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Canonical Approaches to Applications of the Virial Theorem 

 

Jay R. Walton 

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368 

Luis A. Rivera-Rivera, Robert R. Lucchese, and John W. Bevan∗ 

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255 

 

 

Abstract 

Canonical approaches are applied for investigation of the electronic ground states of H2
+, H2, 

HeH+, and LiH using the Virial Theorem. These approaches will be dependent on previous 

investigations involving the canonical nature of E(R), the Born-Oppenheimer potential, and F(R), 

the associated force of E(R), that have been demonstrated to be individually canonical to high 

accuracy in the case of the systems investigated. Now, the canonical nature of the remaining 

functions in the Virial Theorem [the electronic kinetic energy T(R), the electrostatic potential 

energy V(R), and the function W(R) =RF(R)] are investigated and applied to H2, HeH+, and LiH 

with H2
+ chosen as reference. The results will be discussed in the context of a different 

perspective of molecular bonding that goes beyond previous direct applications of the Virial 

Theorem. 
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1. Introduction 

Recently, the source of chemical bonding, particularly that involving the history and 

philosophy of covalent bonding, has been reviewed1 and describes the diversity of approaches 

used to consider the fundamental physical basis of chemical bonding. This included the force-

based concept of chemistry2,3 for the electrostatic model of bonding that has been the subject of 

extensive consideration and acceptance. In another recently published work, by Bacskay and 

Nordholm,4 the origin of bonding in the simplest molecule H2
+ has been considered supporting a 

mechanism attributed to Hellmann5 that lowering of kinetic energy and associated electron 

delocalization are considered as the sources for stabilization of the molecule and the key 

mechanism of bonding.6-9 This conclusion was in contrast with the perspective of Slater,10 

Feynman,2 Bader,11,12 and others who maintained that the source of stabilization of electrostatic 

potential energy lowering is attributed to the electron density binding regions between the nuclei. 

The work of Bacskay and Nordholm4 proposes that the electrostatic model of covalent bonding 

fails to provide a real insight or explanation of bonding while the kinetic energy mechanism is 

both sound and accurate.   

In a previous study, we introduced a generalized formulation of canonical transformations 

and spectra.13 These investigations explored the concept of a canonical potential strictly within 

the Born-Oppenheimer approximation for the most accurate available ground electronic state 

pairwise intermolecular potentials in H2, HeH+, and LiH. Explicit canonically-based 

transformations including a semi-empirically verified Rydberg-Klein-Rees approach to high 

accuracy, have also been developed for transformation to a canonical potential for both diatomics 

as well as two body intermolecular interactions.14,15 The latter include several categories of 

bonding from van der Waals, hydrogen and halogen bonded systems. The term canonical 
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potential in these cases refers to a class of molecules with respect to a dimensionless function 

obtained from each molecule within the defined class by a readily invertible algebraic 

transformation. Furthermore, to be deemed canonical, the dimensionless potentials obtained 

from all of the molecules within the defined class by the canonical transformation must agree to 

within a specified order of accuracy. Now, comprehensive canonical approaches are applied for 

investigation of the electronic ground states of H2
+, H2, HeH+ and LiH using the Virial Theorem. 

In addition, the canonical nature of the electrostatic potential energy V(R), the function W(R) 

=RF(R), and the electronic kinetic energy T(R) that as a group proceed in precisely the same 

fashion, are now applied to H2, HeH+, and LiH with H2
+chosen as reference. These characteristic 

transformations together with the previously demonstrated16 but different canonical nature of 

E(R), the Born-Oppenheimer potential, and F(R), the associated force of E(R), are demonstrated 

to be inherently but individually canonical to high accuracy in the case of the systems 

investigated. The results will also be discussed in the context of giving a different perspective of 

molecular bonding that goes beyond previous direct applications of the Virial Theorem. 

 

II. Methods 

In Ref. 13 and 15, a method for constructing canonical representations of potentials for 

diatomic molecules was developed utilizing a scheme for decomposing a 1-dimensional potential 

curve into a finite numbers of canonical sections that have the same dimensionless “shape” 

across a broad class of molecules. The notion of dimensionless shape exploited in this approach 

is developed such that each designated section of the potential curve for one molecule has a 

unique counterpart in another molecule and an associated affine transformation that maps each 

corresponding section to a single dimensionless curve. Each affine transformation is determined 
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by the requirement that the endpoints of the section of the dimensional potential curve upon 

which it acts map linearly to the endpoints of a single dimensionless “canonical” curve.  

Identifying the sections of two given dimensional potentials with the same canonical shape 

makes fundamental use of their associated force distributions (termed the “Feynman Force”, cf. 

Ref. 2). More specifically, the 1-dimensional potential E(R) is considered with associated force 

distribution  

  F(R) := − ′E (R) ,           (1) 

and Re denotes the equilibrium separation distance, that is, the value of R at which the force is 

zero, for which E(Re) = –De, the depth of the potential well. Also, the “maximum attractive 

force”, Fm, is defined by 
  
Fm := max R>Re

| F(R) | and its corresponding inter-nuclear separation 

distance 

� 

Rm > Re for which 

� 

F(Rm ) = Fm . The subsequently defined sequence of separation 

distances Rm < Raj(α), j = 1, 2, … for which 

  
| F(Raj (α )) |  = Fm /α j           (2) 

where α > 1 is a specified parameter. That is, Ra1(α) is the separation distance at which the 

attractive force has been reduced to α–1 times its maximum value, etc. Correspondingly, for R < 

Re, the sequence Rrj(α), j = 0, 1, … of separation distances is defined such that   

  
| F(Rrj (α )) |  = Fmα

j .          (3) 

Thus, Rr0(α) is the separation distance at which the repulsive force equals the magnitude of the 

largest attractive force, etc. It was shown in Ref. 13 and 15 that for given j < k, sections of the 

potential curves for two different molecules in the considered classes defined by Raj(α) < R < 

Rak(α) or Rrk(α) < R < Rrj(α) have canonical shapes. It was subsequently observed in Ref. 13 and 
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15 that enhanced accuracy in identifying corresponding sections of potential curves with 

canonical shapes results from generalizing Eqs. (2) and (3) to: 

  Ra1(α ;γ 1) := γ 1Ra1(α )+ (1−γ 1)Rm(α )        (4) 

  
Raj (α ;γ j ) := γ j Raj (α )+ (1−γ j )Ra( j−1) (α ;γ j−1), j >1      (5) 

  Rr1(α ;γ 1) := γ 1Rr1(α )+ (1−γ 1)Rr0(α )        (6) 

  
Rrj (α ;γ j ) := γ j Raj (α )+ (1−γ j )Ra( j−1) (α ;γ j−1), j >1.      (7) 

The parameter γ  was chosen to ensure that the dimensionless affine canonical transformations 

agree at the endpoints x = 0, 1 and the midpoint x = 0.5 which had the effect of greatly tightening 

the global fitness of the canonical curves. 

In Ref. 16, it was also shown that the intrinsic connection between the canonical nature of 

molecular potentials and their associated force distributions has further fundamental implications. 

Specifically, the force distributions themselves were shown to have canonical decompositions. 

Moreover, the notion of canonical force distribution is of a more fundamental nature than 

canonical potential in that if force is canonical across a class of diatomic molecules, then so is 

potential, but the reverse implication is in general not true. That is, the fact that the potentials for 

a class of diatomic molecules have canonical decompositions does not, in general, imply that 

their associated force distributions do likewise.  

In the present contribution, it is demonstrated that the above notion of canonical potential or 

force curve shape plays an even more fundamental role in the nature of the molecular bond than 

just the energy E(R) and its associated force F(R). To illustrated that role, it proves helpful to 

express the Virial Theorem written in the form:10,11,17 

  T (R) =W (R)− E(R)          (8) 
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  V (R) = 2E(R)−W (R)           (9) 

  W (R) = RF(R)           (10) 

  E(R) =V (R)+T (R) ,         (11) 

in which T(R), V(R) and W(R) denote the electronic kinetic energy, electrostatic potential energy 

and work (done by the Feynman Force). It can be shown that each of the energies T(R), V(R) and 

W(R) also are canonical in the sense described above. Indeed, it was initially conjectured that the 

Feynman Force could be used to determine the sequence of nuclear separation distances that 

identify the canonical sections of the various energy curves. However, that conjecture proved to 

be incorrect; nature behaves somewhat differently. What emerged during the study of these 

energies, was that the canonical sections of each energy curve are identified by the generalized 

force associated with each energy. More specifically, the canonical sections of the electronic 

kinetic energy T(R), the electrostatic potential energy V(R) and work W(R) curves are determined 

by their respective generalized force distributions 

  FT (R) := − ′T (R)            (12) 

  FV (R) := − ′V (R)            (13) 

  FW (R) := − ′W (R).           (14) 

In particular, the canonical sections of E(R) and F(R) do not correspond to the canonical sections 

of T(R) or of V(R) or of W(R); the canonical sections of each of these energies are determined by 

each energy's own associated generalized force distribution. 

A. Canonical Kinetic Energy 

Demonstrating the canonical nature of the electronic kinetic energy T(R) begins by selecting 

a reference molecule, which as was done in Ref. 13, 15, and 16, and is taken herein to be the 

simplest molecule H2
+. The sequence of separation distances 
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  …< Rr 2
*T (α ) < Rr1

*T (α ) < Rr0
*T (α ) < Re

*T < Ra0
*T (α ) < Ra1

*T (α ) < Ra1
*T (α ) <…     (15) 

are then constructed according to Eqs. (2) and (3) but with the F(R) in Eq. (1) replaced by the 

generalized force Eq. (12) associated with the electronic kinetic energy T(R). Figure 1 illustrates 

how the generalized force 

� 

FT (R)  is used to identify the various canonical sections of the kinetic 

energy curve. 

1. Piecewise Affine Transformation to Canonical Dimensionless Form 

The reference canonical forms for the kinetic energy 
   
Taj

* (x;α )  and 
   
Trj

*(x;α ) , j = 0, 1, …, with 

for   0 ≤ x ≤1, are defined by: 

   
Ta0

* (x;α ) :=
T (xRa0

*T (α )+ (1− x)Re
*T )−T (Re

*T )
T (Ra0

*T (α ))−T (Re
*T )

       (16)  

   

Taj
* (x;α ) :=

T (xRaj
*T (α )+ (1− x)Ra( j−1)

*T (α ))−T (Ra( j−1)
*T (α ))

T (Raj
*T (α ))−T (Ra( j−1)

*T (α ))
, j > 0     (17) 

   
Tr0

* (x;α ) :=
T (xRr0

*T (α )+ (1− x)Re
*T )−T (Re

*T )
T (Rr0

*T (α ))−T (Re
*T )

       (18) 

   

Trj
*(x;α ) :=

T (xRrj
*T (α )+ (1− x)Rr ( j−1)

*T (α ))−T (Rr ( j−1)
*T (α ))

T (Rrj
*T (α ))−T (Rr ( j−1)

*T (α ))
, j > 0.    (19) 

2. Inverse Canonical Transformation 

The affine transformations Eqs. (16) – (19) are inverted by the formulas: 

   
T *(R) = T *(Re

*T )+  Ta0
* (x;α ) T (Ra0

*T (α ))−T (Re
*T )( ),   Re

*T < R < Ra0
*T (α ) 	
   	
     (20) 

   
T *(R) = T *(Ra( j−1)

*T (α ))+ Taj
* (x;α ) T (Raj

*T (α ))−T (Ra( j−1)
*T (α ))( ),   Ra( j−1)

*T (α ) < R < Raj
*T (α )  (21)  

   
T *(R) = T *(Re

*T )+ Tr0
* (x;α ) T (Rr0

*T (α ))−T (Re
*T )( ),   Rr0

*T (α ) < R < Re
*T 	
   	
   	
    (22)  

   
T *(R) = T *(Rr ( j−1)

*T (α ))+ Trj
*(x;α ) T (Rrj

*T (α ))−T (Rr ( j−1)
*T (α ))( ),   Rrj

*T (α ) < R < Rr ( j−1)
*T (α )

.
	
  (23)  
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In Eqs. (20) – (23), x is defined, respectively, by: 

  

x =

R − Re
*T

Ra0
*T (α )− Re

*T             : Re
*T < R < Ra0

*T (α )

R − Ra( j−1)
*T (α )

Raj
*T (α )− Ra( j−1)

*T (α )
   : Ra( j−1)

*T (α ) < R < Raj
*T (α ) j > 0

Re
*T − R

Re
*T − Rr0

*T (α )
            : Rr0

*T (α ) < R < Re
*T

Rr ( j−1)
*T (α )− R

Rr ( j−1)
*T (α )− Rrj

*T (α )
   : Rrj

*T (α ) < R < Rr ( j−1)
*T (α ) j > 0.

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

    (24) 

B. Canonical Electrostatic Potential Energy and Work 

Demonstrating the canonical nature of the electrostatic potential energy V(R) and the work 

W(R) proceeds in precisely the same fashion as for the electronic kinetic energy T(R). The key 

point is to use the generalized force distributions Eqs. (13) and (14) associated with V(R) and 

W(R) to define the critical separation distances in Eqs. (15) that enter into the various formulas. 

In the next section, these formulas are applied to the four molecules: H2
+, H2, HeH+, and LiH 

with H2
+chosen as reference. 

 

III. Results and Discussion 

Figure 2 exhibits the four (dimensional) generalized energies E(R), T(R), V(R), W(R) and 

their associated force distributions for the four molecules H2
+, H2, HeH+ and LiH. As a 

consequence of the Virial Theorem when T(R) is zero, E(R) = V(R) = W(R), and when V(R) is 

zero, E(R) = T(R). Similar relations hold for the associated generalized forces. It is pertinent to 

note that the generalized forces of T(R) and V(R) are both binding only inside the interval defined 

where each generalized force is zero. Before this interval, the generalized force for T(R) is anti-
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binding and the generalized force for V(R) is binding. After this interval the generalized force for 

T(R) is binding and the generalized force for V(R) is anti-binding. 

Tables 1 – 4 list the inter-nuclear separation distances associated to each of the four 

generalized energies E(R), T(R), V(R), and W(R). Figure 3 exhibits the canonical nature of the 

(dimensionless) electronic kinetic energy curves given by Eqs. (16) – (19) and (24) 

corresponding to sections of the dimensional electronic kinetic energy curves in Figure 2. The 

relative errors in these figures, and the corresponding for V(R) and W(R), are listed in Tables 5 – 

7 where the relative error is defined to be the ratio of the absolute error to the accurate value. The 

relative errors on all piecewise canonical segments for T(R), V(R), and W(R) are less than the 

very small value of 0.0095 and include a correction for the γ  parameter. The corresponding data 

in the figures is illustrative and do not include a correction for the γ  parameter. 

It should be noted that the canonical nature of the electronic kinetic energy is not at all 

evident from the dimensional curves appearing in Figure 2; indeed, it gets revealed through the 

piecewise affine transformations to canonical form given by Eqs. (16) – (19) and (24) as shown 

in Figure 3. Of equal importance is the use of the inverse transformations Eqs. (20) – (23) (as 

exploited in Ref. 13 for E(R)) to construct formulations of the electronic kinetic energy curves 

for the molecules H2, HeH+ and LiH as piecewise affine transformations of the electronic kinetic 

energy curve for the reference molecule H2
+. Moreover, the generalized energies E(R), T(R), 

V(R), and W(R) for any diatomic molecule can be generated from the generalized energies of the 

reference molecule, H2
+. The latter, however, is dependent on sufficient independent data being 

available from another independent source whether generated by experiment or alternative 

computational methods. 
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Figure 4 exhibits the somewhat unexpected result that the canonical sections of the electronic 

kinetic energy T(R), electrostatic potential energy V(R), and work W(R) for H2
+ are nearly 

identical. Importantly, the various canonical sections for T(R), V(R), and W(R) are determined by 

their associated generalized forces FT(R), FV(R), and FW(R), and hence correspond to different 

� 

R −intervals. Relative errors in these curves are given in Tables 8 and 9 and include a correction 

for the γ  parameter as described previously. The agreement of these canonical energies with that 

for the canonical total energy E(R) is also surprisingly good except for the first sections on either 

side of the equilibrium separation. It is significant to emphasize that the Virial Theorem [Eqs. (8) 

– (11)] does not hold for the canonical forms of the various energies but hold only for the 

dimensional forms of the energies. It is also important to remark that close agreement among the 

various dimensionless canonical forms for these four energies implies that any one of them can 

be used to construct dimensional approximations of the others through piecewise affine scaling 

with very small relative error. (cf. Ref. 13). Thus, for example, T(R) can be used to construct 

accurate dimensional approximations to V(R) and W(R) as illustrated in Figure 5. In Figure 5, the 

inverse canonical transformation is used to approximate V(R) and W(R) for H2
+ on the bottom of 

the well between the two separation distances (less than and greater than the equilibrium 

separation at which the generalized force is zero) where the generalized force equals its 

maximum value using piecewise affine scaling of T(R). For V(R), the relative error is only 

0.00048 and for W(R), the relative error is only 0.00061. 

The canonical nature of the four energies E(R), T(R), V(R), and W(R) suggest an intriguing 

perspective for formulating a classification scheme for bonding characteristics in diatomic 

molecules. In particular, while each of these energies have corresponding dimensionless forms 

that are canonical across a broad range of diatomic molecules, the inter-relationships among their 
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dimensional forms for a given molecule are not canonical. More specifically, the inter-

relationships among the sequences of separation distances used to identify canonical 

dimensionless sections of each energy and the specific dimensional forms for their associated 

generalized forces manifest important non-canonical characteristics of bond formation for a 

given molecule. A detailed investigation and application of these ideas will be the subject of a 

future study. 

 

IV. Conclusions 

Application of canonical approaches has given a fundamentally new perspective on bonding 

in H2
+, H2, HeH+ and LiH and thus potentially in other molecular systems. The semi-empirical 

demonstration of the canonical nature of E(R), F(R), T(R), V(R), W(R) and their derivatives to 

high accuracy in these systems gives confidence for further applications of this approach. The 

demonstration of the canonical nature of T(R), V(R), and W(R) have particular significance in the 

understanding of molecular bonding in these systems. The canonical perspective of F(R) has 

been confirmed semi-empirically recently16 and when combine with the Virial Theorem give 

additional fundamentally new quantitative insights into the nature of bonding in the systems 

investigated. It has been demonstrated that the fundamentals functions in the Virial Theorem, 

which give considerable information about bonding, are independently canonical for the systems 

investigated.  
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Table 1. Inter-nuclear separations for E(R). 

Molecule Rer(2) Refmr Rem Refma Rea(1) Rea(2) 

H2 0.5898 0.64751 0.7414 1.1342 1.7877 2.1205 

HeH+ 0.6627 0.7064 0.7743 1.0331 1.4771 1.7431 

LiH 1.3213 1.4270 1.5949 2.2820 3.4180 3.8935 

H2
+ 0.8507 0.9292 1.0569 1.5967 2.6161 3.2039 

 

 

Table 2. Inter-nuclear separations for T(R). 

Molecule Rtr(2) Rtfmr Rtm Rtfma Rta(1) Rta(2) 

H2 1.2068 1.3517 1.5408 2.0200 2.5919 2.9084 

HeH+ 1.0613 1.1318 1.2339 1.5606 2.0410 2.3312 

LiH 2.1738 2.4874 2.9368 3.7260 4.4183 4.8408 

H2
+ 1.8337 2.0235 2.2922 3.0943 4.1713 4.7755 

 

 

Table 3. Inter-nuclear separations for V(R). 

Molecule Rvr(2) Rvfmr Rvm Rvfma Rva(1) Rva(2) 

H2 1.4837 1.5986 1.7478 2.1587 2.7081 3.0233 

HeH+ 1.2221 1.2888 1.3841 1.6902 2.1573 2.4458 

LiH 2.5864 2.8837 3.20731 3.8164 4.5045 4.9275 

H2
+ 2.3248 2.4906 2.7221 3.4369 4.4699 5.0682 
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Table 4. Inter-nuclear separations for W(R). 

Molecule Rwr(2) Rwfmr Rwm Rwfma Rwa(1) Rwa(2) 

H2 0.9759 1.1121 1.3191 1.8823 2.48677 2.8061 

HeH+ 0.9479 1.4537 1.1164 1.4537 1.9449 2.2356 

LiH 1.9163 2.1554 2.5851 3.6317 4.3559 4.7719 

H2
+ 1.4509 1.6203 1.8859 2.7639 3.8999 4.5125 

 

 

Table 5. Relative errors for electronic kinetic energy, T(R). 

Molecule Rtr(2) – Rtr(1) Rtr(1) – Rtm Rtm – Rtfm Rtfm – Rta(1) Rta(1) – Rta(2) 

H2 0.0061 0.0092 0.0025 0.00038 0.000019 

HeH+ 0.0042 0.0044 0.00094 0.00092 0.00044 

LiH 0.0050 0.0016 0.0062 0.0021 0.0014 

 

 

Table 6. Relative errors for electrostatic potential energy, V(R). 

Molecule Rvr(2) – Rvr(1) Rvr(1) – Rvm Rvm – Rvfm Rvfm – Rva(1) Rva(1) – Rva(2) 

H2 0.0085 0.0062 0.0016 0.00025 0.000018 

HeH+ 0.0023 0.0037 0.00055 0.00072 0.00043 

LiH 0.0047 0.0035 0.0062 0.00204 0.0026 
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Table 7. Relative errors for virtual work, W(R). 

Molecule Rwr(2) – Rwr(1) Rwr(1) – Rwm Rwm – Rwfm Rwfm – Rwa(1) Rwa(1) – Rwa(2) 

H2 0.0078 0.0047 0.0026 0.00059 0.000014 

HeH+ 0.0063 0.0028 0.00018 0.00013 0.00045 

LiH 0.0039 0.0022 0.0027 0.00090 0.0025 

 

 

Table 8. Relative errors between E(R) and the other energies T(R), V(R) and W(R) for H2
+. 

 Rr(2) – Rr(1) Rr(1) – Rm Rm – Ra(1) Ra(1) – Ra(2) 

T(R) 0.00094 0.015 0.035 0.0013 

V(R) 0.0011 0.015 0.03 0.00077 

W(R) 0.00014 0.0063 0.03 0.002 

 

 

Table 9. Relative errors between T(R), V(R) and W(R) for H2
+. 

 Rr(2) – Rr(1) Rr(1) – Rm Rm – Ra(1) Ra(1) – Ra(2) 

V(R) 0.0002 0.0001 0.0052 0.00061 

W(R) 0.0008 0.0089 0.0054 0.00076 
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Figure 1. Electronic kinetic energy and its generalized force distribution, for the H2
+ molecule. 
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Figure 2. The Viral Theorem functions (E(R), T(R), V(R), and W(R)) and their respective 

generalized force distributions for: (A) H2
+, (B) H2, (C) HeH+, (D) LiH. 
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Figure 3. Canonical electronic kinetic energy for H2
+ (solid black curve), H2 (red circles), HeH+ 

(green diamond), and LiH (blue triangle). Panels (A) to (E) correspond to different piecewise 

segments. 
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Figure 4. Comparison of four dimensionless sections of the four canonical energies for H2
+. (A) 

The canonical section from 

� 

Rm  (the separation distance at which the generalized force is zero) to 

� 

Rafm  (the separation distance at which a given generalized attractive force attains its maximum 

value); (B) The canonical section from 

� 

Rafm  to 

� 

Ra1  (the separation distance at which a given 

generalized attractive force is diminished to half of its maximum value); (C) and (D) are the 

corresponding sections on the repulsive side of the equilibrium separation distance. 
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Figure 5. Left panel show the approximate curve for V(R) (blue squares) for H2
+ compared to the 

accurate value (red curve). Right panel show the approximate curve for W(R) (blue squares) for 

H2
+ compared to the accurate value (green curve). For both panels, the approximate curves were 

generated by the inverse canonical transformation and piecewise affine scaling of T(R).  
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