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INVESTIGATION

Efficiently Summarizing Relationships in Large
Samples: A General Duality Between Statistics of

Genealogies and Genomes

Peter Ralph,*' Kevin Thornton," and Jerome Kelleher*

*Institute of Evolution and Ecology, Departments of Mathematics and Biology, University of Oregon, Eugene, Oregon 97405,
TDepartment of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, and *Big Data Institute, Li Ka
Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom OX3 7LF

ORCID IDs: 0000-0002-9459-6866 (P.R.); 0000-0003-0743-4445 (K.T.); 0000-0002-7894-5253 (J.K.)

ABSTRACT As a genetic mutation is passed down across generations, it distinguishes those genomes that have inherited it from those
that have not, providing a glimpse of the genealogical tree relating the genomes to each other at that site. Statistical summaries of
genetic variation therefore also describe the underlying genealogies. We use this correspondence to define a general framework that
efficiently computes single-site population genetic statistics using the succinct tree sequence encoding of genealogies and genome
sequence. The general approach accumulates sample weights within the genealogical tree at each position on the genome, which are
then combined using a summary function; different statistics result from different choices of weight and function. Results can be
reported in three ways: by site, which corresponds to statistics calculated as usual from genome sequence; by branch, which gives the
expected value of the dual site statistic under the infinite sites model of mutation, and by node, which summarizes the contribution of
each ancestor to these statistics. We use the framework to implement many currently defined statistics of genome sequence (making
the statistics’ relationship to the underlying genealogical trees concrete and explicit), as well as the corresponding branch statistics of
tree shape. We evaluate computational performance using simulated data, and show that calculating statistics from tree sequences
using this general framework is several orders of magnitude more efficient than optimized matrix-based methods in terms of both run
time and memory requirements. We also explore how well the duality between site and branch statistics holds in practice on trees
inferred from the 1000 Genomes Project data set, and discuss ways in which deviations may encode interesting biological signals.

KEYWORDS genealogy; tree sequence; genotype statistics

T was once a major undertaking to collect data sufficient to
estimate a single summary of the genetic relationships be-
tween the individuals of a sample (e.g., Kreitman 1983). To-
day’s vast quantity of whole-genome sequence makes it
possible to confidently estimate many more properties of ge-
nealogical relationships in local regions of genomes, both
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between individuals (e.g., Browning and Browning 2010;
Aguillon et al. 2017) and within populations (e.g., Booker
and Keightley 2018; Haenel et al. 2018; Stankowski et al.
2019). Computation is beginning to be a major problem:
projects such as UK Biobank (Bycroft et al. 2018) and gno-
mAD (Karczewski et al. 2019) hold genetic data for hundreds
of thousands of samples at tens to hundreds of millions of
variant sites. Such large genotype matrices are extremely un-
wieldy and difficult to process, and computational complex-
ity is usually linear in the size of the matrix. Tools such as Hail
(https://hail.is) allow computations to be sharded across
many machines in parallel, thereby calculating statistics far
more quickly than is possible using single-computer methods
such as plink (Purcell et al. 2007). Computer time must still
be paid for, however, and running calculations concurrently
on thousands of cores quickly becomes expensive. Larger
data sets still, consisting of millions of whole genomes, are
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currently being collected and it is clear that processing and
storing these genotype matrices will be very costly.

Genotype matrices are massively redundant, however, and
several specialized compression methods have been proposed
(Christley et al. 2008; Qiao et al. 2012; Durbin 2014; Sambo
et al. 2014; Layer et al. 2016; Danek and Deorowicz 2018; Lin
et al. 2019). The fundamental reason for this redundancy is
that samples share ancestry: related individuals will tend
to share the same state at a particular variant site. Trees
describe these ancestral relationships (Semple and Steel
2003; Felsenstein 2004), and provide a natural and elegant
way of encoding genetic data, not only recording the history
of a sample but also massively compressing the genotype
matrix (Ané and Sanderson 2005). Until recently, however,
tree-based approaches could not be used to encode data from
sexually reproducing organisms, because recombination re-
sults in many trees along the genome (Hudson 1983; Griffiths
1991; Griffiths and Marjoram 1996; Rasmussen et al. 2014),
and there was no efficient way of representing this informa-
tion. The succinct tree sequence (or tree sequence, for brevity) is
a recently introduced data structure that encodes these ge-
nealogical trees along a genome concisely. It was introduced
in the context of coalescent simulation (Kelleher et al. 2016),
leading to scalability increases of several orders of magnitude
over existing methods. The methods were subsequently ex-
tended and refined for forward-time simulations (Kelleher
et al. 2018; Haller et al. 2019), with similarly large efficiency
gains. Recent work has shown that tree sequence algorithms
can also be used to massively increase the scalability of meth-
ods for inferring genome-wide genealogies, and make it pos-
sible to infer trees for millions of samples (Kelleher et al.
2019). The key to the remarkable efficiency of tree sequence
algorithms is the way that shared structure in adjacent trees
along the genome is encoded. As one looks across the ge-
nome, genealogies change at recombination breakpoints in
ancestors. However, nearby trees tend to share much of their
structure, and single genealogical relationships (e.g., individ-
ual x inherits from individual y) are often shared across rel-
atively long distances, which manifest as shared edges across
many adjacent trees in the tree sequence. This redundancy
can be exploited to store genome sequence and the associ-
ated genealogical relationships very compactly, and formed
the basis for efficient algorithms to calculate several popula-
tion genetics statistics (Kelleher et al. 2016). This paper gen-
eralizes the approach of Kelleher et al. (2016) to a much
broader class of statistics, supporting arbitrary tree topolo-
gies and patterns of allelic variation, including polyallelic
sites and back mutations.

In this paper, we study single-site genetic statistics, i.e.,
statistics of aligned genome sequence that can be expressed
as averages over values computed separately for each site.
We develop a theoretical and computational framework that
encompasses a large class of population genetic statistics,
generalizing many classical summaries of genetic variation.
We define and explore a duality between site and branch
statistics, and provide a detailed description (and analysis)
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of an efficient algorithm to compute statistics in this general
setting. The methods we describe are implemented, tested,
and validated in the tskit Python and C libraries, freely avail-
able at https://github.com/tskit-dev/tskit under the terms of
the MIT license.

The basic relationship between tree shape and summaries
of genetic variation that we will explain and utilize below is
this: if mutations are neutral, then the expected number that
occur on a given branch of a tree is proportional to the length of
that branch. This duality (we will use the term more precisely
later) has been used extensively in deriving properties of
statistics in models of random mating (e.g., Tajima 1983;
Tavaré 1984; Fu 1995), as has the fact that it applies regard-
less of the underlying demographic model (e.g., Gillespie and
Langley 1979; Hudson 1983; Slatkin 1991; McVean 2002;
Lohse et al. 2016; Ralph 2019). We build on this central in-
sight to define a flexible and computationally efficient frame-
work for population genetic statistics on tree sequences.
Roughly speaking, to compute a statistic we will propagate
weights additively up each marginal tree, summarize these
weights on each branch with a summary function, and aggre-
gate these summaries to produce statistics. Different choices
of weights and summary functions will then produce both
familiar and novel statistics of both genotypes and
genealogies.

Framework and Statistics

Population genetic data are most directly represented as a
matrix of genotypes, and so summaries of population genetic
data usually begin with this data structure. However, since the
genetic variation represented in a genotype matrix was gen-
erated by mutations inherited through genealogical trees, it is
often informative to think about these statistics in terms of
these trees. Most population genetic summary statistics can be
thought of in terms of the allele frequencies, i.e., what pro-
portion of some subset of the sampled genotypes carry each
allele. The frequency of any particular allele can easily be
found from the location of the mutation(s) that produced it
on the marginal genealogical tree, by counting the number of
sampled genotypes below the mutation(s) in the tree. If
many mutations have occurred at distinct sites that share a
single genealogical tree, then these mutations start to give us
an idea of the shape of that tree. This relationship is depicted
in Figure 1, which shows the relationship between the gene-
alogical tree and the frequencies of alleles at five different
sites across a region of the genome described by that single
tree. Our goal will be to generalize this sort of summary of the
genotype matrix, using the underlying genealogical trees.
Working with the trees serves two purposes. First, the trees
are closer to the demographic processes that we are really
interested in, and so allow us to reason more directly about
population genetic signal and noise. Second, trees are highly
efficient data structures, and allow us to compute with ge-
netic data far more efficiently than with the genotype matrix
itself.
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Figure 1 The relationship between allele
frequencies and the underlying genealogical
trees. (A) The genotype matrix, showing ge-
notypes of five sequences (samples) at five
separate sites, as well as the derived allele
frequencies (derived alleles are shown in
color, with separate colors for each genotype
pattern; for example, all green mutations
separate samples s, s3 and ss from s, and
S4. (B) The genealogical tree describing how
those five samples are related to each other
over this segment of genome. The samples
are leaves, and each mutation is represented

below each node
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as a star on the genealogy, with color matching the genotype matrix, and labeled with its index in the genotype matrix and the ancestral and derived
states at that site. (C) Each node in the tree is labeled with the number of samples at or below that node, which we think of as a weight. Note that this is
additive: the weight of each node is the sum of the weights of its child nodes. Since the frequency of a derived allele is the number of samples that have
inherited that mutation, the allele frequency of each mutation is equal to the weight of the node directly below the mutation, divided by the total

sample size.

The operation of finding allele frequencies on a tree,
depicted in Figure 1C is the basis of a familiar operation in
population genetics: summarizing the allele frequency spec-
trum. Somewhat more generally, we could calculate how
many of a certain set A of samples inherit from a particular
branch in a tree by assigning each of these samples weight
1 (and other samples weight zero), then finding the total
weight of all samples in the subtree inheriting from that
branch. This gives the number of samples that would inherit
any mutation falling on this branch. Suppose we want to
calculate one of the linear functions of the frequency spec-
trum discussed by Fu (1995) and Achaz (2009), which can be
described as follows. Write p;(a) for the frequency of allele a
atasite, and h (p) for the allele frequency spectrum (i.e., the
number of alleles whose frequency is p in our sample), and
suppose that for some function f(), we want to compute
> ph(p)f(p). Since this is a simple sum over sites, we can
compute this by summing over the L sites in the genome
and all alleles (including the ancestral allele),

§:Mpf@ }:}:f@l

i=1 a

For instance, mean genetic diversity across biallelic loci is
computed using this formula with f(p) = p(1 — p), omitting
the usual factor of two because the sum is over both alleles at
each site. This is because genetic diversity is defined to be the
probability that two randomly chosen sequences differ at a
randomly chosen site, and the probability that two randomly
chosen genomes differ at a site with allele frequency p is
p(1—p)+ (1 —p)p. If we know where each mutation has
occurred on the genealogical tree at each site in the genome,
we can easily compute statistics of this form by finding allele
frequencies, applying the function f() to each, and summing
up the results.

Our framework is somewhat more general than this, since
we also define statistics that are not functions of the allele
frequency spectrum. The small but useful generalization we
make is to allow the weights we propagate up the tree to be

numbers other than zero or one. The general procedure is
depicted in Figure 2. If weights are all zero or one, then these
weights will count numbers of samples in each part of the
tree; but below we use other weights to compute the corre-
lation between genotype and phenotype.

Before we formally describe the statistics, we need some
notation and definitions. A tree sequence describes how a set
of n sampled chromosomes are related to each other along a
(linear) genome of length L (Kelleher et al. 2016, 2018). Each
haplotype, modern or ancestral, is associated with a node,
and the trees at each position along the genome have ver-
texes labeled by these nodes. A tree sequence describes the
relationships between a special set of nodes, the samples, that
appear in the trees at every point along the genome. The
other (nonsample) nodes may not appear in every tree, as
for instance, if a portion of an ancestor’s genome was not
inherited by any of the samples. From the tree sequence
can be extracted a sequence of trees, T = (T1,T2,...,T|r|)
and a sequence of breakpoints 0 = ap <a; < <ay =1,
where Ty describes the genealogical relationships of the sam-
ples over the segment of genome between a,_; (inclusive)
and ay, (exclusive), and |T| is the number of trees. We say that
tree T covers the (half-open) segment [a,—1,ax), and call the
length of this segment its span, denoted Ly = ax — ax—1. We
refer to the branches in each tree using the most recent node,
so for instance, a branch between an ancestor v and descen-
dant u is associated with the node u. Note that although the
same parent—child relationship may exist across many adja-
cent trees (this is called an edge), rearrangements of genea-
logical relationships due to recombination can cause the
precise set of samples that inherit from that edge to differ
across trees.

Definition 1 (sample and subtree weights)

A list of sample weights w assigns a numeric value w(v) to every
sample node. Given these weights, the subtree weight x;(u) on
tree Ty for a node u is the sum of all sample weights of every
sample node that is descended from u in the tree (including u, if
it is a sample):

Statistics of Tree Sequences 781



wy + w2 + w3 + wWye + Ws

w1 twatwsg
w4 + W5
w1+ Wwso
wp w2 W3 w4 Ws

Figure 2 Subtree weights are assigned to each node by adding together
the weights of any children, plus the weight of the node itself, if it is a
sample. In this example, the samples are the five leaves, and have weights
wi,...,Ws; the total weight (also the subtree weight of the root) is
Wiotal = W1 + " + Ws. This can summarize the tree in many ways; for
instance, if all weights were equal to one, then subtree weights would
count the number of samples below that node. On the other hand, if
wi = 1 but other weights were zero, then subtree weights would indicate
whether a node was an ancestor of sample 1. If w, was the value of a
phenotype of sample &, then the subtree weight of a node would equal
the sum of all phenotypes inheriting from that node.

=
viv=qu

wherev = ru if u is on the path from v to root in the tree Ty. The
total weight is the sum of the weights over all samples:

Wiotal = p_,W(V).

If a given node u is a sample and has no offspring (i.e., itisa
leaf), then its sample weight and subtree weight are the
same: xx(u) = w(u). However, these differ for any samples
that are internal nodes in a tree, and so we use different
notation to distinguish the two concepts. Also note that
Wioral 1S the subtree weight of the root of any tree, as long
as the tree contains all the samples.

We allow vector-valued weights, i.e., w(v) may be a vector
(w1(v),...,wn(v)), so that when summarizing we have ac-
cess to more than one aspect of each subtree. We will often be
interested in statistics defined in terms of different subsets
of our samples; it is useful to have some additional notation
to define these statistics. Given a subset set S of samples,
the indicator weights of S are the sample weights 15 with
1s(u) = 1ifu € S and 15(u) = O otherwise.

Definition 2 (summary function)

For a set of k-dimensional weights with total weight Wy, a
summary function is any real-valued function f(wi,...,wg).
We call the summary function strict if f(0) = f (Weorat) = O.
The requirement that f(0) = f(Wotr) = O ensures that sta-
tistics do not depend on portions of the tree either not ances-
tral to any of the samples or ancestral to all of them. This is
desirable because genetic variation within the samples can-
not inform us about such parts of the tree. However, as we
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will see below, it is sometimes useful to use nonstrict sum-
mary functions.

Node statistics

Perhaps the most natural way to summarize weights on the
tree is simply to examine the values at each node. This would
allow us, for instance, to count the number of samples that
inherit from each node in the tree. Averaged across trees, this
tells us, for each node, what proportion of the sample’s ge-
nomes were inherited from that node. Motivated by this, we
define the node statistic for node u associated with summary
function f() and sample weights w to be the sum of f() ap-
plied to the weight of the subtree inheriting from node u and
to the remaining weight of the rest of the tree, averaged
across the genome:

|T|

Node (f,w), = 1 D Lil fer, (1)) +F Wi — x5, (@). (D

k=1

The weight xr, (u) is the sum of the weights of all samples
descending from node u in the tree Ty, and Wyoral — X1, (1) is
the sum of all remaining weights. This is an average over the
genome because each tree is weighted by its span, L, and the
sum is divided by the total genome length, which is the sum
of all the spans: L = L; + " 4 Lqy. If the node statistic is
computed over only a window of the genome then L is
replaced by the length of the portion of that window that
the tree Tj extends for, and L is replaced by the length of
the window.

Polarization: The node statistic defined above is appropri-
ate for statistics of all alleles at given variable site. For other
statistics, one is only concerned with the derived state(s) at a
site, and we define a polarized node statistic without the
second term from our previous definition:

|T|

(polarized)  Node (f,w), = % > Lifler (). (2)
k=1

Example 1 (ancestry proportions)

Ifw = 15 are the indicator weights of the set S of n samples, then
x(u)/n is the proportion of the samples in S that inherit from u.
Therefore, if f(x) = x/n, then Node. (f,w), is the proportion of
the genomes of S that are inherited from (ancestor) u.

Dividing this statistic by the total amount of the genome
each node is ancestral to any samples, we would obtain the
genomic descent statistic defined by Scheib et al. (2019).

Note that the summary function in this last example was
not strict, since f(Wioa1) # 0. Strictness is less important for
node statistics than for the remaining classes of statistic be-
cause node statistics only make sense in the context of the
tree sequence. However, node statistics provide a useful



bridge to the next type of statistic, which are defined directly
in terms of the genotypes.

Site statistics

Now, we describe how to compute statistics from genomes,
using this framework. To do this, we assume that the genetic
variation data are embedded in a tree sequence, but the trees
are used only for efficiency; the results will not depend on the
trees in any way. The summaries we defined above for nodes
extend directly to genetic variants: just as a node weight
contains information about which samples inherit from the
node and which do not, so we can summarize patterns of
genetic variation by summing up weights of all samples that
carry a given allele. Therefore, we define allele weights to be
the total weight of all sample nodes that have inherited that
allele.

Definition 3 (allele weights)

The allele weight for allele a at site j is the sum of the weights of
all sample nodes inheriting this allele:

v:gi(v)=a

where the sum is over all sample nodes v for which g;(v), the
allele carried by node v at site j, is equal to a.

If there has been only one mutation at the site, then x;j(a) is
equal to the weight of the subtree inheriting from the muta-
tion that produced a. In the more general case of recurrent
and back mutations, X can be computed from subtree weights
in a straightforward way. We then define the site statistic of
site j for a summary function f() and sample weights w to be
the sum of f() applied to the weight of every allele, a, found at
this site:

Site(f,w); = > _f(Xj(a)). (3)

Here, we think of a site as a single nucleotide position on the
genome. We often want to summarize statistics across regions
of the genome (windows). To do this, we overload notation
somewhat and use a subscript [i,) to denote an average over
the corresponding portion of the genome:

j-1
Site(f,w);;, = J%l 3 site(f, w),. @
k=i

The requirement on strict summary functions that f(0) =
f(Wioral) = O ensures that the sum is only affected by poly-
morphic sites, although we normalize by total number of
sites, so that the values are comparable between different
regions of the genome.

In the definition above we sum over all alleles at each site.
However, sometimes it is useful to distinguish the ancestral
allele (i.e., the allele at the root of the tree) from the remain-
ing derived alleles. This allows statistics in principle to

differentiate ancestral from derived alleles, information that
is available in practice (albeit noisily), and one way to make
use of this information is to sum over only derived alleles.
Analogously to the above, we say a site statistic is polarized if
we do this, defining

(polarized) Site (f,w); = Zf()?j(a)), (5)

aeD;

where D; denotes the set of all alleles at site j except the
allele at the root of the tree. Note that this may not be quite
what is expected, for instance, if there has been a back mu-
tation to the ancestral allele at some point in the tree, or if
there have been mutations to distinct alleles on different
parts of the tree such that the ancestral allele is no longer
present. However, since these situations depend on multiple
mutations occurring at a single site, they are relatively rare
in practice.

Having defined a general framework, we may now give
concrete examples of how to compute common summary
statistics.

Example 2 (nucleotide diversity)

The nucleotide diversity of a group S of n samples is the average
density of differences between pairs of samples, or equivalently,
the average heterozygosity across positions. To calculate this
statistic, let w = 1g, so that x(u) gives the number of nodes in
S inheriting from u, and define

Then Site(f,w) q,p) is mean nucleotide diversity of S in the re-
gion of the genome between a and b.

An alternative and possibly more familiar way to com-
pute heterozygosity would be to use a polarized site statis-
tic with summary function f(x)=2x(n—x)/(n(n—1)).
However, this approach fails with more than two alleles
per site.

Example 3 (nucleotide divergence)

Now, suppose we want to compute the mean pairwise density of
nucleotide differences between two nonoverlapping groups of
samples, S; and S,, with n; and n, samples, respectively. As
before, let w; = 1s,, so that x;(u) gives the number of nodes in S;
inheriting from u, and define

Fcr.x2) :x—l(l —32).

ny

Then Site (f,w)[a,b) is mean nucleotide divergence between the
two groups in the region of the genome between a and b.

The procedure of computing divergence at a single site is
shown in Figure 3; divergence over a region of the genome
would sum these values across all polymorphic sites and di-
vide by the length of the region.

Statistics of Tree Sequences 783



3 Trec Thlue
(3 2) J(f‘?tml xlth) ay THEOC (] — L)
Tired Mblue
Divergence between ﬂand.
(2.1) at this site:
f(2,1)+ f(1,1)=1/2
1S )+ (1,1 =1/
(2,0)
1 [ ] sample set
(1,0) (1,0} (0,1) (1,0) (0,1) initial weight
G G G T T genotype

Figure 3 An example of computing sequence divergence between red
samples (triangles) and blue samples (squares) at a single site witha T— G
mutation, using the tree. Each node is labeled with subtree weights
(Xreds Xplue ), recording how many red samples (x.eq) and how many blue
samples (Xpie) lie in that subtree. The derived mutation is found in
Xed = 2 out of the ney =3 red samples and in Xy, =1 of the
Npiwe = 2 blue samples, and so the probability that a randomly chosen
red node carries the derived allele but a randomly chosen blue node does
not is given by the summary function, f(X.ed, Xolwe) = f(2,1) = 2/6. The
complementary value f(1,1) = 1/6 is the probability that the mutation
separates a randomly chosen red and blue pair, but with the blue node
carrying the derived allele, so the total probability that a randomly chosen
pair differs at this site is £(2,1) + f(1,1) = 1/2.

Example 4 (segregating sites)

Again, let w = 15 for a group of n samples, and now define

1-X it x>0
n

flx) =

0 otherwise.

In computing Site(f,w) (4,5, the argument x to the function
f(x) is the number of samples in S that inherit each allele.
A site with k distinct alleles that segregate in S with
counts x3+ - +xx =n contributes f(x1)+ - +f(xx) =
(1—-x1/n)+ + (1 —xx/n) = k —1 to the statistic. There-
fore, Site(f,w)[q.p) is the minimum number of derived muta-
tions per unit length, which is the density of segregating sites if
all sites are biallelic. (The actual number of mutations per unit
length will be greater if there have been back mutations.)

Polyallelic sites: The summary function in Example 4 might
be surprising: the reason for its particular form is so that the
statistic returns a sensible answer even when sites may have
more than two alleles. There is not a consensus in the field on
how to use sites with more than two alleles, but the most
common practice is to reduce to biallelic data by either dis-
carding other sites or by marking all nonancestral alleles as
(the same) derived allele. In contrast, we choose to define
statistics in a way that still makes formal sense for polyallelic
sites, so that for instance a site with ancestral allele A
and derived alleles C and T would have site statistic
f(x(A)) +f(x(C)) +f(x(T)). This is not the only choice, but
is natural because it agrees with what is obtained by look-
ing at pairwise haplotype differences. For instance, the
definition of nucleotide divergence in Example 3 gives
the probability that a randomly chosen sample from each
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set differ, a definition that makes sense even with polyal-
lelic sites.

Example 5 (phenotypic correlations)

Suppose that for each sample u we have a numeric phenotype,
denoted z(u), and we want to compute the correlation between
this phenotype and the genotype at each site. For convenience,
suppose z is normalized to have mean zero and variance 1.
Then, if g; is a vector of binary genotypes (so g(u) = 1 if u
carries the derived allele), then the covariance of z with gj is just
>uB(W)g (W) =32, . g w-12), Le., the sum of the phenotypes
of all samples carrying the derived allele, divided by (n — 1),
where n is the number of samples. Since the phenotypes sum to
zero, this is also equal to =3, . o o _o2(u). If pj = 3, &j(u) is
the derived allele frequency at site j, then the variance of g; is
np;(1 —p;j)/(n — 1), and so the squared correlation can be cal-
culated as a sum across the two alleles:

P (Zu:gj(u)—oz(u))z

(Zu :gj(u):lz(u)>2
T 2p(1-pan—1)

2p(1 =p)n(n—1)’

We can compute this as a site statistic by defin-
ing wi(u) =3z(u), wa(u)=1/n, and f(x1,x2)=x2/
(2x2(1 — xo)n(n — 1)); then Site(w,f); = 17 is the squared cor-
relation between z and the allele at site j.

The Appendix explains how to extend the previous exam-
ple to obtain the squared coefficient of genotype in the re-
gression of phenotype against genotype with additional
covariates.

Example 6 (Patterson’s f,)

Given four disjoint groups of samples, S1, S5, S3, and Sa,
Patterson’s f4(S1,S2;Ss3,S4) statistic (Reich et al. 2009;
Patterson et al. 2012) for an allele with frequency p; in group
Siis (p1 — p2)(p3 — pa). To rewrite this as a sum over alleles,
note that p; — p2 = p1(1 —p2) — (1 — p1)p2, and so the sta-
tistic counts with positive value alleles that split S; and S;
from S, and S,4, and negative value ones that split S, and S,
from S, and Ss. Therefore, if as before we let w; = 15, [so that
w;j(u) tells us the number of samples in S; descended from u],
and write n; for the number of samples in S;, and

fx1,x2,x3,x4) = 1 (1 _Xg) X3 (1 _xi>
ns na

ni no
_ (1_9;1) ’2’2(1_’&)
ni Ny ns3 ng
then Site(w,f);p) s equal to Patterson’s fa(S1,S2;Ss,S4)
statistic for the region of the genome between a and b.

Again, we have taken care so that this definition makes
sense even with more than two alleles per site. This definition
of f, can be restated as follows: averaged across a random
choice of individuals from the four groups of samples, let
BABA be the proportion of sites at which samples 1 and
3 agree, but differ from samples 2 and 4 (which may differ



from each other as well); and let ABBA be the proportion of
sites at which 2 and 3 agree, but differ from 1 to 4; then f, is
BABA minus ABBA. In this mnemonic, B is standing in for a
specific allele, that must match, but A is standing in for any
allele that is not B. This is more general than previous defi-
nitions, but agrees with them for biallelic sites.

Branch statistics

Genetic variation is informative about many processes pre-
cisely because it tells us about the underlying patterns of
genealogical relatedness. In other words, often the genomes
are most useful in so far as they tell us about the trees. In the
case where we actually have the trees, or a good proxy for
them, it is natural to summarize them directly rather than
working indirectly with the genotypes (Harris 2019). If we
assume that no two mutations occur at the same genomic
position, i.e., the infinite sites model, then there is a natural
correspondence between summaries of genotypes and sum-
maries of tree shape. If mutations occur at a constant rate in
time and along the genome, then the expected number of
mutations that occur somewhere along a branch of a tree
over some segment of genome is equal to the mutation rate
multiplied by the length of the segment and by the length of
the branch. In other words, the area of a branch in a tree,
defined as its span (right minus left endpoint) multiplied by
its length (parent time minus child time) and scaled by the
mutation rate, is equal to the expected number of mutations
that will land on it. If the mutation rate is constant, then this
gives us an isometry: tree distances measured in branch
lengths vs. numbers of mutations are equal in expectation,
up to a multiplicative factor of the mutation rate.

This makes it natural to define a statistic of tree shape by
summing these expected contributions across its branches. We
define the branch statistic of the kth tree T, obtained from
summary function f () and sample weights w, to be the sum of
the length of each branch multiplied by the summary func-
tion applied to its subtree weight and the remaining weight
not in the subtree:

Branch(f,w), = > Be(w)(f(x(w)) +f(Weoral — %k (1)))-

ueTy

©)

Here, B, (u) is the length of the branch between u and its
immediate ancestor in tree Ty, Weoal = p_,w(u) is the to-
tal weight, and x(u) is the total weight of the subtree
of Ty inheriting from u (as defined above). The term
Wotal — Xk (1) gives the total weight not in the subtree of Ty
inheriting from u. The value f(x(u)) is the summary value
that would be added to a site statistic if a single mutation
occurred on the branch ancestral to u, and f (Wyora1 — X (1)) is
the value that would be added due to its complementary
allele, so Branch(f,w), gives the expected contribution of
the tree Ty to Site(f,w), per unit of sequence length that
the tree covers. An example of this correspondence between
site and branch statistics is shown in Figure 4. Here, we see

how the f, site statistic assigns a weight to each mutation
depending on its frequency in each of the four sample sets,
and how the corresponding branch statistic assigns the same
weight to those branches.

Equation 6 defines a statistic for a single tree, but in prac-
tice it is more useful to average branch statistics over a region
of the genome, as we did for site statistics. We do this by
averaging the tree statistics over the region with probabilities
proportional to the trees’ spans:

|T|
1 ..
Branch(f,w)y; ; :j_—i E te(i, j)Branch(f, w)y, )
k=1

where ¢ (i,j) is the length of the region in [i, ) that the tree Ty
covers (i.e., if T covers the half-open interval [a;—1,ax), then
¢(i,j) = max(0, min(j,ay) — max(i,ax—1)).). The polarized
version of a branch statistic is defined analogously to the
node and site versions:

Branch, (f,w), = > Bi(w)f(x(w), (8)

ueTy

(polarized)

and Branch, (f,w),
before.

Example 7 (mean TMRCA)

i 1s defined using Branch.(f,w), as

If we take w and f exactly as in Example 2 (nucleotide diversity)
above, then f (u) gives the probability that the branch between u
and its ancestor in the tree lies on the path from one of two
randomly chosen samples from S on the path up to their most
recent common ancestor. Therefore, Branch(f,w) gives the mean
total distance in the tree between two samples from S, averaged
across the sequence. This is twice the mean time back to the most
recent common ancestor (TMRCA) if the samples are all from
the same time.

Example 8 (phenotypic correlation with pedigree)

If we take w and f as in Example 5 (phenotypic correlations)
above, then Branch(f,w) gives the expected correlation between
phenotype and any mutations appearing on the tree. This is a
summary of how much local relatedness aligns with similarity
in phenotype.

The previous example might be used to leverage local
relatedness to improve the resolution of association studies.
Similar strategies were explored by Zoéllner and Pritchard
(2005) and Minichiello and Durbin (2006).

Example 9 (Patterson’s f;)

Suppose that the four subsets each consist of only a single sam-
ple. The summary function f(x1,x2,x3,X4) for the f, statistic
then assigns weight 1 to any branch that separates x; and x3
from x5 and x4, and weight —1 to any branch that separates x;
and x4 from x5 and xs. The statistic Branch f(w) therefore gives
the difference in average lengths of these two types of branch,
averaged across the genome.
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ns shown occurs at a distinct site, so there is no back mutation, and that
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falling in it (colored lines, with colors matching the mutations of B), and then the branch 7, statistic is the sum over these weights, multiplied by the

length of the branch, and divided by L, the sequence length. Remaining bra
pa—ps=0o0rpc—pp=0.

Duality of Site and Branch Statistics

Under a neutral, infinite sites model of mutation with constant
mutation rate across time, the expected number of mutations
per branch is proportional to its length. This implies an iso-
morphism between site and branch statistics defined above,
which is discussed in more detail in Ralph (2019). For in-
stance, the site statistic of Example 2 (genetic diversity) and
the branch statistic of Example 7 (mean TMRCA) use the same
summary function f(x) =x(n—x)/(n(n—1)). These are
closely related because under an infinite sites model of mu-
tation, two sequences differ at a site only if there has been a
mutation somewhere on the branches going back to their
most recent common ancestor. Therefore, if mutations occur
with constant rate, the expected value of genetic diversity is
equal to the mutation rate multiplied by the average path
distance between the two samples in the trees.

This relationship is true more generally. In fact, for any
region of the genome between i and j,

Branch(f, w);, ;, = %E [Site( Fw)is .’]I‘[L j)} . ©®
Here, T} denotes the tree sequence on the interval [i, j), and
so the expectation keeps the genealogies fixed and averages
over infinite sites mutations with rate u per unit time and
per unit of sequence length. Note that the expected prod-
uct of two site statistics, E[Site( f, w)Site(g, w')|T] is not equal
to the product of the two branch statistics, uw?Branch(f,w)
Branch(g, w'), because they are not independent. However, it
is always possible to define a branch statistic that gives the
expected value of the product, as described in Ralph (2019).

Asite statistic can therefore be thought of as an estimator of
its corresponding branch statistic, which is itself a summary of
local tree shapes. Because we have normalized these statistics
by the length of the genome under consideration, both sides of
this equation are in units of time: branch statistics give mean
weighted branch lengths; site statistics give mean densities of
mutations per unit of sequence length, which divided by the
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nches do not contribute, because any mutation falling on these have either

mutation rate w is converted to time. Let us unpack the as-
sumptions here: what exactly is the mutational model? First,
we are taking the mutation rate to be u, i.e., the expected
number of mutations that occur on a region of the genome of
length ¢ over t units of time is equal to uét. Second, we are
assuming that the probability of per-site mutation is low
enough that no two mutations occur at the same site—the
fact that they do, occasionally, means that this is an approx-
imation. Third, we are assuming that mutation rates are con-
stant through time and across the genome. Of course, the
statement remains true if we can measure distance along
the genome and time in a way that mutation rates are con-
stant, but how these vary is generally unknown.

In this view, site statistics are noisy approximations to the
corresponding branch statistic, but how noisy? How big is the
contribution of mutation to the overall sampling variance of a
statistic? The law of total variance partitions the variance of a
site statistic into the contributions of noise from demography
and mutation:

Var {Site(f, w) [i:]'>:| = Var [IE [Site(f, W)[i,j) ‘T[i,j)H

IE [Var [Site(f Wi j) ‘Tlid’)} }

— 2 Var [Branch(f ) W)[i,j)}

[ 2

+jTi E {Branch (f%w) [iﬁj)} :

The first term is the variance of the expected site statistic given
the trees, which by duality is the variance of the branch
statistic, i.e., the contribution of demographic noise, includ-
ing genetic drift. The second term, the expected variance of
the statistic given the trees, is the contribution to variance of
mutation, and can itself be written as a branch statistic, using
the same weights and the summary function f (x)? (Lemma
2 in Ralph 2019). The reason for this is straightforward: the
site statistic is a sum across branches of the number of muta-
tions on the branch multiplied by a summary, f (x). Given the



Figure 5 Mean genetic diversity and time to most re-
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cent common ancestor in 500 Kb windows along a
50 Mb genome (0.5 M) following several selective
sweeps. In each case, site is mean genetic diversity
(Tajima’s ) divided by mutation rate, and branch is
the corresponding branch statistic. The tree sequence
was produced by simulating mutations under positive

selection with mutation rate 10~'2? in a population of
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size 1000 for 400 generations using SLiM, followed by
recapitation with N, = 1000 (Haller et al. 2018). The
selected alleles at the marked sites have selection co-
efficients between 0.08 and 0.25, and are at frequen-
cies 96.8%, 100%, 100%, and 82.6% in the final
generation, respectively. All curves use the same tree
sequence, including selected mutations, but with addi-
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tional neutral mutations added. Top: diversity within
the entire population, computed as a site statistic from
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20 independent assignments of mutations to the same
tree sequence with mutation rate u = 10~°. Middle: as
in the top panel, but with mutation rate uw = 1078,
showing that as mutation rate increases, the site sta-
tistic (divided by w) converges to the branch statistic.
Bottom: site and branch diversity within 20 disjoint

chromosome position (bp)

trees, these numbers of mutations are independent and Pois-
son, and the variance of the product of the constant f (x) and
a Poisson random variable with mean m is mf (x)2. The sum is
divided by the length of the region, j — i, and so the variance
is divided by (j — )2, but one factor of (j — i) is absorbed by
the definition of the branch statistic.

We examined the contributions of mutation and demog-
raphy to noise in two simulations where population genetic
(site) statistics are important in making inferences: detecting
recent selective sweeps, and detecting introgression. Figure
5 shows windowed diversity along the chromosome follow-
ing a few selective sweeps. The top two plots compare
branch diversity (i.e., as computed only with tree shape)
to site diversity computed from sequences generated by
20 independent assignments of mutations to the same tree
sequence, with mutation rates 10~ and 10~8, respectively.
We see that as the mutation rate increases, the signal of
decrease in diversity around swept loci becomes clearer,
and site diversity approaches branch diversity. These were
computed using the entire population of 1000 individuals;
how does sampling variance contribute? Not much, it turns
out: the bottom plot shows both site and branch diversity
computed from 20 nonoverlapping groups of 100 samples.
Neither site or branch diversity vary much between these
samples, implying that the subsample gives us a good esti-
mate of the whole-population values of each. However, as
we see in the top figure, whole-population site diversity is
itself only a quite noisy estimator of branch diversity. (Note,
however, that statistics other than diversity may vary much
more between subsamples.) The same things are shown in
Supplemental Material, Figure S1 for a simulation with
10,000 individuals, which shows similar patterns. Only
the last of these plots is possible to directly observe in real

samples of size 100 each from a single assignment of
mutations to the tree sequence with mutation rate u =
107°.

data: in the top two plots, the spread of independent repli-
cates of mutational noise (black lines) about their expecta-
tion based on the tree sequence (red line) is unobservable,
although estimable.

As another example, we simulated an admixture scenario:
a first population of size N = 1000 splits into two of equal size,
then after N generations, the second population splits, after
another N generations, the third population splits again, and
for the final N generations populations 2 and 3 have per-
capita migration rates of 4/N to each other. We expect a
negative f4(1,2; 3,4) in this situation, which we indeed find
(the genome-wide mean branch f, is around —700 genera-
tions, as is the site f,; divided by mutation rate; see Figure S2
for a plot along the genome). Using various sample sizes,
mutation rates, and window sizes, we then calculated this f,4
statistic in windows along a 100 Mb genome, and show the SD
of both site and branch statistics across windows in Figure 6.
Since the genome is uniform (no selection or variation in re-
combination or mutation), this SD is a measure of noisiness. As
expected, site statistics are noisier than branch statistics, by a
factor that depends mostly on the ratio of mutation to recom-
bination rates. The results suggest that Branch statistics would
provide substantially better resolution at small scales along the
genome, especially if mutation rate is lower than recombina-
tion rate. However, in practice imperfect estimation of the tree
sequence would introduce additional noise, so it remains to be
seen if the improvement could be made in practice.

Data and Code Availability

All methods described here are implemented in Python and C
in the package tskit, available from https://github.com/
tskit-dev/tskit under the terms of the MIT license. All code
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used to produce the figures in this paper is available from
https://github.com/petrelharp/treestats ms. Supplemental
material available at figshare: https://doi.org/10.25386/
genetics.12221993

Application to 1000 Genomes Tree Sequences

We do not know the true genealogies underlying real data,
but recent methods are available to estimate them at
scale (Kelleher et al. 2019; Speidel et al. 2019). In Figure
5, we showed that branch and site statistics matched well in
simulated data. However, these simulations make many
simplifying assumptions, and, moreover, the underlying
tree topologies and branch lengths are exactly correct
(which inference methods can only hope to approximate).
To evaluate the correspondence between site and branch
statistics in trees inferred from real data, we calculated sta-
tistics for chromosome 20 of the 1000 Genomes data set
(1000 Genomes Project Consortium et al. 2015) using dated
trees estimated by Relate (Speidel et al. 2019). (Although
Relate estimates a succession of essentially independent
marginal trees rather than a succinct tree sequence, the out-
put can be converted to a tree sequence, and since the sta-
tistics considered here are single site, the distinction is not
important.) Specifically, we calculated diversity using the
site statistic described in Example 2 (nucleotide diversity),
and compared this to the dual branch statistic in Example
7 (mean TMRCA) in 1 Mb windows in each of the five con-
tinental groupings. All calculations were done only using
the portions of the chromosome passing the 1000 Genomes
Phase 1 strict mask for sequencing accessibility. As shown in
Figure 7, the ratio of site-to-branch diversity is relatively
constant, hovering at ~2.5 X 10~8, This is somewhat higher
than typical estimates for the average genome-wide human
mutation rate (e.g., 1.45 X 10~8; Narasimhan et al. 2017),
which suggests a miscalibration in inferred tree times. These
trees were inferred using Relate with the N, fixed to 15,000;
if trees are instead jointly inferred in Relate along with an
N., with mutation rate fixed, then indeed the ratio of site-to-
branch diversity averages to the (externally specified) mu-
tation rate (Figure S3). On the one hand, some amount of
constancy of this ratio is expected, since Relate estimates
branch lengths in part assuming that mutations fall at a
constant rate through time. [But, note that Speidel et al.
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(2019) also showed signal of changing mutation rates,
pointing the way toward a more general method.] On the
other hand, since estimated node ages are shared across
long regions of the genome, a tight agreement may not be
possible with poorly inferred trees. So, the relative con-
stancy of the ratio of site-to-branch diversity suggests that
Relate is doing a good job at inferring trees, but what to
make of the twofold variation in this ratio? Answering this
question requires a deeper understanding of the processes
that shape genetic diversity along the genome.

In practice, we do not expect branch and site diversity to
agree exactly, because of local differences in mutation rate
and intensities of selected mutations. For instance, regions in
which a high proportion of potential mutations are delete-
rious are expected to have a lower diversity for two reasons:
first, the deleterious mutations themselves are less likely to
be found; and second, the indirect effect of deleterious
mutations on nearby sites reduces typical tree height and
thus diversity at even neutral, linked sites (Hudson 1994;
Charlesworth et al. 1997). The first effect would cause site
and branch statistics to differ, because it effectively reduces
the mutation rate in the region and violates the assumption
of independence of mutations given the trees. However, the
second effect does not affect the correspondence between
site and branch statistics because it is mediated by tree shape.
It is generally unknown how much mutation rate varies along
the genome [but see Supek and Lehner (2015)] or how dense
targets of selection are (Leffler et al. 2012). For this reason, it is
very interesting to see how close a correspondence between site
and branch statistics it is possible to obtain; it is tempting to say
that the best tree sequence would obtain as tight a match be-
tween site and branch statistics as possible, with remaining
variation explained by direct selection and/or mutation rate
variation.

A final crucial assumption underlying the duality be-
tween site and branch statistics is that mutations can be
treated asindependent of the trees themselves. This is clearly
not always true—for instance, a sweeping beneficial muta-
tion strongly affects the local trees (as in Figure 5)—but
seems likely to be approximately true. Ralph (2019) con-
tains more discussion of variation in mutation rate, but more
work needs to be done, particularly on models with large
proportions of sites under selection.
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Algorithm and Implementation

In this section we describe and analyze the algorithm used to
compute branch statistics. This is a generalization of the
algorithm used to maintain the number of samples from a
given set that derive from each node in a tree sequence
(Kelleher et al. 2016, Algorithm L). The central problem
shared across site, branch, and node statistics is to efficiently
maintain the state x(u) [where x(u) is the sum of the weights
for all samples descending from, and including, node u; see
Figure 2]. As we move along the sequence, the trees change
when branches are inserted and removed. By carefully order-
ing these insertions and removals, we ensure that this state
can be correctly maintained using only small adjustments for
each tree. Computing the statistics is then a straightforward
matter of applying the summary function f to the node states
and aggregating the results appropriately for the particular
statistics mode and windowing options.

Formally, we represent a tree sequence using a set of tables
(Kelleher et al. 2018). Each node describes a particular hap-
lotype (i.e., one of the two genomes of a diploid individual),
and details about these haplotypes are stored in a node table,
N. The row A [u] contains all information about the node u,
and rows are indexed from zero such that 0 =u <|N/|. In
particular, the birth time for u is given by Nu] . t ime. In-
formation about how nodes relate to each other along the
genome is encoded in an edge table, £. For a given row j,

50

60

€lj].child and €[j] . parent define a parent—child re-
lationship between two nodes in a set of contiguous trees
along the genome. &[j]. Left then denotes the left-most
(inclusive) and £[j] . ¥ 1ight the right-most (exclusive) ge-
nome coordinates over which this branch exists. The order in
which edges are inserted and removed is determined by the
index vectors i and o (Kelleher et al. 2016). The edge inser-
tion vector i gives the ordering of edges sorted by left end-
point, and among edges with the same left endpoint, sorted
so that edges closer to the root appear later. The edge re-
moval vector o is similar, except gives the ordering of edges
by right endpoint and with edges closer to the root appearing
sooner. As we move along the tree sequence, the topology of the
current tree is recorded in the parent vector 7: the parent of
each node u is the node 7, with 7, = — 1 ifu is a root. Similarly,
we maintain the branch length vector B by setting
By =Nm,].time —ANu].time and B, = 0ifuis aroot.
As evaluating the summary function f is an expensive opera-
tion, we also maintain the vector F such that F,, = f (x,). For
notational simplicity, here we assume that weights and sum-
mary functions are scalars, but the extension to vectors is triv-
ial. We also assume that we are computing the statistic across
the full span of the tree sequence; the extension to multiple
windows is routine. See below for a description of the steps in
words, and Figure 8 for an example of the internal state of
the algorithm.
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Figure 8 lllustration of the internal state for Algorithm B for w = 15 and
f(x) = x(5—x)/20 as in Example 2 (nucleotide diversity). (A) Immediately
before we remove the edge joining 6 to 7, and (B) immediately after. See
the text for descriptions of the arrays encoding the state. Also shown is
the value of the running sum, s =%~ B,fu.

Algorithm B (general branch statistics)

Given a list of n sample nodes S, corresponding weights w and
summary function f : R—R, compute the span-normalized
statistic o over a tree sequence with sequence length L de-
fined by the node and edge tables A/ and £. We assume that
the index vectors i and o have been precomputed.

B1. [Initialization.] For 0 <u < |NV] set 8, < x, < F, <0 and
< — 1. Then, for 0=j<n set u<S§;, x,«<wj, and
F, < f(x;). Finally, set s« 0 «j«—k«t;<0.

B2. [Terminate.] If j = |£| return o/L and terminate.

B3. [Edge removal loop.] If k = |€] or t; # E[ox] . right

go to B6.
B4. [Remove edge.] Set u<«¢&ox].child, v<¢&log].
parent, and k«k+1. Then set s<s—B,F,,

< — 1, and B, 0.

B5. [Propagate loss.] While v# —1, set s«s—B,F,
Xy <Xy — Xy, Fyf(x), s<s+B,F, and vem,. After-
ward, go to B3.

B6. [Edge insertion loop.] If j = || or t; # Efij] . Left go
to B9.

B7. [Insert edge.] Setu«<¢€[ij] . child, v £Jij] . parent,
and j«j+ 1. Then set m, <V, B, < N[v].time—-Nu]
.time, and s<s + B,F,.

B8. [Propagate gain.] While v # —1, set s«s—B,F,
Xy <Xy + Xy, F,—f(x,), s<s+ B,F,, and v<,. After-
ward, go to B6.
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B9. [Tree loop tail.] Set t.«L. If j<|E| set t «
min(t,, €ij] . 1e£t). Then, if k<|€| set t.«<min
(tr,€lox] - ight). Finally, set oo+ (t,—t)s, t;t;
and go to B2.

Algorithm B (named B for branch) begins by setting the
initial state for m, B, x, and F for each node in the tree se-
quence, and then sets the values of x,, and F, for each of the
samples u in S. (The initial state is the empty forest, where no
nodes are connected to any others.) Afterward, we set our
running sum s and output statistic o to zero, along with the
tree left variable t;. The j and k variables are used to keep
track of our position in the edge insertion and edge removal
indexes, respectively. After completing initialization in B1, we
enter the main tree loop in B2, which is run once for each tree
in the sequence. As we are processing each tree, we keep
track of the edges that need to be processed with the t; vari-
able, which stores the left-most genome coordinate in the
current tree. The first thing we do for a new tree is to remove
any edges that were in the previous tree and are not in the
current tree. These must be the edges in which the right co-
ordinate is equal to t;, and so B3 loops over these edges using
the edge removal index o. Step B4 then removes the branch
u~v corresponding to a single edge, by subtracting its contri-
bution to the running sum s, setting the parent of u to —1 and
its branch length to 0. As shown in Figure 8B, removing an
edge will result in the subtree rooted at u becoming discon-
nected from the rest of the tree. Step B5 ensures that the state
of the rest of the tree is correctly maintained by propagating
the loss of the state x,, up the tree from v. Thus, for each node v
that was a direct ancestor of u in the previous tree, we first
subtract its contribution from the running sum s and remove
the contribution of x,, from its state. Since the state of v has
changed, we must recompute the value of our summary
cache F,, and then finally add the new contribution of v to
s. (For example, note the changes in x and F for nodes 7 and
8 in Figure 8B.)

Once all of the edges with right coordinate equal to t; have
been removed in steps B3-B5, we then insert edges that start
in the current tree (i.e., with left coordinate t;) in steps B6-B8.
We update the state to account for the new branch u~v by
setting the parent of u to v, computing the branch length of u
and adding the new contribution of u to s in B7. Then, as
adding a new edge can connect the subtree rooted at u to the
larger tree at v, we propagate the gain of x, up the tree in step
B8 (note the symmetry with step B5). Finally, once we have
removed and inserted all of the relevant edges, we are ready
to add the contribution of the current tree to the overall
statistic, o, and move on to the next tree in step B9. To do
this, we first compute the right-hand coordinate of the tree ¢,
(a process slightly complicated by the possible presence of
gaps in the tree sequence, spanned by no edges). Then, we
add the running sum s weighted by the span of the current
tree t, — t;to o, and return to B2 to process the next tree. If we
have reached the end of the sequence, we then divide o by
the sequence length to normalize and exit.



To analyze Algorithm B we will assume that the tree
sequence has been simulated under the standard coalescent
with a sample of size n and population scaled recombination
rate p = 4N,r, where r is the mean number of recombina-
tions per chromosome per unit of time. Under these condi-
tions, there are O(n + p log n) edges in the tree sequence
(Kelleher et al. 2016). Clearly, each edge is examined exactly
once in steps B6 and B7 to create the trees, and at most once
in steps B3 and B4 (we do not remove the edges for the final
tree). Additionally, each edge that we insert or remove after
the initial building of the tree may incur the cost of traversing
up the tree as far as the root in steps B5 and B8. As coalescent
genealogies are asymptotically balanced (Li and Wiehe
2013), the expected number of nodes on the path to root is
log, n. Therefore, the overall running time of Algorithm B is
of order n + p log(n)log,(n), which is

O(n +p log(n)z). (10)
Computing a site statistic will have the same complexity, as
the same internal state is maintained, and the number of
segregating sites is proportional to the number of edges
(with constant equal to the ratio of mutation to recombina-
tion rate). The asymptotic analysis here assumes that we
traverse upward to root for each edge, but this is not the case.
Edges are removed in oldest-first order, guaranteeing that the
deepest node any subtree being modified is processed first.
Therefore, this subtree will be disconnected from the main tree,
ensuring that we traverse upward all the way to root only once.
Similarly, edges are inserted in youngest-first order, ensuring that
subtrees are only reconnected to the main tree when they are
fully built.

The tree sequence describes trees that change as one moves
along the genome, and so is a special case of a dynamic graph,
also called a graph timeline (Lacki and Sankowski 2013).
Much of the work on dynamic graphs is focused on connec-
tivity, e.g., maintaining a minimum spanning tree (Eppstein
1994; Eppstein et al. 1997; Holm et al. 2001), but develop-
ment of parallel algorithms for more general operations on
large dynamic graphs is an active area of research (e.g.,
Srinivasan et al. 2018). An interesting direction for future
work is to develop parallel versions of tree sequence algo-
rithms such as Algorithm B.

Efficiency: We used coalescent simulations to compare the
performance of calculating Tajima’s (1989) D statistic from
tree sequences to calculating it from integer matrices contain-
ing genotypes at all variable positions. Figure 9 shows that
the tree sequence methods implemented in tskit processes
variant data substantially faster than matrix-based ap-
proaches once the sample size is above n =~ 500 haploids—
three times faster for one thousand haplotypes, growing to
nearly three orders of magnitude faster for one million hap-
lotypes. The expected number of mutations for each replicate
is 10% x Y17 '1 and thus ranges from ~ 32,000 to ~ 138,000
(Watterson 1975). Figure 9 only considers the time required
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Figure 9 Comparison of time required to compute site statistics between
matrix and tree-based methods. For each sample size, a single replicate
was obtained using msprime with scaled neutral mutation rate 6 = 4NeLu
and scaled recombination rate p = 4N,r both equal to 10% and N, = 104,
where Ly and p are the total mutation and recombination rate across the
simulated region per generation, respectively. For each replicate, Tajima’s
D (Tajima 1989) statistic was calculated using tskit, libsequence (Thornton
2003), and scikit-allel (Miles and Harding 2017). The solid green line shows
the result of fitting the timing data to a model based on the expected
complexity of the algorithm used by tskit (Equation 10).

to calculate the statistic once the data are present in each
library’s native format. For the largest samples size of n =
109, the matrix is ~200 gigabytes, and thus not practical on
many systems. The largest tree sequence simulated required
<1 gigabyte of memory.

To determine how well our theoretical model of time
complexity predicts the running time in tskit’s implementa-
tion of the site statistics algorithm, we fit a model based on
Equation 10. Figure 9 shows that theoretical predictions
match the observed running time very well. As the overall
complexity is O(n + p log(n)?), for sufficiently large n, the
initial term (representing the cost of building the first tree)
will come to dominate. In our simulations, we can see this
happening at around n = 10°, where there is a noticeable
uptick in the time required per variant. For longer genomes
(i.e., larger values of p), this cost is amortized over more trees
and is less apparent.

It should be noted here that this example based on
simulated data represents a best-case scenario in terms of
the performance advantages of tskit over the matrix-based
methods. For real data, inferred tree sequences currently
contain substantially more edges than we would expect
based on simple neutral theory (Kelleher et al. 2019), and
therefore computing statistics will not be as efficient as for
an equivalent simulation. Tree sequence inference methods
are in their infancy, however, and it is likely that as they
improve the number of edges required to encode data will
be reduced. However, for data simulated natively in tree
sequence format via packages such as msprime (Kelleher
et al. 2016), SLiM (Haller et al. 2019; Haller and Messer
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2019), and fwdpyll (Thornton 2014), the advice is
straightforward. Computing statistics using the algorithms
in tskit will always be more efficient than decoding the ge-
notype matrix, importing it into another package and com-
puting from the matrix.

Discussion

In this paper we have described a general framework for
summarizing genetic variation and the underlying genealo-
gies that encompasses many standard population genetic
statistics. Many of these statistics are functions of the joint
allele frequency spectrum, but the framework is more general
and can be used, for example, to quantify associations be-
tween genotypes and phenotypes. This generality greatly
reduces the software development effort in implementing
statistics efficiently, and it also allows users to easily explore
new classes of statistics. The range of statistics available to
describe variation in a single exchangeable sample (e.g., an
isolated population) are well understood (Achaz 2009;
Ferretti et al. 2017), but there are much larger and less
well-explored classes of statistics describing genetic variation
between many populations or across geographical space. The
statistics defined here are all additive along the genome: if we
have computed a statistic in equal-sized windows along a
chromosome, then the value of the statistic for the entire
chromosome is equal to the average of the values in those
windows. Some commonly used statistics (e.g., Fsr or Taji-
ma’s D) are not additive, but are ratios of additive statistics,
so can be easily computed in this way. Extensions to statistics
involving the pairwise joint distribution of genotypes across
sites (Hudson 2001) such as linkage disequilibrium are
planned for future work. Haplotype-based statistics may re-
quire different classes of algorithms.

The most obvious application of these methods on current
practice is to improve efficiency of existing pipelines, as tree
sequences allow storage and processing of large genomic data
sets with orders of magnitude less space and time than
standard matrix-based methods. All statistics described here
(and more) are implemented in the rigorously tested tskit
library, which provides a suite of tools for working with tree
sequences in Python and C. Large-scale simulations are useful
in many contexts (e.g., Martin et al. 2017; Browning et al.
2018; Galloway et al. 2020) and the ability to quickly com-
pute a wide range of statistics from these (previously pro-
hibitively large) data sets opens up new possibilities. At
smaller scales, the statistics are still highly efficient, and
avoiding the cost of exporting simulated data to a genotype
matrix will in practice greatly speed up inference based on
summaries computed from simulated data (Beaumont et al.
2002; Csilléry et al. 2010; Schrider and Kern 2018). Efficient
simulations coupled with the framework developed here allow
us to explore the full distribution of summaries along the genome,
which has important applications in, for example, speciation
genomics (Lohse 2017). The ability to efficiently compute
statistics from real data are, of course, also welcome.
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The correspondence between genome sequence and
properties of the underlying genealogies we have used here
iswell known, and is the basis for several inference methods
(Becquet and Przeworski 2007; Beeravolu et al. 2018). The
general framework that we have defined, however, codifies
this relationship in a mathematically elegant and compu-
tationally efficient way, and may lead to new perspectives
on well-studied problems. One way to use the duality be-
tween site and branch statistics is to answer the question,
what aspect of tree shape is a particular population genet-
ics statistic summarizing? This can help when interpreting
results, especially if reality may not fit an idealized model
of separate populations. However, methods to infer tree
sequences from real data make it now possible to work in
the other direction: instead of calculating (site) statistics
from the genotype matrix, we can calculate precisely anal-
ogous (branch) statistics from the trees themselves, thus
hopefully bypassing the extra layer of noise induced by
mutation. How well this works will depend on the ability
of inference methods to estimate the true tree sequence.
This might plausibly produce less noisy estimates because
tree sequence inference should use the signal from nearby
patterns of variation to interpret relationships at a given
site, thus transforming the simple binary split induced by
an SNP into a much richer source of information. Further-
more, if tree sequence inference can be made insensitive to
local variation in mutation rate, calculation of branch sta-
tistics would provide a summary method that is not af-
fected by this potentially important confounding factor.
Similarly, if tree sequences inferred from genotype array
data (Kelleher et al. 2019) are unbiased, then branch sta-
tistics could provide a way to estimate genome-wide quan-
tities without ascertainment bias. This procedure would
be similar to imputation, and would likely face similar
challenges.

Genomic data are naturally distributed on two axes: along
the genome and across geography. The tree sequence ex-
tends this to a third axis: time. A great many methods in
population genetics aim to describe aspects of history, and
accurate (or at least unbiased) tree sequence inference may
shift the focus of these problems from inference to descriptive
analysis. The methods developed here distribute the contri-
bution to various statistics across each tree, and so could also
be used to summarize contributions to various statistics
across time. This could provide, for instance, the time dis-
tribution of mutations or branches contributing positively or
negatively to f, statistics of introgression, enabling historical
interpretations of these signals. The computational toolbox
of population genetics is still mostly composed of statistics
originally designed for analysis of a handful of loci in a small
number of discrete, mostly separated populations. Both our
data and our understanding of the world have moved be-
yond this. We hope that the tools developed here will help
make it possible to visualize and analyze genetic variation
and genealogical relatedness along the genome, across
space, and through time.
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Appendix: Linear Regression

Let h be a trait, Z be a matrix of covariates, and g be a vector denoting inheritance (so, with n samples, h and g are both n vectors
and Z is an n X k matrix). We would like to find the coefficient of g in the linear regression of h against g and Z, without doing
full multivariate regression for every new g, using the fact that Z is always the same. Suppose that Z'Z = I and that the vector of
all ones is in the span of the columns of Z, although in the implementation we postprocess Z to make this the case. Then, let a be
the number and b be the k vector satisfying

2
a,b = argmin Z <wi—agi—ZZijbj>
j

1

Our goal is to compute a. Writing this in block matrix notation, a and b minimize

-l

2

Letting B = [g]Z], the solution to this is

[%] = (87B) 'B"h,

aslong as BB is invertible (which we assume to be the case). Let m = g”g be the number of alleles in the sample coded 1, letu =
g7Z be the vector giving sums of the covariates of all samples carrying the allele, and

a= (ng -¢'2(2"2) _1ZTg)

=—m-— 2
—m- Y
J

« is the norm of the component of g not in the subspace spanned by the columns of Z, so if « = 0 then we want to return a = 0.
Otherwise, by the inversion formula for a block two-by-two matrix, since we have assumed that that Z'Z = I,

oo '-[5 3]

:[ 1/« —u/a 1}

—uT/a m(ml—uu”)"
Now, the regression coefficient we seek is, with h, = g7h,

_1 _ T
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To compute this in the framework above, first add a column of 1s to the covariates Z, then decorrelate the resulting matrix, so
that now Z7Z = I. Then, put this normalized version of Z into the first k columns of the weight matrix [so that wj(u) = Z], set
the (k + 1)st column to the trait [so that w1 (u) = wy,], and the final column to all 1s [so wy,2(u) = 1]. Also let ZTh = v be
precomputed. Then the sum of the traits of samples with the focal genotype is h, = xi1, and the allele count is m = Xy, so that

In practice, we square this and divide by two, so that for biallelic loci the two alleles contribute an equal amount. For loci with
more than two alleles, it would be more satisfying to return the proportion of variance in the trait that is explained by all of the
alleles; however, this would be more involved (it would entail inversion of a 3 X 3 matrix for each locus).
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