
UC San Diego
Technical Reports

Title
Synchronous Consensus for Dependent Process Failures

Permalink
https://escholarship.org/uc/item/19h274ng

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2002-10-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19h274ng
https://escholarship.org
http://www.cdlib.org/

Syn
hronous Consensus for Dependent Pro
ess Failures

�

Flavio P. Junqueira

flavio�
s.u
sd.edu

Keith Marzullo

marzullo�
s.u
sd.edu

University of California, San Diego

Department of Computer S
ien
e and Engineering

9500 Gilman Drive

La Jolla, CA

Abstra
t

We present a new abstra
tion to repla
e the t of n assumption used in designing fault-tolerant

algorithms. This abstra
tion models dependent pro
ess failures yet it is as simple to use as the t of

n assumption. To illustrate this abstra
tion, we
onsider Consensus for syn
hronous systems with

both
rash and arbitrary pro
ess failures. By
onsidering failure
orrelations, we are able to redu
e

laten
y and enable the solution of Consensus for system
on�gurations in whi
h it is not possible

when for
ed to use proto
ols designed under the t of n assumption. We give lower bounds for the

number of rounds and repli
ation requirements that are suÆ
ient to solve Consensus. We show

that, in general, the lower bound for number of rounds in the worst
ase assuming
rash failures

is di�erent from the lower bound assuming arbitrary failures given the same system
on�guration.

This is in
ontrast with the traditional result under the t of n assumption.

Keywords: Distributed Systems, Fault Toleran
e, Correlated Failures, Consensus,

Time Complexity

1 Introdu
tion

Most fault-tolerant proto
ols are designed assuming that out of n
omponents, no more than t
an

be faulty. For example, solutions to the Consensus problem are usually developed assuming no more

than t of the n pro
esses are faulty where \being faulty" is spe
ialized by a failure model. We
all

this the t of n assumption. It is a
onvenient assumption to make. For example, bounds are easily

expressed as a fun
tion of t: if pro
esses
an fail only by
rashing, then the Consensus problem is

�

This work was developed in the
ontext of RAMP, whi
h is DARPA proje
t number N66001-01-1-8933.

1

solvable when t < n if the system is syn
hronous and when t < 2n if the system is asyn
hronous

extended with a failure dete
tor of the
lass 3W . [1, 2℄

The use of the t of n assumption dates ba
k to the earliest work on fault-tolerant
omputing. [3℄

It was �rst applied to distributed
oordination proto
ols in the SIFT proje
t [4℄ whi
h designed a
y-

by-wire system. The reliability of systems like this is a vital
on
ern, and using the t of n assumption

allows one to represent the probabilities of failure in a simple manner. For example, if ea
h pro
ess

has a probability p of being faulty, and pro
esses fail independently, then the probability P (t) of no

more than t out of n pro
esses being faulty is:

P (t) =

t

X

i=0

�

n

i

�

p

i

(1� p)

n�i

If one has a target reliability R then one
an
hoose the smallest value of t that satis�es P (t) � R.

The t of n assumption is best suited for
omponents that have identi
al probabilities of failure

and that fail independently. For embedded systems built using rigorous software development this is

often a reasonable assumption, but for most modern distributed systems it is not. Pro
ess failures

an be
orrelated be
ause, for example, the same buggy software was used. [5℄ Computers in the same

room are subje
t to
orrelated
rash failures in the
ase of a power outage.

That failures
an have di�erent probabilities and
an be dependent is not a novel observation.

The
ontinued popularity of the t of n assumption, however, implies that it is an observation that is

being overlooked by proto
ol designers. If one wishes to apply, for example, a Consensus proto
ol in

some real distributed system, one
an use one of two approa
hes:

1. Use some o�-line analysis te
hnique, su
h as fault tree analysis [6℄ to identify how pro
esses

fail in a
orrelated manner. For those that do not fail independently or fail with di�erent

probabilities, re-engineer the system so that failures are independent and identi
ally distributed

(IID).

2. Use the same o�-line analysis te
hnique to
ompute what the maximum number of faulty pro-

esses
an be, given a target reliability. Use this value for t and
ompute the value of n that,

under the t of n assumption, is required to implement Consensus. Repli
ate to that degree.

Both of these approa
hes are used in pra
ti
e. [6℄ This paper advo
ates a third approa
h:

3. Use the same o�-line analysis to identify how pro
esses fail in a
orrelated manner. Represent

this using our abstra
tion for dependent failures, and repli
ate in a way that satis�es our

2

repli
ation requirement and that minimizes the number of repli
as. Instantiate the appropriate

dependent failure proto
ol.

We believe that our approa
h and proto
ols are amenable to on-line adaptive repli
ation te
hniques

as well.

In this paper we propose an abstra
tion that exposes dependent failure information for one to

take advantage of in the design of a proto
ol. Like the t of n assumption, it is expressed in a way

that hides its underlying probabilisti
 nature in order to make it more generally appli
able.

We then apply this abstra
tion to the Consensus problem under the syn
hronous system assump-

tion and for both
rash and arbitrary failures. We derive a new lower bound for the number of rounds

to solve Consensus and show that it takes, in general, fewer rounds for
rash failures in the worst
ase

than for arbitrary failures. This is in
ontrast to the t of n assumption, where the number of rounds

required in the worst
ase is the same for both failure models. [1, 7℄ We show that these bounds are

tight by giving proto
ols that meet them. These proto
ols are fairly simple generalizations of well-

known proto
ols, whi
h is
onvenient. Proving them
orre
t gave us new insight into the stru
ture

of the original proto
ols. We also show that expressing pro
ess failure
orrelations with our model

enables the solution of Consensus in some systems in whi
h it is impossible when making the t of n

assumption.

There has been some work in providing abstra
tions more expressive than the t of n assumption.

The hybrid failure model (for example, [8℄) generalizes the t of n assumption by providing a separate

t for di�erent
lasses of failures. Using a hybrid failure model allows one to design more eÆ
ient

proto
ols by having suÆ
ient repli
ation for masking ea
h failure
lass. It is still based on failures in

ea
h
lass being independent and identi
ally distributed. In this paper, however, we do not
onsider

hybrid failure models.

Byzantine Quorum systems have been designed around the abstra
tion of a Fail-prone System [9℄.

This abstra
tion allows one to de�ne quorums that take
orrelated failures into a

ount. This ab-

stra
tion has been used to express a suÆ
ien
y
ondition for repli
ation. Our work
an be seen as

generalizing this work, whi
h applies only to Quorum Systems.

The remainder of this paper is divided as follows. Se
tion 2 presents our assumptions for the system

model and introdu
es our abstra
tion that models dependent pro
ess failures. Se
tion 3 de�nes the

distributed Consensus problem. In Se
tion 4, we state a theorem that generalizes the lower bound on

the number of rounds in our model. Se
tions 5 and 6 des
ribe tight weakest repli
ation requirements

3

and algorithms for Consensus on the
rash and arbitrary failure models, respe
tively. A dis
ussion

on the implementation of our abstra
tion in real systems is provided in Se
tion 7. Finally, we draw

on
lusions and dis
uss future work in Se
tion 8.

Due to la
k of spa
e, we give proof sket
hes for some lemmas and theorems and omit them entirely

for others. Detailed proofs
an be found in [10, 11, 12℄.

2 System Model

A system is
omposed of a set � of pro
esses, numbered from 1 to n = j�j. The number assigned to

a pro
ess is its pro
ess id, and it is known by all the other pro
esses. In the rest of the paper, every

time we refer to a pro
ess with id i, we use the notation p

i

. Additionally, we de�ne Pid as the set of

pro
ess id's, i.e., Pid = fi : p

i

2 �g. We use this set to de�ne a sequen
e w of pro
ess id's. Su
h a

sequen
e w is an element of Pid

�

.

A pro
ess
ommuni
ates with others by ex
hanging messages. Messages are transmitted through

point-to-point reliable
hannels, and ea
h pro
ess is
onne
ted to every other pro
ess through one

of these
hannels. Pro
esses, on the other hand, are not assumed to be reliable. We
onsider both

rash and arbitrary pro
ess failures. In
ontrast to most previous works in fault-tolerant distributed

systems, pro
ess failures are allowed to be
orrelated.

Ea
h pro
ess p 2 � exe
utes a deterministi
 automaton as part of the distributed
omputa-

tion [2, 13℄. A deterministi
 automaton is
omposed of a set of states, an initial state, and a transi-

tion fun
tion. The
olle
tion of the automata exe
uted by the pro
esses is de�ned as a distributed

algorithm. An exe
ution of a distributed algorithm pro
eeds in steps of the pro
esses. In a step,

a pro
ess may: 1) re
eive a message; 2) undergo a state transition; 3) send a message to a single

pro
ess. Steps are atomi
, and steps of di�erent pro
esses are allowed to overlap in time. We assume

that there is an external devi
e that provides the time a pro
ess takes a step. The time a pro
ess

takes a step
an be used in proofs, but pro
essors do not have a

ess to this devi
e. The range of

time is the non-negative integers.

As dis
ussed later in this se
tion, we assume that the
omputation
an be split into syn
hronous

rounds. The algorithms we des
ribe here pro
eed in rounds.

4

2.1 Repla
ing the t of n Assumption: Cores and Survivor Sets

In our model, pro
ess failures are allowed to be
orrelated, whi
h means that the failure of a pro
ess

may indi
ate an in
rease in the failure probability of another pro
ess.

Assuming that failed pro
esses do not re
over, to a
hieve fault-toleran
e in a system with a set of

pro
esses �, it is ne
essary to guarantee in every exe
ution that a non-empty subset of � survives.

A pro
ess is said to survive an exe
ution if and only if it is
orre
t throughout that exe
ution. Thus,

we would like to distinguish subsets of pro
esses su
h that the probability of all pro
esses in su
h

a subset failing is negligible. Moreover, we want these subsets to be minimal in that removing any

pro
ess of su
h a subset
 makes the probability that the remaining pro
esses in
 fail not negligible.

We
all these minimal subsets
ores. Cores
an be extra
ted from the information about pro
ess

failure
orrelations. In this paper, however, we assume that the set of
ores is provided as part of the

system's spe
i�
ation. We present in Se
tion 7 a dis
ussion on the problem of �nding
ores.

By assumption, at least one pro
ess in ea
h
ore will be
orre
t in an exe
ution. Thus, a subset

of pro
esses that has a non-empty interse
tion with every
ore
ontains pro
esses that are
orre
t in

some exe
ution. If su
h a subset is minimal, then it is
alled a survivor set. Noti
e that in every run

of the system there is at least one survivor set that
ontains only
orre
t pro
esses. The de�nition of

survivor sets is equivalent to the de�nition of a fail-prone system B [9℄: the set of all survivor sets is

the
omplement of B.

We now de�ne
ores and survivor sets more formally. Let R be a rational number expressing a

desired reliability, and r(x), x � �, be a fun
tion that evaluates to the reliability of the subset x. We

de�ne
ores and survivor sets as follows:

De�nition 2.1 Given a set of pro
esses � and rational target degree of reliability R 2 [0; 1℄, the set

of pro
esses
 is a
ore of � if and only if:

1.
 � �;

2. r(
) � R;

3. 8p 2
, r(
� fpg) < R.

Given a set of pro
esses � and a set of
ores C

�

, s is a survivor set if and only if:

1. s � �;

2. 8
 2 C

�

, s \
 6= ;;

3. 8p

i

2 s, 9
 2 C

�

su
h that p

i

2
 and (s� fp

i

g) \
 = ;.

5

We de�ne C

�

and S

�

to be the set of
ores and survivor sets of �, respe
tively.

The fun
tion r(�) and the target degree of reliability R are used at this point only to formalize the

idea of a
ore. In reality, reliability does not ne
essarily need to be expressed as a probability. If this

information is known by other means, then
ores
an be dire
tly determined. For example,
onsider

the following six pro
ess system:

Example 2.2 :

� � = fph

1

; ph

2

; pl

1

; pl

2

; pl

3

; pl

4

g

� C

�

= ffph

1

; ph

2

; pl

1

g; fph

1

; ph

2

; pl

2

g; fph

1

; ph

2

; pl

3

g; fph

1

; ph

2

; pl

4

gg

� S

�

= ffph

1

g; fph

2

g; fpl

1

; pl

2

; pl

3

; pl

4

gg

In this system, ph

1

and ph

2

are highly reliable and both fail independently of every other p 2 �.

On the other hand, pro
esses pl

1

; pl

2

; pl

3

; pl

4

fail dependently among ea
h other. That is, for every

pair of pro
esses pl

i

, pl

j

, 1 � i; j � 4 and i 6= j, we have that if pl

i

is faulty in some exe
ution of

the system, then pl

j

is also faulty. Thus, a subset with maximum reliability
ontains pro
esses ph

1

,

ph

2

, and at least one pro
ess pl

i

. Suppose that the maximum reliability a
hievable for a subset of

pro
esses satis�es the intuitive notion of target degree of reliability for this system. We
an therefore

infer that for ea
h i, 1 � i � 4, fph

1

; ph

2

; pl

i

g is a
ore. From the set C

�

of
ores, it is straightforward

to identify the survivor sets in S

�

.

In the following se
tions, we assume that these subsets are provided as part of the system's

representation. A system is hen
eforth des
ribed by a triple h�; C

�

; S

�

i, where � is a set of pro
esses,

C

�

is a set of
ores of �, and S

�

is a set of survivor sets of �. From this point on, we
all h�; C

�

; S

�

i

a system representation.

2.2 Failure Models

We assume two di�erent models for pro
ess failures:
rash model and arbitrary model. In the
rash

model, pro
esses fail by
rashing. A
rashed pro
ess does not send or re
eive messages. We say that

a pro
ess is alive at time t either if it is
orre
t in the run or it has not
rashed at any time t

0

� t. In

the arbitrary model, a faulty pro
ess
an take any a
tion, in
luding not re
eiving messages, sending

messages that are not legal under the proto
ol spe
i�
ation, and sending
orre
t messages at in
orre
t

times. The arbitrary model is stri
tly weaker than the
rash model.

6

Independently of the assumption for pro
ess failures,
hannels are assumed to be reliable. A

reliable
hannel is one that satis�es the following properties:

Validity: If p; q 2 � are
orre
t pro
esses and p sends a messagem to q, then q eventually deliversm;

Integrity: A pro
ess p 2 � re
eives a message m from pro
ess q 2 � if and only if pro
ess q sent it

to p.

Our Consensus algorithm for
rash failures relies on the Validity property to dete
t
rashed pro-

esses. This property enables a solution that requires fewer steps of pro
esses in the
ase of a small

number of failures. For arbitrary pro
ess failures, the Integrity Property prevents faulty pro
esses

from impersonating other ones. Consequently, a faulty pro
ess p

i

annot send a valid message with

the id of another pro
ess p

j

to other pro
esses.

2.3 Syn
hronous Model

A syn
hronous system imposes bounds on message delay, pro
ess speed, and
lo
k drift. These

bounds, however, are not ne
essarily based on absolute time. As in the model of Dolev et al. [14℄,

steps of an algorithm are used to de�ne these bounds. One
an then organize an exe
ution into rounds

of message ex
hange. In ea
h round, a pro
ess: 1) sends messages at the beginning of the round; 2)

re
eives messages that other pro
esses send at the beginning of the round; 3)
hanges its state.

The algorithms for syn
hronous systems des
ribed in Se
tions 5 and 6 are round-based. This

format fa
ilitates understanding, sin
e it abstra
ts several details of the system model. The algorithms

are also not des
ribed in an automaton format, sin
e the des
ription would be longer and would not

improve
larity. Instead, we use sequential
ode to present the algorithms. States and transitions,

however, are easily observed from the
hanges of the values stored by the variables of the algorithm.

2.4 Exe
utions

We de�ne an exe
ution � of an algorithm A with the tuple hF

�

; I

�

; E

�

; T

�

i. This de�nition is based

on the one by Chandra and Toueg [2℄ and Charon-Bost et al. [15℄. F

�

(t) evaluates to the subset of

pro
esses that have failed by time t. A dire
t impli
ation of this de�nition is that F

�

(t) � F

�

(t+ 1).

Be
ause an exe
ution depends on the initial state of the pro
esses, we have that I

�

provides the initial

on�guration of the system. This initial
on�guration depends on the problem being solved. The

7

Consensus problem, for example, requires every pro
ess to have an initial proposed value. E

�

is an

in�nite sequen
e of steps of the pro
esses in �. The time t at whi
h a step e 2 E

�

is exe
uted is

given by T

�

(e). For every
orre
t pro
ess p

i

in �, we assume that E

�

ontains an in�nite number of

steps of p

i

.

1

Although we do not use expli
itly this de�nition of exe
ution throughout the paper, we refer

several times to exe
utions of algorithms. Therefore, this de�nition makes
lear to the reader what

we mean by an exe
ution.

3 Consensus

The Consensus problem in a fault-tolerant message-passing distributed system
onsists, informally,

in rea
hing agreement among a set of pro
esses upon a value. Ea
h pro
ess starts with a proposed

value and the goal is to have all non-faulty pro
esses de
ide on the same value. The set of possible

de
ision values is denominated V throughout this paper. For many appli
ations, a binary set V is

suÆ
ient, but we assume a set V of arbitrary size, to keep the de�nition as general as possible.

In the
rash failure model, Consensus is often spe
i�ed in terms of the following three proper-

ties [16℄:

Validity If some non-faulty pro
ess p 2 � de
ides on value v, then v was proposed by some pro
ess

q 2 �;

Agreement If two non-faulty pro
esses p; q 2 � de
ide on values v

p

and v

q

respe
tively, then v

p

= v

q

;

Termination Every
orre
t pro
ess eventually de
ides.

The Validity property as spe
i�ed above assumes that no pro
ess will ever try to \
heat" on

its proposed value. This is true in the
rash failure model, but unrealisti
 in the arbitrary failure

model. Although a faulty pro
ess might not be able to prevent agreement by
heating on its proposed

value, it may prevent progress of the system as whole. For example, assuming that the only possible

de
ision values are either write or abort, with the above Validity de�nition, a faulty pro
ess may

prevent
orre
t pro
esses from writing and
onsequently making progress. Thus, in a byzantine

model, Strong Validity is usually
onsidered instead of Validity [17, 18℄. Strong Validity is stated as

follows:

1

Distributed Consensus requires that pro
esses eventually de
ide. Be
ause we are assuming that every
orre
t pro
ess

takes an in�nite number of steps, every
orre
t pro
ess exe
utes null steps on
e it halts.

8

Strong Validity If the proposed value of pro
ess p is v, for all p 2 �, then the only possible de
ision

value is v.

Strong Validity only
onsiders the
ase in whi
h all pro
esses have the same initial value. In-

tuitively, this is suÆ
ient to prevent a byzantine pro
ess from disrupting the normal behavior of a

system when all non-faulty pro
esses are enabled to make progress. When the system is fa
ing prob-

lems and not all of the pro
esses propose the same value, however, this property allows the de
ision

value to be arbitrary in the set of possible de
ision values. That is, the de
ision value v 2 V of
orre
t

pro
esses
an be either the value proposed by a faulty pro
ess or even a value that was not proposed

by any pro
ess, assuming the set of de
ision values is not binary.

4 Lower Bound on the Number of Rounds

Consider a syn
hronous system in whi
h the t of n assumption holds for pro
ess failures. In su
h

a system, t is the maximum number of pro
ess failures among all possible exe
utions and f is the

number of failures of a parti
ular exe
ution. It is well known that for every syn
hronous Consensus

algorithm A, there is some exe
ution in whi
h some
orre
t pro
ess does not de
ide earlier than f +1

rounds, where f � t � n� 2. [13, 19, 20℄ Furthermore, there is some exe
ution in whi
h some
orre
t

pro
ess does not stop earlier than min(t+ 1; f + 2) rounds, for t � n� 2. [21℄

These lower bounds were originally proved for
rash failures, but they have to hold for arbitrary

failures as well be
ause the arbitrary model is stri
tly weaker than the
rash model. In our model

for dependent failures, however, the lower bound on the number of rounds in general di�ers between

these two models.

Before generalizing the lower bound on the number of rounds for our model of dependent failures,

we de�ne the term subsystem. Let � be some predi
ate that de�nes the pro
ess repli
ation requirement

for a given failure model. For example, assuming t of n arbitrary pro
ess failures, the repli
ation

requirement is n > 3t. Examples of su
h predi
ates in our model for dependent failures are provided

in Se
tions 5 and 6. A subsystem of a system that satis�es � is then de�ned as follows:

De�nition 4.1 Let � be a repli
ation requirement and sys = h�; C

�

; S

�

i be a system representation.

A system sys

0

represented by h�

0

; C

0

�

; S

0

�

i is a subsystem of sys if and only if �

0

� �, C

0

�

� C

�

, and

sys

0

satis�es �.

9

A subsystem sys

0

represented by h�

0

; C

0

�

; S

0

�

i is minimal if and only if there is no other subsystem

sys

00

represented by h�

00

; C

00

�

; S

00

�

i of sys su
h that j�

00

j < j�

0

j or jC

00

�

j < jC

0

�

j.

The following theorem generalizes the lower bound on the number of rounds:

Theorem 4.2 Let sys = h�; C

�

; S

�

i be the representation of a syn
hronous system, sys

0

= h�

0

; C

0

�

; S

0

�

i

be the representation of a minimal subsystem of sys, A be a Consensus algorithm, and � = j�

0

j �

minfjsj : s 2 S

0

�

g. There are two
ases to be
onsidered:

i. If j�j � � > 1, then there is an exe
ution of A in whi
h f � � pro
esses are faulty and some

orre
t pro
ess takes at least f + 1 rounds to de
ide;

ii. If j�j � � = 1, then there is an exe
ution of A in whi
h f � � pro
esses are faulty and some

orre
t pro
ess takes at least min(�; f + 1) rounds to de
ide.

To illustrate the utilization of this theorem,
onsider a system sys = h�; C

�

; S

�

i under the t of n

assumption
rash failure model. If we assume that j�j = n � t+2, then jC

�

j � 2 and every
ore has

size t + 1. A minimal subsystem represented by sys

0

= h�

0

; C

0

�

; S

0

�

i has n

0

= j�

0

j = t+ 1, jC

0

�

j = 1,

and jS

0

�

j = t+1 (ea
h survivor set s 2 S

0

�

ontains a single pro
ess). From Theorem 4.2(i), for every

Consensus algorithm A, there is an exe
ution with f � � failures in whi
h no pro
ess de
ides before

round f + 1. The value of � is j�

0

j � minfjsj : s 2 S

0

�

g = t + 1 � 1 = t. This result mat
hes the

one given by theorem 3.2 in [20℄. If we instead assume that j�j = t + 1, then C

�

ontains a single

ore and sys is already minimal. By Theorem 4.2(ii), we have that � = j�j � 1. For some exe
ution

� of A with f � � failures, there is some
orre
t pro
ess that does not de
ide earlier than round

min(j�j � 1; f + 1).

We use Theorem 4.2 in Se
tions 5 and 6 to derive lower bounds on the number of rounds for the

rash and arbitrary models respe
tively.

5 Syn
hronous Consensus with Crash Failures

Consensus in a syn
hronous system with
rash pro
ess failures is solvable for any number of fail-

ures. [20℄ In the
ase that all pro
esses may fail in some exe
ution before agreement is rea
hed,

though, it is often ne
essary to re
over the latest state prior to total failure for re
overy purposes. [22℄

Sin
e we assume that failed pro
esses do not re
over, we don't
onsider total failure in this work.

That is, we assume that the following
ondition holds for a system representation h�; C

�

; S

�

i:

10

Property 5.1 C

�

6= ;

Property 5.1 implies that there is at least one
orre
t pro
ess in any exe
ution. A
ore is hen
e a

minimal subsystem in whi
h Consensus is solved. Consider a syn
hronous system with
rash failures

sys = h�; C

�

; S

�

i, and a subsystem sys' = h�

0

; C

0

�

; S

0

�

i of sys su
h that �

0

=

min

,

min

2 C

�

and

(8

0

2 C

�

; j

min

j � j

0

j). By de�nition, sys' is minimal. From Theorem 4.2(ii), if j�j = j�

0

j, then there

is some exe
ution with f � j�j � 1 pro
ess failures su
h that a
orre
t pro
ess does not de
ide earlier

than round min(�; f + 1). On the other hand, if sys is not minimal, then there is some exe
ution

with f � j�

0

j � 1 pro
ess failures su
h that a
orre
t pro
ess does not de
ide earlier than round f +1

by Theorem 4.2(i).

We now des
ribe a proto
ol for a syn
hronous system represented by h�; C

�

; S

�

i, assuming that

Property 5.1 holds for this system. The proto
ol is based on the early-de
iding proto
ols dis
ussed

by Charron-Bost and S
hiper [20℄ and by Lamport and Fis
her [19℄. Algorithms that take the a
tual

number of failures into a

ount are important be
ause they redu
e the laten
y on the
ommon
ase

in whi
h just a few pro
ess failures o

ur. An important observation made by Charron-Bost and

S
hiper [20℄ is that there is a fundamental di�eren
e between early-de
iding proto
ols and early-

stopping proto
ols for Consensus. In a early-de
iding proto
ol, a pro
ess may be ready to de
ide, but

may not be ready to halt, whereas an early-stopping proto
ol is
on
erned about the round in whi
h

a pro
ess is ready to halt. One
onsequen
e of this di�eren
e, whi
h was already noted in Se
tion 4,

is that the lower bounds for de
iding and for stopping are not the same.

Our algorithm Syn
Crash di�erentiates the pro
esses of a
hosen
ore
 2 C

�

from the rest of

the pro
esses in ��
. In a round, every pro
ess in
 broad
ast its knowledge of proposed values to all

the other pro
esses, while pro
esses in ��
 just listen to these messages. Pro
esses in
 from whi
h

a message is re
eived at round r, but from whi
h no message is re
eived at round r+1, are known to

have
rashed before sending all the messages of round r+1. This observation is used to dete
t a round

in whi
h no pro
ess
rashes. Pro
ess p

i

2 � keeps tra
k of the pro
esses in
 that have
rashed in a

round, and as soon as p

i

dete
ts a round with no
rashes, p

i

an de
ide. An important observation

is that when su
h a round r with no
rashes happens (by assumption it eventually happens), all

alive pro
esses are guaranteed to have the same array of proposed values. On
e ea
h pro
ess p

i

in

de
ides, it broad
asts a message announ
ing its de
ision value v

i

. All unde
ided pro
esses re
eiving

this message de
ide on v

i

as well. Thus, only two types of messages are ne
essary in the proto
ol:

messages
ontaining the array of proposed values and de
ision messages. Be
ause pro
esses in

11

broad
ast at most one message in every round to all the pro
esses in j�j, the message
omplexity is

O(j
j � j�j). This is, in general, better than the proto
ols in [19, 20℄, designed with the t of n failure

assumption, whi
h have message
omplexity O(j�j

2

).

If
 = �, then in every exe
ution of Syn
Crash with f pro
ess
rashes, every
orre
t pro
ess

de
ides in at most min(j
j � 1; f + 1) rounds. Otherwise, every
orre
t pro
ess de
ides in at most

f +1 rounds. Thus, the lower bound on the number of rounds dis
ussed in Se
tion 4 is tight for
rash

failures.

The idea of using a subset of pro
esses to rea
h agreement on behalf of the whole set of pro
esses is

not new. The Consensus Servi
e proposed by Guerraoui and S
hiper utilizes this
on
ept. [23℄ Their

failure model, however, assumes t of n failures, and
onsequently the subset used to rea
h agreement

is not
hosen based on information about
orrelated failures. This is the main point where our work

di�ers.

Before presenting a pseudo-
ode of the algorithm, we show a table des
ribing the variables used

in the proto
ol. Table 1 des
ribes the variables, and the pseudo-
ode of Syn
Crash is presented in

Figure 1. A detailed proof of
orre
tness for Syn
Crash is provided in [12℄.

 2 C

�

Core set
hosen as the one responsible for the de
ision.

de

i

2 V [f?g A pro
ess p

i

de
ides on
e it sets de

i

.

d 2 ftrue ; falseg Boolean variable indi
ating whether the pro
ess

de
ided in the previous round or not.

v

i

[1 � � � j
j℄, v

i

[j℄ 2 V Array of proposed values.

e

i

[1 � � � (j
j � 1)℄, e

i

[r℄ �
 Array of failed pro
esses. e

i

[r℄ stores the subset of

pro
esses dete
ted by p

i

as
rashed at round r.

Table 1: Variables used in the algorithm Syn
Crash

The set of rounds assigned to pro
esses in j�j �
 is only e�e
tive if this subset is not empty, and

sending a message to an empty set of pro
esses is a no-op.

By
hara
terizing
orrelated pro
ess failures with
ores and survivor sets, we improve performan
e

both in terms of message and time
omplexity. For example,
onsider again the six pro
ess system

des
ribed in Example 2.2. By assuming t of n failures, t must be as large as the maximum number of

failures possible in any exe
ution, whi
h is �ve. Thus, it is ne
essary to have at least �ve rounds to

solve Consensus in the worst
ase. By exe
uting Syn
Crash with a minimum-sized
ore as C, only

three rounds are ne
essary in the worst
ase. In addition, no messages are broad
ast by the pro
esses

in � �
. This is di�erent from most proto
ols designed under the t of n assumption [19, 20, 21℄,

12

Algorithm Syn
Crash for pro
ess p

i

:

Input: set � of pro
esses; set C

�

of
ores; initial value v 2 V

Initialization:
 2 C

�

; de

i

 ?; d false

v

i

[1 � � � j
j℄, v

i

[k℄ =?, 8k 2 [1 � � � j
j℄, k 6= i. If p

i

2
, v

i

[i℄ v

e

i

[1 � � � (j
j � 1)℄, e

i

[k℄ =
, 8k 2 [1 � � � (j
j � 1)℄

Round 1 � r < j
j, 8p

i

2
:

if (d = false) then

send(i; v

i

) to all pro
ess in

send(i; v

i

) to all pro
ess in ��

else

send(De
ide ,de

i

) to all pro
esses in

send(De
ide ,de

i

) to all pro
esses in ��

halt

upon re
eption of (m = (De
ide ,de

j

)) do

de

i

 de

j

d true

upon re
eption of (m = (j; v

j

)) do

e

i

[r℄ e

i

[r℄ � fjg

for k = 1 to j�j do

if (v

j

[k℄ 6=?) then v

i

[k℄ v

j

[k℄

if (((e

i

[r � 1℄ = e

i

[r℄) ^ (d = false)) _ (r = j
j � 1)) then

de

i

 min(v

i

[k℄)

d true

Round j
j, 8p

i

2
:

send(De
ide ,de

i

) to all pro
esses in ��

halt

Round 1 � r � j
j, 8p

i

2 ��
:

upon re
eption of (m = (De
ide ,de

j

)) do

de

i

 de

j

halt

upon re
eption of (m = (j; v

j

)) do

e

i

[r℄ e

i

[r℄ [fjg

for k = 1 to j�j do

if (v

j

[k℄ 6=?) then v

i

[k℄ v

j

[k℄

if ((e

i

[r � 1℄ = e

i

[r℄)) then

de

i

 min(v

i

[k℄)

halt

Figure 1: Syn
hronous Consensus for Dependent Crash Failures

although the same idea
an be applied by having only a spe
i�
 subset of t+1 pro
esses broad
asting

messages.

6 Syn
hronous Consensus with Arbitrary Failures

Given a system representation h�; C

�

; S

�

i,
onsider the following properties:

Property 6.1 (Byzantine Partition) For every partition (A;B;C) of �, at least one of A, B, and

13

C
ontain a
ore.

Property 6.2 (Byzantine Interse
tion) 8s

i

; s

j

2 S

�

, 9

k

2 C

�

,

k

� (s

i

\ s

j

).

The following theorem states that these two properties are equivalent.

Theorem 6.3 Byzantine Partition � Byzantine Interse
tion.

Proof sket
h:

� Byzantine Partition) Byzantine Interse
tion.

We prove the
ontrapositive. Assume that there are two survivor sets s

i

; s

j

2 S

�

su
h that (s

i

\ s

j

)

does not
ontain a
ore. Consider the following partitioning: A = � � s

i

, B = (s

i

\ s

j

), and

C = (s

i

�B). Subset A
annot
ontain a
ore be
ause it has no element from s

i

. By assumption, B

does not
ontain a
ore. Be
ause C
ontains no elements from s

j

, we have that C does not
ontain a

ore. Thus, none of A, B, or C
ontain a
ore.)

To prove the other dire
tion, we make use of two observations. First, if the Byzantine Interse
tion

property holds, then every survivor set s
ontains at least one
ore. Otherwise the interse
tion

between s and some other survivor set s

0

2 S

�

, s 6= s

0

,
annot
ontain a
ore. Se
ond, if a subset A of

pro
esses
ontains at least one element from every survivor set, then A
ontains a
ore: by de�nition,

in every exe
ution there is at least one survivor set that
ontains only
orre
t pro
esses. If A
ontains

at least one element from every survivor set, then in every exe
ution there is at least one
orre
t

pro
ess in A.

� Byzantine Interse
tion) Byzantine Partition.

We prove this relation by
ontradi
tion. Assume that Byzantine Interse
tion holds and there is a

partition (A;B;C) su
h that none of A, B, and C
ontain a
ore. If none of these subsets
ontains a

ore, then none of them
ontains either a survivor set or one element from ea
h survivor set s

0

2 S

�

.

Thus, there has to be two distin
t survivor sets s

1

and s

2

su
h that there are no elements of s

1

in

C and no elements of s

2

in B. Suppose the
ontrary. If there are no su
h s

1

or s

2

, then one of two

possibilities has to take pla
e, both in whi
h at least one subset
ontains a
ore: 1) s

1

= s

2

. In this

ase, A
ontains s

1

; 2) (8s 2 S

�

; (s \B) 6= ;) _ (8s 2 S

�

; (s \ C) 6= ;).

Assuming therefore that there are su
h survivor sets s

1

and s

2

, we have that (s

1

\ s

2

) � A.

By assumption, A does not
ontain a
ore, and
onsequently s

1

\ s

2

does not
ontain a
ore. This

ontradi
ts, however, our assumption that Byzantine Interse
tion holds.)

2

14

The utility for having two equivalent
onditions be
omes
lear below. We use the Byzantine

Partition property to show that this repli
ation requirement is ne
essary to solve Consensus in a

syn
hronous arbitrary failure system. The Byzantine Interse
tion property is assumed by our proto
ol

Syn
Byz.

Byzantine Interse
tion along with the de�nition of S

�

is equivalent to the repli
ation requirement

for blo
king writes in Byzantine Quorum Systems identi�ed by Martin et al. They show that this

requirement is suÆ
ient for su
h a proto
ol. [24℄ Both our requirement and the one identi�ed by

Martin et al. are weaker than the repli
ation requirement for masking quorum systems. [9℄ A masking

quorum system requires that in every exe
ution at least one quorum
ontains only
orre
t pro
esses

(that is, it
ontains a survivor set). In addition, for every quorum in a masking quorum system and

every pair of failure s
enarios, there is at least one pro
ess that is not faulty in both s
enarios. The

Byzantine Interse
tion property, on the other hand, only requires that the interse
tion of two survivor

sets
ontains at least one pro
ess that is
orre
t in the exe
ution.

6.1 Requirement on Pro
ess Repli
ation

Byzantine Partition is ne
essary to solve Strong Consensus in a syn
hronous system with arbitrary

pro
ess failures. The informal proof we provide here is based upon the one by Lamport for the t of

n assumption. [7, 25℄ We show that, for any algorithm A, if there is a partition of the pro
esses into

three non-empty subsets su
h that none of them
ontain a
ore, then there is at least one run in whi
h

agreement is violated. This is illustrated in �gure 2, where we assume the
onverse and
onsider three

exe
utions �, �, and
.

In exe
ution �, the initial value of every pro
ess is the same, say v. All the pro
esses in subset

B are faulty, and they all lie to the pro
esses in subset C about their initial values and the values

re
eived from pro
esses in A. By Strong Validity, running algorithm A in su
h an exe
ution results in

all the pro
esses in subset C de
iding v. Exe
ution � is analogous to exe
ution �, but instead of every

pro
ess beginning with a initial value v, they all have initial value v

0

6= v. Again, by Strong Validity,

all pro
esses in B de
ide v

0

. In exe
ution
, the pro
esses in subset C have initial value v, whereas

pro
esses in subset B have initial value v

0

. The pro
esses in subset A are all faulty and behave for

pro
esses in C as they do in exe
ution �. For pro
esses in C, however, pro
esses in B behave as

they do in exe
ution �. Be
ause pro
esses in C
annot distinguish exe
utions � from
, pro
esses

in C must de
ide v. At the same time, pro
esses in B
annot distinguish exe
utions � from
, and

15

therefore they must de
ide v

0

. Consequently, there are
orre
t pro
esses whi
h de
ide di�erently in

exe
ution
, violating the Agreement property of Strong Consensus.

B:v’, C:v
A:v, B:vA:v,

 C
:v

A:v’, B:v’

A:v, C:v
B C

A

B:v,
 C

:v

Scenario α

B:v’, C:v
A:v, B:v

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

A

Scenario γ

A:v’, B:v’

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

A
B:v’, C:v’

Scenario β

Figure 2: Exe
utions illustrating the violation of Consensus. The pro
esses in shaded subsets are all

faulty in the given exe
ution.

6.2 Number of Rounds

In every syn
hronous system with
rash failures it suÆ
es to have a single
ore to solve Consensus.

In general, this is not the
ase for syn
hronous systems with arbitrary pro
ess failures. The only

parti
ular
ase in whi
h Consensus
an be solved with a single
ore is the
ase that the system has a

single reliable pro
ess p

i

that does not fail in any exe
ution. For su
h a system, a minimal subsystem

under Byzantine Partition is represented by hfp

i

g; ffp

i

gg; ffp

i

ggi. In every other
ase, a system has

to
ontain multiple
ores. Although fault-tolerant systems may rely upon a single reliable pro
ess,

this is a spe
ial
ase.

Assuming a minimal subsystem h�

0

; C

0

�

; S

0

�

i under Byzantine Partition with multiple
ores, every

survivor set for su
h a subsystem
ontains at least 2 pro
esses. Otherwise, there is a
ore
ontaining a

single pro
ess, and it redu
es to the parti
ular
ase des
ribed above. By Theorem 4.2(i), the minimum

number of rounds required in the worst
ase is �+ 1, where � is de�ned as j�

0

j �minfjsj : s 2 S

0

�

g.

In
ontrast, all survivor sets of a minimal subsystem have size 1, assuming
rash failures.

To illustrate the di�eren
e on the total number of rounds in the worst
ase between the
rash and

the arbitrary models,
onsider the following example:

Example 6.4 :

� � = fp

a

; p

b

; p

; p

d

; p

e

g

� C

�

= ffp

a

; p

b

; p

g; fp

a

; p

d

g; fp

a

; p

e

g; fp

b

; p

d

g; fp

b

; p

e

g; fp

; p

d

g; fp

; p

e

g; fp

d

; p

e

gg

� S

�

= ffp

a

; p

b

; p

; p

d

g; fp

a

; p

b

; p

; p

e

g; fp

a

; p

d

; p

e

g; fp

b

; p

d

; p

e

g; fp

; p

d

; p

e

gg

16

For the
rash model, a minimal subsystem h�

0

; C

0

�

; S

0

�

i is su
h that j�j

0

= 2, jC

0

�

j = 1, and a

minimum-sized survivor set
ontains a single pro
ess. By Theorem 4.2(i), the lower bound on the

number of rounds is 2 in the worst
ase (� = 1 and j�j � � > 1). In the arbitrary model, h�; C

�

; S

�

i

is already a minimal subsystem: if any pro
ess or
ore is removed, then the remaining subsystem

does not satisfy Byzantine Partition. By Theorem 4.2(i), the lower bound on the number of rounds

is 3 in the worst
ase (� = 2 and j�j �� > 1). Thus, for the same system
on�guration, fewer rounds

are required assuming
rash failures.

6.3 An Algorithm to Solve Strong Consensus

We des
ribe an algorithm that solves Strong Consensus in a system sys= h�; C

�

; S

�

i that satis�es

Byzantine Interse
tion. This algorithm is based on the one des
ribed by Lamport to demonstrate

that it is suÆ
ient to have 3t+ 1 pro
esses (t is the maximum tolerated number of faulty pro
esses)

to have intera
tive
onsisten
y in a setting with arbitrarily faulty pro
esses [7℄.

In our algorithm, all the pro
esses exe
ute the same sequential
ode. Every pro
ess
reates a tree

in whi
h ea
h node is labeled with a string w of distin
t pro
ess identi�ers and in whi
h is stored a

value. The value stored in a node labeled w
orresponds to the value forwarded by the sequen
e of

pro
esses named in w. At round r+1, every
orre
t pro
ess p

j

sends a message
ontaining the labels

and values of the nodes stored at depth r of the tree to all the other pro
esses. Every
orre
t pro
ess

p

i

that re
eives su
h a message stores the values
ontained in it in the following manner: if there is

a node labeled wj, with w 2 Pid

�

; jwjj = r+1, then store at this node the value in the message sent

by p

j

orresponding to w.

A simple example will help to
larify the use of the tree. Suppose that a
orre
t pro
ess p

i

re
eives

at round three a message from pro
ess p

j

that
ontains the string lk and the value v asso
iated to

this string. Pro
ess p

i

stores the value v at the node labeled lkj and forward at round four a message

ontaining the pair hlkj ; vi to all the other pro
esses.

The leaves in this tree are survivor sets. More spe
i�
ally, if we use Node(w) to denote the node of

the tree labeled with the string w and Pro
esses(w) the set of pro
esses named in w, then Node is a leaf

if and only ��Pro
esses(w) does not
ontain a survivor set. Consequently, if Node(wi) is a leaf and

we denote with Child(w) the set of pro
esses fp

i

jNode(wi) is a
hild of Node(w)g, then Child(w) is a

survivor set

2

. For every non-leaf Node(w), we have that �� Pro
esses(w) has to
ontain a survivor

2

Observe that the tree stru
ture is the same for all
orre
t pro
esses, and hen
e none of Pro
esses(�), Node(�), or

17

set. A
onsequen
e of this de�nition is that the depth of the tree is j�j � minfjs

i

j : s

i

2 S

�

g + 1.

Figure 3 gives an example of a tree for the system representation in Example 6.4.

bac bad bae bca bcd bce

ba bc

b

bd be

cab cad cae cba cbd cbe

ca cb cecd

c

abc abd abe acb acd ace

ab ac

a

ad ae ea eb ec ed

e

da db dc de

d

Figure 3: An example of a tree built by ea
h pro
ess in the �rst stage of the algorithm.

The �rst stage of the algorithm builds and initializes the tree. The se
ond stage runs several

rounds of message ex
hange. In the �rst round, ea
h pro
ess broad
asts its initial value, and in

subsequent rounds, ea
h pro
ess broad
asts the values it learned in the previous round. As pro
esses

re
eive the messages
ontaining values learned in previous rounds, ea
h node populates the nodes of

its tree with these values. Be
ause the depth of the tree is (j�j � minfjs

i

j : s

i

2 S

�

g + 1), this is

exa
tly the total number of rounds required for message ex
hanging. Finally, in the last round, ea
h

pro
ess traverses the tree visiting the nodes in postorder to de
ide upon a value. When visiting a leaf,

the algorithm does not
hange the value this node stores. On the other hand, when an internal node

of pro
ess p

i

with label w is visited, we use a repla
ement strategy to determine its value. Suppose

there are there are two survivor sets s

1

and s

2

su
h that (s

1

\ s

2

) � Child(w) and for every pro
ess

p

j

2 (s

1

\ s

2

), we have that p

i

:Value(wj) = v, for some v 2 V [f?g. In this
ase, we repla
e the

value of Node(w) with v. Otherwise we repla
e with the default value (?). In the original proto
ol,

the repla
ement strategy is based on the majority. [13℄

The pseudo-
ode of the algorithm is des
ribed in Figure 4. In the algorithm, we use Value(w) to

refer to the value asso
iated to w both in the tree of a pro
ess and in a message some pro
ess sends.

To di�erentiate one
ase from the other, we use a pre�x: x:Value(w) is the value v stored at node

labeled w of pro
ess p

i

if x = p

i

, whereas it is the value v in the pair hw; vi in a message m if x = m.

This is a slight abuse of notation, but it is
onvenient and the di�erentiation between the
ases will

be
lear from
ontext.

Instead of providing a formal proof of
orre
tness for Syn
Byz, we illustrate the de
ision pro
ess

for the system des
ribed in Example 6.4. For a proof of
orre
tness, we point the interested reader

Child(�) need to be asso
iated with any parti
ular pro
ess.

18

Algorithm Syn
Byz for pro
ess p

i

:

Input: a set of pro
esses �; a set of
ores C

�

; a set of survivor sets S

�

; an input value v

i

2 V

Variables:

Let s

min

be a smallest survivor set in S

Let r be the
urrent round number

Let root be a referen
e to the root of pro
ess i's tree

Let M be a set of messages

Let P; P

0

be sets of pairs hw; vi, where w 2 Pid

�

, and v 2 V

initialization:

root CreateNode(;, v

i

)

BuildTree(root)

P fh;; v

i

ig

rounds 1 � r < (j�j � js

min

j+ 1):

SendAll(i, P)

let M be the set of messages re
eived by p

i

at round r

P ;

for every message m = (j; P

0

) 2M do

for every node at depth r labeled wj, w 2 Pid

�

, jwj = r do

p

i

:Value(wj) m:Value(w)

if node labeled wj is not a leaf then P P [fhwj ;m:Value(w)ig

round r = (j�j � js

min

j+ 1):

SendAll(i, P)

let M be the set of messages re
eived by p

i

at round r

for every message m = (j; P

0

) 2M do

for every node at level r labeled wj, w 2 Pid

�

, jwj = r, do

p

i

:Value(wj) m:Value(w)

Traverse Tree in postorder, exe
uting the following steps when visiting a node labeled w:

if Child(w)6= ;

then let I Child(w)

if(9s

1

; s

2

2 S su
h that ((s

1

\ s

2

) � I) ^ (8p

j

2 (s

1

\ s

2

); p

i

:Value(wj) = v, v 2 V)))

then p

i

.Value(w) v

else p

i

.Value(w) ?

Auxiliary fun
tion

Fun
tion BuildTree(w)

let � Pro
esses(w)

8p

j

2 � su
h that p

j

62 �

if (9s

1

2 S su
h that s

1

� (�� �))

then node CreateNode(wj, ?)

Child(w) Child(w) [fnodeg

BuildTree(wj)

Figure 4: Syn
hronous Consensus for Dependent Arbitrary Failures

to [12℄.

After j�j � js

min

j + 1 = 5 � 3 + 1 = 3 rounds of message ex
hange, every
orre
t pro
ess has

populated its tree with values re
eived from other pro
esses. The values stored at non-leaf nodes are

19

not important, be
ause they are repla
ed a

ording to the strategy de�ned for the algorithm during

the traversal of the tree. We illustrate this pro
edure for the subtrees rooted at both Node(a) and

Node(b). This is shown in Figures 5 and 6. White nodes are the ones that have the same value a
ross

all the
orre
t pro
esses, whereas shaded nodes are the ones that have possibly di�erent values a
ross

orre
t pro
esses. A node is shaded if the last node in the string that labels the node is a faulty

pro
ess. Note that if two nodes w and w

0

are white, it does not mean that they
ontain ne
essarily

the same value. It only means that every
orre
t pro
ess has value v at node w and v

0

at node w

0

.

Consider the parti
ular s
enario in whi
h pro
esses p

a

and p

are faulty and p

b

, p

d

, and p

e

are

all
orre
t. First, we dis
uss the subtree rooted at Node(a). At Time 1, only the nodes at the

last level have been visited. From the algorithm, when a leaf is visited, its value does not
hange.

Thus, the state of the tree at Time 1 is the same state as right before starting the traversal of the

tree. Time 2
orresponds to the state of the tree exa
tly after all the nodes at Level 2 are visited.

Be
ause pro
esses p

b

, p

d

, and p

e

are
orre
t, Node(abd) and Node(abe)
ontain the same value a
ross

all
orre
t pro
esses. By the repla
ement strategy of the algorithm, the new value of node ab is the

value of nodes abd and abe, be
ause fp

d

; p

e

g � fp

a

; p

d

; p

e

g \ fp

b

; p

d

; p

e

g and Node(abd)
ontains the

same value as node abe. Similarly, the new value of node a
 is the one of a
b, a
d, and a
e. The

values of Node(ad) and Node(ae) a
ross
orre
t pro
esses have to be the same, be
ause p

d

and p

e

are

orre
t. At Time 3, the value of Node(a) be
ome the same for all
orre
t pro
esses. Sin
e the value

of Node(ab), Node(a
), Node(ad), and Node(ae) are the same a
ross all
orre
t pro
esses, the new

value of node a has to be the same.

ad ae
ab

a

ac

abc abd abe acb acd ace

ad ae
ab

a

ac

abc abd abe acb acd ace

ad ae
ab

a

ac

abc abd abe acb acd ace

Time 1 Time 2 Time 3

Figure 5: An example of traversing the subtree rooted at Node(a). Time i
orresponds to the state

of the tree exa
tly after all the nodes of Level 4� i are visited.

For the subtree rooted at Node(b), the value of Node(ba) may still not be the same a
ross all
orre
t

pro
esses at Time 2. Both fp

d

; p

e

g and fp

; p

d

g are
ores and are subsets of pro
esses
ontained in

some interse
tion of two survivor sets. Thus, if the value of Node(ba
) is the same of Node(bad) in a

20

orre
t pro
ess p

i

, but di�erent in another
orre
t pro
ess p

j

, then p

i

and p

j

may repla
e the value of

Node(ba) with di�erent values, depending on Node(bae). Note that one value must be the default ?

and the other some v 2 V . Similarly for Node(b
) at Time 2. The values of Nodes(bd) and Nodes(be),

however, have to be the same a
ross all
orre
t pro
esses. In Time 3, fp

d

; p

e

g is the only
ore in

Child(b) to
ontain the same value in their respe
tive nodes at Level 1, unless ba and b
 have the

same value as Node(bd) and Node(be). Furthermore, this
ore is in the interse
tion of fp

b

; p

d

; p

e

g and

fp

a

; p

d

; p

e

g. Consequently, the new value of Node(b) has to be the same for every
orre
t pro
ess at

Time 3, by the value repla
ement strategy.

bd be
ba

b

bc

bac bad bae bca bcd bde

bd be
ba

b

bc

bac bad bae bca bcd bde

bd be
ba

b

bc

bac bad bae bca bcd bde

Time 1 Time 2 Time 3

Figure 6: An example of traversing the subtree rooted at Node(b). Time i
orresponds to the state

of the tree exa
tly after all the nodes of Level 4� i are visited.

By doing the same analysis for the subtrees rooted at nodes
, d, and e, we observe that every

node at Level 1 of the tree rooted at ; has the same value a
ross all
orre
t pro
esses. Therefore,

the de
ision value, whi
h is the value at node ; after visiting it, has to be the same for every
orre
t

pro
ess. One important observation is that the value at Node(i) a
ross all
orre
t pro
esses is the

initial value of pro
ess p

i

, if p

i

is
orre
t. In the
ase that every pro
ess has the same initial value v,

then the de
ision value has to be v.

To illustrate the bene�ts of using our abstra
tions,
onsider on
e more the �ve pro
ess system

of Example 6.4. If the t of n failure assumption is used, then Strong Consensus is not solvable: the

smallest survivor set
ontains three pro
esses and so the maximum number of failures in any exe
ution

is two. With the t of n assumption, the repli
ation requirement is j�j � 3t + 1, and for t = 2, it

is ne
essary to have at least seven pro
esses. With our model, however, algorithm Syn
Byz solves

Strong Consensus.

21

7 Pra
ti
al Considerations

Two important issues
on
erning the use of
ores and survivor sets are (1) how to extra
t information

about these subsets and (2) how to represent them.

To extra
t
ore information (su
h as �nding a smallest
ore) using failure probabilities is an NP-

hard problem in the general
ase. [10℄ This result need not be dis
ouraging, however. First, this

is a problem that is already addressed for many safety
riti
al systems, and te
hniques have been

developed to extra
t su
h information [6℄. Furthermore, for many real systems, there are simple

heuristi
s for �nding
ores that depend on how failure
orrelations are identi�ed. Suppose a system

in whi
h pro
esses are tagged with
olors. In this model, all pro
esses have identi
al probabilities of

failing, but those with the same
olor have highly
orrelated probabilities of failing while pro
esses

with di�erent
olors fail independently. A
ore in su
h a system is
omposed of pro
esses with di�erent

olors, and the size of a
ore depends on the probability of having
olors failing. To �nd
ores in su
h a

model, one has to intera
tively add pro
esses with di�erent
olors to a subset and verify whether this

subset is a
ore. The veri�
ation pro
edure
onsists in multiplying the probability of failure for every

olor that has a representative in the subset. This
learly
an be a

omplished in polynomial time.

For real systems, a
olor would represent some intrinsi

hara
teristi
. For example, all
omponents

in a
ertain part of an airplane are damaged if there is a stru
tural damage on that parti
ular part.

Computers in the same room are subje
t to
orrelated
rash failures in the
ase of a power outage.

One
an go further in extra
ting
ores based on
hara
teristi
s of the system and propose the

utilization of several attributes, instead of one as in the
olor model. It turns out that in the general

ase, this problem is also NP-hard. Some simplifying assumptions su
h as �nding orthogonal
ores

(
ores in whi
h pro
esses do not share attributes) make the problem tra
table. Finally, fault tree

analysis is an option in the design of reliable systems.

Representing
ores or survivor sets is relevant for arbitrary failures. As dis
ussed in Se
tion 5,

to solve Consensus assuming
rash failures, it suÆ
es a single
ore. Spa
e
omplexity is hen
e O(1)

in this
ase, and
onsequently is not a problem. For arbitrary failures, however, multiple survivor

sets are usually ne
essary. An important observation is that the number of pro
esses in fault-tolerant

systems is usually not large. Thus, for a small number of pro
esses, spa
e
omplexity is still O(1),

even if there is an exponential number of survivor sets. In parti
ular
ases, it is possible to determine

algorithmi
ally whether a subset of pro
esses is a survivor set. Considering the
olor model on
e

more, a subset s of pro
esses is a survivor set if ��s does not
ontain a
ore. Whether ��s
ontains

22

a
ore or not is veri�able in polynomial time, as dis
ussed previously.

8 Con
lusions and Future Dire
tions

Cores and survivor sets are abstra
tions
apable of using dependent pro
ess failure information in the

design of fault-tolerant algorithms in a simple manner. We showed this by des
ribing two Consensus

algorithms. The main stru
tures of these algorithms were proposed in the literature assuming t

pro
ess failures out of n pro
ess. With simple modi�
ations, we obtained new algorithms that in

several
ases perform better than the original ones. An important observation is that the algorithms

we presented improve performan
e only if there is failure
orrelation. If all pro
ess fail independently,

then the proto
ols behave as the original ones for the t of n assumption. In either
ase, they never

have worse performan
e.

The trade-o�, however, is in �nding and representing
ores or survivor sets. In the general
ase,

�nding and representing them require exponential time and spa
e. As we dis
ussed in Se
tion 7,

however, this need not hinder the use of
ores and survivor sets. Their equivalent are already used

in the analysis of safety
riti
al systems. Moreover, there are heuristi
s that make these problems

tra
table when the number of
ores is not suÆ
iently small. We believe that many real systems that

an bene�t from our model either have a small number of
ores or are amenable to the appli
ation

of simplifying heuristi
s.

So far, we have identi�ed a few real s
enarios that would bene�t from the appli
ation of our

model. We believe, however, that our te
hniques are widely appli
able. Aside from identifying other

real appli
ations, we are interested in investigating the utilization of
ores and survivor sets for other

problems of interest in fault-tolerant
omputing. We already have
orresponding results for Consensus

in asyn
hronous systems.

Referen
es

[1℄ I. Keidar and S. Rajsbaum, \On the Cost of Fault-Tolerant Consensus When There Are No

Faults - A Tutorial," Te
h. Rep. MIT-LCS-TR-821, MIT, May 2001.

[2℄ T. Chandra and S. Toueg, \Unreliable Failure Dete
tors for Reliable Distributed Systems,"

Journal of the ACM, vol. 43, pp. 225{267, Mar
h 1996.

23

[3℄ J. von Neumann, \Probabilisti
 Logi
s and the Synthesis of Reliable Organisms from Unreliable

Components," in Automata Studies, pp. 43{98, Prin
eton University Press, 1956.

[4℄ J. Wensley, \SIFT: Design and Analysis of a Fault-Tolerant Computer for Air
raft Control," in

Pro
eedings of the IEEE, vol. 66, pp. 1240{1255, O
tober 1978.

[5℄ R. Rodrigues, B. Liskov, and M. Castro, \BASE: Using Abstra
tion to Improve Fault Toleran
e,"

in 18th ACM Symposium on Operating Systems Prin
iples (SOSP'01), vol. 35, (Chateau Lake

Louise, Ban�, Alberta, Canada), pp. 15{28, O
tober 2001.

[6℄ Y. Ren and J. B. Dugan, \Optimal Design of Reliable Systems Using Stati
 and Dynami
 Fault

Trees," IEEE Transa
tions on Reliability, vol. 47, pp. 234{244, De
ember 1998.

[7℄ L. Lamport, R. Shostak, and M. Pease, \The Byzantine Generals Problem," ACM Transa
tions

on Programming Languages and Systems, vol. 4, pp. 382{401, July 1982.

[8℄ P. Thambidurai and Y.-K. Park, \Intera
tive Consisten
y with Multiple Failure Modes," in IEEE

7th Symposium on Reliable Distributed Systems, (Columbus, Ohio), pp. 93{100, O
tober 1988.

[9℄ D. Malkhi and M. Reiter, \Byzantine Quorum Systems," in 29th ACM Symposium on Theory

of Computing, pp. 569{578, may 1997.

[10℄ F. Junqueira, K. Marzullo, and G. Voelker, \Coping with Dependent Pro
ess Failures,"

te
h. rep., UCSD, La Jolla, CA, De
ember 2001. http://www.
s.u
sd.edu/users/
avio/

Do
s/JuMaVo2001.ps.

[11℄ F. Junqueira and K. Marzullo, \Lower Bound on the Number of Rounds for Syn
hronous Con-

sensus with Dependent Pro
ess Failures," te
h. rep., UCSD, La Jolla, CA, September 2002.

http://www.
s.u
sd.edu/users/
avio/Do
s/lb.ps.

[12℄ F. Junqueira and K. Marzullo, \Consensus for Dependent Pro
ess Failures," te
h. rep., UCSD,

La Jolla, CA, September 2002. http://www.
s.u
sd.edu/users/
avio/Do
s/Gen.ps.

[13℄ H. Attiya and J. Wel
h, Distributed Computing: Fundamentals, Simulations, and Advan
ed Top-

i
s. M
Graw-Hill, 1998.

[14℄ D. Dolev, C. Dwork, and L. Sto
kmeyer, \On the Minimal Syn
hronism Needed for Distributed

Consensus," Journal of the ACM, vol. 1, pp. 77{97, January 1987.

24

[15℄ B. Charron-Bost, R. Guerraoui, and A. S
hiper, \Syn
hronous System and Perfe
t Failure Dete
-

tor: solvability and eÆ
ien
y issues," in IEEE International Conferen
e on Dependable Systems

and Networks (DSN'00), (New York, NY), pp. 523{532, June 2000.

[16℄ A. Doudou and A. S
hiper, \Muteness Dete
tors for Consensus with Byzantine Pro
esses," in

Pro
eedings of the 17th ACM Symposium on Prin
iple of Distributed Computing, (Puerto Val-

larta, Mexi
o), p. 315, July 1998. (Brief Announ
ement).

[17℄ K. Kihlstrom, L. Moser, and P. M. Melliar-Smith, \Solving Consensus in a Byzantine Environ-

ment using an Unreliable Failure Dete
tor," in Pro
eedings of the International Conferen
e on

Prin
iples of Distributed Systems (OPODIS'97), (Chantilly, Fran
e), pp. 61{76, De
ember 1997.

[18℄ D. Malkhi and M. Reiter, \Unreliable Intrusion Dete
tion in Distributed Computations," in

Pro
eedings of the 10th Computer Se
urity Foundations Workshop (CSFW97) , (Ro
kport, MA),

pp. 116{124, June 1997.

[19℄ L. Lamport and M. Fis
her, \Byzantine Generals and Transa
tion Commit Proto
ols," te
h.

rep., SRI International, April 1982.

[20℄ B. Charron-Bost and A. S
hiper, \Uniform Consensus is Harder Than Consensus," te
h. rep.,

�

E
ole Polyte
hnique F�ed�erale de Lausanne, Switzerland, May 2000.

[21℄ D. Dolev, R. Reis
huk, and H. R. Strong, \Early Stopping in Byzantine Agreement," Journal of

the ACM, vol. 37, pp. 720{741, O
tober 1990.

[22℄ D. Skeen, \Determining the Last Pro
ess to Fail," ACM Transa
tions on Computer Systems,

vol. 3, pp. 15{30, February 1985.

[23℄ R. Guerraoui and A. S
hiper, \Consensus Servi
e: A Modular Approa
h for Building Fault-

tolerant Agreement Proto
ols in Distributed Systems," in 26th International Symposium on

Fault-Tolerant Computing (FTCS-26), (Sendai, Japan), pp. 168{177, June 1996.

[24℄ L. Alvisi, P. Martin, and M. Dahlin, \Minimal Byzantine Storage," in 16th International Sym-

posium on Distributed Computing (DISC 2002), (Toulouse, Fran
e), O
tober 2002.

[25℄ M. Pease, R. Shostak, , and L. Lamport, \Rea
hing Agreement in the Presen
e of Faults,"

Journal of the ACM, vol. 27, pp. pp. 228{234, April 1980.

25

