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RESEARCH Open Access

Manufacture of IRDye800CW-coupled Fe3O4
nanoparticles and their applications in cell
labeling and in vivo imaging
Yong Hou1,2†, Yingxun Liu1†, Zhongping Chen1, Ning Gu1, Jinke Wang1,2*

Abstract

Background: In recent years, near-infrared fluorescence (NIRF)-labeled iron nanoparticles have been synthesized
and applied in a number of applications, including the labeling of human cells for monitoring the engraftment
process, imaging tumors, sensoring the in vivo molecular environment surrounding nanoparticles and tracing their
in vivo biodistribution. These studies demonstrate that NIRF-labeled iron nanoparticles provide an efficient probe
for cell labeling. Furthermore, the in vivo imaging studies show excellent performance of the NIR fluorophores.
However, there is a limited selection of NIRF-labeled iron nanoparticles with an optimal wavelength for imaging
around 800 nm, where tissue autofluorescence is minimal. Therefore, it is necessary to develop additional
alternative NIRF-labeled iron nanoparticles for application in this area.

Results: This study manufactured 12-nm DMSA-coated Fe3O4 nanoparticles labeled with a near-infrared
fluorophore, IRDye800CW (excitation/emission, 774/789 nm), to investigate their applicability in cell labeling and in
vivo imaging. The mouse macrophage RAW264.7 was labeled with IRDye800CW-labeled Fe3O4 nanoparticles at
concentrations of 20, 30, 40, 50, 60, 80 and 100 μg/ml for 24 h. The results revealed that the cells were efficiently
labeled by the nanoparticles, without any significant effect on cell viability. The nanoparticles were injected into
the mouse via the tail vein, at dosages of 2 or 5 mg/kg body weight, and the mouse was discontinuously imaged
for 24 h. The results demonstrated that the nanoparticles gradually accumulated in liver and kidney regions
following injection, reaching maximum concentrations at 6 h post-injection, following which they were gradually
removed from these regions. After tracing the nanoparticles throughout the body it was revealed that they mainly
distributed in three organs, the liver, spleen and kidney. Real-time live-body imaging effectively reported the
dynamic process of the biodistribution and clearance of the nanoparticles in vivo.

Conclusion: IRDye800CW-labeled Fe3O4 nanoparticles provide an effective probe for cell-labeling and in vivo
imaging.

Background
In the past decade, the synthesis of iron-based magnetic
nanoparticles has rapidly developed for fundamental
biomedical applications, including bioseparation [1,2],
MRI contrast enhancement [3,4], hyperthermia [5,6],
and drug delivery [7,8]. For example, the Fe3O4 nano-
particle has attracted great attentions for its potential
theranostic applications [9-12]. As iron nanoparticles are

administered to living subjects in most of their clinical
applications, their in vivo biodistribution, clearance and
biocompatibility must be determined for safe clinical
usage. As such, in vivo studies of iron nanoparticles
have made great progress in recent years.
In vivo studies of iron nanoparticles have mainly been

performed using magnetic resonance imaging (MRI)
[13-18]. MRI is the most widely used technique for ima-
ging magnetic nanoparticles in small animals and
humans. A major advantage of MRI is that it can be
used to perform real-time imaging of the dynamic bio-
distribution and clearance of magnetic nanoparticles in
vivo. However, MRI is still prohibitive to the common
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research laboratory. Therefore, fluorescence imaging
techniques have been developed and applied in studies
of magnetic nanoparticles. Iron nanoparticles have been
labeled with fluorophores, such as FITC [19-21], rhoda-
mine B [22,23] and rhodamine 6G [18], resulting in the
generation of bifunctional labeled nanoparticles, having
both MRI and fluorescence imaging functions [24,25].
Magnetic nanoparticles labeled with these conventional
fluorophores (350-700 nm absorbing) have often been
used to investigate the intracellular distribution of mag-
netic nanoparticles in cells [17,18,26]; however, these
nanoparticles cannot be applied to in vivo imaging as
the autofluorescence of tissues produce high background
under excitation wavelengths less than 700 nm.
In recent years, near-infrared fluorescence (NIRF)

imaging technology has been developed and progres-
sively used to obtain biological functions of specific
targets in vitro and in small animals [27-29]. NIR
fluorophores work in the spectrum of 700 to 900 nm,
which has a low absorption by tissue chromophores
[30]. Therefore, NIRF imaging has minimal back-
ground interference. NIR fluorophores also have wide
dynamic range and sensitivity, allowing NIRF imaging
to obtain detectable signal intensity through several
centimeters of tissue [31-33]. Based on these features,
NIRF imaging has already been used to label nanopar-
ticles and study their biodistribution, clearance and
biocompatibility for in vivo biomedical applications. In
a recent study, silica nanoparticles were labeled with
DY776 and applied for in vivo bioimaging, biodistribu-
tion, clearance and toxicity analyses [34]. Furthermore,
indocyanine green (ICG)-labeled calcium phosphate
nanoparticles have been applied for imaging human
breast cancer in vivo [35].
NIRF imaging has also been applied for the labeling of

iron nanoparticles. Maxwell et al., used dextran-coated
iron oxide nanoparticles (Feridex), covalently modified
with Alexa Fluor 750, to label human hepatic stellate
cells to monitor the engraftment process in vivo [36].
Furthermore, VivoTag 680-conjugated iron oxide parti-
cles have been intravenously injected into mice for ima-
ging tumors [37]. Iron nanoparticles, labeled with Cy5.5
(excitation/emission (ex/em), 660/710 nm), have also
been used as a MR contrast agent (CLIO) for sensoring
the in vivo molecular environment surrounding the
nanoparticles and tracing the in vivo biodistribution of
CLIO in liver, spleen and kidneys [38]. Obviously, due
to the excellent in vivo imaging performance of the NIR
fluorophores, the NIRF-labeled iron nanoparticles pro-
vide a fine probe for the labeling of biomolecules or
cells and in vivo imaging [39-42]. However, there is still
a limited selection of available iron nanoparticles labeled
with NIRF dyes with an optimal wavelength for imaging
in the region of 800 nm, where tissue autofluorescence

is minimal. Therefore, it is necessary to develop addi-
tional alternative NIRF-labeled iron nanoparticles in this
area.
This study manufactured water-soluble 12-nm

Fe3O4 nanoparticles labeled with a new NIRF dye,
IRDye800CW (Li-Cor Biosciences), which absorb and
emit in higher wavelength light (ex/em, 774/789 nm),
and investigated their applicability in cell labeling and
in vivo imaging.

Results and discussions
Preparation of IRDy800CW-MNPs
M-2, 3-dimercaptosuccinic acid (DMSA) has often been
used as a coating on nanoparticles to improve their
water solubility [43-46]. DMSA-coated nanoparticles
have abundant carboxyls on their surface [47-49], which
can be used to label nanoparticles with fluorophores
[23]. Using these features of DMSA, we fabricated novel
nanoparticles by firstly creating water-soluble DMSA-
coated Fe3O4 nanoparticles (MNPs), which were then
reacted with ethyl-3, (3-di-methylaminopropyl carbodii-
mide) hydrochloride (EDC) to activate the surface car-
boxyl groups, following which we covalently crosslinked
the NIRF dye, IRDy800CW, to the surface of the MNPs.
The monodispersibility and size uniformity of MNPs
and the IRDy800CW-labeled Fe3O4 nanoparticles
(IRDy800CW-MNPs) in their prepared water solution
were analyzed by TEM. The results demonstrated that
both nanoparticles had fine monodispersibility (Figure
1A and 1B). The average size of the nanoparticles was
11.0 ± 1.25 nm in diameter.
The labeling effect of MNPs was evaluated by detect-

ing the NIRF signal of the IRDy800CW-MNPs. In com-
parison with unlabeled MNPs, the IRDy800CW-MNPs
had an intense NIRF signal (Figure 1C). The excitation
and emission profiles indicated a peak excitation/emis-
sion wavelength of the IRDye800CW-MNPs at 775/788
nm. The Stokes shift for the IRDye800CW-MNPs was
13 nm (Figure 1D). The covalent linkage between
IRDy800CW and the MNPs was confirmed by a heating
experiment (see Methods), in which the IRDy800CW-
MNPs retained the NIRF signal after heat treatment
(Figure 1C). If the IRDy800CW was nonspecifically
absorbed on the surface of MNPs, the heating treatment
would destroy this, resulting in the NIRF signal being
found in the supernatant. This result accords with the
molecular mechanism that EDC is a carboxyl and
amine-reactive cross-linker, which creates an amide
bond between carboxyl and amino groups [50].
In this study, the DMSA coating was important for

the water solubility and NIRF labeling of the MNPs.
Normally, the uncoated iron oxide nanoparticle has a
very low solubility due to its hydrophobic surface [51,52].
The DMSA coating makes the surface hydrophilic and
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dispersible in water solutions [47-49,53-59]. Furthermore,
this coating can also improve the biocompatability of iron
oxide nanoparticles. In a recent study, DMSA-coated
Fe2O3 nanoparticles were shown to have a low cytotoxi-
city [57], and have been used to label a variety of mam-
malian cells [47-49,55]. Conversely, DMSA-coated iron
nanoparticles have abundant carboxyl groups on their
surface, which is useful for the covalent labeling of nano-
particles by fluorescent dyes [23].
In this study, MNPs were labeled with a newly devel-

oped NIRF dye, IRDye800CW, which has several advan-
tages. Firstly, IRDye800CW is a reactive dye [60], which
can be easily conjugated to MNPs. This labeling
approach can be generalized to other DMSA-coated
nanoparticles. Secondly, the excitation and emission of
IRDye800CW are in the spectral region where tissue
absorption, autofluorescence, and scattering are minimal

(800 nm), allowing for the highest signal-to-noise ratio
to be achieved in tissue imaging with this dye. For
example, IRDye800 absorbs and emits at a higher wave-
length light (ex/em, 774/804 nm) than Cy5 (ex/em, 646/
664 nm) and therefore produced images with less back-
ground resulting from tissue autofluorescence [61]. A
comparison of the in vivo fluorescent imaging perfor-
mance of the epidermal growth factor (EGF)-conjugated
Cy5.5 (ex/em, 660/710 nm) and IRDye800CW (ex/em,
785/830 nm) revealed that the EGF-IRDye800CW had a
significantly reduced background, with an enhanced the
tumor-to-background ratio (TBR) in comparison to
EGF-Cy5.5 [62]. Thirdly, this dye is highly water-soluble
and shows very low nonspecific binding to cellular com-
ponents, while yielding a very high signal [60,63].
Fourthly, the animal toxicity studies revealed that a
single intravenous administration of IRDye800CW

Figure 1 Characterization of IRDy800CW-MNPs. (A) TEM image of MNPs. (B) TEM image of IRDy800CW-MNPs. (C) NIRF signal of nanoparticles.
(D) Fluorescent spectrum of the nanoparticles. 1: IRDy800CW-MNPs; 2: MNPs. 3-4: The resuspended precipitate and supernatant of the
IRDy800CW-MNPs solution after heat treatment and centrifugation. Abs: absorbance. Em: emission.
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carboxylate, at doses of 1, 5, and 20 mg/kg, produced no
pathological evidence of toxicity [60]. Furthermore, the
animal studies revealed that IRDye800CW and its conju-
gates were capable of fine in vivo imaging in small ani-
mal models, such as the mouse [63-67]. IRDye800CW is
also reported to be over 50 times brighter than ICG
[68]. Based on these features, it is worth developing
IRDye800CW-labeled iron nanoparticles as in vivo ima-
ging probes with high signal-to-noise ratios.

Cell labeling with IRDy800CW-MNPs
Cell labeling with iron nanoparticles is very important
for biomedical applications [36]. Therefore, this study
firstly investigated the applicability of IRDy800CW-
MNPs in this field. The macrophage is commonly used
as a cellular model to evaluate intravascularly adminis-
tered agents, especially as it phagocytoses nanoparticles
[10]. Therefore, this study employed the mouse macro-
phage RAW264.7 cell line to perform a cell-labeling
assay. The cells were labeled with nanoparticles at var-
ious concentrations for 24 h. The cell labeling effect was
evaluated by staining cells with Prussian blue and mea-
suring the iron-loading of cells. The Prussian blue stain-
ing showed that the cells were effectively labeled by the
MNPs and the IRDy800CW-MNPs (Figure 2). The blue-
stained agglomerates of the iron nanoparticles in cells
increased with the dose of nanoparticles in the cell cul-
ture media (Figure 2), which was in accordance with the
results of the quantitative measurements of the relative
iron-loading of cells using colorimetric and NIRF assays
(Figure 3). In comparison, the NIRF assay reported the
cellular iron-loading more sensitively than the normal
colorimetric assay [69-72].
The biocompatability of cells to the nanoparticles is

also important to its applications. Therefore, we used an
MTT assay to determine cell viability following treat-
ment with the nanoparticles. The results revealed that
the cell viability of RAW264.7 was not significantly (p >
0.05) affected by the various doses of both MNPs and
IRDy800CW-MNPs (Figure 4). In comparison with
MNPs, the IRDy800CW-labeling did not bring toxicity
to the MNPs. These results demonstrate that the
IRDy800CW-MNPs have increased biocompatability. A
dose of 30 μg/ml of the nanoparticles used in this MTT
assay corresponds to the optimal blood concentration of
a nanoparticle imaging agent, Combidexe, which has
been intravascularly administered in humans at 2.6 mg
Fe/kg body weight [10,73].

In vivo imaging with IRDy800CW-MNPs
Animal studies are indispensable to the clinical applica-
tions of nanoparticles. The biodistribution, metabolism,
clearance and toxicity of nanoparticles must be exam-
ined in animal studies prior to their clinical application.

In particular, these biological processes should be inves-
tigated in a dynamic and real-time form with living ani-
mals. In recent years, NIRF labeling has played an
increasingly important role in in vivo studies [28-33].
Therefore, this study investigated the applicability of the
IRDy800CW-MNPs in this field.
The in vivo studies were performed in a mouse model

and employed a newly developed optical imaging instru-
ment dedicated to small animal imaging, the Pearl
Imager (LI-COR Biosciences) [74]. To obtain fine
imaging effects, a naked mouse was used in this study.
The mouse was first imaged prior to the administration
of the nanoparticles to determine the value of the
self-fluorescence background. Following this, the mouse
was intravascularly administered IRDy800CW-MNPs at
doses of 2 or 5 mg/kg body weight. The mouse was
then discontinuously imaged at different time points.
The real-time imaging of the mouse showed that
the NIRF signal in the liver region and kidneys gradually
intensified after injection of nanoparticles, reach-
ing maximum levels at 6 h (Figure 5, 6 and 7),
thereby demonstrating a gradual enrichment of the
IRDy800CW-MNPs in these regions. Following this, the
NIRF signal in these regions gradually decreased, reveal-
ing a gradual clearance of the IRDy800CW-MNPs.
These results demonstrate that the whole dynamic pro-
cess of biodistribution and clearance of MNPs in the
mouse model could be monitored and tracked by the
IRDy800CW labels and the small animal NIRF-imaging
system, Pearl Image.
NIRF imaging of the mouse also clearly revealed that

the intensity of signal in the liver region and kidneys
was closely related to the dose of the intravenously
injected IRDy800CW-MNPs. In comparison, the inten-
sity of the NIRF signals in the liver and kidneys of the
mouse injected with 2 mg/kg nanoparticles was much
higher than that of the mouse injected with 5 mg/kg
nanoparticles (Figure 5 and 6). This signal/dose relation-
ship may be used to investigate the metabolism effi-
ciency of the different doses of nanoparticles.
To clarify the exact biodistribution of nanoparticles in

different organs, the mouse was sacrificed after imaging
for 5 days, and the organs, including the heart, lungs,
liver, spleen and kidneys were isolated and their NIRF
signal was measured. The results revealed that the
IRDy800CW-MNPs mainly distributed in the liver,
spleen and kidneys (Figure 8), with minimal distribution
in the heart and lungs. This agrees with the results of
whole body imaging. It can be found that the intense
NIRF signal in the liver region, as measured by live-
body imaging, actually comes from two organs, the liver
and spleen. The liver is the largest organ in the body of
a mouse and the spleen is far smaller, but the spleen is
closely attached to the liver; therefore, it cannot be

Hou et al. Journal of Nanobiotechnology 2010, 8:25
http://www.jnanobiotechnology.com/content/8/1/25

Page 4 of 14



discerned from the liver in the live-body imaging. How-
ever, the organ imaging clearly revealed its importance
in evaluating the biodistribution of the nanoparticles.
Taken together, the individual NIRF imaging of organs
is an important supplement to live-body imaging, as it
revealed that the in vivo biodistribution and clearance of
the MNPs mainly related to these three organs.

In previous studies, it was found that the magnetic
nanoparticles were mainly distributed in the liver and
spleen [13,17,18,26,75-77]. This pattern of biodistribu-
tion is independent of the routes of administration, such
as intravenous injection [13-15,18,53,75,78,79], intraperi-
toneal injection [26], intratracheally instillation [77], and
inhalation [17]. These results are in agreement with our

Figure 2 Prussian blue staining of cells. The agglomerates of Fe3O4 nanoparticles are stained in blue.
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findings herein. The common highest distribution of
various iron magnetic nanoparticles in liver and spleen
closely relates to the reticulo-endothelial system (RES),
also known as the mononuclear phagocytic system
(MPS). The RES contains abundant phagocytic cells
which can remove particulate materials from blood [80].
Therefore, the RES plays an important role in the bio-
distribution and clearance of nanoparticles in vivo
[26,76,81,82]. Furthermore, the liver and spleen are the
major RES organs in body, with Kupffer cells and
macrophages being their main RES members, respec-
tively. It was reported that over 75% of the magnetic
nanoparticles were promptly sequestered by the RES,
particularly by the liver [83]. It was also reported that
after 6 h following administration, approximately 55%
iron nanoparticles were enriched in the liver by the RES
[76]. TEM observation of the liver and spleen revealed
that Kupffer cells contained an increasing number of

progressively larger phagolysosomes containing magnetic
nanoparticles 7 days after injection, and the macro-
phages in the spleen contained magnetic nanoparticles
in lysosomes [79]. It was also reported that the USPIO
accumulated in macrophages of the liver, spleen, lymph
nodes and bone marrow [14,73,84,85].
It was also reported that the magnetic nanoparticles

were able to distribute in the kidneys, lungs, heart,
brain, testes, uterus, ovary, bladder, thyroid, pancreas,
and bone marrow [14]. However, the amount of nano-
particles distributed in these organs or tissues was far
less than that in liver and spleen. This study revealed
that the IRDy800CW-MNPs were also enriched in the
kidneys. This may be related to the biological function
of the kidneys, which is an important emunctory con-
taining large a volume of blood undergoing filtration.
The large difference in the NIRF intensity between the
kidneys of mice injected with different doses of the

Figure 3 Measurement of the relative iron-loading of cells. (A) NIRF signal of cells labeled with IRDy800CW-MNPs at doses of 0, 20, 30, 40,
50, 60, 80 and 100 μg/ml (Column 1-8). Each dose contained 6 repeats (Row 1-6). Cells were washed with PBS before imaging. (B) Measurement
of the relative iron-loading of cells (A) with colorimetric and NIRF approaches. Row 1-3: NIRF signals; Row 4-6: Colorimetric signals. (C) The
intensity of colorimetric and NIRF signals (B). (D) The normalized intensity of colorimetric and NIRF signals (C). The signal of the nanoparticle-
labeled cells was normalized to that of the negative control cell. The error bars represent mean and standard deviations of experiments
performed in triplicate.
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IRDy800CW-MNPs (Figure 8) also demonstrated that
the kidneys may play an important role in the biodistri-
bution and clearance of iron nanoparticles.
The dose of the IRDy800CW-MNPs used in the in

vivo imaging in this study is similar to those reported by
other studies. The magnetic nanoparticles were reported
to be intravascularly administered to mouse or rat at
doses of 1 [15], 2 [15,83], 3 [86], 5 [15,87], and 10 mg
Fe/kg body weight [76]. It was also reported that an
intravascular nanoparticle imaging agent, Combidexe,
was injected at 2.6 mg of Fe/kg body weight to humans
for MRI [73].
This study did not measure physiological indexes and

therefore cannot comment on any possible or potential
effects of the IRDy800CW-MNPs to the health of
mouse. However, careful observation of the mouse’s
behavior over the five days of in vivo imaging revealed
that injection of the nanoparticles did not result in any
observed adverse effects on activity, eating or drinking
of the mouse. This implies that the IRDy800CW-MNPs
may have better biocompatability to mice, which is the
key small animal employed for the biomedical research
of iron nanoparticles.

Conclusion
This study manufactured water-soluble 12-nm DMSA-
coated Fe3O4 nanoparticle labeled with a NIRF dye,
IRDye800CW, and investigated its applicability in cell
labeling and living body imaging. The results demon-
strate that the IRDye800CW-labeled Fe3O4 nanoparti-
cles effectively labeled a RAW264.7 cell, but did not
significantly affect the cell viability. The animal studies
demonstrate that the IRDye800CW-labeled Fe3O4 nano-
particles could sensitively and in real-time monitor the
whole dynamic process of the biodistribution and clear-
ance of the Fe3O4 nanoparticles in mouse. Therefore,
IRDye800CW-labeled Fe3O4 nanoparticles provide a
new selection of available iron nanoparticles labeled
with NIRF dyes with an optimal wavelength for imaging
centered at 800 nm, which can be applied to in vitro
cell labeling and in vivo imaging.

Methods
Cells, animals and chemicals
The RAW264.7 cell line was purchased from the China
Center for Type Culture Collection, Chinese Academy
of Sciences (Shanghai, China). DMEM cell culture

Figure 4 Measurement of cell viability. (A) NIRF signals of cells treated with MNPs (Column 1-3 and 10-12) and IRDy800CW-MNPs (Column
4-9) at doses of 0, 20, 30, 40, 50, 60, 80 and 100 μg/ml (From row 1-8) for 24 h. (B) NIRF signals of cells (A) after washing three times with PBS.
(C) Quantitative measurement of cell viability by MTT assay. The error bars represent mean and standard deviations of experiments performed
with 6 repeats.
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medium was purchased from Gibco, Invitrogen (CA,
USA). The naked mouse (CByJ-Cg-Foxn1nu/J) was pur-
chased from Model Animal Research Center of Nanjing,
Nanjing University (Nanjing, China). The streptavidin-
IRDye 800CW was purchased from Li-Cor Biosciences
(Lincoln, NE, USA). The main chemicals, including
EDC, HEPES, glutaraldehyde and paraformaldehyde,
were purchased from Sigma Aldrich (MO, USA). Other
chemicals, including potassium peroxydisulfate
(K2S2O8), potassium ferrocyanide (KSCN), iron (III)
chloride hexahydrate (FeCl3), and hydrochloric acid,
were purchased from Sinopharm Chemical Reagent Co.
Ltd (Shanghai, China).

Preparation of IRDy800CW-MNPs
The water-soluble Fe3O4 nanoparticles were synthe-
sized under the following conditions. Firstly, 2.7 g of
FeCl3•6H2O was dissolved in 50 ml of methanol, fol-
lowed by the addition of 8.5 ml oleic acid. Then, a
solution with 1.2 g of NaOH in 100 ml methanol was

dropwise added into the solution under magnetic stir-
ring conditions. The observed brown precipitate was
washed with methanol 4-5 times and dried under
vacuum overnight to remove all solvents. The obtained
waxy iron-oleate was dissolved in 1-octadecanol at
70°C and reserved as a stable stock solution at room
temperature. One milliliter of the stock solution (0.39
mM) was mixed with 4 ml 1-octadecanol and 0.5 ml
oleic acid. The reaction mixture was heated to 320°C
at a constant heating rate of 3.3°C/min, in a nitrogen
atmosphere, and maintained at that temperature for
30 min. The resulting solution was cooled and precipi-
tated by an addition of excess ethanol and centrifuga-
tion. The precipitate containing Fe3O4 nanoparticles
was washed 4-5 times with ethanol. To prepare water-
soluble Fe3O4 nanoparticles, 100 mg of above Fe3O4

nanoparticles was dissolved in 10 ml chloroform, fol-
lowing which 50 μl triethylamine and 10 ml dimethyl
sulfoxide (DMSO) containing 50 mg dispersed DMSA
was added. The resulting solution was vortexed at

Figure 5 NIRF imaging of a mouse administered IRDye800CW-MNPs at a dose of 2 mg/kg body weight. The images are displayed in
pseudo-color mode.
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60°C for 12 h until a black precipitate was observed.
The solution was subsequently centrifuged and the
precipitate was carefully washed twice with ethanol
and dissolved in 100 ml ethanol. To introduce more
DMSA molecules onto the surface of Fe3O4 nanoparti-
cles, 50 μl triethylamine was added to the above etha-
nol solution containing Fe3O4 nanoparticles, followed
by the addition of a solution with 50 mg DMSA in 10
ml DMSO. The solution was again vortexed at 60°C
for 12 h. The reaction solution was then centrifuged

and the precipitate washed with ethanol 4-5 times
carefully. The final MNPs were collected using a per-
manent magnet and transferred into 10 ml water.
The MNPs were labeled with NIR fluorophores by the

following procedure. Six ml of nanoparticles (0.844 mg/
ml Fe) were diluted into 24 ml and sonicated for 20
min. Following this, 10 mg EDC was added and soni-
cated for 40 min to activate the carboxyl groups on the
surface of the nanoparticles. The solution was centri-
fuged at 12000 rpm for 10 min and the precipitate was

Figure 6 NIRF imaging of a mouse administered the IRDy800CW-MNPs at a dose of 5 mg/kg body weight. The images are displayed in
pseudo-color mode.
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resuspended in sterile deionized water. Then, 15 μl of
Streptavidin-IRDye800CW was added to the resus-
pended nanoparticles and the nanoparticle solution was
left on a rotator overnight. The nanoparticle solution
was centrifuged at 12000 rpm for 10 min and the preci-
pitate was washed 3 times with deionized water. Finally,
the IRDye800CW-MNPs were resuspended in sterile
deionized water.
The monodispersibility of MNPs and the IRDye800CW-

MNPs was evaluated by TEM. Each of nanoparticles in

the 30 μg/ml sample was added to a copper grid and
observed with a JEM-2100 electron microscope (JEOL,
Japan). The size of the nanoparticles was measured with
Image Origin 6.1. The NIRF signal of the nanoparticles
was detected with Odyssey Infrared Imaging System
(Li-Cor). The fluorescent spectrum of the nanoparticles
was measured using a Hitachi F-7000 Fluorescence
Spectrophotometer. To verify that the IRDy800CW was
covalently crosslinked to the nanoparticles and not by
nonspecific absorption, the solution of NIRF-labeled

Figure 7 NIRF imaging of a mouse administered the IRDye800CW-MNPs at a dose of 5 mg/kg body weight. The images are displayed in
an overlay mode of light channel image and NIRF channel image.
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nanoparticles was heated at 60°C for 15 min, and centri-
fuged to precipitate the nanoparticles. The supernatant
and nanoparticles were collected separately, and the nano-
particles were resuspended in deionized water. The super-
natants and the resuspended nanoparticles were detected
with Odyssey Infrared Imaging System.

Cell labeling with IRDy800CW-MNPs
To investigate the labeling of cells with nanoparticles,
RAW264.7 cells were seeded into cell culture plates and
cultured in DMEM supplemented with 10% fetal calf
serum, penicillin (100 units/ml), streptomycin (100 μg/
ml) and 10 mM HEPES in a humidified 5% CO2 atmo-
sphere at 37°C for 24 h. Then, the culture medium was
discarded and the cells were cultured with fresh media
containing nanoparticles at different doses for 24 h.
The labeling effects were evaluated by staining cells

with Prussian blue and measurement of the iron-loading
of cells. Prussian blue staining, which stains iron nano-
particles blue, was performed as previously described
[47-49,54-57]. The stained cells were observed with a
light microscope (IX51, Olympus) and photographed
using a Microscope Digital Camera (DP71, Olympus).
The iron-loading of cells was measured with a common
colorimetric assay, as previously described [69-72]. The
iron-loading of the cells labeled by the IRDy800CW-
MNPs was also evaluated by the NIRF signal. To mea-
sure the NIRF signal, cells were washed with PBS and
lysed using SDS lysis buffer. The lysate was imaged and
NIRF signal intensity was analyzed using the Odyssey
Infrared Imaging System (Li-Cor).

The effect of labeling on the cell proliferation was
evaluated by determining cell viability, which was
assessed using a MTT assay, as reported elsewhere
[82-84]. The cell viability of the nanoparticle-untreated
cells (blank control) was defined as 100%, with the
nanoparticle-treated cells being calculated as percentage
of the control.

In vivo imaging with IRDy800CW-MNPs
Before injection of the IRDy800CW-MNPs, the mouse
was imaged on a newly-developed infrared fluorescence
imaging system, Pearl Image (Li-Cor). Subsequently, the
mouse was anesthetized by ether inhalation and the
IRDy800CW-MNPs were administered to the mouse by
intravascular injection via the tail vein, at doses of 2 or
5 mg Fe/kg body weight. The mouse was housed under
normal conditions and discontinuously imaged with
Pearl Image at various time points. Just before each
image acquisition, the mouse was anesthetized by ether
inhalation. All images were captured at the same excit-
ing intensity. After housing and imaging for 5 days fol-
lowing the injection of nanoparticles, the mouse was
sacrificed by an overdose of anesthesia and the organs,
including the heart, lungs, liver, spleen and kidneys were
immediately collected. The organs were washed with
PBS and imaged with a normal camera and Odyssey
Infrared Imaging System (Li-Cor).
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