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Abstract

We present a new abstraction to replace the ¢ of n assumption used in designing fault-tolerant
algorithms. This abstraction models dependent process failures yet it is as simple to use as the ¢ of
n assumption. To illustrate this abstraction, we consider Consensus for synchronous systems with
both crash and arbitrary process failures. By considering failure correlations, we are able to reduce
latency and enable the solution of Consensus for system configurations in which it is not possible
when forced to use protocols designed under the ¢ of n assumption. We give lower bounds for the
number of rounds and replication requirements that are sufficient to solve Consensus. We show
that, in general, the lower bound for number of rounds in the worst case assuming crash failures
is different from the lower bound assuming arbitrary failures given the same system configuration.

This is in contrast with the traditional result under the ¢ of n assumption.

Keywords: Distributed Systems, Fault Tolerance, Correlated Failures, Consensus,

Time Complexity

1 Introduction

Most fault-tolerant protocols are designed assuming that out of » components, no more than ¢ can
be faulty. For example, solutions to the Consensus problem are usually developed assuming no more
than ¢ of the n processes are faulty where “being faulty” is specialized by a failure model. We call
this the t of n assumption. It is a convenient assumption to make. For example, bounds are easily

expressed as a function of ¢: if processes can fail only by crashing, then the Consensus problem is

*This work was developed in the context of RAMP, which is DARPA project number N66001-01-1-8933.



solvable when ¢ < m if the system is synchronous and when ¢ < 2n if the system is asynchronous
extended with a failure detector of the class OW. [1, 2]

The use of the ¢ of n assumption dates back to the earliest work on fault-tolerant computing. [3]
It was first applied to distributed coordination protocols in the SIFT project [4] which designed a fly-
by-wire system. The reliability of systems like this is a vital concern, and using the ¢ of n assumption
allows one to represent the probabilities of failure in a simple manner. For example, if each process
has a probability p of being faulty, and processes fail independently, then the probability P(t) of no
more than ¢ out of n processes being faulty is:

¢
P =3 (7)ra-p
i=0

If one has a target reliability R then one can choose the smallest value of ¢ that satisfies P(t) > R.

The ¢ of n assumption is best suited for components that have identical probabilities of failure
and that fail independently. For embedded systems built using rigorous software development this is
often a reasonable assumption, but for most modern distributed systems it is not. Process failures
can be correlated because, for example, the same buggy software was used. [5] Computers in the same
room are subject to correlated crash failures in the case of a power outage.

That failures can have different probabilities and can be dependent is not a novel observation.
The continued popularity of the ¢ of n assumption, however, implies that it is an observation that is
being overlooked by protocol designers. If one wishes to apply, for example, a Consensus protocol in

some real distributed system, one can use one of two approaches:

1. Use some off-line analysis technique, such as fault tree analysis [6] to identify how processes
fail in a correlated manner. For those that do not fail independently or fail with different
probabilities, re-engineer the system so that failures are independent and identically distributed

(1ID).

2. Use the same off-line analysis technique to compute what the maximum number of faulty pro-
cesses can be, given a target reliability. Use this value for ¢ and compute the value of n that,

under the ¢t of n assumption, is required to implement Consensus. Replicate to that degree.
Both of these approaches are used in practice. [6] This paper advocates a third approach:

3. Use the same off-line analysis to identify how processes fail in a correlated manner. Represent

this using our abstraction for dependent failures, and replicate in a way that satisfies our



replication requirement and that minimizes the number of replicas. Instantiate the appropriate

dependent failure protocol.

We believe that our approach and protocols are amenable to on-line adaptive replication techniques
as well.

In this paper we propose an abstraction that exposes dependent failure information for one to
take advantage of in the design of a protocol. Like the ¢ of n assumption, it is expressed in a way
that hides its underlying probabilistic nature in order to make it more generally applicable.

We then apply this abstraction to the Consensus problem under the synchronous system assump-
tion and for both crash and arbitrary failures. We derive a new lower bound for the number of rounds
to solve Consensus and show that it takes, in general, fewer rounds for crash failures in the worst case
than for arbitrary failures. This is in contrast to the ¢ of n assumption, where the number of rounds
required in the worst case is the same for both failure models. [1, 7] We show that these bounds are
tight by giving protocols that meet them. These protocols are fairly simple generalizations of well-
known protocols, which is convenient. Proving them correct gave us new insight into the structure
of the original protocols. We also show that expressing process failure correlations with our model
enables the solution of Consensus in some systems in which it is impossible when making the ¢ of n
assumption.

There has been some work in providing abstractions more expressive than the ¢ of n assumption.
The hybrid failure model (for example, [8]) generalizes the ¢ of n assumption by providing a separate
t for different classes of failures. Using a hybrid failure model allows one to design more efficient
protocols by having sufficient replication for masking each failure class. It is still based on failures in
each class being independent and identically distributed. In this paper, however, we do not consider
hybrid failure models.

Byzantine Quorum systems have been designed around the abstraction of a Fail-prone System [9].
This abstraction allows one to define quorums that take correlated failures into account. This ab-
straction has been used to express a sufficiency condition for replication. Our work can be seen as
generalizing this work, which applies only to Quorum Systems.

The remainder of this paper is divided as follows. Section 2 presents our assumptions for the system
model and introduces our abstraction that models dependent process failures. Section 3 defines the
distributed Consensus problem. In Section 4, we state a theorem that generalizes the lower bound on

the number of rounds in our model. Sections 5 and 6 describe tight weakest replication requirements



and algorithms for Consensus on the crash and arbitrary failure models, respectively. A discussion
on the implementation of our abstraction in real systems is provided in Section 7. Finally, we draw
conclusions and discuss future work in Section 8.

Due to lack of space, we give proof sketches for some lemmas and theorems and omit them entirely

for others. Detailed proofs can be found in [10, 11, 12].

2 System Model

A system is composed of a set IT of processes, numbered from 1 to n = |II|. The number assigned to
a process is its process id, and it is known by all the other processes. In the rest of the paper, every
time we refer to a process with id 4, we use the notation p;. Additionally, we define Pid as the set of
process id’s, i.e., Pid = {i : p; € II}. We use this set to define a sequence w of process id’s. Such a
sequence w is an element of Pid*.

A process communicates with others by exchanging messages. Messages are transmitted through
point-to-point reliable channels, and each process is connected to every other process through one
of these channels. Processes, on the other hand, are not assumed to be reliable. We consider both
crash and arbitrary process failures. In contrast to most previous works in fault-tolerant distributed
systems, process failures are allowed to be correlated.

Each process p € II executes a deterministic automaton as part of the distributed computa-
tion [2, 13]. A deterministic automaton is composed of a set of states, an initial state, and a transi-
tion function. The collection of the automata executed by the processes is defined as a distributed
algorithm. An execution of a distributed algorithm proceeds in steps of the processes. In a step,
a process may: 1) receive a message; 2) undergo a state transition; 3) send a message to a single
process. Steps are atomic, and steps of different processes are allowed to overlap in time. We assume
that there is an external device that provides the time a process takes a step. The time a process
takes a step can be used in proofs, but processors do not have access to this device. The range of
time is the non-negative integers.

As discussed later in this section, we assume that the computation can be split into synchronous

rounds. The algorithms we describe here proceed in rounds.



2.1 Replacing the t of n Assumption: Cores and Survivor Sets

In our model, process failures are allowed to be correlated, which means that the failure of a process
may indicate an increase in the failure probability of another process.

Assuming that failed processes do not recover, to achieve fault-tolerance in a system with a set of
processes 11, it is necessary to guarantee in every execution that a non-empty subset of Il survives.
A process is said to survive an execution if and only if it is correct throughout that execution. Thus,
we would like to distinguish subsets of processes such that the probability of all processes in such
a subset failing is negligible. Moreover, we want these subsets to be minimal in that removing any
process of such a subset ¢ makes the probability that the remaining processes in c fail not negligible.
We call these minimal subsets cores. Cores can be extracted from the information about process
failure correlations. In this paper, however, we assume that the set of cores is provided as part of the
system’s specification. We present in Section 7 a discussion on the problem of finding cores.

By assumption, at least one process in each core will be correct in an execution. Thus, a subset
of processes that has a non-empty intersection with every core contains processes that are correct in
some execution. If such a subset is minimal, then it is called a survivor set. Notice that in every run
of the system there is at least one survivor set that contains only correct processes. The definition of
survivor sets is equivalent to the definition of a fail-prone system B [9]: the set of all survivor sets is
the complement of B.

We now define cores and survivor sets more formally. Let R be a rational number expressing a
desired reliability, and r(z), x C II, be a function that evaluates to the reliability of the subset . We

define cores and survivor sets as follows:

Definition 2.1 Given a set of processes II and rational target degree of reliability R € [0, 1], the set
of processes c is a core of Il if and only if:

1. ¢ C1I;

2. r(c) > R;

3. Vpec, r(c—{p}) <R.
Given a set of processes II and a set of cores Cfy, s is a survivor set if and only if:

1. s C1I;

2. Ve e Cy, sNec#0;

3. Vp; € s, Jc € Oy such that p; € c and (s — {p;}) Nec = 0.



We define C'; and Stp to be the set of cores and survivor sets of II, respectively.

The function r(-) and the target degree of reliability R are used at this point only to formalize the
idea of a core. In reality, reliability does not necessarily need to be expressed as a probability. If this
information is known by other means, then cores can be directly determined. For example, consider

the following six process system:

Example 2.2 :
o 11 = {phy, phy, ply, ply, pl3, pls }
o Cu = {{phy, phy, pli },{ph1, pha, plo}, {phy1, pho, pl}, {ph1, pho, Pls}}
o Su = {{phi},{pho}, {pl1, ply, pl3, pls }}

In this system, ph; and ph, are highly reliable and both fail independently of every other p € II.
On the other hand, processes pl,, ply, pl;, pl, fail dependently among each other. That is, for every
pair of processes pl;, pl;, 1 < 4,5 < 4 and ¢ # j, we have that if pl; is faulty in some execution of
the system, then pl; is also faulty. Thus, a subset with maximum reliability contains processes phy,
phg, and at least one process pl;,. Suppose that the maximum reliability achievable for a subset of
processes satisfies the intuitive notion of target degree of reliability for this system. We can therefore
infer that for each 4, 1 <14 < 4, {ph, pho, pl;} is a core. From the set Cy of cores, it is straightforward
to identify the survivor sets in Spr.

In the following sections, we assume that these subsets are provided as part of the system’s
representation. A system is henceforth described by a triple (II, Cpy, Str), where II is a set of processes,
Ch1 is a set of cores of IT, and Sy is a set of survivor sets of II. From this point on, we call (IT, Cy, Sy)

a system representation.

2.2 Failure Models

We assume two different models for process failures: crash model and arbitrary model. In the crash
model, processes fail by crashing. A crashed process does not send or receive messages. We say that
a process is alive at time ¢ either if it is correct in the run or it has not crashed at any time ¢’ < ¢. In
the arbitrary model, a faulty process can take any action, including not receiving messages, sending
messages that are not legal under the protocol specification, and sending correct messages at incorrect

times. The arbitrary model is strictly weaker than the crash model.



Independently of the assumption for process failures, channels are assumed to be reliable. A

reliable channel is one that satisfies the following properties:

Validity: If p,q € II are correct processes and p sends a message m to g, then ¢ eventually delivers m;

Integrity: A process p € Il receives a message m from process g € II if and only if process g sent it

to p.

Our Consensus algorithm for crash failures relies on the Validity property to detect crashed pro-
cesses. This property enables a solution that requires fewer steps of processes in the case of a small
number of failures. For arbitrary process failures, the Integrity Property prevents faulty processes
from impersonating other ones. Consequently, a faulty process p; cannot send a valid message with

the id of another process p; to other processes.

2.3 Synchronous Model

A synchronous system imposes bounds on message delay, process speed, and clock drift. These
bounds, however, are not necessarily based on absolute time. As in the model of Dolev et al. [14],
steps of an algorithm are used to define these bounds. One can then organize an execution into rounds
of message exchange. In each round, a process: 1) sends messages at the beginning of the round; 2)
receives messages that other processes send at the beginning of the round; 3) changes its state.

The algorithms for synchronous systems described in Sections 5 and 6 are round-based. This
format facilitates understanding, since it abstracts several details of the system model. The algorithms
are also not described in an automaton format, since the description would be longer and would not
improve clarity. Instead, we use sequential code to present the algorithms. States and transitions,

however, are easily observed from the changes of the values stored by the variables of the algorithm.

2.4 Executions

We define an ezecution « of an algorithm A with the tuple (Fy, I, Fy,Ty). This definition is based
on the one by Chandra and Toueg [2] and Charon-Bost et al. [15]. F,(t) evaluates to the subset of
processes that have failed by time ¢. A direct implication of this definition is that Fy(t) C F, (¢t + 1).
Because an execution depends on the initial state of the processes, we have that I, provides the initial

configuration of the system. This initial configuration depends on the problem being solved. The



Consensus problem, for example, requires every process to have an initial proposed value. E, is an
infinite sequence of steps of the processes in II. The time ¢ at which a step e € E, is executed is
given by T,(e). For every correct process p; in «, we assume that F, contains an infinite number of
steps of p;.!

Although we do not use explicitly this definition of execution throughout the paper, we refer
several times to executions of algorithms. Therefore, this definition makes clear to the reader what

we mean by an execution.

3 Consensus

The Consensus problem in a fault-tolerant message-passing distributed system consists, informally,
in reaching agreement among a set of processes upon a value. Each process starts with a proposed
value and the goal is to have all non-faulty processes decide on the same value. The set of possible
decision values is denominated V' throughout this paper. For many applications, a binary set V is
sufficient, but we assume a set V' of arbitrary size, to keep the definition as general as possible.

In the crash failure model, Consensus is often specified in terms of the following three proper-

ties [16]:

Validity If some non-faulty process p € Il decides on value v, then v was proposed by some process

q € 1I;
Agreement If two non-faulty processes p, ¢ € II decide on values v, and v, respectively, then v, = vg;
Termination Every correct process eventually decides.

The Validity property as specified above assumes that no process will ever try to “cheat” on
its proposed value. This is true in the crash failure model, but unrealistic in the arbitrary failure
model. Although a faulty process might not be able to prevent agreement by cheating on its proposed
value, it may prevent progress of the system as whole. For example, assuming that the only possible
decision values are either write or abort, with the above Validity definition, a faulty process may
prevent correct processes from writing and consequently making progress. Thus, in a byzantine
model, Strong Validity is usually considered instead of Validity [17, 18]. Strong Validity is stated as

follows:

'Distributed Consensus requires that processes eventually decide. Because we are assuming that every correct process
takes an infinite number of steps, every correct process executes null steps once it halts.



Strong Validity If the proposed value of process p is v, for all p € II, then the only possible decision

value is v.

Strong Validity only considers the case in which all processes have the same initial value. In-
tuitively, this is sufficient to prevent a byzantine process from disrupting the normal behavior of a
system when all non-faulty processes are enabled to make progress. When the system is facing prob-
lems and not all of the processes propose the same value, however, this property allows the decision
value to be arbitrary in the set of possible decision values. That is, the decision value v € V' of correct
processes can be either the value proposed by a faulty process or even a value that was not proposed

by any process, assuming the set of decision values is not binary.

4 Lower Bound on the Number of Rounds

Counsider a synchronous system in which the ¢ of n assumption holds for process failures. In such
a system, ¢ is the maximum number of process failures among all possible executions and f is the
number of failures of a particular execution. It is well known that for every synchronous Consensus
algorithm A, there is some execution in which some correct process does not decide earlier than f 41
rounds, where f <t < n —2.[13, 19, 20] Furthermore, there is some execution in which some correct
process does not stop earlier than min(¢ + 1, f 4 2) rounds, for ¢t <n — 2. [21]

These lower bounds were originally proved for crash failures, but they have to hold for arbitrary
failures as well because the arbitrary model is strictly weaker than the crash model. In our model
for dependent failures, however, the lower bound on the number of rounds in general differs between
these two models.

Before generalizing the lower bound on the number of rounds for our model of dependent failures,
we define the term subsystem. Let A be some predicate that defines the process replication requirement
for a given failure model. For example, assuming ¢ of n arbitrary process failures, the replication
requirement is n > 3t. Examples of such predicates in our model for dependent failures are provided

in Sections 5 and 6. A subsystem of a system that satisfies A is then defined as follows:

Definition 4.1 Let A be a replication requirement and sys = (II, Cyy, Spp) be a system representation.
A system sys’ represented by (IT', Cf;, Sf;) is a subsystem of sys if and only if II' C TI, Cf; C Cy, and

sys’ satisfies A.



A subsystem sys’ represented by (II', C{}, S{;) is minimal if and only if there is no other subsystem
sys' represented by (II", C{i, Sjj) of sys such that [II"| < |II'| or |C[}| < |CY|-

The following theorem generalizes the lower bound on the number of rounds:

Theorem 4.2 Let sys = (II, Cr, Su) be the representation of a synchronous system, sys' = (II', Cf;, Spp)
be the representation of a minimal subsystem of sys, A be a Consensus algorithm, and k = |II'| —

min{|s| : s € S};}. There are two cases to be considered:

i. If |II| — k > 1, then there is an execution of A in which f < Kk processes are faulty and some

correct process takes at least f + 1 rounds to decide;

ii. If |II| — k = 1, then there is an execution of A in which f < k processes are faulty and some

correct process takes at least min(k, f + 1) rounds to decide.

To illustrate the utilization of this theorem, consider a system sys = (II, Cyy, Si1) under the ¢ of n
assumption crash failure model. If we assume that |II| = n > ¢+ 2, then |Cy| > 2 and every core has
size t + 1. A minimal subsystem represented by sys’ = (II', C[;, S;) has n' = [I'| =t + 1, |Cf;| = 1,
and |Sf;| = t+ 1 (each survivor set s € Sf; contains a single process). From Theorem 4.2(i), for every
Consensus algorithm A, there is an execution with f < k failures in which no process decides before
round f + 1. The value of £ is |[II'| — min{|s| : s € S;} = ¢+ 1 — 1 = t. This result matches the
one given by theorem 3.2 in [20]. If we instead assume that |[II] = ¢+ 1, then Cp contains a single
core and sys is already minimal. By Theorem 4.2(ii), we have that x = |II| — 1. For some execution
a of A with f < k failures, there is some correct process that does not decide earlier than round
min(|IT| — 1, f + 1).

We use Theorem 4.2 in Sections 5 and 6 to derive lower bounds on the number of rounds for the

crash and arbitrary models respectively.

5 Synchronous Consensus with Crash Failures

Consensus in a synchronous system with crash process failures is solvable for any number of fail-
ures. [20] In the case that all processes may fail in some execution before agreement is reached,
though, it is often necessary to recover the latest state prior to total failure for recovery purposes. [22]
Since we assume that failed processes do not recover, we don’t consider total failure in this work.

That is, we assume that the following condition holds for a system representation (IT, Cyy, Sy):

10



Property 5.1 Cy # 0

Property 5.1 implies that there is at least one correct process in any execution. A core is hence a
minimal subsystem in which Consensus is solved. Consider a synchronous system with crash failures
sys = (II, C1r, St), and a subsystem sys’ = (I', C[;, S|;) of sys such that II' = ¢pin, cmin € Crr and
(V' € Ch, |emin] < |c|). By definition, sys’ is minimal. From Theorem 4.2(ii), if |II| = |II'|, then there
is some execution with f < |II| — 1 process failures such that a correct process does not decide earlier
than round min(k, f + 1). On the other hand, if sys is not minimal, then there is some execution
with f < |IT'| — 1 process failures such that a correct process does not decide earlier than round f + 1
by Theorem 4.2(i).

We now describe a protocol for a synchronous system represented by (II, Cry, Str), assuming that
Property 5.1 holds for this system. The protocol is based on the early-deciding protocols discussed
by Charron-Bost and Schiper [20] and by Lamport and Fischer [19]. Algorithms that take the actual
number of failures into account are important because they reduce the latency on the common case
in which just a few process failures occur. An important observation made by Charron-Bost and
Schiper [20] is that there is a fundamental difference between early-deciding protocols and early-
stopping protocols for Consensus. In a early-deciding protocol, a process may be ready to decide, but
may not be ready to halt, whereas an early-stopping protocol is concerned about the round in which
a process is ready to halt. One consequence of this difference, which was already noted in Section 4,
is that the lower bounds for deciding and for stopping are not the same.

Our algorithm SyncCrash differentiates the processes of a chosen core ¢ € Cpy from the rest of
the processes in Il —c. In a round, every process in ¢ broadcast its knowledge of proposed values to all
the other processes, while processes in II — ¢ just listen to these messages. Processes in ¢ from which
a message is received at round r, but from which no message is received at round r + 1, are known to
have crashed before sending all the messages of round r+ 1. This observation is used to detect a round
in which no process crashes. Process p; € II keeps track of the processes in ¢ that have crashed in a
round, and as soon as p; detects a round with no crashes, p; can decide. An important observation
is that when such a round r with no crashes happens (by assumption it eventually happens), all
alive processes are guaranteed to have the same array of proposed values. Once each process p; in ¢
decides, it broadcasts a message announcing its decision value v;. All undecided processes receiving
this message decide on v; as well. Thus, only two types of messages are necessary in the protocol:

messages containing the array of proposed values and decision messages. Because processes in ¢

11



broadcast at most one message in every round to all the processes in |II|, the message complexity is
O(]c| = |II]). This is, in general, better than the protocols in [19, 20], designed with the ¢ of n failure
assumption, which have message complexity O(|II|?).

If ¢ = II, then in every execution of SyncCrash with f process crashes, every correct process
decides in at most min(|c| — 1, f + 1) rounds. Otherwise, every correct process decides in at most
f+1 rounds. Thus, the lower bound on the number of rounds discussed in Section 4 is tight for crash
failures.

The idea of using a subset of processes to reach agreement on behalf of the whole set of processes is
not new. The Consensus Service proposed by Guerraoui and Schiper utilizes this concept. [23] Their
failure model, however, assumes ¢ of n failures, and consequently the subset used to reach agreement
is not chosen based on information about correlated failures. This is the main point where our work
differs.

Before presenting a pseudo-code of the algorithm, we show a table describing the variables used
in the protocol. Table 1 describes the variables, and the pseudo-code of SyncCrash is presented in

Figure 1. A detailed proof of correctness for SyncCrash is provided in [12].

ce(Cn Core set chosen as the one responsible for the decision.

dec; e VU{L} A process p; decides once it sets dec;.

d € {true, false} Boolean variable indicating whether the process
decided in the previous round or not.

o[l c]], vl €V Array of proposed values.

eill---(Je| = 1)], ei[r] C ¢ | Array of failed processes. e;[r] stores the subset of
processes detected by p; as crashed at round 7.

Table 1: Variables used in the algorithm SyncCrash

The set of rounds assigned to processes in |II| — ¢ is only effective if this subset is not empty, and
sending a message to an empty set of processes is a no-op.

By characterizing correlated process failures with cores and survivor sets, we improve performance
both in terms of message and time complexity. For example, consider again the six process system
described in Example 2.2. By assuming ¢ of n failures, ¢ must be as large as the maximum number of
failures possible in any execution, which is five. Thus, it is necessary to have at least five rounds to
solve Consensus in the worst case. By executing SyncCrash with a minimum-sized core as C', only
three rounds are necessary in the worst case. In addition, no messages are broadcast by the processes

in II — ¢. This is different from most protocols designed under the ¢ of n assumption [19, 20, 21],

12



Algorithm SyncCrash for process p;:
Input: set II of processes; set Cr of cores; initial value v € V

Initialization: ¢ € Cfy; dec; +L; d < false
vl |e]], vilk] =L, VE € [1---|c|], k #i. If p; € ¢, v;[i] v
eill---(lef = 1)), eilk] = ¢, VE € [1---(|c| = 1)]

Round 1 <r < |¢|, Vp; € e
if (d = false) then
send(i,v;) to all process in ¢
send(i,v;) to all process in II — ¢
else
send(Decide,dec;) to all processes in ¢
send(Decide,dec;) to all processes in II — ¢
halt
upon reception of (m = (Decide,dec;)) do
dec; < dec;
d < true
upon reception of (m = (j,v;)) do
eilr] < eilr] — {j}
for k=1 to |II| do
if (v;[k] #1) then v;[k] « v;[k]
if (((es[r — 1] = €;[r]) A (d = false)) V (r = |c¢| — 1)) then
dec; < min(v;[k])
d < true

Round |c|, Vp; € ¢
send(Decide,dec;) to all processes in II — ¢
halt

Round 1 <r<|¢,Vp; el — ¢
upon reception of (m = (Decide,dec;)) do
dec; < dec;
halt
upon reception of (m = (j,v;)) do
eifr]  eilr] U {5}
for k=1 to |II| do
if (v;[k] #1) then v;[k] < v;[k]
if ((e;[r — 1] = e;[r])) then
dec; < min(v;[k])
halt

Figure 1: Synchronous Consensus for Dependent Crash Failures

although the same idea can be applied by having only a specific subset of ¢ + 1 processes broadcasting

messages.

6 Synchronous Consensus with Arbitrary Failures

Given a system representation (II, Cry, Str), consider the following properties:

Property 6.1 (Byzantine Partition) For every partition (A, B,C) of I1, at least one of A, B, and

13



C contain a core.
Property 6.2 (Byzantine Intersection) Vs;,s; € Sy, 3c; € C, ¢ C (55 N 55).

The following theorem states that these two properties are equivalent.

Theorem 6.3 Byzantine Partition = Byzantine Intersection.

Proof sketch:

e Byzantine Partition = Byzantine Intersection.

We prove the contrapositive. Assume that there are two survivor sets s;,s; € Sp such that (s; N s;)
does not contain a core. Consider the following partitioning: A = II —s;, B = (s; N s;), and
C = (s; — B). Subset A cannot contain a core because it has no element from s;. By assumption, B
does not contain a core. Because (' contains no elements from s;, we have that C does not contain a
core. Thus, none of A, B, or C' contain a core.

To prove the other direction, we make use of two observations. First, if the Byzantine Intersection
property holds, then every survivor set s contains at least one core. Otherwise the intersection
between s and some other survivor set s’ € Sy, s # s', cannot contain a core. Second, if a subset A of
processes contains at least one element from every survivor set, then A contains a core: by definition,
in every execution there is at least one survivor set that contains only correct processes. If A contains
at least one element from every survivor set, then in every execution there is at least one correct

process in A.
e Byzantine Intersection = Byzantine Partition.

We prove this relation by contradiction. Assume that Byzantine Intersection holds and there is a
partition (A, B, C) such that none of A, B, and C contain a core. If none of these subsets contains a
core, then none of them contains either a survivor set or one element from each survivor set s’ € Syy.
Thus, there has to be two distinct survivor sets s; and sy such that there are no elements of s in
C and no elements of sy in B. Suppose the contrary. If there are no such s; or ss, then one of two
possibilities has to take place, both in which at least one subset contains a core: 1) s; = so. In this
case, A contains s1; 2) (Vs € S, (sNB) #0) V (Vs € S, (sN C) #0).

Assuming therefore that there are such survivor sets s; and sg, we have that (s; N sg) C A.
By assumption, A does not contain a core, and consequently s; N sy does not contain a core. This
contradicts, however, our assumption that Byzantine Intersection holds.

d
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The utility for having two equivalent conditions becomes clear below. We use the Byzantine
Partition property to show that this replication requirement is necessary to solve Consensus in a
synchronous arbitrary failure system. The Byzantine Intersection property is assumed by our protocol
SyncByz.

Byzantine Intersection along with the definition of Sty is equivalent to the replication requirement
for blocking writes in Byzantine Quorum Systems identified by Martin et al. They show that this
requirement is sufficient for such a protocol. [24] Both our requirement and the one identified by
Martin et al. are weaker than the replication requirement for masking quorum systems. [9] A masking
quorum system requires that in every execution at least one quorum contains only correct processes
(that is, it contains a survivor set). In addition, for every quorum in a masking quorum system and
every pair of failure scenarios, there is at least one process that is not faulty in both scenarios. The
Byzantine Intersection property, on the other hand, only requires that the intersection of two survivor

sets contains at least one process that is correct in the execution.

6.1 Requirement on Process Replication

Byzantine Partition is necessary to solve Strong Consensus in a synchronous system with arbitrary
process failures. The informal proof we provide here is based upon the one by Lamport for the ¢ of
n assumption. [7, 25] We show that, for any algorithm A, if there is a partition of the processes into
three non-empty subsets such that none of them contain a core, then there is at least one run in which
agreement is violated. This is illustrated in figure 2, where we assume the converse and consider three
executions «, 3, and .

In execution «, the initial value of every process is the same, say v. All the processes in subset
B are faulty, and they all lie to the processes in subset C' about their initial values and the values
received from processes in A. By Strong Validity, running algorithm 4 in such an execution results in
all the processes in subset C' deciding v. Execution g is analogous to execution «, but instead of every
process beginning with a initial value v, they all have initial value v’ # v. Again, by Strong Validity,
all processes in B decide v’. In execution «, the processes in subset C' have initial value v, whereas
processes in subset B have initial value v'. The processes in subset A are all faulty and behave for
processes in C as they do in execution a. For processes in C, however, processes in B behave as
they do in execution . Because processes in C' cannot distinguish executions « from +, processes

in C must decide v. At the same time, processes in B cannot distinguish executions g from 7, and
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therefore they must decide v'. Consequently, there are correct processes which decide differently in

execution v, violating the Agreement property of Strong Consensus.

SO e oA

P—— @ P—— @ P—— @
Ava Ava Ava

Scenario o Scenario B Scenario y

Figure 2: Executions illustrating the violation of Consensus. The processes in shaded subsets are all

faulty in the given execution.

6.2 Number of Rounds

In every synchronous system with crash failures it suffices to have a single core to solve Consensus.
In general, this is not the case for synchronous systems with arbitrary process failures. The only
particular case in which Consensus can be solved with a single core is the case that the system has a
single reliable process p; that does not fail in any execution. For such a system, a minimal subsystem
under Byzantine Partition is represented by ({p;}, {{pi}}, {{pi}}). In every other case, a system has
to contain multiple cores. Although fault-tolerant systems may rely upon a single reliable process,
this is a special case.

Assuming a minimal subsystem (II', C{;, S};) under Byzantine Partition with multiple cores, every
survivor set for such a subsystem contains at least 2 processes. Otherwise, there is a core containing a
single process, and it reduces to the particular case described above. By Theorem 4.2(i), the minimum
number of rounds required in the worst case is x + 1, where « is defined as |II'| — min{|s| : s € S[;}.
In contrast, all survivor sets of a minimal subsystem have size 1, assuming crash failures.

To illustrate the difference on the total number of rounds in the worst case between the crash and

the arbitrary models, consider the following example:

Example 6.4 :
o 11 = {pa, v, Pe> Pd» Pe }
o Cn = {{Pas b, Pc}s {Pas i} {Pasr Pe}s APy P}y {Pos Pe} APes Pa}s {Pes Pe}s {Pas Pe}}
o St = {{Pa:Pb, Pe; Pa}: {PasPbs Pes Pe}s {Pas Pas Pe}s {Pbs Py Pe}s {Pes s Pe
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For the crash model, a minimal subsystem (I, C{;, S;) is such that |II|' = 2, |C];| = 1, and a
minimum-sized survivor set contains a single process. By Theorem 4.2(i), the lower bound on the
number of rounds is 2 in the worst case (k = 1 and |II| — x > 1). In the arbitrary model, (II, Cy, Si)
is already a minimal subsystem: if any process or core is removed, then the remaining subsystem
does not satisfy Byzantine Partition. By Theorem 4.2(i), the lower bound on the number of rounds
is 3 in the worst case (k = 2 and |II| — k > 1). Thus, for the same system configuration, fewer rounds

are required assuming crash failures.

6.3 An Algorithm to Solve Strong Consensus

We describe an algorithm that solves Strong Consensus in a system sys= (II, Cyy, Spy) that satisfies
Byzantine Intersection. This algorithm is based on the one described by Lamport to demonstrate
that it is sufficient to have 3t + 1 processes (¢ is the maximum tolerated number of faulty processes)
to have interactive consistency in a setting with arbitrarily faulty processes [7].

In our algorithm, all the processes execute the same sequential code. Every process creates a tree
in which each node is labeled with a string w of distinct process identifiers and in which is stored a
value. The value stored in a node labeled w corresponds to the value forwarded by the sequence of
processes named in w. At round r + 1, every correct process p; sends a message containing the labels
and values of the nodes stored at depth r of the tree to all the other processes. Every correct process
p; that receives such a message stores the values contained in it in the following manner: if there is
a node labeled wj, with w € Pid*, |wj| = r + 1, then store at this node the value in the message sent
by p; corresponding to w.

A simple example will help to clarify the use of the tree. Suppose that a correct process p; receives
at round three a message from process p; that contains the string [k and the value v associated to
this string. Process p; stores the value v at the node labeled lkj and forward at round four a message
containing the pair (lkj,v) to all the other processes.

The leaves in this tree are survivor sets. More specifically, if we use Node(w) to denote the node of
the tree labeled with the string w and Processes(w) the set of processes named in w, then Node is a leaf
if and only IT— Processes(w) does not contain a survivor set. Consequently, if Node(wi) is a leaf and
we denote with Child(w) the set of processes {p;|Node(wi) is a child of Node(w)}, then Child(w) is a

survivor set 2. For every non-leaf Node(w), we have that I — Processes(w) has to contain a survivor

?Observe that the tree structure is the same for all correct processes, and hence none of Processes(-), Node(-), or
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set. A consequence of this definition is that the depth of the tree is |II| — min{|s;| : s; € Su} + 1.

Figure 3 gives an example of a tree for the system representation in Example 6.4.

//\\

/\ /\\bd /\\ddd:kj %&\m
R N N4 N N

abd abe acb acd bac bad bae bca bed bce cae cha chd cbhe

Figure 3: An example of a tree built by each process in the first stage of the algorithm.

The first stage of the algorithm builds and initializes the tree. The second stage runs several
rounds of message exchange. In the first round, each process broadcasts its initial value, and in
subsequent rounds, each process broadcasts the values it learned in the previous round. As processes
receive the messages containing values learned in previous rounds, each node populates the nodes of
its tree with these values. Because the depth of the tree is (|II|] — min{|s;| : s; € Sp} + 1), this is
exactly the total number of rounds required for message exchanging. Finally, in the last round, each
process traverses the tree visiting the nodes in postorder to decide upon a value. When visiting a leaf,
the algorithm does not change the value this node stores. On the other hand, when an internal node
of process p; with label w is visited, we use a replacement strategy to determine its value. Suppose
there are there are two survivor sets s; and s such that (s1 N sy) C Child(w) and for every process
pj € (s1 N s2), we have that p;. Value(wj) = v, for some v € VU {L}. In this case, we replace the
value of Node(w) with v. Otherwise we replace with the default value (L). In the original protocol,
the replacement strategy is based on the majority. [13]

The pseudo-code of the algorithm is described in Figure 4. In the algorithm, we use Value(w) to
refer to the value associated to w both in the tree of a process and in a message some process sends.
To differentiate one case from the other, we use a prefix: z.Value(w) is the value v stored at node
labeled w of process p; if x = p;, whereas it is the value v in the pair (w,v) in a message m if x = m.
This is a slight abuse of notation, but it is convenient and the differentiation between the cases will
be clear from context.

Instead of providing a formal proof of correctness for SyncByz, we illustrate the decision process

for the system described in Example 6.4. For a proof of correctness, we point the interested reader

Child(-) need to be associated with any particular process.
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Algorithm SyncByz for process p;:
Input: a set of processes II; a set of cores Crr; a set of survivor sets Sp; an input value v; € V

Variables:

Let sy, be a smallest survivor set in S

Let r be the current round number

Let root be a reference to the root of process i’s tree

Let M be a set of messages

Let P, P’ be sets of pairs (w, v), where w € Pid*, and v € V

initialization:
root < CreateNode((), v;)
Build Tree(root)
P {(0,v:)}

rounds 1 <7 < (JII| — |spmin| + 1):
SendAll(i, P)
let M be the set of messages received by p; at round r
P+
for every message m = (j, P') € M do
for every node at depth r labeled wj, w € Pid*, |w| =r do
p;i- Value(wj) < m. Value(w)
if node labeled wj is not a leaf then P < P U {(wj, m. Value(w))}

round r = (|II| — |smin| + 1):
SendAll(i, P)
let M be the set of messages received by p; at round r
for every message m = (j, P') € M do
for every node at level r labeled wj, w € Pid*, |lw| = r, do
p;. Value(wyj) < m. Value(w)

Traverse Tree in postorder, executing the following steps when visiting a node labeled w:
if Child(w)# 0
then let I < Child(w)
if(ds1, 82 € S such that ((s1 N'sy) C1I) A (Vp; € (51N s2),p;. Value(wj) = v, v € V)))
then p;. Value(w) < v
else p;. Value(w) + L

Auxiliary function
Function BuildTree(w)
let T’ < Processes(w)
Vp; € II such that p; €I’
if (3s1 € S such that sy C (II - T))
then node < CreateNode(wj, L)
Child(w) < Child(w) U {node}
BuildTree(wj)

Figure 4: Synchronous Consensus for Dependent Arbitrary Failures

to [12].
After |II| — |smin] +1 = 5 — 3+ 1 = 3 rounds of message exchange, every correct process has

populated its tree with values received from other processes. The values stored at non-leaf nodes are
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not important, because they are replaced according to the strategy defined for the algorithm during
the traversal of the tree. We illustrate this procedure for the subtrees rooted at both Node(a) and
Node(b). This is shown in Figures 5 and 6. White nodes are the ones that have the same value across
all the correct processes, whereas shaded nodes are the ones that have possibly different values across
correct processes. A node is shaded if the last node in the string that labels the node is a faulty
process. Note that if two nodes w and w' are white, it does not mean that they contain necessarily
the same value. It only means that every correct process has value v at node w and v' at node w'.
Consider the particular scenario in which processes p, and p. are faulty and py, pg, and p, are
all correct. First, we discuss the subtree rooted at Node(a). At Time 1, only the nodes at the
last level have been visited. From the algorithm, when a leaf is visited, its value does not change.
Thus, the state of the tree at Time 1 is the same state as right before starting the traversal of the
tree. Time 2 corresponds to the state of the tree exactly after all the nodes at Level 2 are visited.
Because processes py, pg, and pe are correct, Node(abd) and Node(abe) contain the same value across
all correct processes. By the replacement strategy of the algorithm, the new value of node ab is the
value of nodes abd and abe, because {p4, pe} C {Pa,Pd,Pe} N {Py, Pd,Pe} and Node(abd) contains the
same value as node abe. Similarly, the new value of node ac is the one of acb, acd, and ace. The
values of Node(ad) and Node(ae) across correct processes have to be the same, because pg and p, are
correct. At Time 3, the value of Node(a) become the same for all correct processes. Since the value
of Node(ab), Node(ac), Node(ad), and Node(ae) are the same across all correct processes, the new

value of node a has to be the same.

a a a
ab ac k ab ac k ab ac k
ad ae ad @ae ad ae

abc abd abe acb acd ace abc abd abe acb acd ace abc abd abe acb acd ace

Timel Time2 Time3

Figure 5: An example of traversing the subtree rooted at Node(a). Time i corresponds to the state

of the tree exactly after all the nodes of Level 4 — ¢ are visited.

For the subtree rooted at Node(b), the value of Node(ba) may still not be the same across all correct
processes at Time 2. Both {pg,p.} and {p.,ps} are cores and are subsets of processes contained in

some intersection of two survivor sets. Thus, if the value of Node(bac) is the same of Node(bad) in a
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correct process p;, but different in another correct process p;, then p; and p; may replace the value of
Node(ba) with different values, depending on Node(bae). Note that one value must be the default L
and the other some v € V. Similarly for Node(bc) at Time 2. The values of Nodes(bd) and Nodes(be),
however, have to be the same across all correct processes. In Time 3, {pg,p.} is the only core in
Child(b) to contain the same value in their respective nodes at Level 1, unless ba and bc have the
same value as Node(bd) and Node(be). Furthermore, this core is in the intersection of {ps, pg, pe} and
{Pa,Pd,pe}. Consequently, the new value of Node(b) has to be the same for every correct process at

Time 3, by the value replacement strategy.

b b b
ba bc %k@ ba bc k@ ba bc k@
bd be bd be bd be

bac bad bae bca bcd bde bac bad bae bca bcd bde bac bad bae bca bcd bde

Timel Time2 Time3

Figure 6: An example of traversing the subtree rooted at Node(b). Time 7 corresponds to the state

of the tree exactly after all the nodes of Level 4 — ¢ are visited.

By doing the same analysis for the subtrees rooted at nodes ¢, d, and e, we observe that every
node at Level 1 of the tree rooted at () has the same value across all correct processes. Therefore,
the decision value, which is the value at node () after visiting it, has to be the same for every correct
process. One important observation is that the value at Node(i) across all correct processes is the
initial value of process p;, if p; is correct. In the case that every process has the same initial value v,
then the decision value has to be v.

To illustrate the benefits of using our abstractions, consider once more the five process system
of Example 6.4. If the ¢ of n failure assumption is used, then Strong Consensus is not solvable: the
smallest survivor set contains three processes and so the maximum number of failures in any execution
is two. With the ¢ of n assumption, the replication requirement is |II| > 3¢ + 1, and for ¢ = 2, it
is necessary to have at least seven processes. With our model, however, algorithm SyncByz solves

Strong Consensus.
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7 Practical Considerations

Two important issues concerning the use of cores and survivor sets are (1) how to extract information
about these subsets and (2) how to represent them.

To extract core information (such as finding a smallest core) using failure probabilities is an NP-
hard problem in the general case. [10] This result need not be discouraging, however. First, this
is a problem that is already addressed for many safety critical systems, and techniques have been
developed to extract such information [6]. Furthermore, for many real systems, there are simple
heuristics for finding cores that depend on how failure correlations are identified. Suppose a system
in which processes are tagged with colors. In this model, all processes have identical probabilities of
failing, but those with the same color have highly correlated probabilities of failing while processes
with different colors fail independently. A core in such a system is composed of processes with different
colors, and the size of a core depends on the probability of having colors failing. To find cores in such a
model, one has to interactively add processes with different colors to a subset and verify whether this
subset is a core. The verification procedure consists in multiplying the probability of failure for every
color that has a representative in the subset. This clearly can be accomplished in polynomial time.
For real systems, a color would represent some intrinsic characteristic. For example, all components
in a certain part of an airplane are damaged if there is a structural damage on that particular part.
Computers in the same room are subject to correlated crash failures in the case of a power outage.

One can go further in extracting cores based on characteristics of the system and propose the
utilization of several attributes, instead of one as in the color model. It turns out that in the general
case, this problem is also NP-hard. Some simplifying assumptions such as finding orthogonal cores
(cores in which processes do not share attributes) make the problem tractable. Finally, fault tree
analysis is an option in the design of reliable systems.

Representing cores or survivor sets is relevant for arbitrary failures. As discussed in Section 5,
to solve Consensus assuming crash failures, it suffices a single core. Space complexity is hence O(1)
in this case, and consequently is not a problem. For arbitrary failures, however, multiple survivor
sets are usually necessary. An important observation is that the number of processes in fault-tolerant
systems is usually not large. Thus, for a small number of processes, space complexity is still O(1),
even if there is an exponential number of survivor sets. In particular cases, it is possible to determine
algorithmically whether a subset of processes is a survivor set. Considering the color model once

more, a subset s of processes is a survivor set if Il — s does not contain a core. Whether II — s contains
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a core or not is verifiable in polynomial time, as discussed previously.

8 Conclusions and Future Directions

Cores and survivor sets are abstractions capable of using dependent process failure information in the
design of fault-tolerant algorithms in a simple manner. We showed this by describing two Consensus
algorithms. The main structures of these algorithms were proposed in the literature assuming ¢
process failures out of n process. With simple modifications, we obtained new algorithms that in
several cases perform better than the original ones. An important observation is that the algorithms
we presented improve performance only if there is failure correlation. If all process fail independently,
then the protocols behave as the original ones for the ¢ of n assumption. In either case, they never
have worse performance.

The trade-off, however, is in finding and representing cores or survivor sets. In the general case,
finding and representing them require exponential time and space. As we discussed in Section 7,
however, this need not hinder the use of cores and survivor sets. Their equivalent are already used
in the analysis of safety critical systems. Moreover, there are heuristics that make these problems
tractable when the number of cores is not sufficiently small. We believe that many real systems that
can benefit from our model either have a small number of cores or are amenable to the application
of simplifying heuristics.

So far, we have identified a few real scenarios that would benefit from the application of our
model. We believe, however, that our techniques are widely applicable. Aside from identifying other
real applications, we are interested in investigating the utilization of cores and survivor sets for other
problems of interest in fault-tolerant computing. We already have corresponding results for Consensus

in asynchronous systems.
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