plasticity.
Such modifications may lead to notable physiological changes
and/or distinct gene expression, proteomic, and metabolomic
profiles as discussed further in this Section and the final Section of
this review. Indeed, recent reports describe epigenetic changes
with hypoxia exposure in neonates (Bustelo et al., 2020; Tong
et al., 2021), and epigenetic modifications in peripheral
chemoreceptors have been induced with hypoxia exposure
(Nanduri et al., 2012, 2017a, 2017b; Prabhakar, 2013). These
findings highlight the crucial impact of O2 levels in early stages.

4.2 Ventilatory Responses to Acute and
Sustained Hypoxia
Ventilatory responses vary based on the duration of hypoxia
exposure. The HVR is a reflex response initiated when glomus
or type 1 cells in the carotid body detect a decrease in the arterial
levels of oxygen, producing an increase in intracellular Ca2+ and
release of one (or more) neurotransmitters to terminals of the
carotid sinus nerve (Teppema and Dahan, 2010; Ortega-Sáenz
et al., 2013; Prabhakar and Semenza, 2015; Iturriaga et al., 2021).
These neurotransmitters produce an increase in the frequency of
action potentials through the glossopharyngeal nerve to respiratory
centers of the brainstem, resulting in activation of the phrenic
nerve, activation of the diaphragm, and increased respiratory
frequency and tidal volume to produce increased ventilation
(Teppema and Dahan, 2010; Pamenter and Powell, 2016;

Ortega-Sáenz and López-Barneo, 2020). The specific nature of
the O2 sensor in the glomus cells is currently debated in terms of: a)
metabolism-related mechanisms (i.e., processes occurring in the
mitochondria), b) membrane-linked O2 sensor mechanisms (e.g.,
potassium and/or calcium channels, or olfactory receptors), and c)
mechanisms involving gasotransmitters determining or
modulating the chemoreceptor activity (e.g., carbon monoxide,
hydrogen sulfide, nitric oxide) (Prabhakar and Semenza, 2015;
López-Barneo et al., 2016; Iturriaga et al., 2021), which are all
plausible targets for different adaptations. For example, how the
HVR is beneficial under specific durations and patterns of hypoxia,
the extent of genetic/epigenetic control versus othermechanisms of
physiological plasticity, and links to reproductive outcomes at
altitude are active areas of research.

4.3 Acclimatization
Whereas acute hypoxia induces HVR, longer exposure to a
continuous hypoxic stimulus for days, weeks, or years (or
chronic hypoxia) produces ventilatory acclimatization to
hypoxia, which is a further increase of ventilation during
hypoxic stimulation and when breathing normoxic air (Powell
et al., 1998; Dempsey et al., 2014). For example, upon sojourn to
high altitude, the HVR increases over 2–14 days and remains
elevated, along with resting ventilation and arterial O2 saturation,
for at least eight weeks as a manifestation of ventilatory
acclimatization to hypoxia (Sato et al., 1994; Hupperets et al.,
2004). While the timescale varies, and it has been shown to take
over 10 days for ventilation to stabilize in some individuals
(Powell et al., 1998). It has been suggested that a blunting of
the HVR (hypoxic desensitization) reported among Andean
populations (Chiodi, 1957; Severinghaus et al., 1966; Weil
et al., 1971; Beall et al., 1997; Léon-Velarde et al., 2003)
suggests an elevated ventilatory response cannot be maintained
over longer time periods and will eventually decline (Zhuang
et al., 1993). This idea was supported by another long-term
acclimatization study showing HVR declined in some
individuals of European ancestry after 45 days (Forster et al.,
1971). If blunting of chemoreflex responses is typical in some sea-
level residents after long-term altitude exposure and in Andean
highlanders, it is intriguing that high HVR is maintained in some
Tibetan highlanders. Selective pressure acting on standing and/or
adaptive genetic variation or epigenetic differences in Tibetan
populations may have contributed to the maintenance of this trait
(Simonson et al., 2010; Simonson, 2015). Given that HVR
magnitude also varies both within and across human
populations, it is key genetic factors likely contribute, at least
in part, to differences in ventilatory control (Collins et al., 1978;
Brutsaert et al., 2005). The extent of variability in short- and long-
term acclimatization responses across individuals and within
various populations remains to be fully explored and would
benefit from longitudinal analyses.

While the genetic underpinnings of the magnitude of HVR are
not well understood, HIF regulators may play a key role in
ventilatory acclimatization to hypoxia. For example,
heterozygous Hif-1α knockout mice exposed to 72 h of
hypoxia have reduced ventilation during normoxia and acute
hypoxia compared to homozygous Hif-1α mice (Kline et al.,
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2002). In addition, site-specific deletion of Hif-1α in the
brainstem nucleus tractus solitarius of adult mice did not
affect the acute HVR in normoxia but blunted the acute HVR
in mice exposed to chronic hypoxia for 7 days (Moya et al., 2020).
Hodson et al. (2016) showed that inducible inactivation of the
HIF regulator prolyl hydroxylase 2 (Phd2) in mice resulted in an
increased HVR, and that deletion of Epas1, which encodes for
Hif-2α, but not Hif-1α, prevented this increase of HVR.
Additional work also suggests that Epas1 and potentially other
genetic components may play a key role in ventilation, primarily
through O2−sensing in glomus cells of the carotid body (Bishop
and Ratcliffe, 2020; Moreno-Domínguez et al., 2020). Moreno-
Domínguez et al. (2020) ablated Epas1 in mice, which resulted in
a reduced HVR. They achieved a similar reduction in HVR when
they genetically deleted Cox4i2. Studies regarding the genetics of
the HVR should be a prolific area for future experimental studies.

While increases in ventilation and also heart rate are immediate
responses to hypoxia, other physiological changes can occur within
days and weeks to improve tissue O2 delivery in chronic hypoxia
(Imray et al., 2011). Chronic mild hypoxia, between 8 and 12% O2,
triggers profound vascular remodeling in the central nervous system
(CNS) of adult mice, resulting in a greater than 50% increase in
blood vessel density throughout the CNS over a period of 2–3 weeks
(Boroujerdi and Milner, 2015). This process encompasses an
angiogenic response that includes endothelial proliferation (Li
et al., 2010), arteriogenic remodeling (Boroujerdi et al., 2012),
enhanced transient expression of remodeling proteins such as
fibronectin (Boroujerdi and Milner, 2015), and sustained elevated
expression of proteins involved in blood-brain barrier integrity (e.g.,
tight junction proteins and vascular basement extracellular matrix
proteins such as laminin) (Li et al., 2010). Such changesmay provide
protection in stroke and multiple sclerosis as discussed in
Section 5.4.

4.4 Hypoxia and the Epigenome Across the
Lifespan
Hypoxia in early life environments may have profound and
lasting effects on the development of adult physiology through
many different molecular, physiological, and morphological
changes. Epigenetics is most broadly defined as the study of
mitotically heritable changes to DNA that do not alter the
nucleotide sequence (Holliday, 1987). The most commonly
studied epigenetic mechanisms include DNA methylation
(methyl groups modifying cytosines preceding guanines, or
CpG sites), histone modifications (methyl, acetyl, and other
chemical tags modifying the proteins around which DNA is
wrapped), and non-coding RNAs (Allis and Jenuwein, 2016).
Because the epigenome sits at the nexus of the genome and the
environment, it is a layer of regulation that is of particular interest
in the study of early hypoxia exposures.

Some regions of the epigenome are characterized by increased
plasticity during the critical window in human development from
preconception to early childhood (Hochberg, 2011). During this
time, the epigenome undergoes active and passive
reprogramming and thus is very susceptible to environmental
influences (Faulk and Dolinoy, 2011; Buganim et al., 2013). Upon

gamete formation, and again after fertilization, DNAmethylation
is erased and re-established de novo in a cell- and tissue-specific
manner (Reik and Dean, 2001; Seisenberger et al., 2012).
Moreover, mounting evidence suggests that early life events
such as mother’s psychosocial stress levels, nutrition, and
exposure to heavy metals and endocrine disrupters such as
bisphenol-A (BPA), can affect DNA methylation, predisposing
a developing child to adverse health outcomes later in life
(Dolinoy et al., 2007; Senut et al., 2012; Klengel et al., 2014;
Thayer and Non, 2015; Non, 2021).

The epigenetic processes involved in adaptation to high-
altitude hypoxia are just beginning to be explored, as
summarized by Julian (2017, 2019). Recently developed animal
models have revealed how epigenetic changes contribute to
negative outcomes in prenatal hypoxia exposure. For example,
in rats, epigenetic changes induced by hypoxia in critical stages of
prenatal development can lead to increased cardiac vulnerability
to hypoxia in adults (Xiong et al., 2016) and epigenetic
reprogramming in response to maternal hypoxia that
manifests in adult offspring (Lv et al., 2019). Additionally,
intermittent hypoxia exposure in late gestation of mice has
shown to induce DNA methylation changes across nearly 700
genes, many associated with metabolic regulation and
inflammation, in adult male offspring (Khalyfa et al., 2017).

While early life is hypothesized to be a sensitive window for
epigenetic changes, exposure to hypoxia across the lifespan can
also result in epigenetic changes. Alkorta-Aranburu et al. (2012)
analyzed epigenetic differences across adult human populations
living at different altitudes in Ethiopia and identified four CpG
sites with significantly different methylation levels in saliva
samples from high- versus low-altitude Oromo Ethiopians.
However, these sites were not found in genes known to be
relevant to hypoxia response. A large study of epigenetic
variation in hundreds of Quechua individuals in Peru living at
high versus low altitude identified associations with DNA
methylation at two different loci (Childebayeva et al., 2019b).
Specifically, time spent at high altitude was associated with higher
levels of DNAmethylation at the repetitive element known as the
Long Interspersed Nuclear Element 1 (LINE-1) throughout the
genome and lower methylation levels at the promoter region of
EPAS1. Moreover, a few epigenome-wide studies of lifetime and
early developmental altitude exposures in the same population of
Andeans found differentially methylated loci in various genes,
including Superoxide Dismutase 3 (SOD3), a gene that plays a role
in antioxidant defense against oxidative stress, as well as
accelerated epigenetic aging in those living at high relative to
low altitude (Childebayeva et al., 2021a). The authors also
identified associations between DNA methylation and the
altitude adaptive phenotype of fraction of exhaled nitric oxide
(Childebayeva et al., 2021a). Surprisingly, even short-term
hypoxia, such as that experienced by Europeans ascending
Everest, elicited distinct epigenetic changes at key HIF loci,
including EPAS1 (Childebayeva et al., 2019a), along with other
genes in HIF and RAS pathways (Childebayeva et al., 2021b).
These findings speak to plasticity not just in development, but
potentially throughout one’s lifetime, suggesting epigenetic
factors may play a role in acclimitization to high altitude.
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Other mechanisms of developmental physiology at high altitude
are discussed elsewhere (Jochmans-Lemonie and Joseph 2018),
including changes to the cardiorespiratory system, as well as
thermoregulatory processes during post-natal development.

Experimental studies in animal models also yield important
insights into epigenetic modulation in the context of hypoxia.
Adult rats exposed to long-term (30 days) intermittent hypoxia
had higher levels of DNA methylation and down-regulation of
genes related to antioxidant enzymes, such as superoxide
dismutase genes Sod1, Sod2, catalse (Cat), Thioredoxin
reductase 2 (Txnrd2), Peroxiredoxin 4 (Prdx4), and
Glutathione peroxidase 2 (Gpx2), measured in the carotid
body, the adrenal medulla, and brainstem regions associated
with the carotid body reflex (Nanduri et al., 2017a). The same
methylation differences were not seen in rats exposed to short-
term (10 day) intermittent hypoxia, suggesting sustained or
chronic exposure is necessary to produce these epigenetic
effects. Of note, the carotid body has a distinct response to
intermittent versus chronic hypoxia, which may explain these
differences (Nanduri et al., 2017a). Furthermore, treatment with a
DNA methylation inhibitor during hypoxia exposure or recovery
blocked epigenetic changes and led to less reactive O2 species and
stabilized blood pressure and breathing, suggesting that
epigenetics play a role in the pathology of long-term
intermittent hypoxia exposure through regulation of
antioxidant enzymes (Nanduri et al., 2017a).

5 TIME DOMAIN 4: HYPOXIA AND DISEASE
THROUGHOUT THE LIFE COURSE

5.1 Hypoxia and Sleep
Sleep is a distinct state from wakefulness and a uniquely
susceptible window for hypoxic exposures. After sleep onset,
compensatory ventilatory responses to gas exchange
abnormalities and upper airway obstruction can influence
oxygenation patterns (Khoo et al., 1996; Wellman et al., 2011).
If ventilation remains steady and sleep remains continuous,
sustained hypoxia ensues. In contrast, vigorous ventilatory
response and arousals from sleep result in transient increases
in ventilation and oxygenation, resulting in intermittent hypoxia.
Thus, individual differences in ventilatory reflexes and co-morbid
cardiopulmonary disease give rise to unique patterns of hypoxia,
which vary in frequency and severity.

Hypoxia is a cardinal feature of sleep-disordered breathing
and has been implicated in the pathogenesis of cardiovascular and
metabolic comorbidities (Drager et al., 2015). Obstructive sleep
apnea (OSA) is the most common form of sleep disordered
breathing and affects up to one billion people worldwide
(Benjafield et al., 2019). OSA is characterized by repetitive
pharyngeal collapse during sleep, leading to intermittent
hypoxemia and hypercapnia with associated catecholamine
surges and arousals from sleep (Dempsey et al., 2010). OSA
has been associated with neurocognitive, cardiovascular, and
metabolic sequelae including pulmonary hypertension (Sajkov
et al., 1999). Therapy with continuous positive airway pressure
(CPAP) alleviates hypoxemia, reduces systemic blood pressure,

improves neurocognitive performance (Muñoz et al., 2000;
Dempsey et al., 2010), and normalizes pulmonary artery
pressures (Sajkov et al., 2002). CPAP may also reduce
cardiovascular risk (Sassani et al., 2004; Buchner et al., 2007;
Kohler et al., 2008), although data are still evolving (McEvoy et al.,
2016). The causal pathway describing the role of OSA-induced
cardiovascular comorbidities remain under investigation. Some
of those mechanisms include carotid body activation, epigenetic
changes, hypercapnia, autonomic function, inflammatory
pathways, and oxidative stress (Dempsey et al., 2010; Mesarwi
et al., 2015; Iturriaga, 2018; Benjafield et al., 2019).

Animal models have long been used to investigate the role of
hypoxia in the pathogenesis of sleep-disordered breathing-related
cardiometabolic disease. In seminal work, Fletcher et al. (1992)
illustrated that chronic intermittent hypoxia (CIH) mimicking
severe OSA caused an increase in systemic blood pressure. Since
that time, several other investigators have extended these findings
and showed that IH, during daylight hours when rodents are
normally asleep, leads to dysglycemia and insulin resistance
(Polotsky et al., 2003; Iiyori et al., 2007), dyslipidemia (Li
et al., 2005), atherosclerosis (Savransky et al., 2007), and
pulmonary hypertension (Fagan, 2001; Campen et al., 2005),
supporting concurrent findings in human subjects. Studies in
mice exposed to overlap (sustained and intermittent) hypoxia
revealed this combined stress leads to systemic and pulmonary
hypertension without protective effects typically associated with
sustained hypoxia (Zhen et al., 2021). We have derived
considerable mechanistic insight about the role of hypoxia in
sleep and pulmonary illness from these and other such studies.

In addition to OSA, central sleep apnea (CSA) is common in
high-altitude sojourners. During acute high-altitude exposure,
the increase in ventilatory chemosensitivity, particularly to
hypoxia, leads to unstable breathing patterns (Burgess and
Ainslie, 2016). Desaturation events cause periods of
hyperventilation which result in hypocapnia-induced apneas or
hypopneas, which lead to subsequent desaturation events and
arousals. The severity of this periodic breathing pattern appears
to increase at higher elevation and may worsen or improve with
acclimatization depending on the elevation and degree of increase
in the hypoxic ventilatory response (Andrews et al., 2012; Burgess
et al., 2013; Orr et al., 2018; Frost et al., 2021). In long term high-
altitude residents, sleep disordered breathing remains common
and may be linked to the development of excessive erythrocytosis
or chronic mountain sickness as discussed in the next Section.
Several studies report more frequent central and/or obstructive
apnea events in individuals with chronic mountain sickness
compared to individuals without chronic mountain sickness at
the same elevation (Sun et al., 1996; Julian et al., 2013; Rattner
et al., 2014; Pham et al., 2017; Heinrich et al., 2020). Continuous
desaturation events on top of existing chronic hypoxemia may
lead to significant oxidative stress and inflammatory events which
could play key roles in this pathogenesis.

5.2 Chronic Mountain Sickness
Chronic Mountain Sickness (CMS) is a manifestation of
maladaptation to life at high altitude and affects a large
number of people living above 2500 m (Villafuerte and
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Corante, 2016). The excessive production of red blood cells
(excessive erythrocytosis) characterizes the condition and is
associated with signs and symptoms that affect an individual’s
well-being, social life, and frequently employment (Villafuerte
and Corante, 2016). While increased erythrocytosis improves
oxygen content, excessive levels are maladaptive. At present, it is
well established that chronic hypoxemia resulting from life at
high altitude is the main underlying factor; however, the main
pathophysiological mechanism remains elusive. As mentioned in
Section 4.3, loss of ventilatory acclimatization to altitude hypoxia
leading to central hypoventilation has been proposed as the
principal mechanism explaining accentuated hypoxemia and
the subsequent excessive erythropoietic response (León-
Velarde and Richalet, 2006). However, the significant
variability in the apparent causes of excessive erythrocytosis
suggests that the origin of the condition involves multiple
levels (Hancco et al., 2020). Some individuals with CMS
develop severe hypoxemia, possibly due to depressed
ventilation during day or night that triggers excessive
erythrocyte production while others have moderate hypoxemia
but increased plasma erythropoietin and erythropoietin
availability (as determined by the decreased soluble form of
the erythropoietin receptor), or increased local erythropoietin
production or sensitivity at the bone marrow level (Hancco et al.,
2020). This variability suggests genetic adaptation and lack of

adaptation at various levels in highlanders from the same
population with and without CMS (Zhou et al., 2013).

5.3 High-Altitude Pulmonary Hypertension
and Pulmonary Edema
Hypoxic pulmonary vasoconstriction (HPV) refers to the
contractile response of pulmonary blood vessels in response to
reduced alveolar O2 tension (Sylvester et al., 2012; Swenson,
2013). Contrary to what happens in systemic circulation, the
local hypoxic stimulus produces HPV and reduces the blood flow
to areas of the lung that are poorly ventilated. Chronic hypoxia
can produce arterial remodeling and changes in vascular
reactivity inducing a sustained increase in pulmonary arterial
pressure leading to high-altitude pulmonary hypertension
(HAPH) (Xu and Jing, 2009). These diseases and other
pathological conditions associated with hypoxia are illustrated
in Figure 3.

HAPH is a clinical condition characterized by high pulmonary
arterial pressure or high systolic pulmonary arterial pressure, as
well as right ventricular hypertrophy, heart failure, and absence of
excessive erythrocytosis (León-Velarde et al., 2005). Changes in
the levels and function of HIFs are involved in the mechanisms
producing HAPH (Tang et al., 2018; Hu et al., 2019; Shimoda
et al., 2019) but, more specifically, modulation of HPV through

FIGURE 3 | Pathological conditions associated with different patterns of hypoxia. Acute or chronic exposure to high-altitude hypoxia (upper panel) can lead to
several diseases including chronic mountain sickness (CMS), pulmonary hypertension, high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE),
and acute mountain sickness (AMS). Mechanisms underlying this variation include genetic factors, plasticity and/or lack of plasticity in ventilatory responses to hypoxia,
excessive erythrocytosis, hypoxia-inducible factor (HIF) dysregulation, epigenetics, and inflammation. Additionally, clinical diseases such as chronic obstructive
pulmonary disease (COPD) and obstructive sleep apnea (OSA) lead to chronic (sustained) hypoxia and chronic intermittent hypoxia, respectively (lower panel) and can
trigger subsequent inflammation, oxidative stress, changes in gene expression, autonomic dysfunction, and hypercapnia that further contribute to various comorbidities.
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changes in the activity of K+ or Ca2+ channels, or vasoactive
molecules such as nitric oxide or endothelin-1 (ET-1), could
contribute to the development of HAPH (Sylvester et al., 2012;
Mirrakhimov and Strohl, 2016). However, the fact that HAPH is
not normalized by O2 inhalation, or agents that inhibit HPV,
suggests other factors could also contribute to HAPH (Sylvester
et al., 2012). HAPH is more prevalent in men than women who
haven’t reached menopause (Aldashev et al., 2002, 2005) and
varies among different populations living at high altitude (Fagan
andWeil, 2001), which suggests a genetic component, as reviewed
by Eichstaedt, Benjamin, and Grünig (2020) with potential
involvement of various candidate genes (Eichstaedt et al.,
2020)Aldashev et al. (2002). In support of this idea, HAPH is
more common in Andean than Tibetan populations, with
pulmonary arterial pressures in Tibetans living at 3,658 m
comparable to sea level values (Groves et al., 1993).

Additional candidate genes that may play a role in HAPH
include those involved in the nitric oxide-associated pathways
due to their vasoactive properties. As mentioned in Section 3.1,
exhaled nitric oxide is substantially elevated in Tibetans
compared to Andeans highlanders and lowlanders at sea level
(Beall, 2007). León-Velarde and Mejía (2008) suggest that
variants in ENOS (the gene encoding endothelial nitric oxide
synthase) are associated with endogenous NO production and
may contribute to HAPH susceptibility (Sofowora et al., 2001),
but these observations have yet to be experimentally validated.
Other genes linked to nitric oxide-associated pathways are
reviewed in Eichstaedt, Benjamin, and Grünig (2020). It
remains difficult to dissect the direct physiopathology of
HAPH from mechanisms present in common comorbidities
such as high-altitude pulmonary edema and CMS.

In severe cases, HAPH can lead to high-altitude pulmonary
edema (HAPE). HAPE occurs when excessive HPV leads to
increased alveolar capillary permeability and fluid leak into the
lung tissue. While HAPE pathophysiology is well characterized,
there are limited predictors of individual susceptibility (Bärtsch
et al., 2005). Individual genetic variants and epigenetic markers
have been correlated with aspects of HAPE pathophysiology and
susceptibility but validation of these isolated ‘hits’ is lacking
(Mortimer et al., 2004; Maloney and Broeckel, 2005; Simonson,
2015). Our understanding of how genomic influences relate to
short- and long-term hypoxic and hypobaric physiology is limited
in part due to isolated candidate genes analyses (Simonson and
Malhotra, 2020), limited sample sizes, and lack of stratification for
genotype-phenotype analyses. Recently, chronic, as opposed to
acute, altitude exposure has been identified as a potential cause of a
type of “mountain residence” HAPE (Ebert-Santos, 2017),
challenging the paradigm that all HAPE is triggered by acute
altitude exposure. Thorough characterization of this chronic-
induction population, in rigorous comparison with those
susceptible to classic acute-induction HAPE, would be a logical
first step in learning about long-term altitude exposure.

The mechanisms underlying HPV involve processes that carry
over from the transition from placental-fetal oxygenation to
pulmonary O2 supply at birth. However, these responses may
not prove beneficial in severe lung disease and do not provide an
advantage at high altitude. Therefore, the mechanisms essential at

a crucial time point of birth has a cost under different
environmental or pathological conditions later in life. While
HPV contributes to complications in HAPE and OSA, it also
occurs in patients with acute lung injury and pneumonia (Naeije
and Brimioulle, 2001). HPV is an evolutionarily conserved
response, observed in a variety of species including humans,
with analogs in the gill circulation of fish and skin circulation of
amphibians (Moudgil et al., 2005). HPV was first described as an
adaptation by Euler and Liljestrand (1946) who recognized that
HPV improves O2 uptake by diverting pulmonary blood flow to
better aerated parts of the lungs. This physiologic effect is put to
use during lung surgery when one lung is purposefully not
ventilated in order to minimize intraoperative bleeding
(Dunham-Snary et al., 2017). HPV compensates for regional
alveolar hypoxia, as in bronchopneumonia, but not hypoxia
affecting the whole lung, as in OSA and HAPE. Oral and
intravenous pulmonary vasodilators, e.g., calcium channel
blockers, interfere with HPV and can worsen oxygenation and
mortality in critically ill lung patients (Naeije and Brimioulle,
2001; Karam et al., 2017). However, vasodilators are
recommended for patients with HAPE. This difference reflects
the potential beneficial role of HPV in lung injury/pneumonia
and its pathological activation in HAPE. Hypobaric hypoxia is a
novel condition for which lowland dwelling humans have not had
time to evolve an optimal response. By contrast, some groups
with a long history of high-altitude residence have a blunted HPV
which might protect them against pulmonary hypertension and
HAPE (Dunham-Snary et al., 2017). Other high-altitude taxa
exhibit reduced HPV, such as yaks (Anand et al., 1986), llamas
(Reyes et al., 2020), the Tibetan pika (Ge et al., 1998), and high-
altitude deer mice (West CM. et al., 2021), providing a likely
example of convergent evolution.

5.3 Hypoxia and Inflammatory Responses
Hypoxia may also play a key role in initiating inflammation or
exacerbating preexisting inflammatory states (Eltzschig and
Carmeliet, 2011; Pham et al., 2021). One example is chronic
obstructive pulmonary disease (COPD), whereby chronic low-
grade systemic inflammation contributes to development of
comorbidities including weight loss and muscle wasting,
hypertension, diabetes, depression, obstructive sleep apnea,
and arthritis (Corlateanu et al., 2016). It is possible that
epigenetic changes are part of the mechanisms underlying
such phenotypes in COPD (Corlateanu et al., 2016; Sundar
et al., 2017; Benincasa et al., 2021). The role of hypoxia and
inflammatory in more acute conditions, e.g., COVID-19, remains
an active area of research (Simonson et al., 2021).

Another example of hypoxia-induced inflammation is observed
in some high-altitude research studies, since inflammation has been
implicated as a contributing factor to acute mountain sickness
(AMS), development of HAPE (Duplain et al., 2000; Hartmann
et al., 2000; Grocott et al., 2007; Lemos et al., 2013; Boos et al., 2016),
and high-altitude cerebral edema (HACE) (Song et al., 2016; Luks
et al., 2017). Additionally, genes encoding inflammatory cytokines
are found to be under evolutionary selection in Andean and Tibetan
populations (Foll et al., 2014), whichmay afford protection instead of
exacerbating hypoxemia.
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Animal models indicate that inflammation also contributes to
ventilatory acclimatization to hypoxia. For example, rats treated
with ibuprofen during exposure to sustained hypoxia showed a
blocked response to acute hypoxia without affecting the persistent
hyperventilation in normoxia. Ibuprofen treatment also
prevented the increase of interleukin 1β (IL-1β) and
interleukin-6 (IL-6) in the nucleus tractus solitarius when
compared to rats exposed to sustained hypoxia but
administrated with saline (Popa et al., 2011). Stokes et al.
(2017) showed that inhibition of microglia in rats using
minocycline prevented the complete development of
ventilatory acclimatization to hypoxia with blunted responses
to acute hypoxia. In addition, their results indicate minocycline
prevented the increase of IL-6 observed in the nucleus tractus
solitarius of rats exposed to hypoxia per 24 h (Hocker et al., 2017).

After tissue trauma and injury, HIF-1 appears to protect the
host by preventing infection (Bogdanovski et al., 2017) via
regulating inflammation and increasing bactericidal capacity of
phagocytes (Peyssonnaux et al., 2005) and further stimulates
angiogenesis and promotes tissue repair (Umschweif et al.,
2013). Attenuated HIF-1α signaling and impairment of
downstream immune responses are theoretical concerns when
supplemental O2 is given for patients with infection. Although
impaired O2 delivery in sepsis and septic shock was thought to
cause multiple organ dysfunction and mortality (Tuchschmidt
et al., 1992), multiple trials aimed at increasing O2 delivery in
sepsis have failed to show a benefit for this approach (Hayes et al.,
1994; PRISM Investigators et al., 2017). Some studies suggest that
excess O2 can harm sepsis patients (Demiselle et al., 2018; Perner
et al., 2020). The appropriate O2 target in critical illness is a
controversial topic that is the focus of ongoing trials (Perner et al.,
2020).

5.4 Therapeutic Applications
Hypoxia is generally considered to impair physiological function
and limit performance. However, there is mixed evidence that
chronic (hypobaric) hypoxia may be beneficial in certain diseases.
Some studies suggest high-altitude residents have decreased rates
of cancer, e.g., lung cancer rates are lower in Peru compared to the
United States after controlling for known confounding factors
such as cigarette smoking (Thiersch et al., 2017; Thiersch and
Swenson, 2018). Further studies are necessary to show specific
effects of hypoxia, such as determining if cancer risks differ
between those who reside at high altitude and those who have
moved to sea level.

Chronic intermittent hypoxia (CIH), which can occur with
obstructive sleep apnea, is usually considered harmful as a cause
of inflammation and oxidative stress (Labarca et al., 2020),
resulting in well-known pathological effects on cardiovascular
physiology and metabolism (Marin et al., 2005; Barnes et al.,
2022). However, CIH has also been reported to produce beneficial
effects. For example, 15 cycles in inspired O2 administered daily
to produce cycles of arterial PO2 similar to those occurring with
OSA can improve motor neuron function in both preclinical and
clinical studies (Vose et al., 2022). This line of research is based on
the observation that CIH can result in long term facilitation (LTF)
of phrenic nerve activity, and increased ventilation that persists in

normoxia following CIH (Gonzalez-Rothi et al., 2015). Hence, it
is possible that there may be some beneficial effects of hypoxia
that interact with harmful effects and their complex interaction
might influence evolutionary responses to hypoxia. There are
several examples of such balancing selection, such as the well-
known effect of sickle cell disease to provide an evolutionary
advantage by protecting against malaria despite causing
cardiovascular disease (Piel et al., 2010).

Hypoxic pre-conditioning at this level of hypoxia confers
marked protection in several animal models of neurological
disease including ischemic stroke and multiple sclerosis (Miller
et al., 2001; Dore-Duffy et al., 2011; Dunn et al., 2012), raising the
question of therapeutic application of hypoxic pre-conditioning
as mentioned in Section 4.3. However, the optimal dose, duration
and frequency of hypoxic treatment that confers maximal
protection from neurological disease, and the cerebrovascular
impact of “naturally occurring” hypoxia, e.g., high altitude
residents, aircrew, and patients with cardiopulmonary disease,
sleep apnea, and other respiratory pathologies, remains
unknown.

Pharmacological interventions to increase Hb-O2 affinity,
observed in may highland species as discussed in Section 2.2,
have shown to improve hypoxia tolerance in mice, indicating this
as a potential therapeutic avenue for hypoxia-induced pathologies
(Dufu et al., 2017). A drug called Voxeletor (previously GBT440)
increases Hb-O2 affinity through its interactions with
hemoglobin S to inhibit polymerization and is currently being
tested in sickle cell disease patients (Estepp, 2018). Several other
therapies revolve around promoting increased persistence of
expression of fetal hemoglobin (HbF), an isoform of Hb which
is produced around 6 weeks of pregnancy (Linch, 1998) and
usually persists for 2–4 months after birth (Schechter, 2008). HbF
has a higher affinity to O2 than adult Hb, allowing for the fetus to
more efficiently scavenge O2 in utero and as a neonate (Wang and
Zhao, 2010). HbF is found in approximately 3–7% of adult red
blood cells; however, these levels are increased in individuals with
beta-thalassemia, sickle cell disease, or acute erythropoietic stress
(Italia et al., 2007; Kim et al., 2015) and the extent of individual
variation on a global level has yet to be established. Some
individuals with sickle cell disease and HbF persistence lack
the symptoms and phenotypes associated with disease, offering
promising directions for therapeutic development (Fathallah and
Atweh, 2006). Natural variation in a number of genes have been
associated with fetal Hb persistence, with several mechanisms
described (Thein et al., 2009), along with studies to develop
therapies that chemically modulate HbF levels. One
mechanism involves reducing the amount of adult Hb in
diseases like alpha- or beta-thalassemia, resulting in observed
upregulation of HbF to compensate for the lack of adult Hb genes
(Wahed and Dasgupta, 2015). Other mechanisms have been
attributed to mutations within the promotor regions of the
genes HBG1 and HBG2 (Karakaş et al., 2015). These promotor
variants can result in new transcription factors binding to the
promotor or disruption of the binding on major repressors, such
as BCL11A and ZBTB7A, allowing for continued expression of
HbF (Thein et al., 2009; Martyn et al., 2018). The use of
compounds such as hydroxyurea have also been shown to
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promote HbF expression in sickle cell disease patients (Cokic
et al., 2003). Studies have tied this effect to increases in nitric
oxide radical and cyclic-GMP levels (Cokic et al., 2003) while
alternative factors have been proposed such as selective
vasodilation or decreased platelet activation (Glover et al., 1999).

6 APPLICATION OF MULTI -OMIC TOOLS
TO ADVANCE THE FIELD

Adaptation and acclimatization to hypoxia involve coordinated
efforts across many biological systems within the human body.
These systems can be studied in parallel through multiple
different “-omics” approaches, highlighted in Figure 4, which
summarizes the various epigenetic, transcriptomic, proteomic,
and metabolomic studies of high-altitude adaptation to date. As
proximal phenotypes, these data may provide insight into the
prioritization of precise genetic variants, which remain largely
unknown, and ways to test their functional significance in
highlanders and other human populations (e.g., lowland
groups with shared genetic variation). With more
comprehensive collections of -omics data, it is possible to
generate hypotheses about mechanisms underlying hypoxia
adaptation that can be tested through gene-editing and
functional investigations (Hall et al., 2020).

6.1 High-Altitude Hypoxia Transcriptomics
and Proteomics
With the advent of high-throughput sequencing and improved
pipelines for sequencing technologies, information about global
gene expression and regulation can now be obtained via RNAseq,
which determines RNA quantity in a given sample (Wang et al.,
2019). In a multi-omics data analysis in Tibetans that included
transcriptomics analyses, Xin et al. (2020) developed a statistical
model that correlated regulatory elements with gene expression,
ultimately indicating down-regulation of EPAS1 as potentially
adaptive in Tibetans, corroborating previous experimental
evidence from studies such as Peng et al. (2017). Findings of Xin
et al. (2020), among others, demonstrate the depth and power
behind the use of multiple -omics to identify potential adaptive
mechanisms outside protein-coding variants in the genome. In
addition to these studies in Tibetans, recent research has focused
on -omics profiles in individuals acclimatizing to altitude as
discussed in Section 6.2. Additional studies focused specifically
on high-altitude acclimatization provide greater insight into
short-term hypoxia responses that, when coupled with -omics
data, yield important insight into potential mechanisms of
individual hypoxia responses as well (Subudhi et al., 2014).

Proteomics is the global analysis of proteins and, in
conjunction with mass spectrometry, can provide additional
insight into high-altitude adaptation (Altelaar et al., 2013; Gao

FIGURE 4 | Omics Adaptation to Altitude in Ethiopians, Tibetans, Andeans, and lowlanders who visit high-altitude environments (>3600 m). Genes with hypo-
(green) and hyper- (red) methylated regions, differential transcriptomic regulation and/or up- (green) and down- (red) regulated families of proteins are listed by highland
population. Metabolites and metabolic factors with increased levels and those that are activated in the corresponding population at high altitude are shown in green (red
indicates downregulation).
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et al., 2017). As reviewed by Gao, Luo and Ni (2017), the majority
of proteomic studies in relation to high altitude have focused on
either acclimatization of lowlanders or high-altitude related
illnesses. Proteomic studies on highlanders are rare, but
studies such as Ahmad et al. (2013) and Du et al. (2019) have
reported differentially expressed proteins, mainly part of the
inflammatory pathway, involved in coagulation cascades,
antioxidative stress, and glycolysis. Both studies compared
plasma of native highlanders to non-acclimatized lowlanders.

In addition to studying highlanders, other proteomic studies
have attempted to identify novel biomarkers for AMS (discussed
in Section 5.4). For example, Julian et al. (2014) measured plasma
protein levels of individuals residing in the Denver, Colorado,
United States, metropolitan area (1,650 m) after acute hypobaric
hypoxia exposure, comparing the protein levels of those
susceptible to AMS and those resistant to AMS. They found
an increase in the abundance of proteins with antioxidant
properties in individuals susceptible to AMS but not in those
resistant to AMS. Lu et al. (2018) conducted a similar study in
individuals of Chinese ancestry and found reduction of proteins
related to tricarboxylic acid cycle, glycolysis, ribosome, and
proteasome in the AMS resistant (AMS−) group, but not in
AMS susceptible (AMS+) group. While all the aforementioned
studies analyzed plasma, Jain et al. (2018) analyzed saliva for
potential proteomic biomarkers. They also found increases in
levels of antioxidant enzymes in addition to several other
proteins, including apoptosis inducing factor-2. Their results
indicate that proteomic analysis of saliva may be a feasible,
non-invasive method to measure acclimatization, or more
importantly, failure to acclimatize in disease states such as
HAPE or HACE.

6.2 High-Altitude Hypoxia Metabolomics
Across Time Domains
Most adaptive traits identified in highland populations to date
involve adjustments in O2 delivery, yet tolerance to hypoxic
environments also includes adjustments in cellular O2 utilization
and particularly to mitochondrial oxidative metabolism (Murray,
2016). One functional tool employed to investigate the complex
metabolic interactions occurring in response to an environmental
perturbation is metabolomics (O’Brien et al., 2015). Application of
this approach in high-altitude studies has revealed metabolic signals
of adaptation and acclimatization and evidence for significant
remodeling of metabolism at a tissue-specific and system-wide level.

In the Himalayan Sherpa, metabolomics was employed alongside
measures of mitochondrial respiratory capacity in skeletal muscle,
thus combining ex vivo functional measures withmetabolite levels in
vivo, to assess metabolic alterations with ascent to 5300m (Horscroft
et al., 2017). Despite the fall in O2 delivery with ascent, Sherpas
demonstrated increased skeletal muscle ATP and phosphocreatine
(PCr) concentrations, suggesting improvement in energetic reserve,
alongside no change in oxidative stress markers. This remarkable
preservation of muscle energetics and protection against oxidative
stress was accompanied by a shift away from fatty acid oxidation
(FAO), with suppression of both FAO capacity and expression of
transcriptional regulator of fatty acid metabolism PPARα (Horscroft

et al., 2017). The O2 requirement of ATP synthesis is greater during
FAO than glucose oxidation. This shift away from FAO therefore
suggests an adaptive hypometabolic state and reduction in cellular
O2 requirements in the Sherpa (Murray et al., 2018), as supported by
enhanced mitochondrial coupling efficiency (Horscroft et al., 2017).
These metabolic adaptations were associated with the putatively
advantageous allele of PPARA (Horscroft et al., 2017), previously
reported as an adaptive target in Tibetans (Simonson et al., 2010). In
stark contrast to Sherpas, lowlanders demonstrated depletion of
skeletal muscle PCr and ATP alongside a sharp rise in oxidative
stress markers with ascent (Horscroft et al., 2017). While there was
evidence of a shift away from FAO through suppression of a PPARα
target (carnitine palmitoyl transferase 1 B) and enhanced oxidative
coupling efficiency, lowlanders also displayed evidence of incomplete
FAO through an increase in long-chain acylcarnitines: total carnitine
ratio (Horscroft et al., 2017), potentially resulting in production of
harmful lipid intermediates (Koves et al., 2008).

Insight into metabolic acclimatization to high altitude has also
been gleaned from metabolomics analysis of placenta collected at
3100 m following C-section or vaginal delivery from women of
sea-level ancestry living at high altitude (Tissot van Patot et al.,
2010). In contrast to sea level, labor at altitude generated greater
ATP, ATP/ADP ratios and higher PCr in the absence of large
changes in glucose, lactate, or free amino acids. This shift in
metabolites occurred alongside evidence of decreased oxidative
stress, lower lipid peroxidation and increased antioxidant
capacity. Together, these changes implied that metabolic
adaptation had occurred in response to maternal hypoxia
at high altitude during pregnancy. This led to a blunted
response to the hypoxia-induced metabolic stress of labor,
with less reliance upon anaerobic glycolysis or protein
catabolism to maintain energetic homeostasis (Tissot van Patot
et al., 2010).

Metabolic signals have also been identified at the systemic
level in response to high-altitude exposure. In the largest of
these studies to date, metabolomic and lipidomic analyses were
conducted on plasma obtained from 198 subjects at baseline
and across four locations on the ascent to Everest Base Camp
(5,300 m). Metabolites undergoing progressive changes with
ascent were identified. Increasing lactate and decreasing
glucose pointed towards increased reliance upon anaerobic
glycolysis. This shift occurred alongside evidence of fat store
mobilization, with decreasing triglycerides associated with de
novo lipogenesis and increasing levels of free fatty acids such as
palmitic, linoleic, and oleic acids (O’Brien et al., 2019).

Increased reliance upon glycolysis with high-altitude acclimatization
is supported by other metabolomics studies, which demonstrate raised
skeletal muscle glycolytic intermediates in lowlanders (Horscroft et al.,
2017), raised circulating lactate (Tissot van Patot et al., 2009) and
induction of erythrocyte glycolysis (Liu et al., 2016; Sun et al., 2016).
Erythrocyte glycolytic pathways are tightly linked to O2 delivery, with
raised sphingosine 1-phosphate (S1P) and phosphorylation of AMP-
activated protein kinase both contributing towards hypoxia-induced
2,3-bisphosphoglycerate (2,3-BPG) (Liu et al., 2016; Sun et al., 2016), a
negative allosteric regulator of Hb-O2 binding affinity, thus facilitating
O2 release (Chanutin and Curnish, 1967). The induction of erythrocyte
2,3-BPG was shown to persist throughout prolonged (16 day) stay at
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altitude (D’Alessandro et al., 2016; Liu et al., 2016) and one week after
descent (D’Alessandro et al., 2016).

Metabolomics has also been applied in the context of high-altitude
pathology, as discussed in Section 5, with the aim to identify
circulating biomarkers. In comparison to control subjects, those
suffering from HAPE (10 per group) demonstrated distinct
metabolic profiles, including increases in a number of amino acids
(such as valine, lysine, and isoleucine), decreased glucose, and low
density lipoproteins (Luo et al., 2012). Next research steps should aim
to determine what physiology and biomarkers are common and
perform research to understand the underlying mechanism.

While relatively few high-altitude studies have employed
metabolomics techniques, current evidence suggests it is an
effective approach for identifying metabolic signals of adaptation
and acclimatization to high altitude. It provides the most insight
when combined with functional measures to elucidate mechanisms
associated with these signals, as demonstrated by Horscroft et al.
(2017), Sun et al. (2016), and Liu et al. (2016).

6.3 Multi -Omics in Other Extreme
Environments
While high altitude is the main environment in which humans
encounter hypoxia, multi -omic tools can and have been applied
to other extreme environments where humans may face the
physiological challenge of low O2. One such instance is in
diving populations, as exemplified by the Bajau people of the
Philippines who are known for their underwater breath-holding
abilities. The Bajau people spend an average of 60% of their work
day underwater, and undergo hypoxic states during breath holds
(Schagatay et al., 2011; Ilardo et al., 2018). Ilardo et al. (2018)
identified genetic variants under positive selection within the
Bajau that corresponded with larger spleen size, potentially
conferring a physiological advantage during dives by providing
a larger reservoir of red blood cells.

Further multi -omic work is being conducted in the final human
frontier, where humans may encounter hypobaric and potentially
hypoxic conditions during space travel. Currently, on-board the
International Space Station (ISS), great care is taken to maintain a
steady partial pressure of O2 near to that at the Earth’s sea-level, but
explorers conducting extravehicular activity may be exposed to
hypobaric hypoxic conditions (Norcross et al., 2015). Despite the
normal O2 levels on-board the ISS, an integrated -omics study of an
astronaut during a one-year mission on-board the ISS revealed
changes in the expression pattern of genes that have been
implicated in hypoxia in rodent models (Garrett-Bakelman et al.,
2019). Furthermore, the ambient carbon dioxide (CO2)
concentration in space is in excess of normal atmospheric
conditions (0.7 versus 0.03%) (Matty, 2010; Cronyn et al., 2012).
Studies are being conducted to understand the health impact of
elevated CO2 on astronauts and the role of genetics in individual
variability in response to elevated CO2 in space flight (Laurie et al.,
2017). While the space travel environment may differ from high
altitude, hypoxia and hypercapnia remain key concerns in
maintaining astronaut health, and multi-omics analyses may

provide insight into how to counteract environmental stressors
(Schmidt and Goodwin, 2013; Beheshti et al., 2018).

7 CONCLUSION

Humans and other animals have experienced hypoxia across various
time scales. This synthesis of existing knowledge of hypoxia
responses across time domains integrates information from
comparative animal and human studies and explores disease
consequences for modern humans. Findings and perspectives
across each of these domains contribute to unique and promising
future directions for evolutionary and clinical hypoxia research. As
tools and techniques becomemore sophisticated, ongoing and future
studies in genomics, epigenomics, other -omics, and environmental/
clinical phenotypes measured across species and across the lifespan
must be integrated to fully understand how the challenge of hypoxia
impacts various physiological systems.
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