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1. Introduction 1 

 2 

Urban scholars and criminologists are interested in building safe and sustainable built 3 

environments. During the past several decades, researchers have examined the relationship 4 

between crime patterns and social and physical dimensions of the surrounding environment 5 

through the lens of environmental criminology (Brantingham and Brantingham, 1981), crime 6 

pattern theory (Brantingham and Brantingham, 1984), or routine activity theory (Cohen and 7 

Felson, 1979). Some scholars have also explored ways to achieve crime prevention through 8 

environmental design (CPTED). Recent studies have found support for the positive effects of 9 

CPTED strategies, such as surveillance, access control, or territorial enforcement, in reducing 10 

certain types of crime and increasing public safety and highlighted the importance of the visual 11 

aspects of the built environment beyond the conventional physical elements that attract crimes 12 

(Cozens and Love, 2015). In other words, eye-level three-dimensional built environment 13 

characteristics have increasingly been viewed as a key determinant of criminal activities. 14 

On the other hand, it is challenging to measure the environmental features precisely 15 

using conventional approaches. As a consequence, scholars in various fields, including 16 

criminology, have attempted to audit fine-scale environmental features using street images and 17 

computer vision techniques (Gong et al., 2018; He et al., 2017; Hipp et al., 2022; Lu, 2018). 18 

This approach has several advantages, including that it facilitates the measurement of detailed 19 

built environment features at the pedestrian level and it is cost effective at a large scale. 20 

However, this promising approach has only rarely been applied in environmental criminology 21 

studies. 22 

Of particular interest to us here is the potential nonlinear relationships between some 23 

measures of the built environment and crime levels. There is growing attention to non-linearity 24 

in the criminology field (e.g., Chamberlain et al., 2021; He et al., 2020; Walker, 2007; Zhang 25 

et al., 2022), and below we highlight theoretical reasons why there might be nonlinear 26 

relationships between certain built environment features and crime. We use a machine learning 27 

strategy for this question given that the nonparametric strategy of machine learning is 28 

particularly well suited to this research question. A variety of academic fields have adopted 29 

machine learning models and reported their superiority in the identification of relationships 30 

when relaxing the linear and parametric assumptions of common estimation strategies. In 31 
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addition, the recent development of interpretable machine learning (IML) techniques makes it 32 

feasible to understand the nature of the black box of machine learning algorithms. This 33 

methodology interprets the model’s architecture, which provides a deeper understanding of the 34 

relationship between variables as well as credibility to the model’s results, and allows us to 35 

detect possible nonlinear relationships (Zhang et al., 2022). 36 

Thus, this study aims to investigate the nonlinear relationships and threshold effects 37 

between crime patterns and street-level neighborhood environments using machine learning 38 

models and the IML technique. To measure the neighborhood environment at the eye level, this 39 

study utilizes semantic segmentation techniques for GSV images. This approach enables us to 40 

effectively capture street-level built environments and quantify them numerically. Then, we 41 

build several machine learning models such as Random Forest(RF), Support Vector 42 

Machine(SVM), XGBoost, Artificial Neural Network(ANN), and Deep Neural Network(DNN) 43 

for crime prediction and compare their predictive accuracy with a traditional statistical model 44 

to identify the best-performing model. Finally, the SHAP interpretable machine learning 45 

algorithm is applied to show the implications of the best-performing model. Through this 46 

approach, we explore the nonlinear relationships and threshold effects between crime patterns 47 

and the built environment, which can provide insights into the complex relationships between 48 

them and the policy implications for public safety. 49 

 50 

2. Literature Review 51 

 52 

2.1. Crime and the Built Environment 53 

Environmental criminology theories focus on the surrounding environment in which 54 

crime events occur (Brantingham and Brantingham, 1981; Wortley and Mazerolle, 2008). 55 

According to Brantingham and Brantingham (1981), criminal events are the consequences of 56 

complicated interactions among offenders, victims, law, and places. They proposed crime 57 

pattern theory, which states that the specific setting of places in time and space plays a 58 

fundamental role in initiating criminal activities. Wortley and Mazerolle (2008) provided three 59 

key elements of environmental criminology: the importance of the immediate environment, 60 

non-random characteristics of criminal activities in time and space, and the importance of 61 

criminogenic environments for crime prevention and control.  62 
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 Environmental criminology shares a theoretical background with the concepts of 63 

“CPTED” formulated by the early contributions of Jeffery (1971) and Newman (1972). 64 

Newman’s (1972) defensible space theory emphasized the importance of architectural and 65 

environmental design to promote a sense of territoriality and social responsibility that controls 66 

criminal behaviors. He argued that defensible spaces limiting access to strangers or potential 67 

criminals are more effective at reducing criminal activities. Jacobs (1961) also pointed out that 68 

the lack of natural guardianship on the streets is associated with criminal activities. She argued 69 

that permeable streets would give safe environments with natural surveillance from “eyes on 70 

the street.” According to her theory, built environments, such as small block sizes, high-density 71 

mixed-use residential environments, and sidewalks are more likely to increase urban vitality 72 

that promotes urban safety from criminal activities.  73 

Based on the CPTED concept, several studies have investigated the relationship 74 

between specific neighborhood environments and crime (He et al., 2017; Langton and 75 

Steenbeek, 2017). However, the effects of environmental factors are inconsistent in the 76 

literature. For instance, physical barriers, such as walls and fences, are known to mitigate crime 77 

by blocking access to potential offenders (He et al., 2017; Langton and Steenbeek, 2017), but 78 

they can impair surveillance opportunities and create opportunities for crime via blocking 79 

visibility (Cozen and Love, 2015). In this regard, some have noted that the overreliance on 80 

physical barriers can be detrimental to another concept of crime deterrence, “eyes on the street” 81 

(Jacobs, 1961), by forming a “fortress mentality” (Cozen and Love, 2015). 82 

It is also important to note that the relationship between the presence of vegetation and 83 

crime is debated. Some studies demonstrated that the greenspace of parks facilitates crime, as 84 

it increases the influx of potential targets with less informal social control (Groff and McCord, 85 

2012). Furthermore, vegetation can hide perpetrators and criminal activities from bystanders 86 

(Wolfe and Mennis, 2012). In terms of perceptions, considerable vegetation can increase the 87 

level of fear as people feel a sense of visual closure (Baran et al., 2018). On the other hand, 88 

vegetation can serve as a place to gather people, increasing natural surveillance to prevent 89 

crime (Kondo et al., 2016; Troy et al., 2016). Additionally, natural elements, especially 90 

vegetation, suppress crime by reducing the mental stress that can incite crime, especially in 91 

low-income neighborhoods (Burley, 2018).  92 

While these equivocal findings are, in part, attributable to the different data sources 93 
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and measurement strategies used in the previous studies, the mixed findings may suggest that 94 

the relationship between the environment and crime is much more complex than the way it is 95 

traditionally portrayed. In terms of data collection, most studies utilized public or private 96 

archival data (Groff and McCord, 2012; Troy et al., 2016), but some of the studies employed 97 

satellite images, field surveys, and street images for manual audits (He et al., 2017; Langton 98 

and Steenbeek, 2017; Wolfe and Mennis, 2012). 99 

As to the reason for the conflicting results, we can also infer the possible existence of 100 

nonlinear relationships between built environments and crime. Walker (2007) pointed out the 101 

adherence to linear modeling as one of the reasons for ambiguity in the relationship between 102 

crime patterns and neighborhood environments. Several empirical studies also have 103 

demonstrated nonlinear relationships between important variables, including those focusing on 104 

racial composition, land use, and vitality (Browning et al., 2010; He et al., 2020; Hipp et al., 105 

2019; Wheeler and Steenbeek, 2020). As an example, Browning et al. (2010) substantiated an 106 

inverted U-shape relationship between mixed land use and violent crime occurrence, which can 107 

be interpreted by drawing potential victims or regulatory effects due to vibrancy. Hence, 108 

focusing on nonlinearity has the potential to clarify the complicated relationships between 109 

crime occurrence and neighborhood environments. 110 

 111 

2.2. Scale of Analysis and Street Image Applications  112 

Benchmarking the seminal study of Weisburd et al. (2004) that used longitudinal crime 113 

data at the level of street segments, Groff et al. (2010) found that many individual street 114 

segments have heterogeneous trajectories that are unrelated to the immediately adjacent streets. 115 

They demonstrated the importance of micro-level analysis of crime events. This finding is 116 

consistent with existing studies that pointed out the importance of using a micro-level unit of 117 

analysis in criminology studies (Sherman et al, 1989). The micro-level unit of analysis of the 118 

street segment has theoretical and methodological advantages and can better suggest specific 119 

policy implications over aggregated units of analysis, such as block groups, census tracts, or 120 

other units of spatial aggregation (Groff et al., 2010; Sherman et al., 1989). From the 121 

methodological perspectives of criminology studies, small units of analysis, such as the street 122 

segment, are more likely to reduce spatial heterogeneity and the ecological fallacy and produce 123 

more appropriate statistical analysis results. Furthermore, the small unit of analysis can identify 124 
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hot spots of criminal activities and suggest policing strategies to mitigate potential criminal 125 

activities. 126 

Also, it should be emphasized the importance of fine-scale physical features among 127 

crime determining environmental factors (He et al., 2017; Macro et al., 2017; Vandeviver, 128 

2014). For instance, physical disorder (e.g., cigarette butts, empty bottles, and graffiti) and 129 

physical decay (e.g., vacant or abandoned houses and commercial buildings) have been 130 

established as crime determinants (He et al., 2017; Macro et al., 2017). However, the 131 

conventional approach is limited in collecting fine-scale quantitative environmental features at 132 

a small unit of analysis. In particular, few criminology studies have been conducted in a small 133 

unit of analysis, especially the street segment, due to the lack of built environment data. Also, 134 

field audit is limited in collecting fine-scale quantitative environmental data for large-scale 135 

areas. 136 

Recently, various studies have attempted to measure environmental features using 137 

street-view images with computer vision techniques. These studies created measures assumed 138 

to be crime determinants (He et al., 2017; Hipp et al., 2022; Marco et al., 2017) or public-139 

health-associated environmental features (Ki and Lee, 2021; Lu, 2018). This approach has 140 

several advantages. First and foremost, this approach enables us to assess fine-scale 141 

environmental features (e.g., streetscapes) in a small unit of analysis. Second, once the specific 142 

algorithm is created, computer vision techniques can be applied to numerous street images and 143 

thus can be applied to a large-scale target site. Third, using street images has relatively high 144 

accuracy compared to a field survey in measuring street trees and buildings (Gong et al., 2018), 145 

and is highly efficient in evaluating the neighborhood environment on a large scale (He et al., 146 

2017; Vandeviver, 2014). Forth since the street view contains an actual landscape at the street 147 

level, it is possible to measure the neighborhood environment in detail from pedestrians’ 148 

perspectives. At present, however, only a few empirical studies have measured the 149 

neighborhood environment using this approach to analyze the associations with crime (e.g., 150 

Hipp et al., 2022). 151 

 152 

2.3. Big Data and Machine Learning Applications 153 

Big data and machine learning algorithms have attracted increasing attention, as they 154 

can provide researchers with new data sources and predictive analytical tools for creating safer 155 
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environments (Kang and Kang, 2017; Rummens et al., 2017). Rummens et al. (2017) 156 

demonstrated the use of predictive analysis in spatiotemporal crime forecasting in an urban 157 

context. Focusing on three types of crime, they tested three analysis models: logistic regression, 158 

a neural network model, and an ensemble model. The analysis results indicated that each model 159 

had its advantages in terms of performance measures based on spatial and temporal resolutions. 160 

Similarly, Wheeler and Steenbeek (2020) conducted long-term predictions of crime at micro 161 

places using a machine learning algorithm with RFs. For robberies in Dallas at 200 by 200 ft2 162 

grid cells, this study concluded that the RF greatly outperformed risk terrain models and kernel 163 

density estimation in terms of forecasting future crimes. This study also illustrated one strategy 164 

to generate interpretable model summaries of RFs that could be helpful in understanding the 165 

predictive importance for crime at micro places.  166 

Despite recent studies applying machine learning algorithms to criminology, a critical 167 

limitation of machine learning algorithms is the nature of the black box in the process of 168 

prediction. Zhang et al. (2018) pointed out that although artificial neural networks (ANNs) are 169 

powerful tools for modeling associations between variables for the best prediction of an 170 

outcome, they are limited in their problem-solving ability by the nature of the “black box 171 

model”, as one does not obtain a set of coefficients associated with the variables in the model, 172 

as is typical in common estimation strategies. As Das and Tsapakis (2020) pointed out, 173 

interpretability is crucial to solving problems in the machine learning approach. Their study 174 

focused on the interpretable machine learning approach in estimating traffic volume and 175 

described the advantages and disadvantages of several IML techniques, such as partial 176 

dependence plots (PDFs), individual conditional expectation (ICE), LIME, and SHapley 177 

Additive exPlanations (SHAP).  178 

 179 

2.4. Research Gaps and Research Directions 180 

In quantitative criminology studies, conventional statistical models, especially 181 

negative binomial and Poisson regression, are the dominant methods used to examine the 182 

impacts of explanatory variables on crime. However, these traditional statistical models have 183 

limited ability to elucidate the complex relationship between crime and built environments. 184 

Furthermore, when used in a predictive setting, they have generally exhibited lower accuracy 185 

than machine learning models (Das and Tsapakis, 2020; Kang and Kang, 2017). Thus, using a 186 
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machine learning approach can clarify the relationship between neighborhood environments 187 

and crime with high accuracy.  188 

Recently, a few studies (Deng et al., 2022; Hipp et al., 2022) have delved into using 189 

GSV images to assess micro-level built environments and crime patterns. These studies 190 

employed the semantic segmentation technique of GSV images but predominantly utilized 191 

traditional regression methods to explore the associations between neighborhood built 192 

environments and crime patterns. Recent studies have also highlighted the intricate 193 

relationships between built environments and crime, emphasizing the necessity for novel 194 

techniques capable of analyzing non-linear relationships and their threshold effects (Hipp et al., 195 

2022; Wheeler & Steenbeek). 196 

On the other hand, understanding the built environment-crime relationship requires 197 

precise measurement of the fine-scale built environment features (He et al., 2017; Marco et al., 198 

2017; Vandeviver, 2014). Accordingly, a growing number of studies have utilized street images 199 

to measure the visual aspects of the built environment at eye level. Previous research, however, 200 

has often relied on manual audits. Using an advanced computer vision algorithm can give us 201 

new opportunities to take full advantage of street images and measure various dimensions of 202 

the built environment more efficiently. 203 

 Finally, the applications of machine learning algorithms in criminology studies have 204 

been criticized because of the inability to understand the directions and strengths of explanatory 205 

variables on crime due to the black-box nature of machine learning algorithms. In other words, 206 

it is important to have a means to interpret what machine learning models capture when using 207 

them. Explanatory variables and their potentially nonlinear impacts on crime patterns are 208 

highly critical issues in criminology studies that demand policy implications for crime 209 

prevention. To fill this gap, we utilize machine learning models and interpret the model results 210 

through IML techniques to elucidate the complex relationships between crime patterns and the 211 

built environment. Furthermore, we identify non-linearity and thresholds effects between 212 

street-level neighborhood built environmental variables and crime patterns and suggests policy 213 

implications to promote urban safety. 214 

 215 

 216 

 217 
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3. Methodology 218 

 219 

3.1. Study Area and Data 220 

To investigate the relationship between crime patterns and neighborhood environments, 221 

this study focuses on the City of Santa Ana, California (Figure 1). Santa Ana is located in 222 

Orange County, California, with a current size of 70.85 km2 and a population of nearly 330,000. 223 

The unit of analysis is a road segment, and there are 5,343 segments in Santa Ana, with an 224 

average length of 136 m, ranging from a minimum of 20 m to a maximum of 749 m. Among 225 

the 5,343 segments, we excluded 826 segments for which GSV images were not available. 226 

The dependent variable is the number of crimes that occurred on a road segment from 227 

2017 to 2019 (36 months). The number of crimes per year is 7,227, 6,615, and 6,782, 228 

respectively. The crime dataset was provided by the local police agency and includes the 229 

location of each crime. We geocoded the crime points to the nearest segment1, and a total of 230 

20,624 Part 1 crimes (aggravated assaults, robberies, burglaries, motor vehicle thefts, and 231 

larcenies) were analyzed. 232 

In general, each crime type has different determinants (e.g., Hipp et al., 2022), so it 233 

could be appropriate to build a model for each crime type. Notwithstanding, it should be noted 234 

that there is a methodological challenge to doing so. About 80-90% of street segments have 235 

zero value across the five crime types in our study site (e.g., larcenies – 94.4% and burglaries 236 

– 70.1%). This left-skewed distribution can definitely affect the performance of model for a 237 

specific crime type, whereas the distribution of aggregating all crime types is more suitable as 238 

only about half (52.1%) of the training samples have zero values for all Part 1 crimes. 239 

Also, there is a spatial homogeneity in the distribution of the crime types, which 240 

mitigates the potential fallacy of combining all crime types together. To demonstrate this, we 241 

conducted a principal component factor analysis of these five separate crime types, and the 242 

results showed just one single factor. Furthermore, all five crime types quite strongly loaded 243 

on this single factor, with factor scores almost all at 0.72 (ranging from larceny at 0.78 to 244 

aggravated assault at 0.66). Thus, we see that the spatial patterns of these crime types are quite 245 

similar.  246 

 
1 The geocoding match rate is 95.23% 
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 247 

 248 

3.2. Research Framework 249 

As mentioned above, this study utilizes machine learning models to better capture the 250 

relationship between the built environment and crime and to draw insights from the best-251 

performing model through the interpretable machine learning (IML) approach. To this end, this 252 

study is conducted in the following steps (Figure 2). First, this study constructs a dataset with 253 

the dependent variable being the number of all Part 1 crimes, and independent variables being 254 

demographic, socio-economic, and built environment measures. Specifically, eye-level 255 

streetscape features are measured through Google Street View (GSV) and the semantic 256 

segmentation for each of the 4,517 road segments is explained in Section 3.4. 257 

Second, we train several machine learning models using the training dataset (n=3,613) 258 

and conduct a comparative evaluation of models through the test dataset (n=678) to identify 259 

the best performing model. We tune the models’ hyperparameters during the training process 260 

using the validation dataset (n=678) to select optimal parameters for the machine learning 261 

model (we describe the logic of these sample sizes in the next section). Additionally, we assess 262 

the performance of the machine learning models compared to the traditional statistical model 263 

(negative binomial regression). 264 

 265 

 266 

 267 

Finally, the model with the highest accuracy in the previous step is interpreted using 268 

an IML algorithm. The IML algorithm can improve the reliability of the model by interpreting 269 

the model (Ribeiro et al., 2016), and it is possible to determine the relationships between 270 

predictor variables and the response variable. Specifically, this study employs SHAP, one of 271 

the most promising IML approaches. This is because the SHAP methodology can not only 272 

provide global interpretation, but also local interpretation, which lends itself toward 273 

determining non-linearity (García and Aznarte, 2020; Lundberg et al., 2020), as explained in 274 

Section 3.7 below. 275 

 276 

 277 

Figure 1. Location of Santa Ana 

Figure 2. Research framework 
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3.3. Dataset Split Strategy  278 

This study splits all of the samples into training, validation, and test samples based on 279 

two dimensions: spatial and temporal. First, the street segments in the study area are divided 280 

into three subsets at a ratio of 7:1.5:1.5 based on a random process that prioritizes spatial 281 

evenness. Specifically, to avoid spatial autocorrelation in the resulting dataset splits, we 282 

performed sampling by maximizing the physical distance between segments2 . Thereby, the 283 

number of observations in training, validation, and test datasets are 3,161, 678, and 678 street 284 

segments, respectively, and within each subset, segments are spatially distributed evenly. 285 

Second, this study takes into account the temporal dimension in the data split process 286 

to identify whether our crime prediction model trained from past data can be used to predict 287 

future crime. We set the dependent variables of the training, validation, and test datasets to 288 

crimes in 2017, 2018, and 2019, respectively. Namely, the training set is 3,161 street segments 289 

with the crime in 2017 as a dependent variable, and the validation and test sets are 678 street 290 

segments with the crime in 2018 and 2019, respectively. Thus, different street segments are in 291 

each sample. The independent variables for all subsets are the neighborhood environment and 292 

socio-economic characteristics of street segments at a point in time. This partitioning strategy 293 

allows us to verify the potential of our model to predict future crimes, which can provide 294 

implications for crime-prevention practices. 295 

 296 

3.4. Measuring Streetscape Features  297 

3.4.1. Google Street View 298 

In this study, street images were obtained along street segments to audit the streetscape 299 

features. We utilized the Google Street View API to acquire the static images with a 640 x 640 300 

size which is the maximum available size. As for the GSV acquisition criteria, previous studies 301 

have used various intervals such as 20, 50, and 100 m between images (Kim et al., 2021). 302 

Because the average length of a road segment in Santa Ana is 136 m, we acquired images on a 303 

20 m interval in order to measure representative streetscape features (n=28,257). We only 304 

collected GSV images taken between 2017 and 2020 to secure enough images for each street 305 

segment as 94.5% of the available images were from this period. Additionally, GSV images 306 

 
2 To conduct spatially even sampling, the SpatialBlock package in R is applied 
(https://rdrr.io/cran/blockCV/man/spatialBlock.html) 
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near intersections were excluded, as they contain the features of more than one segment. As a 307 

result, this study obtained GSV images from 26,703 points. 308 

We acquired four images (front, right, back, left) for each location to capture the 309 

environment in all directions (see Figure 3). That is, 106,812 images of 26,703 points were 310 

used for analysis. This study used 4,517 segments out of 5,343 segments, excluding segments 311 

where GSV images do not exist, and where images were taken before 2017 and after 2020. 312 

Thus, we utilized an average of 5.91 GSV points and 23.65 images per segment, respectively. 313 

 314 

3.4.2. Semantic Segmentation 315 

To quantify the streetscape features through the acquired GSV images, this study 316 

utilized semantic segmentation, a computer vision technique. Semantic segmentation can 317 

classify each pixel as an image component, such as greenery, vehicle, or building. Recently, 318 

several studies have used this approach to extract the neighborhood environment from GSV 319 

images (Gong et al., 2018; Ki and Lee, 2021). 320 

Among the semantic segmentation models, the present study employed Deeplabv3+ 321 

(Chen et al., 2018), which is based on the deep convolutional neural network (DCNN). This 322 

model was pre-trained with the Cityscapes dataset containing a collection of streetscape images 323 

similar to GSV images (Cordts et al., 2016). Using this pre-trained semantic segmentation 324 

model, we identified 13 streetscape elements from the imagery: buildings, humans, sidewalks, 325 

pavement, vehicles, fences, walls, vegetation, terrain, sky, traffic lights, traffic signs, and poles 326 

(refer to Figure 3). Among these built environment features, we narrowed our focus to a subset 327 

expected to be linked with crime patterns. Specifically, we re-categorized these variables, 328 

emphasizing six features representing dimensions crucial to crime ecology theory: vibrancy 329 

(buildings, humans), greenery (vegetation, terrain), and defensible space (walls, fences). 330 

Streetscape elements like buildings and humans align with Jacobs's 'eyes on the street' theory 331 

(Jacobs, 1961). Conversely, variables such as walls, fences, vegetation, and terrain are 332 

associated with Newman's 'defensible space' theory (Newman, 1972). Aligning with theoretical 333 

concepts linking streetscape features to crime, this study selected key features most likely 334 

associated with criminal activities. As depicted in Figure 3, we calculated the ratio of elements 335 

within each street view image. Feature variables for each segment were constructed by 336 

averaging the elements present in the segment's images. 337 
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Figure 3. Example of Google Street View images and results of semantic segmentation 338 

 339 

3.5. Control Variables 340 

To determine the relationship between the street-level built environment and crime 341 

patterns, this study controlled for the effects of crime generators and other potential crime 342 

determinants. These were constructed as a ½ mile buffer with an exponential decay (β = -0.5) 343 

centered on the focal segment. Whereas some measures from the Census are in blocks, for 344 

others in block groups we needed to impute them from block groups to blocks. Therefore, 2010 345 

blocks and the American Community Survey (ACS) 5-year estimates for 2008-2012 are used 346 

as this is the Census data available to us despite the time gaps with the other data sources.  347 

First, we considered measures of the ambient population, which includes residential 348 

population, total employees, retail/food employees, and percent aged 16 to 29 (to capture the 349 

possible presence of offenders). Although these Census variables have limitations in directly 350 

reflecting the ambient population and vibrancy (He et al., 2020), they were used as proxy 351 

variables. Furthermore, the vibrancy variables measured through GSV (specifically humans 352 

and buildings) can complement the limitations of these Census variables.  353 

Given that social disorganization theory posits that disadvantaged neighborhoods will 354 

have less informal social control capability, and therefore more crime, we included several 355 

measures to capture this theory (Sampson and Groves 1989). Concentrated disadvantage was 356 

measured as a factor score from a principle factor analysis of percent at or below 125% of the 357 

poverty level, average household income, percent with at least a bachelor’s degree, and percent 358 

single-parent households. Residential stability was calculated as a factor score combining 359 

percent owners, percent in the same house five years ago, and average length of residence. 360 

Racial/ethnic heterogeneity measures racial diversity, and was measured as the Herfindahl 361 

index based on five ethnic categories (White, Black, Asian, Latino, others). To capture the 362 

presence of racially disadvantaged groups, we included the percentage of the population that 363 

was Latino, Asian, or Black. Given that vacant units can create both physical and social 364 

disorder in the neighborhood and increase crime, we created a measure of percent vacant units. 365 

Numerous studies have shown that these measures are consistent predictors of crime (Kubrin 366 

and Weitzer 2003).  367 

Finally, studies have shown that it is important to account for length of the street 368 



14 

 

segment to account for crime opportunities (Kim and Hipp, 2017). Longer street segments 369 

provide more crime opportunities, and therefore including this in the model translates the 370 

outcome to a measure of crime density.  371 

 372 

3.6. Machine Learning Model 373 

To predict the number of crimes, we utilized the following five machine learning 374 

models (i.e., Random Forest, Support Vector Machine, XGBoost, Artificial Neural Network, 375 

and Deep Neural Network). We used these five techniques given that prior research has shown 376 

that they are typically among the most effective models in studies that compare different 377 

machine learning strategies. The explanation of models and error indicators to compare the 378 

models’ performances were described in detail in Appendix A. Briefly, four major error 379 

indicators were used to evaluate the models and thus select a final model. This study also 380 

compared these models with the conventional statistical model, negative binomial (NB) 381 

regression, to assess whether the machine learning models outperform it.  382 

 383 

3.7. Interpretable Machine Learning (IML) 384 

As mentioned above, machine learning has the advantage of prediction power, but a 385 

limitation is the lack of information about how specific measures in the model are related to 386 

the outcome measure. Recently, work on interpretable machine learning (IML) has attempted 387 

to decode the “black box” architecture of earlier neural networks (Molnar, 2020). The SHAP 388 

method can allow one to interpret the model in both global and local senses (García and Aznarte, 389 

2020; Molnar, 2020). Given this advantage, an increasing number of studies have employed 390 

this approach in various fields, including criminology (García and Aznarte, 2020; Wheeler and 391 

Steenbeek, 2020).  392 

The SHAP algorithm is based on coalitional game theory that is, how much each 393 

individual contributed to collaborative outcomes (Shapley, 1953). SHAP calculates the feature 394 

importance (Shapley value) by comparing the change in outcomes depending on the presence 395 

or absence of each variable. As mentioned earlier, SHAP enables not only global interpretation 396 

but also local interpretation. To be more specific, the global interpretation determines the 397 

overall influence (global Shapley value) and direction that each independent variable has on 398 

the estimated outcomes. Local interpretation yields a Shapley value for each observation in the 399 
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sample, which makes it possible to investigate the nonlinear relationships of the variables 400 

(Lundberg et al., 2020).  401 

 402 
 403 
4. Analysis Results 404 
 405 

4.1. Comparative Evaluation of Machine Learning Models 406 

This study constructed crime prediction models by setting the dependent variable as 407 

the number of crimes and the independent variables as the built environment and the four 408 

groups of other determinants, as described above. All independent variables were normalized 409 

using min-max normalization due to the feature scales issue (Lin et al., 2018). The model 410 

specification and hyperparameter tuning of the machine learning model were delineated in 411 

detail in Appendix B. 412 

The error of each model after the hyperparameter tuning is shown in <Table 1>. As 413 

hypothesized, all machine learning models overall showed higher accuracy than the traditional 414 

statistical method (i.e., NB). In particular, the DNN showed the lowest error across each of the 415 

four indicators, and this result is consistent with Lin et al. (2018)’s study comparing various 416 

machine learning model performances, including the DNN. Additionally, it was found that the 417 

MSE value of the NB model was much higher than those of the machine learning models, 418 

indicating that its prediction was far off for some street segments. This highlights that 419 

interpreting the machine learning model, especially a DNN, can enable us to more completely 420 

understand the relationship between crime and the neighborhood environment than with the 421 

conventional statistical approach. 422 

 423 

 424 

 425 

4.2. Interpreting the DNN using the SHAP Algorithm 426 

In this section, we utilized the SHAP approach for the DNN that showed the highest 427 

accuracy in the previous step. As mentioned earlier, the SHAP algorithm can decode the 428 

machine learning models in two respects: global and local interpretation. Through global 429 

interpretation, we can verify the overall impacts of each variable on the outcome. Local 430 

interpretation enables us to detect nonlinear relationships between features. 431 

Table 1. Evaluation of models’ errors 
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 432 

4.2.1. Global Model Interpretation 433 

<Figure 4> shows the global Shapley value for each variable. The size of each bar 434 

represents the contribution of that independent variable to the predicted value. The color can 435 

be interpreted as the direction of the variable; red is a positive and blue is a negative relationship 436 

with the dependent variable.  437 

 438 

Figure 4. Global Shapley value  439 

 440 

For instance, the segment length has the greatest impact on the number of crimes, and 441 

it can be interpreted that crimes increase as the segment length increases 3. This result is not 442 

surprising as we included segment length in our analysis model to capture the presence of more 443 

crime opportunities when assessing the impact of the built environment on crime incidents. In 444 

the next section, we describe the influence of these variables in more depth, paying special 445 

attention to their nonlinear relationships with crime. 446 

 447 

4.2.2. Local Model Interpretation 448 

Given that the purpose of this study is to investigate the non-linear relationship 449 

between streetscape variables and crime, local interpretation enables us to further explore it. 450 

As mentioned above, the local interpretation provides the Shapley value for each sample in the 451 

test dataset.  452 

 453 

 454 

In <Figure 5- A>, the x-axis and y-axis represent the ratio of walls and the Shapley 455 

value, respectively. Each dot represents each sample in the test dataset (n=678), and the blue 456 

line is the locally weighted scatterplot smoother (LOWESS) line based on these points. Note 457 

that this figure plots the derivatives of this relationship. Therefore, for a more intuitive 458 

understanding, <Figure 5-A`> plots the relationship between the dependent variable (number 459 

of crimes) and the ratio of the wall variables itself. This is a more conventional non-linear plot 460 

 
3 Please note that our dependent variable is the number of crimes per segment, which is not normalized. 

Figure 5. Local interpretation and examples for defensible space 
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that readers will be familiar with and is based on the formula from the LOWESS graph. In 461 

other words, in <Figure 5-A`>, the y-axis is the number of crimes, and the x-axis is the 462 

proportion of walls in the street segment. 463 

In the case of the wall, the global Shapley value is -0.176, but the local value is widely 464 

distributed from -1.747 to 0.858. More specifically, walls have a very modest positive 465 

relationship with the number of crimes at low levels (wall<0.1). Beyond a threshold (wall=0.1), 466 

however, its relationship turns negative and becomes stronger, as seen in <Figure 5-A`>. 467 

Although walls show a non-linearity with the crime occurrences, it is worth mentioning the 468 

validity of the values before the threshold. Given that the threshold is close to 0 and the Shapley 469 

values of the observations located in the positive section are small, the positive effect of walls 470 

is negligible. <Figure 5, A`> showing the relationship with the dependent variable displays this 471 

immaterial positive effect. 472 

Similarly, the Shapley value of fences becomes stronger in the negative direction as 473 

the fence proportion increases (Figure 5 - B, B`). Fences and walls, which are related to the 474 

notion of defensible space and CPTED, can prevent crime by restricting the access of potential 475 

offenders and reinforcing territoriality (Cozens and Love, 2015; Langton and Steenbeek, 2017). 476 

Additionally, the likelihood of preventing access increases as the two features become more 477 

prevalent, and thus crimes rapidly decrease.  478 

The two elements related to urban greenery, vegetation and terrain, have different 479 

relationships with crime patterns. The vegetation measure has a robust U-shape relationship 480 

with crime (see Figure 6- C, C`). Thus, most crime occurs in segments with either very low or 481 

very high concentrations of vegetation. On the contrary, the Shapley value for terrain changes 482 

from positive to negative as the percentage of terrain increases (see Figure 6- D, D`), which 483 

means that terrain exhibited an inverted U-shape relationship with crime. In terms of specific 484 

greenery, vegetation includes vertical vegetation, such as trees, and hedges, whereas terrain 485 

includes horizontal vegetation, such as grassy areas, and soil4. In other words, both elements 486 

can act as attractive places to gather people, but if the vegetation is too dense at a location, it 487 

 
4 Cityscapes dataset labeling policy and class definitions: https://www.cityscapes-

dataset.com/dataset-overview/#labeling-policy 
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may give perpetrators a chance to hide from the view of guardians (Wolfe and Mennis, 2012). 488 

  489 

 490 

Additionally, dense vegetation creates a visually closed environment, thereby contributing to a 491 

high level of fear (Baran et al., 2018). However, since terrain is an open green space, it cannot 492 

provide offenders with opportunities to hide, even if there is a large area of terrain in a specific 493 

place. 494 

Finally, GSV variables that are related to vibrancy – buildings and humans – show a 495 

similar relationship with crime (see Figure 7- E, F). They exhibit a relatively robust positive 496 

relationship with crime, and the impact becomes stronger as their presence increases. These 497 

results may be attributable to the fact that vibrant places have more targets and offenders, 498 

thereby creating more crime opportunities (see Figure 7). Also, unlike the Census variables, 499 

the GSV human variable also includes non-local residents. Thus, many non-local residents may 500 

lead to a loss of informal social control, creating more crime opportunities (He et al., 2020). 501 

For these reasons, several studies have reported a positive relationship between vibrancy and 502 

crime (He et al., 2020; Hipp et al., 2019). 503 

Similar to walls, the validity of the values before the threshold should be noted. For 504 

both vibrancy variables, the Shapley values are negative at low levels (building < 4.7 and 505 

humans < 0.07), but the threshold is close to zero and the Shapley value in this section is also 506 

very small. As shown in <Figure 7 – e`, f`>, the crime deterrence effect of the vibrancy variables 507 

can be seen as trivial in this range.  508 

It is important to note that the human variable in the scene is rare and dynamic (Kim 509 

et al., 2021), which indicates that the presence of humans is likely to fluctuate depending on 510 

the time when the GSV was collected. In this regard, using street images to directly capture 511 

vibrancy may not perfectly capture the concept of interest. Notwithstanding, this approach has 512 

been adopted in several previous studies (Chen et al., 2020; Yue et al., 2022). They noted its 513 

potential and reliability compared to an on-site pedestrian count survey (Chen et al., 2020). 514 

Furthermore, Yue et al. (2022) theoretically underlined the advantages of this novel approach 515 

in terms of availability and reliability compared with other methods for measuring vibrancy, 516 

such as using social media or mobile phone data, in the criminology field. On the one hand, we 517 

operationalized the ambient population with the buildings as well as humans, which is a more 518 

Figure 6. Local interpretation and examples for urban greenery 
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reliable and less dynamic variable. 519 

 520 

 521 

 522 

5. Discussion and Conclusion 523 

This study attempted to reveal the association between streetscape features and crime 524 

patterns at the street segment level using GSV and several machine learning techniques. The 525 

use of street images and semantic segmentation with deep learning techniques enables us to 526 

quantify the micro-level built environment features that cannot be easily measured with 527 

conventional data collection methods. This approach is particularly promising for large areas, 528 

allowing one to capture the neighborhood environment at the micro-scale level in an efficient 529 

manner. In addition, the micro-level of the street segment unit is most likely to reduce spatial 530 

heterogeneity and the ecological fallacy in criminology studies (Groff et al., 2010; Hipp et al., 531 

2022). Given that few criminology studies have employed this method despite its advantages, 532 

more attention should be paid to the possibility of using it to further investigate the relationship 533 

between fine-scale environmental features and crime patterns.  534 

Many studies utilizing traditional regression models to explore the relationship 535 

between urban environmental elements and crime incidence have yielded mixed outcomes 536 

(Hipp et al., 2022; Lee and Contreras, 2021). The relationships between neighborhood 537 

environments and crime are ambiguous due to the possible existence of non-linearity between 538 

them in the criminology literature (Walker, 2007; Browning et al., 2010; Hipp et al., 2019; 539 

Wheeler and Steenbeek, 2020). Although non-linearity analysis between neighborhood 540 

environments and crime patterns is possible in the conventional regression models with 541 

polynomial functions, the applications of machine learning models with interpretability 542 

techniques are very efficient to detect possible nonlinear relationships and threshold effects 543 

between built environment features and crime. Tao et al. (2020) have highlighted the flexibility 544 

of machine learning models in analyzing urban environmental nonlinearity. While the machine 545 

learning models, especially DNN, outperformed negative binomial regression in predicting 546 

future crime events, DNN also outperformed other machine learning models such as RF, SVM, 547 

XGBoost, and ANN. By using the SHAP algorithm, we were able to interpret the non-linear 548 

relationships between variables and crime yielded by the DNN model. This approach is 549 

Figure 7. Local interpretation and examples for vibrancy 
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particularly advantageous because it allowed us to obtain a deeper understanding of the 550 

complex relationships between crime patterns and environmental factors.  551 

The non-linearities revealed in this study can shed light on the factors associated with 552 

crime patterns. Additionally, it is important to note that the IML methodology gives credibility 553 

to the model and makes it possible to formulate a problem (Ribeiro et al., 2016). For instance, 554 

our results indicated that walls and fences, in line with the defensible space theory (Newman, 555 

1972) and CPTED (Jeffery, 1971), effectively deterred criminal activities in the studied area. 556 

Yet, it is essential to highlight that the connection between walls and crime demonstrates a 557 

threshold effect, displaying a positive association below the threshold. In general, as these two 558 

factors surpass certain thresholds, they exhibit increased crime deterrence effects, potentially 559 

due to their ability to obstruct the access of potential offenders (Langton and Steenbeek, 2017).  560 

Our findings indicated that vegetation and terrain variables exhibited more evident 561 

nonlinear patterns and threshold effects. We observed a robust U-shaped relationship between 562 

vegetation and crime, while terrain showed an inverted U-shaped relationship with crime 563 

patterns. These differences could be attributed to the inclusion of various types of greenery. As 564 

mentioned earlier, vegetation demonstrated a dual relationship with crime. It can encourage 565 

crime by concealing perpetrators and criminal activities, increasing potential targets (Wolfe 566 

and Mennis, 2012). On the other hand, it can act as a gathering place, enabling natural 567 

surveillance that deters crime (Kondo et al., 2016; Troy et al., 2016). The nonlinear link 568 

between vegetation and crime in Santa Ana might reflect these conflicting influences. In 569 

essence, low levels of vegetation may be negatively associated with crime by enhancing human 570 

presence, supporting Jacob's (1961) theory of natural surveillance by “the eyes on the street.” 571 

However, beyond a certain threshold, vegetation forms a visually enclosed landscape, offering 572 

hiding spots for offenders and leading to increased crime. 573 

We explored the link between crime and GSV variables related to urban vibrancy. In 574 

our study area, the association between vibrancy and crime initially showed a negative 575 

correlation below a specific threshold, shifting to a positive connection beyond that point. 576 

Additionally, we observed that this positive association was more pronounced with a higher 577 

percentage of these vibrancy indicators. Vibrant areas suggest numerous potential guardians 578 

but can also present a higher number of potential targets. Notably, the inability to distinguish 579 

between local and non-local residents within the GSV-based human variable might imply that 580 
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larger numbers of non-local residents could potentially contribute to increased crime (He et al., 581 

2020). Considering these perspectives, our study's findings align with research demonstrating 582 

a positive relationship between vibrancy and crime patterns (He et al., 2020; Hipp et al., 2019; 583 

Hipp et al., 2022). However, it's crucial to note the negative associations between urban 584 

vibrancy indicators and crime events below the threshold. A certain level of vibrant places with 585 

potential guardians appears to act as a deterrent against criminal activities. 586 

This study also has a few limitations. First, GSV images were collected by vehicles, 587 

which differs slightly from a pedestrian perspective. This is an inherent limitation of street 588 

images because it collects images over a large area. Second, we cannot ignore the time gap 589 

between the datasets used in this study. The disparity between street images and actual crime 590 

occurrences suggests potential differences in the independent variables measured and the 591 

neighborhood conditions when the crimes took place. Additionally, the study's use of block-592 

level data sourced from the 2010 Census and ACS 5-year estimates for 2008-2012, despite time 593 

gaps with other sources, assumes a relatively stable population in Santa Ana. However, we 594 

acknowledge that this assumption may not fully account for differences in demographic and 595 

socioeconomic characteristics. In addition, as highlighted in a few studies (He et al., 2020; Lan 596 

et al., 2019), Census variables might not fully capture the ambient population, encompassing 597 

residents, employees, and visitors. To address this, we supplemented the Census variables with 598 

GSV variables like 'human' and 'building.' However, we acknowledge that these GSV variables 599 

also have constraints in measuring the ambient population.  600 

Thirdly, despite being based on a concrete theory like CPTED, the study's reliance on 601 

a cross-sectional design cannot statistically guarantee the causal relationship between 602 

neighborhood environments and crime patterns. We included a set of “control variables” that 603 

are common in the criminology literature in an effort to account for possible confounders to 604 

the relationships we observed. Nonetheless, similar to existing cross-sectional studies we are 605 

limited in our causal inferences, and some elements of the built environment might show 606 

complex association patterns with crime as shown in this study not only because their presence 607 

can enable or prevent crime occurrence but also because they serve as a proxy for another factor 608 

that is difficult to measure and control for. Finally, due to the aggregation of all Part 1 crime 609 

types, this study cannot identify specific factors related to each crime type, potentially biasing 610 

the model toward predicting more prevalent crime types, such as burglary. 611 
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Tables 762 

 763 

 764 

Accuracy NB RF SVM XGBoost ANN DNN 

MAE 2.900 1.954 2.598 1.785 1.844 1.559 

MSE 550.562 56.747 61.306 56.307 56.940 26.446 

RMSLE 0.801 0.734 0.974 0.670 0.764 0.601 

R2 0.092 0.139 0.105 0.122 0.133 0.622 
Note: NB (negative binomial); RF (Random Forest); SVM (Support Vector Machine);  765 

XGBoost (Extreme Gradient Boosting); ANN (Artificial Neural Network); DNN (Deep Neural Network) 766 
 767 

  768 

Table 2. Evaluation of models’ errors 
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 776 

Figure 1. Location of Santa Ana 

Figure 2. Research framework 
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Figure 3. Example of Google Street View images and results of semantic segmentation 779 
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Figure 4. Global Shapley value  783 
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 790 

Figure 5. Local interpretation and examples for defensible space 

(a, a`: high ratio of walls- 17.45% ; b, b`: high ratio of fences- 15.29%) 
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Figure 6. Local interpretation and examples for urban greenery 

(c, c`: high ratio of vegetation- 56.36%; d, d`: high ratio of terrain- 13.74%) 
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Figure 7. Local interpretation and examples for vibrancy 

(e, e`: high ratio of building- 25.88%, f, f`: high ratio of human- 2.95%) 
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Appendix A: Machine learning models and evaluations 808 

This study adopted five machine learning models for crime prediction.  809 

 Random Forest (RF): A RF is a traditional ensemble model that combines various decision tree 810 
models. It enables more accurate and stable prediction than the decision tree model (Breiman, 811 
2001). 812 

 eXtreme Gradient Boosting (XGBoost): The XGBoost model is a tree-based ensemble model 813 
that is similar to Random Forest. The main difference is the use of gradient boosting instead 814 
of bagging. It has the advantages of fast training speed based on parallel tree learning and 815 
reliable accuracy for various tasks (Chen & Guestrin, 2016) 816 

 Support Vector Machine (SVM): This algorithm is one of the supervised machine learning 817 
models used for classification, regression, and outlier detection. In this study, support vector 818 
regression (SVR) is used to predict the number of crimes (continuous variable).  819 

 Artificial Neural Network (ANN): An ANN algorithm is based on the concept of a biological 820 
neural network. That is, it adjusts weights connecting various nodes through the training 821 
process and makes decisions based on the determined weights (Gupta, 2013). 822 

 Deep Neural Network (DNN): A DNN has several (> 2) hidden layers, which is a model that 823 
extends the structure of the ANN. For this reason, it has a more complex architecture than the 824 
ANN model and is classified in the deep learning category, unlike the previous model.  825 
 826 
We evaluated the performance of these models using four indicators: the mean absolute error 827 

(MAE), mean squared error (MSE), root mean square logarithmic error (RMSLE), and the coefficient 828 
of determination (R2) (see the equations below). The MSE is one of the representative indicators in 829 
machine learning regression, which is the average squared error between the predicted and actual values. 830 
For this reason, it is highly sensitive to outliers. On the other hand, the RMSLE is robust to outliers and 831 
is calculated with a logarithmic scale. Except for the R2, the lower the indicators, the more accurate the 832 
prediction. 833 

 834 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    … …   𝑒𝑒𝑒𝑒(1) 835 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    … …   𝑒𝑒𝑒𝑒(2) 836 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (log(𝑦𝑦𝚤𝚤� + 1) − log(𝑦𝑦𝑖𝑖 + 1))2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    … …   𝑒𝑒𝑒𝑒(3) 837 

𝑅𝑅2 = 1 − 
𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇

  = 1 − 
∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

  … …   𝑒𝑒𝑒𝑒(4) 838 

Where: 839 

𝑦𝑦𝚤𝚤� : Predicted number of crimes in the segment 840 

𝑦𝑦𝑖𝑖: Actual number of crimes in the segment 841 

n: Number of street segments (sample size)  842 



33 

 

Appendix B: DNN hyperparameter tuning  843 

The DNN model used here includes several hyperparameters, such as the number of hidden 844 
layers, the number of nodes for each layer, activation function, and dropout. A small number of hidden 845 
layers and nodes imply a simple architecture and can result in underfitting problems. On the contrary, 846 
when there are many elements, the model exhibits a complicated architecture, which can result in 847 
overfitting issues (Lin et al., 2018). To avoid the overfitting problem, we applied dropout to 0.2, which 848 
can prevent overfitting as 20% of nodes are randomly excluded at each layer (Srivastava et al., 2014). 849 

In terms of model structure determinants, the number of nodes in the input layer is 26 (the 850 
same as the number of features), and the number of nodes in the output layer is 1 (in the regression 851 
model). Since there is no exact formula to determine the number of hidden layers and nodes (Karsoliya, 852 
2012), this study found the optimal combination of hidden layers and nodes by evaluating the 853 
performance while changing them. In particular, given the amount of computing time and the number 854 
of observations in this study, this study explored the model’s optimal parameters in the range of 1 to 5 855 
hidden layers and 1 to 10 nodes for each layer. Through this process, the model’s depth (number of 856 
hidden layers) was set to 4, and the hidden layers were established to 6, 4, 4, and 2 nodes, respectively. 857 
Additionally, this study set the activation function, learning rate, and epochs to ReLu, 0.01, and 25, 858 
respectively.  859 

This study utilizes the Mean Squared Error (MSE) loss function of the DNN model. Appendix 860 
Figure 1 illustrates the loss function, specifically MSE, of the DNN model as per the aforementioned 861 
settings. The x-axis, represented by the epoch, signifies the number of times the complete training 862 
dataset is iterated. There's a consistent trend where both training and validation losses decrease as the 863 
epoch count rises, until reaching a particular point. However, beyond this threshold, the model begins 864 
overfitting the training set, resulting in an increase in validation dataset loss, while the training set's loss 865 
stabilizes. This pattern is also evident in another error metric, the Mean Absolute Error (MAE). 866 
Following an analysis of the validation loss function, the optimal epoch was identified to be 25. 867 

 868 

 869 

 870 

              Appendix Figure 1. MSE loss function of DNN model 




