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Abstract

This paper explores the minimal knowledge a listener needs to
compensate for phonological assimilation, one kind of phono-
logical process responsible for variation in speech. We used
standard automatic speech recognition models to represent En-
glish and French listeners. We found that, first, some types
of models show language-specific assimilation patterns com-
parable to those shown by human listeners. Like English lis-
teners, when trained on English, the models compensate more
for place assimilation than for voicing assimilation, and like
French listeners, the models show the opposite pattern when
trained on French. Second, the models which best predict the
human pattern use contextually-sensitive acoustic models and
language models, which capture allophony and phonotactics,
but do not make use of higher-level knowledge of a lexicon
or word boundaries. Finally, some models overcompensate for
assimilation, showing a (super-human) ability to recover the
underlying form even in the absence of the triggering phono-
logical context, pointing to an incomplete neutralization not
exploited by human listeners.
Keywords: automatic speech recognition; computational
modeling; phonological assimilation; speech perception

Introduction
This paper aims to understand phonological processes in
speech perception through computational modelling. It in-
vestigates how much linguistic knowledge Automatic Speech
Recognition (ASR) systems can capture, focusing on the
case of language-specific phonological assimilation, one
widespread type of phonological process. For example, in
English green beans, the n in green tends to be pronounced
m, with the place of articulation assimilated to that of the fol-
lowing b (labial). While English-speaking listeners perceptu-
ally compensate for this assimilation, perceiving the m as n,
listeners whose native language is French, which does not ex-
hibit place assimilation, do not show this behaviour. We are
interested in whether ASR models compensate for phonolog-
ical assimilation, and if so, what kind of knowledge they use
to do so.

Phonological processes, defined as a predictable sound
change when the context meets certain conditions, consti-
tute a major source of variability in speech. Studies have
found that non-canonical variants constitute 27% to 75% of
instances for some sounds in conversational speech (e.g. Dil-
ley & Pitt, 2007). Indeed, while state-of-the-art ASR systems
reach near-perfect performance when given clear read speech,
they have a harder time when dealing with natural conversa-
tional speech. Humans, on the other hand, have no trouble

processing speech with extensive variability, suggesting that
they are able to perform some kind of ‘inverse phonology,’
mapping the variable realizations of speech sounds to their
underlying representations. This makes an interesting case
for cognitive modelling to explore what knowledge or ca-
pacity makes humans good at recognizing noisy speech sig-
nals. While many behavioral studies have investigated how
humans process spoken language at different levels—from
specific acoustic cues to understanding entire sentences—
important questions remain about how these different levels
of processing are integrated and interact with each other. For
example, it is hard to isolate one’s phonological knowledge,
as it is already acquired and can not be ‘undone.’ Com-
putational models allow for full control of the system, such
that one can manipulate specific components to see how each
change affects the final outcome, and hence quantitatively in-
vestigate the importance of the corresponding component in
human cognition. The results also inform us whether or not
machine learning models constructed for very specific tasks
(here, ASR) can nonetheless learn generalized knowledge to
represent human perception.

Theoretical Background
Consider the following example English and French utter-
ances:

(1.1) Viable Change (Eng): [...] it’s my ow[m] plan.
(1.2) Unviable Change (Eng): [...] it’s my ow[m] choice.
(1.2) No Change (Eng): [...] it’s my ow[n] life.
(2.1) Viable Change (Fr): ro[p] sale
(2.2) Unviable Change (Fr): ro[p] noire
(2.3) No Change (Fr): ro[b] rouge
In running speech, the [n] in own in an example like (1.1)

is often “assimilated” by the following [p] to [m], as [m] is
the labial equivalent of [n]. English listeners perceive an [n]
in (1.1) (when plan follows), but not in (1.2), where the as-
similation is not licensed. French listeners fail to show this
behavior, as French does not have this specific type of assim-
ilation. French does, however, have voicing assimilation: the
voiced [b] sound in robe sale is pronounced as ro[p] sale due
to assimilation to the following [s] sound, which is voiceless.
French listeners show a compensation effect in these cases,
while English listeners do not (Darcy et al., 2009). Several
hypotheses have been proposed to explain perceptual com-
pensation for assimilation.
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Lexical Compensation treats all variations as random
noise, which can be recovered using lexical or higher-order
context (e.g. Marslen-Wilson & Welsh, 1978; Samuel, 2001),
so own[m] is treated as noise which is to be recovered be-
cause ‘owm’ is not a possible word. This hypothesis predicts
that, in the absence of a lexicon, compensation for phono-
logical assimilation cannot happen. In this study, we explore
whether computational systems without any lexicon can ex-
hibit compensation for assimilation.

Phonetic Compensation accounts for the compensation
with a low-level phonetic mechanism. Gow (2003) and Gow
Im (2004) proposed that sounds that simultaneously encode
two places of articulation (like the [n/m] in own plan) are
parsed onto adjacent segmental positions, when the follow-
ing context explains one of the places of articulation. In this
case, the recovery of /n/ from [m] can be attributed to the
attraction of the labial aspects of the acoustics to the fol-
lowing labial segment. However, this is proposed to be a
language-independent process which does not account for the
language-specific compensation observed. In this study, we
train different models on two languages to observe whether
or not there is a language asymmetry in compensation for as-
similation. Moreover, as the Phonetic Compensation theory
claims that purely phonetic knowledge is sufficient for com-
pensation, we also test whether or not the following phono-
logical context (e.g. that /p/ follows) is needed. Lastly, we
investigate whether the models show any language-universal
effect, where a listener compensates for little bit of a non-
native assimilation pattern.

Language-Specific Phonological Inference treats com-
pensation as a language-specific mechanism that undoes the
effect of assimilation rules that apply during phonological
planning in production. Essentially, the listener uses knowl-
edge of production patterns to infer the underlying phoneme
that has been altered due to the assimilation context. Cru-
cially, this account relies on language specific experience
with the phonological rules or patterns affecting production
and on applying this knowledge ‘in reverse’ to compen-
sate for them in perception. Thereforem this theory pre-
dicts that the pattern of compensation depends on the lis-
tener’s language (Gaskell et al., 1995; Gaskell, 2003; Co-
enen et al., 2001; Gaskell & Marslen-Wilson, 1996, 1998),
which accounts for the observation in Darcy et al. (2009) that
French/English listeners fail to compensate for place/voicing
assimilation.

Note that, while these hypotheses offer different explana-
tions for compensation for assimilation, we do not build mod-
els to implement exactly these hypotheses. Instead, we use
the hypotheses as general guidelines for implementing mod-
els with different kinds of linguistic knowledge.

Computational models
Machine learning systems have made great progress in recent
years, so much so that they can compete with humans on cer-
tain tasks. Recent research has claimed that such systems that
have been constructed to optimize the performance of very

specific tasks can nonetheless be used as scientific models of
the brain (Jozwik et al., 2019, for vision; Linzen et al., 2016,
and others for NLP). Black Box NLP is a growing research
area (Linzen et al., 2016) devoted to comparing machine and
human processing of words and sentences. Relatively less
modeling work has been done in the area of speech process-
ing and phonology. Moreover, while previous research has
built models (TRACE, McClelland & Elman, 1986; Short-
list, Norris, 1994; Bayesian cognitive models, Norris & Mc-
Queen, 2008) to account of assimilation processes, none of
them are able to take raw speech as input. These models lack
a level mapping acoustics to individual sounds, and, more im-
portantly, are not directly comparable to human responses in
an experimental task. In order to fully model the process of
speech perception, it is important to have a model which takes
exactly the same input as human listeners.

Current study: simulation of Darcy et al. (2009)

We use on ASR models to replicate the study of Darcy et
al. (2009) of English place assimilation and French voicing
assimilation. In this study, listeners first heard a sentence pro-
duced by a female speaker, which could be one of the three
types shown in the examples above. They then heard the tar-
get word produced in isolation by a male speaker, which was
the citation form, without assimilation. After hearing both
stimuli, the listener decided whether the sentence contained
the word they heard later. The results reflect listeners’ ability
to identify the same words produced in different contexts (No
Change), detecting assimilation (Viable Change) and spotting
‘illegal’ variants (Unviable Change). A control test was also
done by asking a different set of participants to listen to target
words extracted from the stimuli sentences (later referred to
as cut-out words). Listeners successfully restored the origi-
nal phoneme for the viable change cases in carrier sentences,
but not in cut-out conditionswhere following context was not
available.

Note that all sentence stimuli in the unviable condition con-
tain non-words (e.g. owm), which were produced deliberately
by the speaker, with the purpose of creating a minimal pair in
the form of complete assimilation.

Methods
This paper uses exactly the same stimuli as in Darcy et al.
(2009) to compare human and machine behavior. In order
to investigate what types of information a listener needs to
compensate for assimilation, we use HMM-GMM models, a
traditional type of ASR model. We chose this type of model
as opposed to a state-of-the-art deep learning model for two
reasons: 1) unlike end-to-end deep learning ASR models,
HMM-GMM models have interpretable components, each
corresponding to different aspects of perception/recognition,
and one can hold some component stable while changing the
others, which is preferable given the purpose of the study;
2) they are easier to train with relatively good results. For
the purpose of the current study, we trained a set of models
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on English and French respectively to represent native listen-
ers. The acoustic model (AM) represents a listener’s acous-
tic knowledge, which maps acoustics to phones. Triphone
acoustic models are context dependent and thus can capture
allophony. The language model (LM) represents more gen-
eral knowledge of phonotactics, capturing the statistical dis-
tribution of phone sequences.

We compare different combinations of AMs and LMs of
various complexity to explore the source of compensation for
assimilation, that is, whether it is mostly due to the AM, LM
or depends on the combination of both. We predict that a
successful ASR model is likely to be a combination of good
AM and LM with contextual information. A very simple AM
or a very simple LM alone should not able to tackle the effects
of phonological assimilation (see below). We include simple
models as control conditions, to gauge the effects of more
sophisticated models.

Models as ideal listeners
We use different types of HMM-GMM models to represent
listeners with different kinds of knowledge of phonetics and
phonology. Specifically, a listener’s task is to infer the most
likely sequence of phones/words given the acoustics they
hear: P(q |X) in equation (1), where q stands for the sequence
of phones and X stands for the acoustics; q̂ is the sequence of
phones whose posterior probability given the observed acous-
tic vectors P(q |X) is maximal.

q̂ = argmax
q

P(q|X) (1)

The equation is further broken down according to Bayesian
inference to show how the acoustic model and language
model jointly determine the phone posteriors. As shown in
equation (2), P(X |q) is the likelihood of the acoustics given
the phone sequences, captured by the acoustic model (AM),
and P(q) is the prior corresponding to the probability of the
phone sequences, captured by the language model (LM).

q̂ = argmax
q

P(X |q)P(q) (2)

Note that, typically, an ASR system contains a word-level
LM—a model of probabilities of sequences of words—as,
in most cases, the model’s task is to transcribe speech to
words.We build LMs which model sequences of phones, in-
stead of words, in order to take account of the nonwords used
in the experiments: a LM over real words would assign zero
(or close to zero) probability to nonwords. Using a phone-
level LM avoids this issue. During training, we implemented
different versions of the acoustic model and language model
to represent hypothetical listeners with different knowledge.

Acoustic Model We trained three types of acoustic model
for mapping acoustic information to phones: 1) a monophone
AM, which categorizes phones into phonemes, irrespective
of the context; 2) a triphone AM, which models the phones
according to the neighbouring context: if phone m occurs in
two contexts a a and b b, then each context can be associated

with a different acoustic model;3) a triphone speaker-adapted
(triphone-SA) AM, which adapts to different speakers.

Language model Our phone-level language models are
based on n-grams, which model the distribution of n-phone
sequences. We trained four types of LMs: 1) a null (flat) LM,
where the probability of the next phone is same for all phones;
2) a unigram LM, where the probability equals the frequency
of individual phones; 3) a bigram LM, where the probabil-
ity of the next phone is conditioned on the previous phone;
4) a trigram LM, where the probability of the next phone is
conditioned on the previous two phones.

All training was done using Abkhazia (Schatz et al., 2016),
a Kaldi-based speech recognition package (Povey et al.,
2011). Training data were 46 hours in English from Lib-
rispeech for the English models and 36 hours in French from
the data used for the Zero Resource Speech Challenge 2017
(Dunbar et al., 2017). Input features were Mel Frequency
Cepstral Coefficients (MFCCs) with ∆ and ∆∆ extracted from
the audios, with window length of 25ms and step size of
10ms.

Procedure

After training all the models, we conducted the same experi-
ment as Darcy et al. (2009). Illustrated in Figure 1, the task
for the model is to decide whether or not the sentence pre-
sented contains the same target word as the token produced
in isolation by a different speaker. In particular, the model
receives the sentence stimuli and does decoding over the en-
tire sentence. The decoding process, illustrated in equation
(2), can be treated as a kind of speech perception, where the
model finds the best phone sequence to explain the acoustic
input. We extracted the frame-level phone posteriors, i.e., the
estimated posterior probability of each phone at each frame,
to represent the model’s ‘mental representation’ of perceived
sounds. The same decoding was done to the target word in
isolation.

After extracting the phone posteriors, we extracted the
frames corresponding to the target words in the sentences and
calculated the distances between the word in carrier sentence
and word in isolation. The acoustic difference between the
pairs was calculated using Dynamic Time Warping (DTW),
while the frame-wise distance for calculating DTW was Kull-
backLeibler (KL) divergence, with the isolated word as the
true distribution.In particular, KL divergence is a measure of
how one probability distribution is different from the other
reference distribution. In our case, it measures how phones
are predicted differently between the pair at each frame.
DTW, an algorithm for measuring the similarity between two
temporal sequences which may vary in length calculates the
average distance frame-level distances along a path that opti-
mally stretches the time axes to realign the two words. The
resulting distance is the difference between the pair, which
is used by the model to decide whether or not the two are
the same based on whether the distance is above or below a
threshold value.
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Figure 1: illustration of the pipeline
Threshold finding and optimization We used the mini-
mal pairs (i.e., words in no-change condition and unviable
condition) to find the threshold for deciding whether or not
two words are the same based on their acoustic distance (i.e.
DTW cost). The threshold was then used for viable cases for
checking whether the model is able to restore the assimilated
phone.

The threshold optimization steps are illustrated in Figure 1
(bottom). The distributions represent the acoustic distances
between a word w in carrier sentence and the same word w’
produced in isolation by another speaker.

The algorithm searches through the range defined by the
minimum distance and the maximum distance, and calculates
the false negatives and false positives if it were the threshold.
The threshold resulting in the smallest error is chosen. We
then use the chosen threshold to determine whether a pair of
phones is the same. As in the figure, distances to the left of
the threshold (red line) are considered same (compensated)
and distances to the right are different (uncompensated).

Evaluation: compensation index As in Darcy et al.
(2009), we adopt the same compensation index for measur-
ing the relative value of detection rate in viable condition as
a function of both other conditions. As shown in the function
below, the index is a ratio of “viable” to “no-change.” The
idea of using a ratio is to offset the perceptual biases or errors
in the “unviable” condition. If all changes are detected, the
index is 1; if none are detected, the index is 0.

Compensation index=
(detectionviable−detectionunviable)

(detectionno−change−detectionunviable)

Results
Experiment 1: Sentence-level decoding
Compensation indices for models with different combinations
of AM and LM are reported in Figure 2. For reference, hu-

Figure 2: Compensation indices, decoded in sentence con-
texts across several models (colored), and humans (black).

man performance reported in Darcy et al. (2009) is shown
in black. While humans display clear language-specific pat-
terns for compensation (negative slope for English; positive
slope for French), not all models are able to capture such ef-
fect. The models that best approximate human performance
are triphone AM with bigram/trigram LM and triphone-SA
with unigram or trigram. In particular, monophone AMs (red
lines) in general fail to show the language-specific pattern,
no matter which LM they pair with. They consistently com-
pensate more for place assimilation than voice assimilation
(i.e., higher Compensation Index), regardless of language.
Triphone(-SA) AMs, however, can display to some extent the
language-specific effect. For example, triphone AM with bi-
gram LM shows the language-specific asymmetry: place >
voice / place < voice for English/ French.

On the other hand, LMs (shown in rows), which repre-
sent prior knowledge of phone sequences/phonotactics, also
play an important part in perceiving assimilated phones. A
comparison across four types of LMs shows that one indeed
needs some knowledge of phone sequences, as the flat (null)
LM fails to predict the correct assimilation pattern. Other
LMs all show the qualitative pattern of compensation for
assimiation—different slope directions for English/French—
when combined with most AMs.

Having shown that certain ASR models – those with a min-
imally triphone AM and a non-flat LM – do predict language-
specific assimilation, we further investigate the source of
compensation: how much information is in the acoustic sig-
nal? Does one need phonetic and allophonic knowledge as
well as phonotactics? Can one compensate for assimilation
even without the following context?
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Figure 3: Compensation indices, based on raw acoustics of
cut-out words (MFCCs, purple) and humans (black).

Experiment 2: Raw acoustics
In order to examine the information from raw acoustics (i.e.
without using a model), we calculated the DTW distance on
the MFCCs between the target words in carrier sentences and
words in isolation. Note that as here the frame-level features
are MFCCs, rather than phone posteriors, we use cosine dis-
tance to calculate the frame-wise distance between the pair.
The rest of the procedures are the same as described above.

Figure 3 shows the compensation index for MFCCs for En-
glish and French. The purple dotted line represents the model
prediction and the back dotted line is the human performance
reported from the control experiment in Darcy et al. (2009).

While both model and human fail to detect assimilation
from raw acoustics in the French case, the English model in-
deed predicts assimilation (0.66 for place and 0 for voice).
Using the same asymmetry criteria as before, only half of the
assimilation pattern can be accounted for, that is, only English
results show an obvious negative slope, while the French re-
sults display a flat slope. Thus, raw acoustics are not suffi-
cient for fully capturing the language-specific pattern.

The results further reveal that, first, for English, a listener
can detect place assimilation just depending on the acoustics
without any linguistic knowledge (if they are able to use all
information carried in the signals), although humans do not
(black dotted line); second, a comparison with Experiment 1
suggest that even for cases where raw acoustics are not dis-
tinguishable (i.e. French voice assimilation), the contextual
phonetic knowledge and the phone distributions – knowledge
learned by the model through training– enables a listener to
compensate for assimilation native to their own language.

Experiment 3: Cut-out word decoding
We further did decoding only on the cut-out words, which
replicates Darcy and colleagues’ control experiment to ex-
plore whether or not a listener (i.e. model) is still able to
compensate without the following context. Figure 4 shows
the cut-out word decoding only on the four models that suc-
cessfully compensate for assimilation in Experiment 1 (Fig-
ure 2, those displaying a negative slope for English and a
positive slope for French at the same time). The logic of in-
vestigating only four, but not all, models is that, if a model
fails to compensate for assimilation when given full infor-
mation, then such mismatch with humans indicates that they

Figure 4: Compensation indices on cut-out words (dotted
colored lines), compared to model performance with context
(solid colored lines) and human performance with/ without
context (solid/ dotted black lines). The selected models are
the ones that show human-like patterns in Experiment 1.

cannot model or explain human performance, and hence are
dispensed with. Dotted lines are the new results for cut-out
words, while solid lines are the same results as in Figure 2,
shown here for reference; black lines are human results.

Most models fail to compensate for assimilation in the ab-
sence of the following context, in that they do not show a
language-specific pattern, i.e. negative slope for English and
positive slope for French. The only exception is the model
with triphone AM and bigram LM (middle row). It success-
fully show the language asymmetry of the two types of as-
similation.

Discussion
This study investigates, using a computational model,
whether or not a listener without the knowledge of a lex-
icon or word boundaries can compensate for assimilation.
We replicated the psycholinguistic experiment in Darcy et
al. (2009) using HMM-GMM ASR models trained on En-
glish and French corpora respectively. We found that 1) cer-
tain models do show language-specific compensation effects;
2) in most cases, though not all, following context is crucial
for detecting language-specific compensation; 3) the phonetic
and allophonic knowledge (captured by AM) and the distri-
butional statistics of phones (captured by LM) both matter.

Linguistic knowledge is crucial for compensation
A major finding of this paper is that computational mod-
els trained on speech corpora indeed show language-specific
compensation asymmetry like humans. The models which
show this behavior share some properties: none of them use
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monophone AMs and none of them use flat LMs.
While there is no successful language-specific compensa-

tion on raw acoustics, models trained on speech corpora man-
age to compensate for assimilation like humans (Figure 2),
according to the comparison on the same experiment.

These results show the minimal knowledge a listener,
whether human or machine, needs to acquire to compensate
from assimilation, which cannot be done from raw acous-
tics alone. The successful models suggest that contextually-
sensitive knowledge of both phonetics and phonology are
necessary. Specifically, for phonetics, only learning phoneme
category (modeled by monophone AM) is not sufficient, and
one has to learn variable acoustic realizations of phones, in-
cluding context information (modelled by triphone(-SA) In
addition, no flat LM being successful suggests that one also
needs some knowledge of phone sequences/phonotactics, but
not much. The fact that even a unigram LM works (in some
models) indicates that, if one is able to learn contextual pho-
netic information well, then it is not necessary to learn phono-
tactics (i.e. probabilities of phone sequences), as the relevant
information is already included in the acoustic model. It also
reveals that only adjacent phones matter, which is indeed the
case for phonological assimilation.

The role of following context in compensation
Human listeners heavily rely on following context to de-
tect assimilation. In order to explore whether ASR models,
which already show human-like behavior, indeed show simi-
lar capacity for compensation, we test them on cut-out words
where no following context is accessible (Experiment 3). The
results on the four successful models show that three of them
fail to compensate as humans, indicating that following con-
text is indeed important.

On the other hand, it is interesting to note one exception,
the model with triphone AM and bigram LM, which is still
able to compensate without context. While this exception
does not agree with Darcy et al. (2009), humans can in some
cases make use of subtle acoustic cues to assimilation. In an
eye-tracking study, Gow & McMurray (2007) found that for
English place assimilation, listeners are able to predict the
following phone (the one that triggers the assimilation) be-
fore they hear it. The over-compensating model in our study
also compensates in French without following context, point-
ing to the availability of subtle acoustic cues not apparent in
the raw MFCCs, and not exploited by humans. Nevertheless,
the over-compensating model achieves greater compensation
rate when taking context into consideration (difference be-
tween solid and dotted lines in Figure 4 middle row).

Acoustic signals are partially informative
The results on MFCCs show that a listener can actually detect
assimilated words in English, if they are able to perceive all
acoustic information. Humans, however, are not able to do
this. Humans fail to perceive the full extent of acoustic detail
carried in the signal, while the ASR system is optimized for
solving this specific task. Nevertheless, the raw, unmodelled

acoustic signals fail to identify the assimilated word in the
French case.

A possible explanation for explaining the compensation
effects in the cut-out stimuli could be the way we derived
MFCCs: we calculated MFCCs at the sentence level and ex-
tracted frames corresponding to the word. When calculating
MFCCs at each frame, a small window of signal is used for
calculation. Thus, although we only extracted MFCCs up to
the word boundaries, the MFCCs nevertheless contain some
information about the following signal,and hence may cap-
ture some of the acoustics of the following consonant.

Conclusion
In this paper, we used ASR systems to represent listeners for
modelling language-specific phonological assimilation. We
found that certain models indeed reproduced human behavior,
not only in what they can do—compensation for assimilation,
but also in what they cannot do—no compensation for assim-
ilation without following context. Moreover, these computa-
tional ‘listeners’ do not employ any of the higher-level knowl-
edge sometimes used to explain perception of cross-word as-
similation by human listeners: a lexicon, explicit phonologi-
cal rules, or word boundaries. The patterns are explained by a
combination of contextual acoustic modelling and phonotac-
tic patterns, but nowhere in the system is there an application
of explicit (inverse) phonological rules.

In future work, we plan to better compare ASR with theo-
retical accounts based on the lexical level. This can be done
by using a word-level LM with a fallback on a phone-level
LM for unseen words. We also plan to test more modern
hybrid ASR systems based on deep neural networks for the
AM (Mohamed et al., 2012). Such models would presum-
ably have better performances than the AM used in this pa-
per, but because neural networks incorporate more context
than GMMs, they could potentially reproduce compensation
for assimilation without the help of any LM.
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