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Three-body decays of sleptons with general flavor violation and left-right mixing

Jonathan L. Feng,1 Iftah Galon,2 David Sanford,1 Yael Shadmi,2 and Felix Yu1

1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
2Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

(Received 13 April 2009; published 22 June 2009)

We determine the widths of three-body decays of sleptons, ~‘� ! ~‘�‘�‘�, ~‘�� ��, ~‘�q �q, in the

presence of arbitrary slepton flavor violation and left-right mixing. These decays are important in

scenarios in which the lightest supersymmetric particle is the gravitino, a generic possibility in models

with gauge- and gravity-mediated supersymmetry breaking. Three-body decays have been discussed

previously, assuming flavor conservation and left-right mixing in only the stau sector. Flavor violation and

general left-right mixing open up many new decay channels, which provide new avenues for precision

mass measurements and may play an essential role in solving the standard model flavor problem. We

present results for toy models with two-generation mixing, and discuss the implementation of these results

in SPICE, a program that simplifies collider event simulations of flavor-violating supersymmetric models.

DOI: 10.1103/PhysRevD.79.116009 PACS numbers: 11.30.Hv, 12.15.Ff, 12.60.Jv, 14.60.Pq

I. INTRODUCTION

Fermion masses are one of the least understood parts of
the standard model (SM). Even the charged fermion
masses span over 5 orders of magnitude from the top
quark to the electron, begging for a theoretical explan-
ation. The majority of these masses and mixing angles
are precisely constrained by experiment. Still, this wealth
of data does not conclusively single out any theory of
flavor.

In the near future, this may change dramatically with the
discovery of new particles at the weak scale. New particles
may only deepen the mystery, as would be the case if a
fourth generation were discovered. On the other hand, the
masses and mixings of the new particles may be governed
by the same principles that determine the SM fermion
masses. In this case, rather than extending the fermion
sector, the new particles will shed light on the existing
fermion spectrum.

Weak-scale supersymmetry provides examples of both
possibilities. In pure gauge-mediated models, for example,
squark and slepton masses are set by flavor-blind contri-
butions, with no connection to the SM fermion masses.
However, in gravity-mediated models and hybrid models
with both gauge- and gravity-mediated contributions,
squark and slepton masses may receive contributions that
are governed by flavor symmetries that also determine the
SM fermion masses [1–3]. The latter possibility leads to
nontrivial flavor effects in high-energy experiments [4–6],
opening the possibility for real progress on the SM flavor
problem at the Large Hadron Collider, as has been empha-
sized recently by many authors (see, for example, Refs. [7–
16]).

Here we study the implications of flavor violation for the
three-body decays of charged sleptons. Such processes are
most relevant for colliders in models with a gravitino
lightest supersymmetric particle (LSP) and a slepton
next-to-lightest supersymmetric particle (NLSP), a generic

possibility in models with both gauge-mediated supersym-
metry breaking [17,18] and gravity-mediated supersym-
metry breaking [19–23]. We consider a situation where the
lightest particles are a gravitino LSP, several light sleptons,
and the lightest neutralino, with the masses of each light
slepton less than the mass of the lightest neutralino. This
results in the typical two-body decays of these light slep-
tons being highly suppressed or kinematically inaccessible,
leaving the three-body decays as the dominant decay
modes. In these cases, the three-body decays are also often
the last visible step in cascade decays of squarks and
gluinos, and so they impact nearly all supersymmetry
searches and studies.
Three-body slepton decays have been studied previously

in an important, flavor-conserving case, where the authors
considered ~eR ! e�~�1 and ~�R ! ��~�1, with the ~�1 a
mixture of left- and right-handed staus [24]. These decays
are characterized by two distinct channels: a ‘‘charge-

preserving’’ channel ~‘� ! ~‘�‘�‘þ with opposite-sign

leptons and a ‘‘charge-flipping’’ channel ~‘� ! ~‘þ‘�‘�
with same-sign leptons. Flavor-conserving three-body de-
cays of squarks have also been considered [25], as have
flavor-conserving three-body decays with sneutrinos as
parent or daughter particles [26]. Our work generalizes
the charged slepton analysis to the case of arbitrary lepton
flavor violation (LFV) and arbitrary left-right mixing. In

the presence of general LFV, any three-body decay of ~‘i !
~‘j has up to 9 possible charge-preserving modes ~‘�i !
~‘�j ‘�k ‘

þ
m and 6 possible charge-flipping modes ~‘�i !

~‘þj ‘�k ‘
�
m , where ‘k, ‘m ¼ e, �, �. In addition, LFV and

left-right mixing bring additional complications that are
absent in the flavor-conserving case, including new pro-
cesses mediated by Higgs and Z bosons, new final states
with neutrinos and quarks, and new interference effects in
charge-flipping processes.
These complications are well worth confronting, how-

ever, as there is a wealth of information in these branch-
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ing ratios, which may shed light on the SM flavor problem.
These decays, if present, are also relevant more broadly,
for example, for supersymmetric searches and precision
mass measurements. For example, in the flavor-conserving
examples studied previously [24], the final states neces-
sarily contain � leptons. Since these decay with missing
energy, they degrade searches based on energetic leptons,
and they greatly reduce the prospects for precision
mass measurements. With LFV, however, even if the light-
est slepton is a stau, there may also be decay modes
with two electrons, two muons, or an electron and a
muon. Even if these branching ratios are suppressed, they
may be the more obvious signals at colliders, and they
may also provide better opportunities for precision
mass measurements. It is therefore of interest to know
the size of these branching ratios, and what deter-
mines them.

In the following three sections, we begin with a general
discussion of three-body decays and move gradually to
more specific scenarios and concrete calculations. In
Sec. II we present the new final states and new Feynman
diagrams that are relevant to three-body decays once gen-
eral flavor and left-right mixing are introduced. In Sec. III
we discuss these results in more detail and explain the
relative phenomenological importance of the various con-
tributing diagrams in particular scenarios. In Sec. IV we
then show concrete results in two toy models with two-
generation slepton mixing to illustrate our results. Finally,
in Sec. V, we present our conclusions and explain how our
results have been incorporated into SPICE, a publicly avail-
able computation package for generating supersymmetric
spectra and branching ratios in scenarios with arbitrary
slepton mixing.

We stress that, although we strive to give readers an
intuitive feel for our results by considering concrete cases
in the body of the paper, our analysis is valid for fully
general LFV and left-right mixing. The complete, model-
independent calculation is lengthy, but the full expressions
for all three-body decay modes are given in a series of
appendixes. Our conventions and notations are defined in
Appendix A. These are consistent with those of Ref. [27],
where full details may be found.

II. FLAVOR VIOLATION IN THREE-BODY
SLEPTON DECAYS

As mentioned in the Introduction, an important special
case of three-body slepton decays has been discussed
previously by Ambrosanio, Kribs, and Martin [24].
Motivated by pure gauge-mediated models, these authors
considered the flavor-conserving decays ~eR ! e�~�1 and
~�R ! ��~�1. These decays are mediated solely by neutra-

linos. The charge-preserving modes ~‘�i ! ~‘�j ‘�k ‘
þ
m are

shown in Fig. 1, and the charge-flipping modes ~‘�i !
~‘þj ‘�k ‘

�
m are shown in Fig. 2. The charge-flipping mode

is made possible by the Majorana nature of the neutralino,
and detection of the charge-flipping mode would provide
strong evidence that neutralinos are Majorana fermions.
In the presence of more general slepton mixing, the

gauge eigenstates ~eR, ~�R, ~�R, ~eL, ~�L, and ~�L mix to

form six mass eigenstates, ~‘i, i ¼ 1; . . . ; 6, with increasing
mass, and the lepton-slepton-neutralino interactions are no
longer flavor diagonal. The neutralino diagrams of Figs. 1
and 2 are then modified by the inclusion of 6� 6 mixing
matrix factors at the interaction vertices.
In addition, new diagrams contribute. If the initial and

final state charged sleptons contain left-handed compo-
nents, there is the chargino-mediated decay to neutrinos
shown in Fig. 1. This decay requires neither flavor viola-
tion nor left-right mixing. There are also charge-preserving
decays mediated by neutral Higgs bosons and the Z boson,
as shown in Fig. 3. The Higgs bosons mediate decays to
same-flavor ‘þ‘� and q �q pairs, and the Z diagram medi-
ates decays to same-flavor � ��, ‘þ‘�, and q �q pairs.
Both the Ha and Z diagrams are present independent of

LFV, but both require left-right mixing. In the case of the
Higgs-mediated diagrams, the Higgs couplings to sleptons

have the form Ha
~‘�L ~‘R, Ha

~‘�L ~‘L, and Ha
~‘�R ~‘R. The first is

generated by left-right mixing terms in the Lagrangian, and
thus clearly requires left-right mixing to be nonzero. The
other two come from D terms, and in the absence of left-
right mixing, they are flavor diagonal in the separate LL
and RR sectors, even with the presence of LFV in one or
both. Thus, in the absence of left-right mixing, the Higgs
coupling to sleptons is flavor diagonal in the six-

FIG. 1. Feynman diagrams for charge-preserving decays ~‘�i ! ~‘�j ‘�k ‘
þ
m mediated by neutralinos and ~‘�i ! ~‘�j �k ��m mediated by

charginos.
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dimensional space of left and right sleptons and does not
contribute to three-body decays. Similarly, the Z couples to
the LL and RR sleptons separately, so in the absence of
left-right mixing, its couplings are also flavor diagonal.
Note, however, there are no photon-mediated diagrams at
tree level, as the photon couples with equal strength to the
left- and right-handed sleptons, and so its couplings are
always flavor diagonal. Also note that in the case of non-
zero left-right mixing but no flavor mixing, the Ha and Z
diagrams exist, but their contributions are only appreciable
for certain mass orderings. Namely, only when neither of
the two mass eigenstates produced by left-right mixing
possess kinematically allowed two-body decays will the
three-body Ha and Z contributions be relevant.

The charge-flipping decay is unaffected by the Higgs
and Z boson diagrams, but in the presence of flavor viola-
tion, the fermions in the final state may be interchanged.
This implies a new interference effect in the charge-
flipping mode which is absent in the flavor-conserving
case. In principle, there should also be a similar interfer-
ence term in the neutrino decay modes if neutrinos possess
Majorana masses, but such a term is negligible in the limit
of zero neutrino mass.

In summary, for charge-preserving decays to charged
leptons of different generations, the analysis of Ref. [24]
may be straightforwardly modified to the general case. The
only modification needed is the insertion of rotation ma-
trices from flavor eigenstates to gauge interaction eigen-
states. For charge-preserving decays to charged leptons of
the same generation, however, the Higgs and Z diagrams
introduce new contributions to the decay width. There are
also new charge-preserving decays to neutrinos, mediated

by charginos and Z bosons, and to quarks, mediated by
Higgs and Z bosons. Finally, in the case of the charge-
flipping decays to like-sign leptons, the daughter leptons
may be interchanged and thus the decay width must in-
clude an interference term between these two diagrams;
however, there are no Higgs and Z contributions to this
mode and so there are no further interference terms.

III. ANALYTIC RESULTS AND QUALITATIVE
OBSERVATIONS

Given an understanding of the qualitatively new features
introduced by flavor and left-right mixing described in
Sec. II, we can now calculate the resulting decay widths.
The full results are lengthy and are given in the appendixes.
In this section, we summarize the results of our calcula-
tions and provide qualitative insight into the relative im-
portance of each contributing mode.
Our slepton interaction Lagrangian is

Lint
~‘
¼ ½~‘�i �~�0

að�ð1Þ
aikPLþ�ð2Þ

aikPRÞ‘kþ�aik
~‘�i �~�aPL�kþH:c:�

þ i� ð2Þij ð~‘�i @�~‘j� ~‘j@�~‘
�
i ÞZ�þ�ð2Þ

ij
~‘�i ~‘jh0

þ�ð3Þ
ij
~‘�i ~‘jH0þ i�ð4Þ

ij
~‘�i ~‘jA0þ i�ð5Þ

ij
~‘�i ~‘jG0; (1)

where the coefficients �, �, � , and � contain gauge and
Yukawa couplings along with the mixing matrix elements
for sleptons, Higgs bosons, neutralinos, and charginos.
These coefficients are defined in Appendix A. Here, the
indices are summed over the six slepton, three lepton and
neutrino, four neutralino, and two chargino mass eigen-
states. We have kept only the terms relevant to the three-
body decays in question.

FIG. 3. Feynman diagrams for charge-preserving decays mediated by Higgs and Z bosons. The Higgs scalar Ha may be any of the
neutral Higgs bosons: h0, H0, A0, or (in Feynman gauge) G0.

FIG. 2. Feynman diagrams for the charge-flipping decays ~‘�i ! ~‘þj ‘�k ‘
�
m mediated by neutralinos.
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Our lepton interaction Lagrangian is

Lint
‘ ¼ yð‘Þkffiffiffi

2
p �‘k �‘kðh0 sin	H �H0 cos	H þ iA0�5 sin�

� iG0�5 cos�Þ‘k þ ig

2 cos	W

� Z�ð1� 2sin2	WÞ �‘k��‘k: (2)

The amplitudes for charge-preserving decays to charged

leptons ~‘�i ! ~‘�j ‘�k ‘
þ
m are

M~�0
a
¼ �i �uðpkÞð�1�

aikPR þ �2�
aikPLÞ

ðp6 k � p6 iÞ þm~�0
a

ðpk � piÞ2 �m2
~�0
a

� ð�1
ajmPL þ �2

ajmPRÞvðpmÞ; (3)

M Z ¼ ig� ð2Þji

2 cos	W

1

ðpi � pjÞ2 �m2
Z

�uðpkÞðp6 i þ p6 jÞ

� ð2sin2	W � PLÞvðpmÞ
km; (4)

M h0 ¼
�i�ð2Þ

ji y
ð‘Þ
k sin	Hffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
h0

�uðpkÞvðpmÞ
km; (5)

M H0 ¼ i�ð3Þ
ji y

ð‘Þ
k cos	Hffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
H0

�uðpkÞvðpmÞ
km; (6)

M A0 ¼ �i�ð4Þ
ji y

ð‘Þ
k sin�ffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
A0

�uðpkÞ�5vðpmÞ
km; (7)

M G0 ¼ i�ð5Þ
ji y

ð‘Þ
k cos�ffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
Z

�uðpkÞ�5vðpmÞ
km; (8)

where the indices i, j, k, andm correspond to the subscripts
specifying the mass eigenstates of initial and final state

particles in the decay mode ~‘�i ! ~‘�j ‘�k ‘
þ
m , and 
km is the

Kronecker delta function. Here and throughout the rest of
this section we suppress these indices on matrix elements
and decay widths.

The overall decay width is given by

�ð~‘�i ! ~‘�j ‘�k ‘
þ
mÞ ¼ 1

64�3mi

Z
PS3

X
spins

jMj2 (9)

¼ 1

64�3mi

Z
PS3

X
spins

� X4
a;b¼1

M~�0
a
M�

~�0
b

þMZM�
Z

þX
a;b

MHa
M�

Hb
þ 2Re

�X4
b¼1

MZM�
~�0
b

þX
a

X4
b¼1

MHa
M�

~�0
b

þX
b

MZM�
Hb

��
(10)

¼ �~�0 ~�0 þ 
kmð�ZZ þ �HH þ 2�Z~�0 þ 2�H ~�0 þ 2�ZHÞ;
(11)

where
R
PS3

is the integral over three-body phase space

discussed in Appendix B which includes a sum over fer-
mion spins, and we use an intuitively obvious notation for
widths, so that, for example, �~�0 ~�0 is the partial width fromP

a;bM~�0
a
M�

~�0
b

.

To develop a qualitative understanding of which matrix
elements are typically dominant and subdominant, we first
note that there is a suppression to the Higgs and Z modes
from left-right slepton mixing. In fact, the explicit Higgs
and Z couplings to sleptons depend on the left-right slepton
mixing squared,

�ðaÞ
ij ; �

ð2Þ
ij �m2

LR

m2
~‘

: (12)

In particular, for � not significantly larger than the slepton
mass, this is roughly the same order as Yukawa suppres-
sion. We thus expect that, at the matrix element level, the
Higgs or Z radiated modes are generically suppressed by
two powers of left-right mixing relative to the neutralino
and chargino modes.
Second, to simplify phase space factors, we assume a

typical amount of mass squared splitting �m2
~‘
=m2

~‘
& 5%;

we also neglect lepton masses when they are subdominant.
Under these assumptions, the difference in propagator
structure between the neutralino mode and that of the
Higgs and Z modes becomes apparent. The neutralino
propagator is inversely proportional to ðpk � piÞ2 �
m2

~�0
a
� m2

~‘i
�m2

~�0
a
, while the Higgs (Z) propagator is in-

versely proportional to ðpi � pjÞ2 �m2
Ha;Z

� m2
~‘i
�

m2
~‘j
�m2

Ha;Z
, which simply reduces to �m2

Ha;Z
if the slep-

ton masses are not too far abovemZ. Thus, in models where
the lightest neutralino and light slepton masses are close,
the lightest neutralino pole contribution will be enhanced
over the Higgs and Z mass-suppressed contributions.
Conversely, as the slepton and neutralino mass scale grows,
the Higgs and Z contributions will drop off more slowly
than the neutralino contribution.
The three-body decays with two neutrinos or two quarks

have much the same form as above, with minor changes
(refer to the appendixes for details). These changes are as
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follows: For the neutrino mode,�1
aik ! �aik and�

2
aik ! 0,

and the lepton masses are set to zero, hence simplifying the
phase space calculation and removing the off-shell Higgs
contribution. For the quark modes, there is no off-shell
fermion intermediary, and the Higgs and Z modes are only
modified with adjusted couplings and quark masses. The
quark modes are, however, enhanced by the color factor
and a sum over light flavors. Because of these changes,
however, all of these modes are suppressed relative to the
dilepton mode by left-right mixing. The quark modes only
have contributions from the Higgs and Z diagrams, and
thus are suppressed by left-right mixing as noted above. In

the majority of models with a light slepton NLSP, the ~‘R
gauge eigenstates are generically lighter than the ~‘L gauge
eigenstates; for such a model the neutrino modes are sup-

pressed since the neutrino only couples to ~‘L gauge eigen-

states while the light sleptons are primarily ~‘R states.
Indeed, in such a model

�aik �
�
m2

LR

m2
~‘

�
1=2

; (13)

so the neutrino and quark decay widths are all suppressed
by ðm2

LR=m
2
~‘
Þ2 relative to the dilepton modes.

Finally, for the charge-flipping dilepton decay, the ma-
trix element is given by

M ð1Þ
~�0
a
¼ �i �uðpkÞð�1�

aikPR þ �2�
aikPLÞ

ðp6 k � p6 iÞ þm~�0
a

ðpi � pkÞ2 �m2
~�0
a

�ð�2�
ajmPL þ �1�

ajmPRÞvðpmÞ;
(14)

M ð2Þ
~�0
a
¼ �i �uðpkÞð�1�

aimPR þ �2�
aimPLÞ

ðp6 k � p6 iÞ þm~�0
a

ðpi � pkÞ2 �m2
~�0
a

�ð�2�
ajkPL þ �1�

ajkPRÞvðpmÞ;
(15)

M ~�0
a
¼ Mð1Þ

~�0
a
�Mð2Þ

~�0
a
; (16)

where the negative sign comes from Fermi statistics. The
decay width is then

�ð~‘�i ! ~‘þj ‘�k ‘
�
mÞ ¼ Ckmð�11 þ �22 � 2�21Þ; (17)

with

�ij ¼ 1

64�3mi

Z
PS3

X
spins

X4
a;b¼1

Re½MðiÞ
a MðjÞ�

b �; (18)

and Ckm is a phase space factor which has a value of 1 for
two outgoing leptons of different flavor and 1=2 for two
outgoing leptons of the same flavor due to indistinguish-
able particle statistics. �11 and �22 both have the same
basic form as the result from [24], where the only change is
the insertion of flavor-mixing coefficients and, for �22,

interchange of ‘k and ‘m between the two terms; the new
�21 is presented in Appendix D 4. We find that this charge-
flipping decay width is of the same order of magnitude as
the charge-preserving dilepton mode, though the flavor
structure is markedly different: this is discussed in the
next section.

IV. TWO-SLEPTON MIXING: ILLUSTRATIVE
EXAMPLES

To validate our results and investigate their phenomeno-
logical implications, we examine some simple cases of
two-slepton mixing. In these examples we consider spectra
with fairly degenerate sleptons and the lightest neutralino.
The slepton-neutralino degeneracy is motivated by simple
gauge-mediated supersymmetry breaking scenarios with
not too many messengers. Larger splittings are, of course,
possible if there are many messengers or in other frame-
works, such as minimal supergravity. The sleptons are
taken fairly degenerate so that large mixing angles are
consistent with low-energy constraints and so may be
considered. We note, however, that these examples are
merely illustrative, and our results are valid in any chosen
framework with arbitrary mass splittings.
First, we consider ~eR � ~�R mixing parametrized by

~‘1
~‘2

 !
¼ cos	12 sin	12

� sin	12 cos	12

� �
~e
~�

� �
: (19)

Figure 4 shows the flavor-violating decay widths ~‘�2 !
~‘�1 ‘�‘� with electron and/or muon leptons as a function of
the mixing angle 	12. Here both leptons are taken to be
explicitly massless and left-right slepton mixing is set to

zero, thereby cutting off the Higgs and Z modes. ~‘1 and ~‘2
are assigned masses of 100 GeVand 105 GeV, respectively,
and the lightest neutralino is given a mass of 110 GeV
(heavier neutralino contributions are small in this case).
The left plot in Fig. 4, which shows the decay widths for

the charge-preserving channel, demonstrates the typical
structure of two-slepton mixing: all decay widths are at
most � periodic, the sleptons interchange roles (�� ! e�
and eþ ! �þ) at 	12 ¼ �=2, the e�eþ and ���þ modes
are equal at all mixing angles, and at 	12 ¼ �=4 all decay
widths are equal. In contrast, the right plot in Fig. 4, which
shows the charge-flipping channel, demonstrates a differ-
ent flavor structure. Since the e��� and ��e� modes, in
general, contribute to the same decay width, all widths are
�=2 periodic. Also, the e�e� and ���� modes are again
equal at all mixing angles. In addition, note that the ��e�
mode drops to zero at 	12 ¼ �=4, because the charge-
flipping mode has two diagrams at tree level which cancel
at 	12 ¼ �=4 for the ��e� mode. Then, as expected, the
e�e� and ���� modes have decay widths that are half
the total width at 	12 ¼ �=4.
Next we consider ~eR � ~�R mixing, with massive leptons

and a mixing angle 	13 given by
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~‘1
~‘3

 !
¼ cos	13 sin	13

� sin	13 cos	13

� �
~e
~�

� �
: (20)

Figure 5 shows the widths for ~‘�3 ! ~‘�1 ‘�‘�, where the

leptons are electrons and/or taus. ~‘1 and ~‘3 have masses of
100 GeV and 105 GeV, and the lightest neutralino mass is
again 110 GeV. Left-right mixing is again neglected.

The first notable feature in Fig. 5 is the separation
between the e�e� and ���� modes: the e�e� mode is
almost unchanged numerically from the previous case,
while the ���� mode is suppressed by phase space con-
striction, as expected. Likewise, the ��e� and e���
modes are also suppressed relative to the massless case,
but certainly less suppressed than the ���� mode. Note
that the total decay width is no longer constant because of
the nonzero tau mass.

V. CONCLUSIONS AND IMPLEMENTATION IN
SPICE

We have determined the decay widths of three-body
slepton decays, including both ‘‘charge-preserving’’ pro-

cesses ~‘� ! ~‘�‘�‘þ and ‘‘charge-flipping’’ processes

~‘� ! ~‘þ‘�‘�, in the presence of arbitrary LFV and arbi-
trary left-right mixing. Such processes are particularly
relevant in scenarios with a gravitino LSP and a slepton
NLSP, where they are typically the dominant decay of
some of the non-NLSP sleptons and are present as the
last step in many supersymmetric cascade decays.
Arbitrary 6� 6 slepton mixing leads to many new dia-

grams and new decade modes, as well as new interference
effects. Our results are fully general, but we have illus-
trated them for two simple cases with two-generation LFV.
The branching ratios to new modes may be significant,
even accounting for low-energy constraints on LFV. The
new modes may substitute final state electrons and muons
for taus, potentially providing more obvious signals and
better prospects for precision mass measurements. In ad-
dition, the measurement of these branching ratios may help
pin down the supersymmetric flavor parameters and shed
light on the SM flavor problem. We note that our illustra-
tive examples have assumed fairly small slepton mass
splittings so that large mixing angles are consistent with
low-energy constraints. It is also possible, of course, that
the splittings are larger and the mixing angles are smaller.
The calculations presented here are valid in those cases as

FIG. 5 (color online). Dilepton decay widths as a function of the mixing angle between a stau and a selectron with left-right mixing
neglected. The left plot shows the charge-preserving channel; the right plot shows the charge-flipping channel. Here the leptons are
both massive, m~‘1

¼ 100 GeV, m~‘3
¼ 105 GeV, and m~�0

1
¼ 110 GeV.

FIG. 4 (color online). Dilepton decay widths as a function of the mixing angle between a smuon and a selectron with left-right
mixing neglected. The left plot shows the charge-preserving channel; the right plot shows the charge-flipping channel. In both plots the
leptons are taken to be massless, m~‘1

¼ 100 GeV, m~‘2
¼ 105 GeV, and m~�0

1
¼ 110 GeV.
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well, and it would also be very interesting to determine
whether such small mixings may be established through
collider studies.

The full calculation presented here is lengthy, but has
been incorporated into SPICE: Simulation Package for
Including Flavor in Collider Events, a publicly available
code. SPICE takes as input a flavor-conserving model, such
as minimal gauge-mediated supersymmetry breaking, and
arbitrary lepton flavor-violating parameters, and generates
the full supersymmetric spectrum, complete with flavor-
violating branching ratios. The three-body decays dis-
cussed here are included in SPICE. Details on obtaining
and running SPICE are described in the SPICE user manual
[27].
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APPENDIX A: LAGRANGIAN

As given in Eq. (1), the relevant flavor-general interac-
tions for this study are given by the Lagrangian

Lint
~‘
¼ ½~‘�i ð �~�0

a�
ð1Þ
aikPL þ �ð2Þ

aikPRÞ‘k þ �aik
~‘�i �~�aPL�k

þ H:c:� þ i� ð2Þij ð~‘�i @�~‘j � ~‘j@�~‘
�
i ÞZ�

þ �ð2Þ
ij
~‘�i ~‘jh0 þ �ð3Þ

ij
~‘�i ~‘jH0 þ i�ð4Þ

ij
~‘�i ~‘jA0

þ i�ð5Þ
ij
~‘�i ~‘jG0: (A1)

The coefficients are

�ð1Þ
aik ¼

1ffiffiffi
2

p ðgO�
2;a þ g0O�

1;aÞUð~‘Þ�
k;i � yð‘Þk O�

3;aU
ð~‘Þ�
kþ3;i; (A2)

�ð2Þ
aik ¼ � ffiffiffi

2
p

O1;ag
0Uð~‘Þ�

kþ3;i � yð‘Þk O3;aU
ð~‘Þ�
k;i ; (A3)

�aik ¼
��g cos	LU

ð~‘Þ�
k;i þ yð‘Þk sin	LU

ð~‘Þ�
kþ3;i a ¼ 1

g sin	LU
ð~‘Þ�
k;i þ yð‘Þk cos	LU

ð~‘Þ�
kþ3;i a ¼ 2;

(A4)

� ð2Þij ¼ g

2 cos	W
½Uð~‘Þ�

c;i Uð~‘Þ
c;j � 2sin2	W
ij�; (A5)

�ð2Þ
ij ¼�

��
gmW

2
ð1� tan2	WÞ sinð	H þ�Þ�gm2

‘c
sin	H

mW cos�

�

�Uð~‘Þ�
c;i Uð~‘Þ

c;j þ
�
gmW tan

2	W sinð	H þ�Þ

�gm2
‘c
sin	H

mW cos�

�
Uð~‘Þ�

cþ3;iU
ð~‘Þ
cþ3;j�

gm‘c

2mW cos�

�ð�cos	H þA
~‘
c sin	HÞðUð~‘Þ�

c;i Uð~‘Þ
cþ3;jþUð~‘Þ�

cþ3;iU
ð~‘Þ
c;jÞ

�
;

(A6)

�ð3Þ
ij ¼

��
gmW

2
ð1� tan2	WÞcosð	H þ�Þ�gm2

‘c
cos	H

mW cos�

�

�Uð~‘Þ�
c;i Uð~‘Þ

c;j þ
�
gmW tan

2	W cosð	H þ�Þ

�gm2
‘c
cos	H

mW cos�

�
Uð~‘Þ�

cþ3;iU
ð~‘Þ
cþ3;jþ

gm‘c

2mW cos�

�ð�sin	H �A
~‘
c cos	HÞðUð~‘Þ�

c;i Uð~‘Þ
cþ3;jþUð~‘Þ�

cþ3;iU
ð~‘Þ
c;jÞ

�
;

(A7)

�ð4Þ
ij ¼ gm‘c

2mW

ð�þ A
~‘
c tan�ÞðUð~‘Þ�

c;i Uð~‘Þ
cþ3;j �Uð~‘Þ�

cþ3;iU
ð~‘Þ
c;jÞ;
(A8)

�ð5Þ
ij ¼ gm‘c

2mW

ð� tan�þ A
~‘
cÞðUð~‘Þ�

c;i Uð~‘Þ
cþ3;j �Uð~‘Þ�

cþ3;iU
ð~‘Þ
c;jÞ:
(A9)

Uð~‘Þ
c;a and Uð~�Þ

c;a are the slepton and sneutrino mixing matri-
ces, respectively. These relate the slepton and sneutrino
gauge eigenstates,

~‘ � ¼ ð~eL; ~�L; ~�L; ~eR; ~�R; ~�RÞT; (A10)

~� ¼ ð~�e; ~��; ~��ÞT; (A11)

to the mass eigenstates ~‘i, ~�i through the relations ~‘i ¼
Uð~‘Þy

i�
~‘� and ~�i ¼ Uð~�Þy

i� ~��. The mass eigenstates are de-
fined in order of increasing mass. The neutralino gauge

eigenstates ~c 0 ¼ ð�i ~B;�i ~W; ~c 0
d;

~c 0
uÞT are related to the

mass eigenstates �0
i by �

0
i ¼ Oy

i�
~c 0
�. Similarly, the mixing

of the negative charginos is

��
1

��
2

� �
¼ cos	L sin	L

� sin	L cos	L

� � �i ~W�
~c�
d

� �
: (A12)

Finally, the neutral Higgs doublet is given by�
H0

u

H0
d

�
¼ 1ffiffiffi

2
p

�
vu

vd

�
þ 1ffiffiffi

2
p R	H

�
h0

H0

�
þ iffiffiffi

2
p R�

�
G0

A0

�
;

(A13)
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where

R	H ¼ cos	H sin	H
� sin	H cos	H

� �
and

R� ¼ sin� cos�
� cos� sin�

� �
:

(A14)

These coefficients are consistent with those of Ref. [27],
where a more complete discussion may be found.

APPENDIX B: PHASE SPACE INTEGRATION

In the three-body decays ~‘i ! ~‘jfkfm, we label the

initial and final state particle masses mi, mj, mk, and mm.

We will maintain these indices throughout the appendix,
with i corresponding to the parent slepton, j to the daughter
slepton, k to the daughter fermion with the same sign as the
parent slepton, and m to the other daughter fermion. The
decay widths are the squared matrix elements integrated
over three-body phase space:

� ¼ 1

64�3mi

Z
PS3

jMj2

	 1

64�3mi

Z Eþ
k

E�
k

dEk

Z Eþ
m

E�
m

dEmjMj2

¼ mi

256�3

Z xþ

x�
dx
Z yþ

y�
dyjMj2; (B1)

where the dimensionless quantities

x ¼ 2Ek

mi

and y ¼ 2Em

mi

(B2)

have limits

xþ ¼ 1þ r2k � ðrj þ rmÞ2; (B3)

x� ¼ 2rk; (B4)

y� ¼ 1

2ð1� xþ r2kÞ
½ð2� xÞðR2 � xÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4r2k

q

1=2ð1� xþ r2k; r

2
m; r

2
j Þ�; (B5)

and we have defined

rj ¼
mj

mi

rk ¼ mk

mi

rm ¼ mm

mi

; (B6)

R2 ¼ 1� r2j þ r2k þ r2m; (B7)


ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2xz� 2yz: (B8)

Throughout this work, we implicitly assume that the matrix
element squared has been averaged and summed over
initial and final state spins, respectively.
The squared matrix element has the form

jMj2 ¼ X
a;b

MaM�
b; (B9)

where Ma and Mb are matrix elements corresponding to
Feynman diagrams with intermediate particles a and b. To
evaluate the decay widths, we choose to integrate over y
analytically. The decay widths are then written in terms of
dimensionless integrals over x, which are performed
numerically.
In integrating over y, it is convenient to note that all

terms MaM�
b have a numerator that is either constant or

linear in y and a denominator that is proportional to the
product of two propagators, each of which is either of the
form ð1� xþ r2k � r2a;bÞ�1 or ðxþ y� 1þ r2j � r2a;bÞ�1,

where ra;b ¼ ma;b=mi. We therefore define the following

dimensionless functions of x:

fðx; ra; rbÞ ¼
Z yþ

y�

ydy

ð1� xþ r2kÞð1� xþ r2k � r2aÞð1� xþ r2k � r2bÞ
¼ kðx; rbÞ

ð1� xþ r2k � r2aÞð1� xþ r2kÞ
; (B10)

fð1Þðx; ra; rbÞ ¼
Z yþ

y�

dy

ð1� yþ r2m � r2aÞð1� xþ r2k � r2bÞ
¼ � lðx; r2a � 1� r2mÞ

ð1� xþ r2k � r2bÞ
; (B11)

fð2Þðx; ra; rbÞ ¼
Z yþ

y�

ydy

ð1� yþ r2m � r2aÞð1� xþ r2k � r2bÞ
¼ ð1þ r2m � r2aÞfð1Þðx; ra; rbÞ � kðx; rbÞ; (B12)

gð1Þðx; ra; rbÞ ¼
Z yþ

y�

dy

ðxþ y� 1þ r2j � r2aÞð1� xþ r2k � r2bÞ
¼ lðx; x� 1þ r2j � r2aÞ

ð1� xþ r2k � r2bÞ
; (B13)

gð2Þðx; ra; rbÞ ¼
Z yþ

y�

ydy

ðxþ y� 1þ r2j � r2aÞð1� xþ r2k � r2bÞ
¼ kðx; rbÞ þ ð1� x� r2j þ r2aÞgð1Þðx; ra; rbÞ; (B14)
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hð1Þðx; ra; rbÞ ¼
Z yþ

y�

dy

ðxþ y� 1þ r2j � r2aÞðxþ y� 1þ r2j � r2bÞ
¼ lðx; x� 1þ r2j � r2aÞ � lðx; x� 1þ r2j � r2bÞ

ðr2a � r2bÞ
;

(B15)

hð2Þðx; ra; rbÞ ¼
Z yþ

y�

ydy

ðxþ y� 1þ r2j � r2aÞðxþ y� 1þ r2j � r2bÞ
¼ lðx; x� 1þ r2j � r2bÞ þ ð1� x� r2j þ r2aÞhð1Þðx; ra; rbÞ; (B16)

ið1Þðx; raÞ ¼
Z yþ

y�

dy

ðxþ y� 1þ r2j � r2aÞ2
¼ yþ � y�

ðyþ þ x� 1þ r2j � r2aÞðy� þ x� 1þ r2j � r2aÞ
; (B17)

ið2Þðx; raÞ ¼
Z yþ

y�

ydy

ðxþ y� 1þ r2j � r2aÞ2
¼ lðx; x� 1þ r2j � r2aÞ þ ð1� x� r2j þ r2aÞið1Þðx; raÞ; (B18)

where

kðx; rbÞ ¼ yþ � y�
1� xþ r2k � r2b

; (B19)

lðx; zÞ ¼ ln

��������yþ þ z

y� þ z

��������: (B20)

These functions will appear frequently in the decay
widths to be discussed below. The first function f contains
an extra factor in the denominator to conform to the
notation used in Ref. [24]. The other functions are simply
integrals over y with all relevant combinations of propa-
gators in the denominator and a numerator either constant
or linear in y.

APPENDIX C: �ð ~‘�i ! ~‘�j ‘�k ‘
þ
mÞ

1. Total width

For the charge-preserving case, the matrix elements for
all contributing modes are presented in Eqs. (3)–(8). The
total decay width is

�ð~‘�i ! ~‘�j ‘�k ‘
þ
mÞ ¼ 1

64�3mi

Z
PS3

jMj2 (C1)

¼ 1

64�3mi

Z
PS3

� X4
a;b¼1

M~�0
a
M�

~�0
b

þMZM�
Z

þX
a;b

MHa
M�

Hb
þ 2Re

�X4
b¼1

MZM�
~�0
b

þX
a

X4
b¼1

MHa
M�

~�0
b

þX
b

MZM�
Hb

��
(C2)

¼ �~�0 ~�0 þ 
kmð�ZZ þ �HH þ 2�Z~�0 þ 2�H ~�0 þ 2�ZHÞ;
(C3)

where 
km is the Kronecker delta function. For �~�0 ~�0 the

general case of independent k and m is taken; for the
remaining widths, k ¼ m is assumed to simplify the
expressions.

2. ~�0 ~�0 contribution

The neutralino width corresponds to the width given in
Ref. [24] with the addition of flavor-violating vertices. The
decay width is given by

�~�0 ~�0 ¼ m~‘i

512�3

X6
t¼1

X4
a;b¼1

CðtÞ
~�0
a ~�

0
b

IðtÞ
~�0
a ~�

0
b

; (C4)

where t labels the coefficients and integrals, and a and b
label the neutralinos. The dimensionless integrals are de-
fined by

Ið1Þ
~�0
a ~�

0
b

¼
Z xþ

x�
dxðx� 2r2kÞð1� xþ r2kÞðR2 � xÞfðx; ra; rbÞ;

(C5)

Ið2Þ
~�0
a ~�

0
b

¼ rarb
Z xþ

x�
dxðx� 2r2kÞðR2 � xÞfðx; ra; rbÞ; (C6)

Ið3Þ
~�0
a ~�

0
b

¼ 2rmrb
Z xþ

x�
dxðx� 2r2kÞð1� xþ r2kÞfðx; ra; rbÞ;

(C7)

Ið4Þ
~�0
a ~�

0
b

¼ 2rkrb
Z xþ

x�
dxð1� xþ r2kÞðR2 � xÞfðx; ra; rbÞ;

(C8)

Ið5Þ
~�0
a ~�

0
b

¼ 2rkrmrarb
Z xþ

x�
dxð1� xþ r2kÞfðx; ra; rbÞ; (C9)

Ið6Þ
~�0
a ~�

0
b

¼ 2rkrm
Z xþ

x�
dxð1� xþ r2kÞ2fðx; ra; rbÞ; (C10)

with coefficients
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Cð1Þ
~�0
a ~�

0
b

¼ �1�
aik�

1
ajm�

1
bik�

1�
bjm þ �2�

aik�
2
ajm�

2
bik�

2�
bjm; (C11)

Cð2Þ
~�0
a ~�

0
b

¼ �1�
aik�

2
ajm�

1
bik�

2�
bjm þ �2�

aik�
1
ajm�

2
bik�

1�
bjm; (C12)

Cð3Þ
~�0
a ~�

0
b

¼ 2Re½�1�
aik�

1
ajm�

1
bik�

2�
bjm þ �2�

aik�
2
ajm�

2
bik�

1�
bjm�;
(C13)

Cð4Þ
~�0
a ~�

0
b

¼ �2Re½�1�
aik�

1
ajm�

2
bik�

1�
bjm þ �2�

aik�
2
ajm�

1
bik�

2�
bjm�;
(C14)

Cð5Þ
~�0
a ~�

0
b

¼ �4Re½�1�
aik�

2
ajm�

2
bik�

1�
bjm�; (C15)

Cð6Þ
~�0
a ~�

0
b

¼ �4Re½�1�
aik�

1
ajm�

2
bik�

2�
bjm�: (C16)

3. ZZ contribution

The Z boson contribution to the decay width is

�ZZ ¼ mi

512�3

�������� g� ð2Þji

cos	W

��������
2X2
t¼1

CðtÞ
ZZI

ðtÞ
ZZ; (C17)

where the dimensionless integrals are

Ið1ÞZZ ¼
Z xþ

x�
dxð2x� 2� r2kÞið2Þðx; rZÞ þ ½2� ð2þ r2kÞx

� 2r2j þ 3r2k þ r2kr
2
j �ið1Þðx; rZÞ; (C18)

Ið2ÞZZ ¼ r2k

Z xþ

x�
dxið2Þðx; rZÞ þ ðx� 3� r2j Þið1Þðx; rZÞ;

(C19)

and the coefficients are

Cð1Þ
ZZ ¼ 8sin4	W � 4sin2	W þ 1; (C20)

Cð2Þ
ZZ ¼ 8sin4	W � 4sin2	W: (C21)

4. HH contribution

The purely Higgs-mediated contribution actually con-
sists of several pieces with similar phase space structure.
Furthermore, it simplifies into the sum of contributions
from the real and pseudoscalar Higgs bosons, since the
interference term between a real scalar and a pseudoscalar
vanishes.

The width is given by

�HH ¼ 1

256�3mi

ðCh0h0I
r
h0h0

þ CH0H0Ir
H0 þ 2Ch0H0Ir

h0H0

þ CA0A0Ip
A0A0 þ CG0G0Ip

G0G0 þ 2CA0G0Ip
A0G0Þ;

(C22)

where the dimensionless integrals are

IrHaHa
¼
Z xþ

x�
dxið2Þðx; rHa

Þ þ ðx� R2 � 2r2kÞið1Þðx; rHa
Þ;

(C23)

IrHaHb
¼
Z xþ

x�
dxhð2Þðx; rHa

; rHb
Þ

þ ðx� R2 � 2r2kÞhð1Þðx; rHa
; rHb

Þ; (C24)

IpHaHa
¼
Z xþ

x�
dxið2Þðx; rHa

Þ þ ðx� 1þ r2j Þið1Þðx; rHa
Þ;

(C25)

IpHaHb
¼
Z xþ

x�
dxhð2Þðx; rHa

; rHb
Þ þ ðx� 1

þ r2j Þhð1Þðx; rHa
; rHb

Þ; (C26)

where a � b, and the coefficients are

Ch0h0 ¼ j�ð2Þ
ji y

ð‘Þ
k sin	Hj2; (C27)

CH0H0 ¼ j�ð3Þ
ji y

ð‘Þ
k cos	Hj2; (C28)

Ch0H0 ¼ �Re½�ð2Þ
ji �

ð3Þ�
ji yð‘Þ2k sin	H cos	H�; (C29)

CA0A0 ¼ j�ð4Þ
ji y

ð‘Þ
k sin�j2; (C30)

CG0G0 ¼ j�ð5Þ
ji y

ð‘Þ
k cos�j2; (C31)

CA0G0 ¼ �Re½�ð4Þ
ji �

ð5Þ�
ji yð‘Þ2k sin� cos��: (C32)

5. Z ~�0 contribution

The width from the Z~�0 interference term is

�Z~�0
b
¼ � mi

512�3

g� ð2Þji

cos	W

X4
b¼1

X2
t¼1

CðtÞ
Z~�0

b

IðtÞ
Z~�0

b

; (C33)

where the integrals are

Ið1Þ
Z~�0

b

¼
Z xþ

x�
dx½2ð1� xþ r2kÞgð2Þðx; rZ; rbÞ

þ ð2x� 2R2 þ r2k � r2jr
2
kÞgð1Þðx; rZ; rbÞ�; (C34)

Ið2Þ
Z~�0

b

¼ rkrb
Z xþ

x�
dx½gð2Þðx; rZ; rbÞ

� ð1þ x� r2j Þgð1Þðx; rZ; rbÞ�; (C35)
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Ið3Þ
Z~�0

b

¼ rkrb
Z xþ

x�
dx½gð2Þðx; rZ; rbÞ

þ ð1� x� r2j Þgð1Þðx; rZ; rbÞ�; (C36)

Ið4Þ
Z~�0

b

¼ r2k

Z xþ

x�
dx½ð3� 2xþ r2j Þgð1Þðx; rZ; rbÞ�; (C37)

and the coefficients are

Cð1Þ
Z~�0

b

¼ Re½ð2sin2	W � 1Þ�1
bik�

1�
bjm þ 2sin2	W�

2
bik�

2�
bjm�;
(C38)

Cð2Þ
Z~�0

b

¼ Re½ð2sin2	W � 1Þ�1
bik�

2�
bjm þ 2sin2	W�

2
bik�

1�
bjm�;
(C39)

Cð3Þ
Z~�0

b

¼ Re½2sin2	W�1
bik�

2�
bjm þ ð2sin2	W � 1Þ�2

bik�
1�
bjm�;
(C40)

Cð4Þ
Z~�0

b

¼ Re½2sin2	W�1
bik�

1�
bjm þ ð2sin2	W � 1Þ�2

bik�
2�
bjm�:
(C41)

6. H ~�0 contribution

The width from the H ~�0 interference is

�H ~�0 ¼ 1

256
ffiffiffi
2

p
�3

X4
b¼1

X2
t¼1

ðCðtÞ
h0 ~�0

b

IHðtÞ
h0 ~�0

b

þ CðtÞ
H0 ~�0

b

IHðtÞ
H0 ~�0

b

þ CðtÞ
A0 ~�0

b

IPðtÞ
A0 ~�0

b

þ CðtÞ
G0 ~�0

b

IPðtÞ
G0 ~�0

b

Þ; (C42)

where the dimensionless integrals are

IHð1Þ
Ha ~�

0
b

¼ rb
Z xþ

x�
dx½gð2Þðx; rHa

; rbÞ

þ ðx� R2 � 2r2kÞgð1Þðx; rHa
; rbÞ�; (C43)

IHð2Þ
Ha ~�

0
b

¼ rk
Z xþ

x�
dxð2x� R2 � 2r2kÞgð1Þðx; rHa

; rbÞ; (C44)

IPð1Þ
Ha ~�

0
b

¼ rb
Z xþ

x�
dx½gð2Þðx; rHa

; rbÞ

þ ðx� 1þ r2j Þgð1Þðx; rHa
; rbÞ�; (C45)

IPð2Þ
Ha ~�

0
b

¼ rk
Z xþ

x�
dxð1� r2j Þgð1Þðx; rHa

; rbÞ; (C46)

and the coefficients are

Cð1Þ
h0 ~�0

b

¼ Re½�ð2Þ
ji y

ð‘Þ
k sin	Hð�1

bik�
2�
bjm þ �2

bik�
1�
bjmÞ�;

(C47)

Cð2Þ
h0 ~�0

b

¼ Re½�ð2Þ
ji y

ð‘Þ
k sin	Hð�1

bik�
1�
bjm þ �2

bik�
2�
bjmÞ�;

(C48)

Cð1Þ
H0 ~�0

b

¼ �Re½�ð3Þ
ji y

ð‘Þ
k cos	Hð�1

bik�
2�
bjm þ �2

bik�
1�
bjmÞ�;
(C49)

Cð2Þ
H0 ~�0

b

¼ �Re½�ð3Þ
ji y

ð‘Þ
k cos	Hð�1

bik�
1�
bjm þ �2

bik�
2�
bjmÞ�;
(C50)

Cð1Þ
A0 ~�0

b

¼ Re½�ð4Þ
ji y

ð‘Þ
k sin�ð�1

bik�
2�
bjm � �2

bik�
1�
bjmÞ�; (C51)

Cð2Þ
A0 ~�0

b

¼ Re½�ð4Þ
ji y

ð‘Þ
k sin�ð�1

bik�
1�
bjm � �2

bik�
2�
bjmÞ�; (C52)

Cð1Þ
G0 ~�0

b

¼ �Re½�ð5Þ
ji y

ð‘Þ
k cos�ð�1

bik�
2�
bjm � �2

bik�
1�
bjmÞ�;

(C53)

Cð2Þ
G0 ~�0

b

¼ �Re½�ð5Þ
ji y

ð‘Þ
k cos�ð�1

bik�
1�
bjm � �2

bik�
2�
bjmÞ�:

(C54)

7. ZH contribution

The ZH interference decay width is

�ZH ¼ g� ð2Þji

256
ffiffiffi
2

p
�3 cos	W

ðCZh0I
r
Zh0

þ CZH0Ir
ZH0

þ CZA0Ip
ZA0 þ CZG0Ip

ZG0Þ; (C55)

where

IrZHa
¼ rk

Z xþ

x�
dx½hð2Þðx; rZ; rHa

Þ � xhð1Þðx; rZ; rHa
Þ�;
(C56)

IpZHa
¼ rk

Z xþ

x�
dxð1� r2j Þhð1Þðx; rZ; rHa

Þ; (C57)

and

CZh0 ¼ �Re½�ð2Þ
ji y

ð‘Þ
k sin	Hð4sin2	W � 1Þ�; (C58)

CZH0 ¼ Re½�ð3Þ
ji y

ð‘Þ
k cos	Hð4sin2	W � 1Þ�; (C59)

CZA0 ¼ �Re½�ð4Þ
ji y

ð‘Þ
k sin��; (C60)

CZG0 ¼ Re½�ð5Þ
ji y

ð‘Þ
k cos��: (C61)
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APPENDIX D: �ð ~‘�i ! ~‘þj ‘�k ‘
�
mÞ

1. Total width

For the charge-flipping decay, the calculation is compli-
cated by the fact that the same-sign daughter leptons create
an interference term. It is convenient to break the matrix
element into two parts, as shown in Eqs. (14)–(16). It is
correspondingly convenient to separate the decay width
into three terms:

�ð~‘�i ! ~‘þj ‘�k ‘
�
mÞ ¼ Ckmð�11 þ �22 � 2�21Þ; (D1)

where

�ij ¼ 1

64�3mi

Z
PS3

X4
a;b¼1

Re½MðiÞ
a MðjÞ�

b �; (D2)

and Ckm is 1 when the two outgoing leptons are of different
generations and 1=2 when they are of the same generation.

2. �11 width

From inspection of the matrix element,MðiÞ
a is identical

toM~�0
a
except for the coefficients in the ajm vertex. Then

�11 is identical to �~�0 ~�0 in the charge-preserving case with

the substitutions

�1
xjm ! �2�

xjm; �2
xjm ! �1�

xjm; (D3)

and with the identical substitutions for the complex con-
jugates, where x ¼ a, b.

3. �22 width

From further inspection of the matrix elements, Mð1Þ
a

andMð2Þ
a differ only in the interchange of the two outgoing

leptons. Thus �22 may be obtained from �11 with the
interchange k $ m.

4.�21 width

The �21 width from the interference term is given by

�21 ¼ 1

64�3mi

Z
PS3

X
a;b

Re½Mð2Þ
a Mð1Þ�

b �

¼ mi

256�3

X8
t¼1

X4
a;b¼1

Re½DðtÞ
~�0
a ~�

0
b

JðtÞ
~�0
a ~�

0
b

�; (D4)

where the integrals are

Jð1Þ
~�0
a ~�

0
b

¼
Z xþ

x�
dxf½2r2kr2m � xð1þ r2mÞ þ R2�fð1Þðx; ra; rbÞg

� ð1� xþ r2kÞfð2Þðx; ra; rbÞ; (D5)

Jð2Þ
~�0
a ~�

0
b

¼ rkrm
Z xþ

x�
dxð1þ r2j � r2k � r2mÞfð1Þðx; ra; rbÞ;

(D6)

Jð3Þ
~�0
a ~�

0
b

¼ rmrb
Z xþ

x�
dx½R2fð1Þðx; ra; rbÞ � fð2Þðx; ra; rbÞ�;

(D7)

Jð4Þ
~�0
a ~�

0
b

¼ rkrb
Z xþ

x�
dx½fð2Þðx; ra; rbÞ � 2r2mf

ð1Þðx; ra; rbÞ�;
(D8)

Jð5Þ
~�0
a ~�

0
b

¼ rmra
Z xþ

x�
dxðx� 2r2kÞfð1Þðx; ra; rbÞ; (D9)

Jð6Þ
~�0
a ~�

0
b

¼ rkra
Z xþ

x�
dxðR2 � xÞfð1Þðx; ra; rbÞ; (D10)

Jð7Þ
~�0
a ~�

0
b

¼ rarb
Z xþ

x�
dx½ðx� R2Þfð1Þðx; ra; rbÞ

þ fð2Þðx; ra; rbÞ�; (D11)

Jð8Þ
~�0
a ~�

0
b

¼ 2rkrmrarb
Z xþ

x�
dxfð1Þðx; ra; rbÞ; (D12)

and the coefficients are

Dð1Þ
~�0
a ~�

0
b

¼ �1�
aim�

2�
ajk�

2
bik�

1
bjm þ �2�

aim�
1�
ajk�

1
bik�

2
bjm; (D13)

Dð2Þ
~�0
a ~�

0
b

¼ �ð�1�
aim�

2�
ajk�

1
bik�

2
bjm þ �2�

aim�
1�
ajk�

2
bik�

1
bjmÞ;
(D14)

Dð3Þ
~�0
a ~�

0
b

¼ �1�
aim�

2�
ajk�

2
bik�

2
bjm þ �2�

aim�
1�
ajk�

1
bik�

1
bjm; (D15)

Dð4Þ
~�0
a ~�

0
b

¼ �ð�1�
aim�

2�
ajk�

1
bik�

1
bjm þ �2�

aim�
1�
ajk�

2
bik�

2
bjmÞ;
(D16)

Dð5Þ
~�0
a ~�

0
b

¼ �ð�1�
aim�

1�
ajk�

1
bik�

2
bjm þ �2�

aim�
2�
ajk�

2
bik�

1
bjmÞ;
(D17)

Dð6Þ
~�0
a ~�

0
b

¼ �1�
aim�

1�
ajk�

2
bik�

1
bjm þ �2�

aim�
2�
ajk�

1
bik�

2
bjm; (D18)

Dð7Þ
~�0
a ~�

0
b

¼ �ð�1�
aim�

1�
ajk�

1
bik�

1
bjm þ �2�

aim�
2�
ajk�

2
bik�

2
bjmÞ;
(D19)

Dð8Þ
~�0
a ~�

0
b

¼ �1�
aim�

1�
ajk�

2
bik�

2
bjm þ �2�

aim�
2�
ajk�

1
bik�

1
bjm: (D20)

APPENDIX E: �ð ~‘�i ! ~‘�j �k ��mÞ
1. Matrix elements

The decay to neutrinos is mediated by charginos ~��
a and

the Z boson, and so the matrix element is
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M ¼ X2
a¼1

M~��
a
þMZ; (E1)

where

M ~��
a
¼ �i �uðpkÞði��

aikPRÞ ðp6 k � p6 iÞ þma

ðpi � pkÞ2 �m2
a

�ði�ajmPLÞvðpmÞ

¼ ið��
aik�ajmÞ �uðpkÞ p6 k � p6 i

ðpi � pkÞ2 �m2
a

PLvðpmÞ;
(E2)

MZ ¼ ig� ð2Þji

2 cos	W

1

ðpi � pjÞ2 �m2
Z

� �uðpkÞðp6 i þ p6 jÞPLvðpmÞ: (E3)

2. Total width

The width is therefore

�ð~‘�i ! ~‘�j �k ��mÞ ¼ 1

64�3mi

Z
PS3

jMj2

¼ 1

64�3mi

Z
PS3

� X4
a;b¼1

M~��
a
M�

~��
b

þMZM�
Z þ 2

X4
b¼1

Re½MZM�
~��
b
�
�

¼ �~�� ~�� þ 
kmð�ZZ þ 2�Z~��Þ; (E4)

where the partial widths are defined below.

3. ~�� ~�� contribution

The chargino-mediated width is

�~�� ~�� ¼ mi

512�3

X2
a;b¼1

��
aik�ajm�bik�

�
bjm

�
Z 1�r2j

0
dx

x2ð1� x� r2j Þ2
ð1� xÞð1� x� r2aÞð1� x� r2bÞ

¼ mi

512�3

X2
a;b¼1

��
aik�ajm�bik�

�
bjm

�
Z xþ

x�
dxxð1� xÞð1� x� r2j Þfðx; ra; rbÞ

¼ mi

512�3

X2
a;b¼1

��
aik�ajm�bik�

�
bjmI~��

a ~��
b
: (E5)

Here the integral I~��
a ~��

b
is the same as Ið1Þ

~�0
a ~�

0
b

for the charge-

preserving case, except the neutralino mass is replaced by
the chargino mass and lepton masses mk and mm are set to
zero.

4. ZZ contribution

The Z-mediated width is

�ZZ ¼ mi

256�3

Z xþ

x�
dx
Z yþ

y�
dyMZM�

Z

¼ mi

512�3

�������� g� ð2Þji

cos	W

��������
2Z xþ

x�
dx½2ðx� 1Þið2Þðx; rZÞ

þ 2ð1� x� r2j Þið1Þðx; rZÞ�

¼ mi

512�3

�������� g� ð2Þji

cos	W

��������
2

Ið1ÞZZ: (E6)

Here again the integral is the same as the ZZ integral for
the charge-preserving case except the lepton masses mk

and mm are set to zero.

5. Z ~�� contribution

The Z-chargino interference term is

�Z~��
b
¼ mi

256�3

Z xþ

x�
dx

Z yþ

y�
dyMZM�

~��
b

¼ � mi

512�3

g� ð2Þji

cos	W
Re½�bik�

�
bjm�

Z xþ

x�
dx½2ð1� xÞ

� gð2Þðx; rZ; rbÞ þ 2ðx� 1þ r2j Þgð1Þðx; rZ; rbÞ�

¼ � mi

512�3
Re

� g� ð2Þji

cos	W
�bik�

�
bjm

�
IZ~��

b
: (E7)

Here the integral IZ~��
b
is the same as Ið1Þ

Z~�0
b

for the charge-

preserving case, except the neutralino mass is replaced by
the chargino mass and lepton masses mk and mm are set to
zero.

APPENDIX F: �ð ~‘�i ! ~‘�j qk �qmÞ
1. Matrix elements

The decay modes with daughter quarks are much the
same as those for daughter leptons except the neutralino
intermediary contribution is removed and the different
couplings are substituted. The matrix elements for the
up-type quarks are

MZ ¼ 3ig� ð2Þji

2 cos	W

1

ðpi � pjÞ2 �m2
Z

�uðpkÞðp6 i þ p6 jÞ

�
�
PL � 4

3
sin2	W

�
vðpmÞ
km; (F1)

M h0 ¼
�3i�ð2Þ

ji y
ðuÞ
k cos	Hffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
h0

�uðpkÞvðpmÞ
km; (F2)
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M H0 ¼ �3i�ð3Þ
ji y

ðuÞ
k sin	Hffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
H0

�uðpkÞvðpmÞ
km; (F3)

M A0 ¼ �3i�ð4Þ
ji y

ðuÞ
k cos�ffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
A0

�uðpkÞ�5vðpmÞ
km; (F4)

M G0 ¼ �3i�ð5Þ
ji y

ðuÞ
k sin�ffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
Z

�uðpkÞ�5vðpmÞ
km; (F5)

where the factor of 3 is the color factor, and those for the
down-type quarks are

M Z ¼ 3ig� ð2Þji

2 cos	W

1

ðpi � pjÞ2 �m2
Z

�uðpkÞðp6 i þ p6 jÞ

�
�
2

3
sin2	W � PL

�
vðpmÞ
km; (F6)

M h0 ¼
3i�ð2Þ

ji y
ðdÞ
k sin	Hffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
h0

�uðpkÞvðpmÞ
km; (F7)

M H0 ¼ �3i�ð3Þ
ji y

ðdÞ
k cos	Hffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
H0

�uðpkÞvðpmÞ
km; (F8)

M A0 ¼ 3i�ð4Þ
ji y

ðdÞ
k sin�ffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
A0

�uðpkÞ�5vðpmÞ
km; (F9)

M G0 ¼ �3i�ð5Þ
ji y

ðdÞ
k cos�ffiffiffi
2

p

� 1

ðpi � pjÞ2 �m2
Z

�uðpkÞ�5vðpmÞ
km: (F10)

The total decay width is then

�ð~‘�i ! ~‘�j qk �qkÞ ¼ �ZZ þ �HH þ 2�ZH: (F11)

2. Up-type quarks

The decay width to up-type quarks is

�ð~‘�i ! ~‘�j uk �ukÞ ¼ 9mi

512�3

�������� g� ð2Þji

cos	W

��������
2X2
t¼1

AðtÞ
ZZI

ðtÞ
ZZ

þ 9

256�3mi

ðAh0h0I
r
h0h0

þ AH0H0Ir
H0H0

þ 2Ah0H0Ir
h0H0 þ AA0A0Ip

A0A0

þ AG0G0Ip
G0G0 þ 2AA0G0Ip

A0G0Þ

þ 2

� 9g� ð2Þji

256
ffiffiffi
2

p
�3 cos	W

ðAZh0I
r
Zh0

þ AZH0Ir
ZH0 þ AZA0Ip

ZA0 þ AZG0Ip
ZG0Þ

�
;

(F12)

with integrals from Appendix C, with quark masses sub-
stituted. The coefficients are

Að1Þ
ZZ ¼ 32

9
sin4	W � 8

3
sin2	W þ 1; (F13)

Að2Þ
ZZ ¼ 32

9
sin4	W � 8

3
sin2	W; (F14)

Ah0h0 ¼ j�ð2Þ
ji y

ðuÞ
k cos	Hj2; (F15)

AH0H0 ¼ j�ð3Þ
ji y

ðuÞ
k sin	Hj2; (F16)

Ah0H0 ¼ Re½�ð2Þ
ji �

ð3Þ�
ji yðuÞ2k sin	H cos	H�; (F17)

AA0A0 ¼ j�ð4Þ
ji y

ðuÞ
k cos�j2; (F18)

AG0G0 ¼ j�ð5Þ
ji y

ðuÞ
k sin�j2; (F19)

AA0G0 ¼ Re½�ð4Þ
ji �

ð5Þ�
ji yðuÞ2k sin� cos��; (F20)

AZh0 ¼ �Re½�ð2Þ
ji y

ðuÞ
k cos	Hð83sin2	W � 1Þ�; (F21)

AZH0 ¼ �Re½�ð3Þ
ji y

ðuÞ
k sin	Hð83sin2	W � 1Þ�; (F22)

AZA0 ¼ �Re½�ð4Þ
ji y

ðuÞ
k cos��; (F23)

AZG0 ¼ �Re½�ð5Þ
ji y

ðuÞ
k sin��: (F24)
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3. Down-type quarks

The decay width to down-type quarks is

�ð~‘�i ! ~‘�j dk �dkÞ ¼ 9mi

512�3

�������� g� ð2Þji

cos	W

��������
2X2
t¼1

BðtÞ
ZZI

ðtÞ
ZZ

þ 9

256�3mi

ðBh0h0I
r
h0h0

þ BH0H0Ir
H0H0

þ 2Bh0H0Ir
h0H0 þ BA0A0Ip

A0A0

þ BG0G0Ip
G0G0 þ 2BA0G0Ip

A0G0Þ

þ 2

� 9g� ð2Þji

256
ffiffiffi
2

p
�3 cos	W

ðBZh0I
r
Zh0

þ BZH0Ir
ZH0 þ BZA0Ip

ZA0 þ BZG0Ip
ZG0Þ

�
;

(F25)

where, again, the integrals are equivalent to those defined
in Appendix C with quark masses substituted. The coef-
ficients are

Bð1Þ
ZZ ¼ 8

9sin
4	W � 4

3sin
2	W þ 1; (F26)

Bð2Þ
ZZ ¼ 8

9sin
4	W � 4

3sin
2	W; (F27)

Bh0h0 ¼ j�ð2Þ
ji y

ðdÞ
k sin	Hj2; (F28)

BH0H0 ¼ j�ð3Þ
ji y

ðdÞ
k cos	Hj2; (F29)

Bh0H0 ¼ �Re½�ð2Þ
ji �

ð3Þ�
ji yðdÞ2k sin	H cos	H�; (F30)

BA0A0 ¼ j�ð4Þ
ji y

ðdÞ
k sin�j2; (F31)

BG0G0 ¼ j�ð5Þ
ji y

ðdÞ
k cos�j2; (F32)

BA0G0 ¼ �Re½�ð4Þ
ji �

ð5Þ�
ji yðdÞ2k sin� cos��; (F33)

BZh0 ¼ �Re½�ð2Þ
ji y

ðdÞ
k sin	Hð43sin2	W � 1Þ�; (F34)

BZH0 ¼ Re½�ð3Þ
ji y

ðdÞ
k cos	Hð43sin2	W � 1Þ�; (F35)

BZA0 ¼ �Re½�ð4Þ
ji y

ðdÞ
k sin��; (F36)

BZG0 ¼ Re½�ð5Þ
ji y

ðdÞ
k cos��: (F37)

[1] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277
(1979).

[2] Y. Nir and N. Seiberg, Phys. Lett. B 309, 337 (1993).
[3] Y. Grossman and Y. Nir, Nucl. Phys. B448, 30 (1995).
[4] N. Arkani-Hamed, H. C. Cheng, J. L. Feng, and L. J. Hall,

Phys. Rev. Lett. 77, 1937 (1996).
[5] N. Arkani-Hamed, J. L. Feng, L. J. Hall, and H. C. Cheng,

Nucl. Phys. B505, 3 (1997).
[6] K. Agashe and M. Graesser, Phys. Rev. D 61, 075008

(2000).
[7] S. Bar-Shalom and A. Rajaraman, Phys. Rev. D 77,

095011 (2008).
[8] J. L. Feng, C. G. Lester, Y. Nir, and Y. Shadmi, Phys. Rev.

D 77, 076002 (2008).
[9] G. D. Kribs, E. Poppitz, and N. Weiner, Phys. Rev. D 78,

055010 (2008).
[10] Y. Nomura, M. Papucci, and D. Stolarski, Phys. Rev. D 77,

075006 (2008).
[11] Y. Nomura, M. Papucci, and D. Stolarski, J. High Energy

Phys. 07 (2008) 055.
[12] S. Bar-Shalom, A. Rajaraman, D. Whiteson, and F. Yu,

Phys. Rev. D 78, 033003 (2008).
[13] Y. Nomura and D. Stolarski, Phys. Rev. D 78, 095011

(2008).
[14] S. Kaneko, J. Sato, T. Shimomura, O. Vives, and M.

Yamanaka, Phys. Rev. D 78, 116013 (2008).

[15] G. Hiller, Y. Hochberg, and Y. Nir, J. High Energy Phys.
03 (2009) 115.

[16] J. Hisano, M.M. Nojiri, and W. Sreethawong,
arXiv:0812.4496.

[17] S. Dimopoulos, M. Dine, S. Raby, and S.D. Thomas,
Phys. Rev. Lett. 76, 3494 (1996).

[18] J. L. Feng and T. Moroi, Phys. Rev. D 58, 035001 (1998).
[19] J. L. Feng, A. Rajaraman, and F. Takayama, Phys. Rev.

Lett. 91, 011302 (2003).
[20] J. L. Feng, A. Rajaraman, and F. Takayama, Phys. Rev. D

68, 063504 (2003).
[21] J. R. Ellis, K.A. Olive, Y. Santoso, and V.C. Spanos, Phys.

Lett. B 588, 7 (2004).
[22] J. L. Feng, S. f. Su, and F. Takayama, Phys. Rev. D 70,

063514 (2004).
[23] J. L. Feng, S. Su, and F. Takayama, Phys. Rev. D 70,

075019 (2004).
[24] S. Ambrosanio, G.D. Kribs, and S. P. Martin, Nucl. Phys.

B516, 55 (1998).
[25] A. Djouadi and Y. Mambrini, Phys. Lett. B 493, 120

(2000).
[26] S. Kraml and D. T. Nhung, J. High Energy Phys. 02 (2008)

061.
[27] G. Engelhard, J. L. Feng, I. Galon, D. Sanford, and F. Yu,

arXiv:0904.1415.

THREE-BODY DECAYS OF SLEPTONS WITH GENERAL . . . PHYSICAL REVIEW D 79, 116009 (2009)

116009-15




